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Multidimensional quantum solitons with nondegenerate parametric interactions:
Photonic and Bose-Einstein condensate environments
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We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings.
This can be applied to treat photonj¢? and x(® interactions, and interactions in atomic Bose-Einstein
condensates or quantum Fermi gases, describing coherent molecule formation togethavavithscattering.

The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a
momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions—even
though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with
a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding
energies thary® quantum solitons, and the resulting effects could potentially be experimentally tested in
highly nonlinear optical parametric media or interacting matter-wave systdparticle quantum solitons and

the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-
Einstein condensatdBEC's) are given, where we predict the possibility of forming coupled BEC solitons in
three space dimensions, and analyze “superchemistry” dynamics.

PACS numbses): 42.65.Tg, 03.65.Ge, 03.75.Fi, 11.10.St

[. INTRODUCTION pected properties. This degenerate parametric theory—with
similarities to the Friedberg-Le¢12] model of highT:
Quantum soliton$1] or bound states of interacting fields superconductivity—has bound states in one space dimension
are generalizations of nonlinear solitonic solutions of classi{13,14, but is unstable(like the nonlinear Schuinger
cal wave theory to include quantum fields. Exactly solvablemodel with an attractives-function potential in higher di-
cases include many-body bound states of bosons interactifgensions. Unlike the nonlinear Schioger model, the in-
via a é-function potential in one space dimension. This Stability does not occur at the classical level. Indeed, classi-
model (often called the nonlinear Schtimger model was €@l parametric solitons in higher dimensions are both
solved by Lieb, Liniger, McGuire, and Yarig]. Recently it  theoretically predicted15-17 and observed to exigtL8].
was predicted that this solvable model could lead to experiW'th the inclusion of an additiondrepulsive quartic inter-

mentally observable quantum effects including quantumaction term in the Hamiltonian, a rigorous lower bound to the
squeezing in optical fiber solitori8,4]. This prediction has energy was proved to exist, and we demor)strateq the EXIS-

o . tence of exact two-particle bound states in higher dimensions
now been verified experimentall$].

11,19. These new types of quantum solitons have a finite

OFher ex_amples of exactly s_oluble. models are genera.”%inding energy, but the corresponding two-particle wave
restricted either to one space dimension, or to physically ing otion has a zero radius; the pointlike structure of these

accessible systems like the quantum Davey-Stewartsof, nd states can be termed a “quantum singularity.” With a

model [6]. An exception is Laughlin’s highly innovative ,omentum cutoff imposed on the couplings, the bound
theory of a two-dimensional electron gas in an external magsiates develop a finite radius.

netic field[ 7], which was able to explain the fractional quan- | the present paper, we extend these earlier results to
tum Hall effect[8]. Similar techniques have recently been jnciyde the nondegenerate case of parametric interaf@@n
proposed for treating interacting Bose gases in higher dimeryt three distinct fields with either Bose or Fermi statistics
sions, in the limit of very weak couplings, leading to an (rather than two bosonic fiellsThe results demonstrate the
elementary theory of a quantum vort¢d]. Experimental  existence of exact two-particle nondegenerate eigenstates in
success in Bose-Einstein condensation of atomic gasefigher dimensions, having a pointlike structure in space,
[10] makes it possible that quantum soliton behavior couldyity a finite energy when there is no momentum cutoff.
become observable in ultralow-temperature nonlinear atorygwever, typical physical systems that can be experimen-
optics, as well as with photons. o . tally identified as having the requisite three-wave bosonic

