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Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies
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~Received 17 December 1999; published 17 May 2000!

It is known that variational methods are the most powerful tool for studying the Coulomb three-body
bound-state problem. However, they often suffer from loss of stability when the number of basis functions
increases. This problem can be cured by applying the multiprecision package designed by D. H. Bailey. We
consider variational basis functions of the type exp(2anr12bnr22gnr12) with complex exponents. The method
yields the best available energies for the ground states of the helium atom and the positive hydrogen molecular
ion as well as many other known atomic and molecular systems.

PACS number~s!: 31.15.Ar, 31.15.Pf
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The development of the variational method for the Co
lomb bound-state problem can be traced using as an exa
the ground state of the helium atom. In early days wh
computers were big and very expensive, the search
ceeded mainly in the direction of making the expansion
the variational wave function as compact as possible~in the
sense of the number of variational parameters and/or b
sets!. At first, an explicitly correlated basis was introduc
@1,2#, now called the Hylleraas basis,

c~r1 ,r2!5e21/2s( clmns
lumtm,

s5r 11r 2 , u5r 12, t52r 11r 2 ; ~1!

then it became clear that at least for the ground state of
helium atom it is essential to incorporate into the wave fu
tion such peculiarities as logarithmic behavior of the ty
R ln R at R5(r 1

21r 2
2)1/2→0, first analytically derived by

Bartlett and Fock@3#. In 1966, Frankowski and Pekeris~see
Table II below! introduced a compact representation@4# of
the form

c~r1 ,r2!5e2ks( clmni js
lumt2m~s21t2! i /2~ ln s! j , ~2!

and later, in 1984, Freund and co-workers@5# reported an
even more compact expansion of the same form. Inclusio
the logarithmic term into the variational wave functio
caused substantial improvement in the nonrelativistic en
gies for two-electron atoms. In 1994, Thakkar and Koga@6#
found a compact expansion without logarithms which u

TABLE I. Variational energy~in a.u.! of the helium ground
state as a function ofN, the number of basis functions.

N E ~a.u.!

1400 22.90372437703411959629
1600 22.903724377034119597843
1800 22.9037243770341195981964
2000 22.9037243770341195982713
2200 22.9037243770341195982955
Extrapolation 22.903724377034119598306(10)
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powers that are not integers or even half integers. As fa
we know, none of these compact expansions has been
for analytical evaluation of the matrix elements of the Br
interaction.

With the advance of computer power, basis sets beca
simplified, which allowed for calculation of the numerou
matrix elements required for relativistic and QED corre
tions. Efforts were concentrated on a strategy that defines
sequence of basis functions generated. In@7# the double basis
set method with generalized Hylleraas basis functions

c~r1 ,r2!5( ci jk
A r 1

i r 2
j r 12

k e2aAr 12bAr 2

1( ci jk
B r 1

i r 2
j r 12

k e2aBr 12bBr 2 ~3!

was used. This double basis set technique along with
optimization of nonlinear parameters for each basis set yie
substantial progress in accuracy. However, further advanc
hindered by numerical instability even in quadruple precis
arithmetic due to the almost linear dependence of the b
set at largeN.

The work of Goldman@8# is somewhat apart from the
main path. It recovers the idea of Pekeris@2# of using un-
coupled coordinates and orthogonal Laguerre and Jac
polynomials as basis functions.

The method expounded in our work is a continuation
efforts by Drake and Yan@7# to utilize as simple basis func

TABLE II. Comparison of the ground-state energy of the heliu
atom obtained in this work with other theoretical calculations.

N E ~a.u.!

Frankowski
and Pekeris@4#

246 22.9037243770326

Freund, Huxtable,
and Morgan@5#

230 22.9037243770340

Thakkar and Koga@6# 308 22.9037243770341144
Drake and Yan@7# 1262 22.90372437703411948
Goldman@8# 8066 22.903724377034119594
Drake @7# 2114 22.903724377034119596
This work 2200 22.903724377034119598296
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BRIEF REPORTS PHYSICAL REVIEW A 61 064503
tions ~geminals! as possible, The expansion we want to co
sider is very similar to the generalized Hylleraas basis
but instead of using polynomials over Hylleraas variables
generate nonlinear parameters in the exponents in a q
random manner,

r 1
l i r 2

mir 12
ni e2ar 12br 22gr 12⇒e2a i r 12b i r 22g i r 12. ~4!

This method has been successfully used in calculat
@9,10# previously. Obviously, the matrix elements can
evaluated in the same way as for the generalized Hylle
basis set~4!. Moreover, if one replaces real exponents
complex exponents the integrals will remain exactly t
same as for the real case. In its strategy the method is
close to the stochastic variational method by Varga and
zuki @11#, where Gaussians are exploited instead.

In a formal way, the variational wave function is e
panded in the form

c05(
i 51

`

$Ui Re@exp~2a i r 12b i r 22g i r 12!#

1Wi Im@exp~2a i r 12b i r 22g i r 12!#%Y l 1l 2
LM ~ r̂1 , r̂2!.

~5!

Herea i , b i , andg i are complex parameters generated in
quasirandom manner@13,14#:

a i5 b 1
2 i ~ i 11!Apac@~A22A1!1A1#

1 i $ b 1
2 i ~ i 11!Aqac@~A282A18!1A18#%. ~6!

bxc designates the fractional part ofx, pa , andqa are some
prime numbers, and@A1 ,A2# and @A18 ,A28# are real varia-
tional intervals which need to be optimized. The parame
b i andg i are obtained in a similar way.

