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Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies
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It is known that variational methods are the most powerful tool for studying the Coulomb three-body
bound-state problem. However, they often suffer from loss of stability when the number of basis functions
increases. This problem can be cured by applying the multiprecision package designed by D. H. Bailey. We
consider variational basis functions of the type expgri—Bi.r>— yar12) with complex exponents. The method
yields the best available energies for the ground states of the helium atom and the positive hydrogen molecular
ion as well as many other known atomic and molecular systems.

PACS numbe(s): 31.15.Ar, 31.15.Pf

The development of the variational method for the Cou-powers that are not integers or even half integers. As far as
lomb bound-state problem can be traced using as an examplee know, none of these compact expansions has been used
the ground state of the helium atom. In early days wherfor analytical evaluation of the matrix elements of the Breit
computers were big and very expensive, the search pranteraction.
ceeded mainly in the direction of making the expansion of With the advance of computer power, basis sets became
the variational wave function as compact as posgiiniehe  simplified, which allowed for calculation of the numerous
sense of the number of variational parameters and/or basimatrix elements required for relativistic and QED correc-
setg. At first, an explicitly correlated basis was introduced tions. Efforts were concentrated on a strategy that defines the
[1,2], now called the Hylleraas basis, seqguence of basis functions generated7Irthe double basis

set method with generalized Hylleraas basis functions

¢(r1,r2)=e‘1/252 C|mn5|Um'[m' o
W(ry,r)=2 Cﬁkrllrjzrlize_aArl_ﬁArz
S=r1+ry, U=Tqy, t=—T1+Ty; (1)
B i ]k a—apri—Bar;
then it became clear that at least for the ground state of the 2 Cijkl2r2r 128 )
helium atom it is essential to incorporate into the wave func- _ . _ _
tion such peculiarities as logarithmic behavior of the typewas used. This double basis set technique along with full
RINR at R=(r2+r3)Y2—-0, first analytically derived by optimization of nonlinear parameters for each basis set yields
Bartlett and FocK3]. In 1966, Frankowski and Pekerisee ~ substantial progress in accuracy. However, further advance is

Table Il below introduced a compact representatigf of ~ hindered by numerical instability even in quadruple precision
the form arithmetic due to the almost linear dependence of the basis

set at largeN.
B A . The work of Goldman[8] is somewhat apart from the
Y(r11) =" CmniiSUMM($* 1) (Ins)), (2) main path. It recovers the idea of Peke gf using un-
coupled coordinates and orthogonal Laguerre and Jacoby
and later, in 1984, Freund and co-work¢fg reported an polynomials as basis functions.
even more compact expansion of the same form. Inclusion of The method expounded in our work is a continuation of
the logarithmic term into the variational wave function efforts by Drake and Yafi7] to utilize as simple basis func-
caused substantial improvement in the nonrelativistic ener-
gies for two-electron atoms. In 1994, Thakkar and Kgga TABLE Il. Comparison of the ground-state energy of the helium
found a compact expansion without logarithms which usegtom obtained in this work with other theoretical calculations.

TABLE |. Variational energy(in a.u) of the helium ground N E (a.u)
state as a function dfl, the number of basis functions. Frankowski 246 —20037243770326
N E (a.u) and Pekeri$4]
Freund, Huxtable, 230 —2.9037243770340
1400 —2.90372437703411959629 and Morgan5]
1600 —2.903724377034119597843 Thakkar and Kog46] 308 —2.9037243770341144
1800 —2.9037243770341195981964 Drake and Yan7] 1262 —2.90372437703411948
2000 —2.9037243770341195982713 Goldman[8] 8066 —2.903724377034119594
2200 —2.9037243770341195982955 Drake[7] 2114 —2.903724377034119596
Extrapolation —2.903724377034119598306(10) This work 2200 —2.903724377034119598296
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TABLE lll. Variational energy(in a.u) of the positive hydrogen TABLE IV. Comparison of the ground-state energy of the posi-
ion ground state as a function bff the number of basis functions. tive hydrogen molecular ion obtained in this work with other theo-
retical calculationsm,=1836.152 701, .

N E (a.u)
N E (a.u)
1400 —0.597139063123404975
1600 —0.597139063123405047 Gremaud, Delande, 31746 —0.597139063123
1800 —0.5971390631234050655 and Billy [15]
2000 —0.5971390631234050710 Rebane and Filinskj16] —0.59713906312340
2200 —0.5971390631234050740 Moss[17] —0.5971390631234
Extrapolation —0.597139063123405076(2) This work 2200  —0.597139063123405074

tions (geminalg as possible, The expansion we want to con-is necessary to make significant changes in tb&@TRAN

sider is very similar to the generalized Hylleraas basis sefsource code ifFORTRAN-77language is used. Fortunately, the
but instead of using polynomials over Hylleraas variables weauthor of thewPFuN package has developed a translator pro-
generate nonlinear parameters in the exponents in a quagjram that greatly facilitates converting the programs to mul-

random manner, tiprecision. In general, two directives incorporated as com-
o ments in a source code are required per one routine. For
Firy e 1 Fre™ Miam e il = Aif2= %z, (4)  example, a source code for the variational method considered

has been transformed to a multiprecision version within two
This method has been successfully used in calculationsours of manual work. Eventually the code we obtained was
[9,10] previously. Obviously, the matrix elements can betested on a personal computer with a Celeron 500 MHz pro-
evaluated in the same way as for the generalized Hylleraasessor. For one run with a basish# 1400 functions and 40
basis set(4). Moreover, if one replaces real exponents bydecimal digits it requires about 3 h. For users-oRTRAN-90
complex exponents the integrals will remain exactly theno preprocessor is needed due to new advanced features of
same as for the real case. In its strategy the method is vesorTRAN-99 such as derived data types and operator exten-
close to the stochastic variational method by Varga and Susions.