In a recent papefl1], we showed that it is possible t0 jnteractions usually have momentum cutoffs. These cutoffs,
obtain an exact solution in one, twandthree space dimen- o course, provide a spatial extent to the bound states. We
sions, in a nonlinear quantum field theory that includes thgnerefore provide solutions that include cutoff effects as well.
most fundamental property that distinguishes quantum megstimates of typical binding energies and soliton character-
chanics from quantum field theory—that is, the ability t0stic radii are given for photonic interactions in highly non-
create and destroy particles. The simplest cubic interactiofnear optical materials. They appear to be of more realistic
involviAngAtwo boson fields—the parametric interaction of themagnitudes for possible experiments, as compared to earlier
form W2¥]—was analyzed for bound states in higher di- known quantum solitons based on cubic nonlinearits=e,
mensions, resulting in soluble cases with unusual and unex.g.,[2,21], and[11,14] for comparison
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In addition, we discuss the application of the basic modebms(of massesn; andm,) convert into diatomic molecules
to coherently coupled atomic/molecular Bose-Einstein con{of massm;=m,+m,), while the quartic couplingsc{!’
densatesBEC's). This provides the possibility of extending would refer to the strength of intra- and interspecies two-
our earlier resultg22] on “superchemistry” in degenerate body collisions.
parametric interactions to a larger variety of interacting |, the case of degenerate couplin&sl(z\ifz),the coher-
quantum gases, i.e., to three-specfiso atomic and one ent process of dimerization in atomic/molecular BEC inter-
moleculay BEC systems. We present here a mean-field, tions and the possibility of formation of coupled atomic-
theory analysis which predicts, at large particle number, &,qjecular solitons has been studied [89,22,23. Pure
transition to a classical soliton domain, where stable threequartic interactions in two-species Bose condensates have
dimensional BEC solitons can form in certain parametefygap analyzed ifi24], while the interplay between paramet-
ranges. ric and (attractive quartic interactions in optical soliton
propagation, at the classical level, has been studi¢@5h
Il. MODEL An important feature encountered in the treatment of the
o Present nondegenerate parametric interaction is that, al-
though we have specified Bose statistics for all three inter-

acting fields¥; , some of the results obtained here will also
H=Hg+Hpy, (1)  be valid if fermionic fields are involved and the correspond-
ing commutators are replaced by anticommutators. An ex-
where ample of such systems is the case white and ¥, are
3 fermionic, as in the $-channel” model of high¥. super-
Ho:ﬁf dDX( 2 i|V‘ifi(x)|2+Aw‘if§(x)‘if3(x) ’ conducAtivity byAFriedberg and Lgd2]. Similarly, the case
=12m, whereV, and V5 are fermionic, as in the Lee—Van Hove
2 model of nuclear interaction6], is also treatable.
To simplify the theory we consider in Sec. Il the approxi-

We start by considering the following quantum effectiv
Hamiltonian:

and i, =HX +H{Y | with mation in which we assume short range interactions and,
taking into account translational invariance considerations,
ﬂfggzhf f deXdDydDZXD(vaaZ) rgplace thg interaction_potentigls Byfunction pseud.opo.ten—'
tials. In this case, the interacting part of the Hamiltonian is
X[ W10 ,(y) i) +H.cl, o) ) o
, Aini=71 f d®x| xo[ ¥ 100,00 ¥ (%)
- h -~
H.(K):_E fJ'ffdDXdDydDX,dDy,K(IJ)(X,y,X’,Y') R R R
25 P + 0TI 0 W4(00]

It it 1 AT ’ 3

<TT0T ()T )y, 4 L3 BT 0k ©
HereW,, ¥,, and ¥, are three Bose fields with commuta- R

tion relations [‘i’i(x),‘i’f(x’)]= 8ij6(x—x"). In addition, This is a very idealized model. We note that such models
my, m,, andms are the corresponding effective masses andn quantum field theory are usually treated in the context of
Aw is the phase mismatch or the bare formation energy ofenormalized perturbation theory, with the understanding
the field ¥';. Nonlinear interactions are included via the that the coupling constants are a function of an implicit mo-
parametric interaction potentiat, describing a particle mentum cutoff. However, we shall demonstrate a rather un-

number nonconserving process, in which a pairiof and expected and remarkable result, which is that the above ide-
' alized Hamiltonian has an exact ground state with a finite

W, quanta is destroyed and'; quantum is created, while binding energy—even without a cutoff or renormalization