An important feature of the method is that it demonstra
a very fast convergence. The general rule that can be infe
experimentally from use of the method is that increasing
basis by about 200 functions yields about one additional d
in the variational energy. The minor deficiency is that t
basis quickly degenerates asN increases. Already for mod
erateN;250– 400 quadruple precision is required.

A multiprecision package ofFORTRAN routines,MPFUN,
has been designed by David H. Bailey@12# for computations
with floating point numbers of an arbitrary length. Usually

TABLE III. Variational energy~in a.u.! of the positive hydrogen
ion ground state as a function ofN, the number of basis functions

N E ~a.u.!

1400 20.597139063123404975
1600 20.597139063123405047
1800 20.5971390631234050655
2000 20.5971390631234050710
2200 20.5971390631234050740
Extrapolation 20.597139063123405076(2)
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is necessary to make significant changes in theFORTRAN

source code ifFORTRAN-77language is used. Fortunately, th
author of theMPFUN package has developed a translator p
gram that greatly facilitates converting the programs to m
tiprecision. In general, two directives incorporated as co
ments in a source code are required per one routine.
example, a source code for the variational method conside
has been transformed to a multiprecision version within t
hours of manual work. Eventually the code we obtained w
tested on a personal computer with a Celeron 500 MHz p
cessor. For one run with a basis ofN51400 functions and 40
decimal digits it requires about 3 h. For users ofFORTRAN-90

no preprocessor is needed due to new advanced featur
FORTRAN-90, such as derived data types and operator ext
sions.

In our calculations for the helium ground state, four ba
sets with independently optimized nonlinear parameters w
used. These sets were built up like a pine tree. The first la
was tuned to approximate the general behavior of the s
tion at intermediate and larger 1 and r 2. The second layer
was chosen to be flexible in a smaller region ofr 1 and r 2,
and so forth. A detailed optimization was performed for t
sets with totalN51400 andN51600. Quadruple precision
was not sufficient at theseN and we used the multiprecisio
version of the program with 40 significant decimal digit
Further calculations withN5180022200 were performed
with 48 significant digits and only partial optimization of th
parameters of the last layer~corresponding to the region
where the logarithmic behavior is the most essential! was
performed. Some optimization of the distribution ofni be-

TABLE IV. Comparison of the ground-state energy of the po
tive hydrogen molecular ion obtained in this work with other the
retical calculations.mp51836.152 701me .

N E ~a.u.!

Grémaud, Delande,
and Billy @15#

31746 20.597139063123

Rebane and Filinsky@16# 20.59713906312340
Moss @17# 20.5971390631234
This work 2200 20.597139063123405074

TABLE V. Other examples of three-body calculations. (L is the
total angular momentum andv the vibrational quantum number.!

System E

e2e2e1 This work 20.2620050702329801077(3)
@18# 20.262005070232976

He(23P) This work 22.13316419077928310(2)
@19# 22.13316419077927(1)

4He1p
(L535, v50)

This work 22.98402095449725(1)

@20# 22.98402094
H2

1

(L50, v519)
This work 20.4997312306

@21# 20.49973123063
3-2
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BRIEF REPORTS PHYSICAL REVIEW A 61 064503
tween the layers (N5n11n21n31n4) was carried out as
well.

As can be seen from Tables I and II, the present re
extends the accuracy of the nonrelativistic ground-state
ergy for the helium atom by as many as three decimal dig

Our second case is the hydrogen molecular ion gro
state, which represent another limit of mass distribution
constituents with one light and two heavy particles. For t
case it is especially essential that we introduce complex
ponents, because it is the most natural way to fit the osc
tory behavior of the vibrational motion in the wave functio
In this case~see Table III! again 40 decimal digits were use
for N5140021800 and 48 decimal digits for largeN to
provide numerical stability of the calculations. Table I
demonstrates the progress in obtaining the variational n
relativistic energy for this state. The accuracy is extended
as many as four additional digits.

In Table V other examples are summarized. The nega
positronium ion demonstrates the limit of three particles
equal masses. The second and third cases are applicatio
the method to states with nonzero angular momentum.
last example in this table is of special interest. That is the
vibrational state in the series ofS states of the hydrogen
molecular cation, and this calculation is the first variation
confirmation of the existence of this state to our knowled
@the binding energy corresponding to the cited value
0.744 21~2! cm21]. The accuracy of the artificial channe
scattering
d

v
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method@21# is presumably better; however, wave functio
are not forthcoming with this method which makes difficu
the calculation of physical properties of the state other th
energy.

One may say that this high accuracy is redundant and
no physical meaning. But obviously it shows the power
modern computers and their ability to solve the quant
three-body problem to any required accuracy. On the ot
hand, uncertainty in the variational wave function is appro
mately as much as the square root of the uncertainty in
variational energy and is about 1029210210. This accuracy
does not look redundant. These results prove that the non
ativistic bound-state three-body problem is now satisfacto
solved and the main efforts should be addressed to relat
tic and QED effects.

The other advantage of the method is the simplicity of
basis functions which allows for analytic evaluation of t
relativistic matrix elements of the Breit Hamiltonian~see, for
example, Ref.@22#!. It is possible as well to evaluate analyt
cally the vacuum polarization term~Uehling potential! @23#
and to build up an effective numerical scheme for one-lo
self-energy corrections@24#. These features make the vari
tional method considered a very powerful universal tool
studying the three-body problem.

This work has been partially supported by INTAS Gra
No. 97-11032, which is gratefully acknowledged.
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