zuki [11], where Gaussians are exploited instead. In our calculations for the helium ground state, four basis
In a formal way, the variational wave function is ex- sets with independently optimized nonlinear parameters were
panded in the form used. These sets were built up like a pine tree. The first layer

was tuned to approximate the general behavior of the solu-

_ . tion at intermediate and largg andr,. The second layer
%_;1 {Ui Refexp(—airy = Bir2= 7ir12)] was chosen to be flexible in a smaller regionrgfandr,,
and so forth. A detailed optimization was performed for the
+W, Im[exp( — a;r{— Bir,— yirlz)]}y,Ll'}"z(fl,Fz). sets with totalN=1400 andN=1600. Quadruple precision

was not sufficient at thede and we used the multiprecision
) version of the program with 40 significant decimal digits.
Further calculations witiN=1800-2200 were performed
Awith 48 significant digits and only partial optimization of the
parameters of the last laydcorresponding to the region
1 where the logarithmic behavior is the most essentieds
ai =31 (i+ 1)Vl (A=A +Ay] performed. Some optimization of the distribution mf be-

+i{[ 31+ D) Va (A= AD+ALT} (6)

Here «;, B;, andy; are complex parameters generated in
quasirandom mann¢i.3,14:

TABLE V. Other examples of three-body calculationk.i§ the

|x| designates the fractional part &fp,, andq, are some total angular momentum andthe vibrational quantum number.

prime numbers, anflA;,A,] and[A],A;] are real varia- System £
tional intervals which need to be optimized. The parameters

Bi and y; are obtained in a similar way. e e et This work ~ —0.2620050702329801077(3)
An important feature of the method is that it demonstrates [18] —0.262005070232976
a very fast convergence. The general rule that can be inferrade(2°P) This work ~ —2.13316419077928310(2)
experimentally from use of the method is that increasing the [19] —2.13316419077927(1)
basis by about 200 functions yields about one additional digityHe+ p This work ~ —2.98402095449725(1)
in the variational energy. The minor deficiency is that the(L=35,1=0)
basis quickly degenerates Bsincreases. Already for mod- [20] —2.98402094
erateN~250—-400 quadruple precision is required. H,* This work  —0.4997312306
A multiprecision package oFORTRAN routines,MPFUN, (L=0,v=19)
has been designed by David H. Bailgy2] for computations [21] —0.49973123063

with floating point numbers of an arbitrary length. Usually it
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tween the layersN=n;+n,+n;+n,) was carried out as method[21] is presumably better; however, wave functions
well. are not forthcoming with this method which makes difficult
As can be seen from Tables | and II, the present resulhe calculation of physical properties of the state other than
extends the accuracy of the nonrelativistic ground-state enspergy.
ergy for the helium atom by as many as three dec_lmal digits. ope may say that this high accuracy is redundant and has
Our second case is the hydrogen molecular ion grounﬁo physical meaning. But obviously it shows the power of
state, which represent another limit of mass distribution o . .
modern computers and their ability to solve the quantum

constituents with one light and two heavy particles. For thish bod bl ired on th h
case it is especially essential that we introduce complex exfree-body problem to any required accuracy. On the other

ponents, because it is the most natural way to fit the oscilla?@nd, uncertainty in the variational wave function is approxi-
tory behavior of the vibrational motion in the wave function. Mately as much as the square root of the uncertainty in the
In this casesee Table Il again 40 decimal digits were used Variational energy and is about 19-10*°. This accuracy
for N=1400-1800 and 48 decimal digits for largd to  does not look redundant. These results prove that the nonrel-
provide numerical stability of the calculations. Table IV ativistic bound-state three-body problem is now satisfactorily
demonstrates the progress in obtaining the variational norsolved and the main efforts should be addressed to relativis-
relativistic energy for this state. The accuracy is extended byic and QED effects.
as many as four additional digits. The other advantage of the method is the simplicity of the
In Table V other examples are summarized. The negativeasis functions which allows for analytic evaluation of the
positronium ion demonstrates the limit of three particles ofrelativistic matrix elements of the Breit Hamiltonigsee, for
equal masses. The second and third cases are applicationseample, Ref[22]). It is possible as well to evaluate analyti-
the method to states with nonzero angular momentum. Theally the vacuum polarization teriitJehling potential [23]
|a.St e)_(ample n thlS table is Of SpeCIaI interest. That is the |a.5énd to build up an effective numerical scheme for one_|00p
vibrational state in the series @ states of the hydrogen self-energy correctionk24]. These features make the varia-

molecular cation, and this calculation is the first variationakjonal method considered a very powerful universal tool for
confirmation of the existence of this state to our knowledgestudymg the three-body problem.

[the binding energy corresponding to the cited value is
0.744212) cm 1]. The accuracy of the artificial channel ~ This work has been partially supported by INTAS Grant
scattering No. 97-11032, which is gratefully acknowledged.
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