K(Dij) is the particle number conserving potential describingrgrocedure. We emphasize that providéCH)>O there are no

quartic_ self- and crozg—inter_actions between the fields, i nergy divergences or collapsing behavior in this idealized
D (D=1,2,3) space dimensions. cubic-quartic model, unlike the case of a Bose gas with

n thg case of o.pt|cal mterqqqons the coupl!ngs are dge t?)urely quartic attractivé-function interactions. On the other
guadratic and cubic polarizabilities of the nonlinear med'um’hand for a Bose gas with purely quartic repulsiinction

giving rise to the parame}ric process Of. frequency ConVerSiorihteractions the exact eigenvalues in more than one dimen-
(sum-frequency generatintogether with self- and cross- Fion are the same as those for free particles, i.e., the

phé?se modulation Processes. The_ above_effecfuve Ha.m'é—function pseudopotential produces no scattering and the
tonian can also be applied to describe nonhntfar Inte["’mtmnéround state energy is the same as for a noninteracting Bose
of matter-wave fields, such as in coupled atomi@nd¥,  gas[27]. Instead, the idealized model we consider gives a
fields) and molecular ¥ 5 field) Bose condensates. In this nontrivial bound state that has a finite binding energy, but
case, the parametric coupling, would refer to the rate of involves a pointlike(zero-radiug structure in more than one

coherent process of atomic dimerization, where pairs of atspace dimension. While physical models typically do have a
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momentum cutoff, the exactly soluble model without cutoff ~ Operating on|¢{?)), Eq. (8), with the Hamiltonian(1),

is indicative of behavior with a cutoff, and provides some(2), and (5) gives that the two-particle eigenvalue problem

useful insight. _ H|o@)=E@| @) is equivalent to the following set of
A more sophisticated pseudopotential approach would b%quations:

to employ the regularized method used by Huang, Yang, and

Lee[28]. However, for simplicity we choose to start with a #? 5 @

simple Diracs-function interaction which has the advantage 2—mgV P(X)+(EK’— A w)P(X)=fixpQ(x,X), (10)

of giving a Hermitian Hamiltonian. More careful treatment

of the o-function interaction would be to incorporate a mo- 52 52

mentum cutoff imposed on the nonlinear couplings. This is (—V)Z(Jr —Vf,)Q(x,yHEff)Q(x,y)

further treated in Sec. IV, where we obtain a regularized 2my 2mg

bound state with a finite spatial extent in one, two, and three m;X+ m,y
dimensions. =1h| xpP| ——F——| + kpQ(X,y) | 6(x=y), (11)
m,+m,
Ill. CUTOFF INDEPENDENT RESULTS whereE{® is the corresponding energy eigenvalue.

. . To solve these equations we introduce the relative and
To construct the general candidate for the eigenstate tQ, - ot mass coordinates according rtex—y and R

the Hamiltonian given by Eqg1), (2), and(5), we note that  _ 1y y 1 m v)/(m,+m,). With these coordinates we have
the parametric interaction transforms pairs'\bBf and V¥,

guanta into single¥; quanta, and vice versa. That is, the ﬁ_zszr ﬁ_zvzzﬁ_zszr ﬁ_zvz (12)
Hamiltonian does not conserve the corresponding particle 2m; X 2m, Y 2M Ro2u "
numbers. However, it does conserve a generalized particle )
number, or Manley-Rowe invariant, equal to where we have introduced a reduced mass
m;my
N=N1+N2+2N3=J AOX (|42 [+ 2] F5]2). A= g (13
(6)

and definedV =m;+m,. Assuming translational invariance
we can seek foP(x) in the form of P(x) =Py exp(K-Xx),
whereK is the total momentum. As a consequen@é€x,x)
will be proportional toP(x), and therefore we may look for
i 3 the general expression fdQ(x,y) in a separable form:
P=hK=— — f d°x> [W(vi)—(vihd,] 7 QIxY)=g(r)P(R). Substituting this into Eqs10) and(11),
2 i=1 and dividing the energy into center-of-mass and relative
componentE?)=E +E,, we then solve the equation for
We therefore search for statgsy") that are eigenstates P(R), yielding at P(R)=P,exp(K-R), with K2=|K|?

In addition, the Hamiltonian is translationally invariant,
and thus conserves the total momentum given by

of H, N, andK, with energy eigenvalueg{". =2ME./#?, and as a result
o _ E@=%2K?/(2m3) +hAw+Tixpg(0). (14)
A. Two-particle eigenvalue equation
We consider first the two-particleNE=2) eigenstate The remaining equation for thgg(r) function is rewritten
which must have the form of a superposition state: as
2 st 2 _2 2,L,L
k)= f d®xP(x) ¥ {(x) V2g(r) =10 °9(r)=——[xo+ xpg(0)]8(r), (15

- - where we have defined a length sceje according to
+ [ [ dexeyaueyrtlootio o). ® gth scele g

. 2uE, uK? 2uEQ
where P and Q are one- and two-particle wave functions, ro =~ 52 - M 52
respectively.

We note that the quartic terms in the interaction Hamil-Together with Eq(14), this implies that the energy eigen-
tonian (5) other than the cross-interaction term between thg gjye is given by
¥, and ¥, fields have no effect on the two-particle eigen-
state. For this reason, we will use a simplified notation

(16)

h2K2  R2

EQ - (17
2M 2’
xp= (kD4 kD)2 = 12 9) 2urg
. R wherer g is to be found by solving the following eigenvalue
for the cross-coupling between the fieldls and V. equation:
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5, 2u; £2K2  hkpg2(0)+2A 0)—#%A
o= 14~ x09(0)]. (9 gp= 1, 100 (0) " 21X00(0)
2M 1+f dPrg?(r)

Herer, must be real and positive for a localized bound state o s 5
or quantum soliton solution. The quantity _hKT fi(xp+Akp)

2M 1+der gz(r)}
> =hA—1fixpg(0) (19

2urg whereA is defined in Eq(20).

If (xp)?+Akp=<0, then the lower bound, is given by
can be interpreted as the binding energy of the two-particl& =7°K?*/(2M)=E. This has a simple interpretation as
quantum soliton with the momentuls, and we have defined Providing the center-of-mass energy, so tigf’=E, (or
E,=E{®’—E.=0) and no bound states, with,=E®—E,
<0, are possible in this case. If, however,

: (24)
Kp

2
2)

h(K2 K2)
A=—|—— —|-Aw. (20

2\ M m3 (XD)2+AKD>O, (25)

Equations(17) and (18) are equivalent to formulating the which is the case that we focus on in this paper, then we have

eigenvalue problem directly in terms of E44), whereg(0)

2?2 2
is to be found by solving the following equation: E@= K —hA— h(xo)
ZM Kp
2u 2u h2K? fi(xp)?
V2g(r)— ——[A=xp9(0)19(r)= ——[xp+ kpg(0)]4(r). = +hAw— ———=F. (26)
ﬁ ﬁ 2m3 Kp

(21)
This implies thatE,=E®—E.=%Aw—#(xp)?/kp, and
Thus, the two-particldor diboson eigenstate candidate Pound states may become available.
(8) that is a simultaneous eigenstate of the momentum op-
erator takes the following form: C. Exact diboson solutions

Equations(15) and(18) can easily be analyzed using the

. . Fourier transform method. In this approach we seek a solu-
|‘PE<2)>=“ dee'K'X‘I’g(XHJ J’ d°r d°Re'"Rg(r) tion to Eq.(15) in the form

- g(r)=fd°kG(k)exp(ik-r)/(27)°,
X P

mor) . o myr
R‘f‘v v, R_V |0> (22
wherer =|r|. Expanding thes function into a Fourier inte-
gral, we then obtain the Fourier transform equivalent to Eq.

B. Energy lower bound for two-particle case (15

The stability of our Hamiltonian in the two-particle sector (K+r1,2)G(k)=—q, 27
can be proved by finding a lower bourit] to the Hamil-
tonian energyE{?=(¢{Z|H|¢{&)/(o{] ), so thatE?)  wherek=|k
=E,. Applying the Hamiltonian to]¢{®), and using the
symmetry property of the two-particle correlation function g=2u[ xp+ «pg(0)]/. (28
g(x)=g(—x), one can find that

-1
E,(<2)=(1+f dDrgz(r))

, and we have defined

Solving Eg. (27) for G(k) and substituting it into the

#2 expression fog(r) we find
5 | PrIvamP

o} o, EXplik-r)
22 ﬁZKZ g(r)=— (2 )D Jd km (29)
Dy 2 (s r
+ oM fd rge(r)+ m, +hAw+2hxpa(0) 0
1. One-dimensional case (B1)
2
+hKpg (0))' (23 In the one-dimensional cas® & 1) the integration gives
Omitting the first nonnegative term in the square brackets, ¢r)=— a [ Kk exp(ikr) S %exq—|r|/ro).
we arrive at a lower energy that is rigorously bounded from 27 J o K2+ 1/r§ 2
below if k>0, according to (30
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Using this result at =0 and the definition of, we solve tidimensional solutions is in their structure and dependence
for g(0) and find thag(0)= — x4[ k;+#A/(uro)] *. Corre-  on the additional quartic interaction. In one dimension the
spondingly, the eigenvalue equatiéh8) for ry is now re-  bound state has finite characteristic size and is available even

written as a cubic: without a quartic term in the Hamiltonian. In two and three
dimensions, the bound states involve a pointlike structure,

o 5 3 2MA 5 pKy B yet the corresponding binding energy is finite xif>0. If,

52 [(x)"+Araro+ ——1o=757To=1=0, 3D however,kp=0 we obtain an energy collapsg(®— — .

Thus, while the additional quartic interaction prevents an en-
wherer, must be real and positive for a localized bounde€rgy collapse and makes multidimensional quantum solitons
state. possible, these solitons involve a zero-radius relative local-

The analysis of this equation shows that«f>0 and ization of the¥, and ¥, quanta.
(x1)?+ Ak, >0—that is, under the same conditions that we The diboson solutions can be regarded as a type of dress
assumed while proving the lower bound, EQ6—then  ng of the ¥, quanta, which have a lower energy due to the
there always exists one positive solution fgr This proves creation of virtual pairs of; and W, quanta. We also note

the existence of a one-dimensional two-particle quantun?hat in a renormalized theory in whickp and «p are re
. . . . . . . D D -
soliton, with a characteristic radiug and a binding energy garded as functions of a momentum cutiff, the above

(2) =42 2 ' o
of Eg”=#%/(2urg). In the absence of the quartic term( result implies that ¢p)?/ kp Must approach a constant value

=0) and with perfect phase matchidgp=0 andms=M ¢ |arqek in order that the observed binding energy should
(so thatA=0), the equation forr, is solved analytically. be cutoff independent.

This gives the following explicit results for the soliton bind-
ing energy and the radius:

D. Energy lower bound for N-particle case

(2)_ (%2 1/3 413
By = (72 0™, (32) The zero-radius form of the two-particle bound states in

Fo=(h212x2u2) 13 (33) two and three space dimensions simplifies the treatment of
0 ! the general case df-particle bound states, so that one can
find an exactground state solution to this quantum many-
body system. To show this first we prove a lower bound to
The two- and three-dimensional results are qualitativelythe Hamiltonian energy in thi-particle sector. To do so we
different. In these cases we evaluate the integralg{o), neglect the non-negative kinetic energy terfifly,
from Eq. (29), in polar (for D=2) and sphericalfor D = [dPX[ =3, (A2/2m,)| V¥, |2]} in the Hamiltonian and con-

=3) coordinates. Using the definition qf we then solve for ) oA ~ - .
g(o) and obtain g(o): _XD[KD+hr(E))_2/(2/-LfD)]_1! sider a reduced Ham||t0n|ah|R:H_Hkinv such thatH

2. Higher-dimensional case (B2,3)

where we have defined the dimensionless integral =Hg. Assuming thatcp>0, one can show that
- D-1 N A
foo f x> (D=2.3. (34) HRBﬁ[Aw—()(D)ZIKD]J dPx ¥,
271 Jo 1+x2 5
This integral diverges fob=2,3. (A strict treatment of +ﬁf d®x 2 %Kgi)®?2¢’?+ K(Dlg)\pI\Pl\,P;@3
this divergence, as a mathematical limit, is given in Sec. IV, =1
where it is attributed tdk,—, with k;, being the upper
limit in the integral) Therefore we find thag(0) and hence + K(Dz3)\ir£\if2\if£\if3), (37)
the energy eigenvalug{?) from Eq.(14) are given by
9(0)=—xp/xp, (35

which is simply seen by substituting the expression Hgr
72K 2 fi(xp)? and rewriting this inequality in the form

(2): =
EQ)= g, HhAe—— >~ (D=23. (3
1 A “
With the above result fog(0) it also follows thatg=0, P d°X| kW W I+ xp W5l 2=0. (39)

and since the integral in Eq29) converges for #0, we
obtain thatg(r)=0 if r#0. This means that the exact
bound-state solution in two and three dimensions have &ombining now the inequaliyd=Hg and Eq.(37), and
pointlike (zero-radiug structure, which is in the relative po- assuming that all the other quartic couplings are non-
sitions of the¥; and ¥, quanta. negative (4", x5, kZ¥=0) we arrive at

Thus, the results of this section show that our model
Hamiltonian provides quantum solitons or two-parti¢té-
bosorn eigenstates in one and more space dimensions. An ﬂ?ﬁ(Aw—
important difference between the one-dimensional and mul-

(Xp)? -
. )dexW3W3, (39
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implying that  the energy eigenvalue E{V Hereg(r) is the zero-radius two-particle correlation function

=(oM[AeM) (oM oMy satisfies the following inequal- found earlier, having the property th#t®r g%(r)=0 and
i g(0)=— xp/kp, in two and three dimensions. Calculating

ity: D Ny~ ~ i~
, the energyE{V = (oA oMY/ (oY) with the ansatz
E&N)Zﬁ( Aw— ()f(D) )W& (40) (44) gives (see Appendix A
D
~ . gy N hxp)?| N(N \AxS?
whereN;=(o{"|Ni| o) /(0" | ). Eé”)=§(fmw— o) >+ 5(5—1) v (D=23,
Due to the conservation of the generalized particle num- Kp 45

ber N=N; + N,+ 2N, we haveN,<[N/2], where[N/2] is

the integer part oN/2. Therefore, if ] ) .
where V=[dPx is the integration volume. The self-

(XD)2<O 1) interaction terms of the fielda?; and ¥, (~«{Y and
Kp ' «2?), as well as the cross-interaction terms between the

fields ¥, , and W5 (~ x5 and x2¥), do not contribute to
the energy~E§,N). The first term in Eq.(45) is simply the
f(xp)? N) energy due tdN/2 independent noninteracting dibosons, each
)EEI : (42 having the energE®’, Eq. (36). The second term in Eq.

(45) is the self-interaction energy of th@3 field, which
This proves the lower bouri™) to the Hamiltonian energy, depends explicitly on the interaction volurkieand decreases
which we note is valid in one, two, and three dimensions. asV is increased.
In two and three dimensions the above inequality can be The above result is easier to understand if we calculate the

further simplified. Since the expressidn\w—7(xp)*/xo  average number of quants=(e{¥|N;| PGV /(M HEV)
representisee Eq(36)] the exact two-particle energy €igen- i, ach field, which givedl; = N/2 andN, ,= 0. This implies
alue with zero moment , We can rewrite Eq(42) as P ’ ] .

vaiue with 2 untsg ™, w write Eq42) that thew; and ¥, quanta can only be regarded as virtual,

EN=eM=[N2IEP (D=2,3). (43  the presence of which is manifested by the finite binding
energy of the two-particle bound states. In such a virtual
state, the?’; and ¥, quanta can only interact via the para-
metric yp and the quartic cross-coupling, within the indi-

We can now use the lower bound to obtain the zerowvidual dibosons. This is a consequence of the zero-radius
momentum energy eigenvaIUEgN) for any even particle property of the two-particle correlation functian(r) em-
numberN in more than one space dimensions, and withouployed in the ansat4).
the ¥, self-interaction term. In order to understand the Using Eq.(36), we can rewrite Eq(45) as
physical meaning of these results, we introduce a finite quan-
tization volumeV in this section, to give a finite density. The N N
technique to fincE{") is extremely simple. We will demon- ~EE,N):E
strate that there is an upper bound to the Hamiltonian ground
state energy, that coincides with the lower bound given
above, in either the case that$)=0 (no ¥, self- Comparing this result with the lower bouri™ [Eq.
interaction or the case thaV—o (infinite voluma. The  (43)] we see that the energy{") coincides withE™) if
result in the infinite volume limit is expected, as it corre- K(D33):O. This implies that, in the absence of the quartic

sponds to an infinitely dilute gas of the dibosow(f’))  self.interaction of thel’s field, our result fole{Y) represents
bound states. However, the same result also holds at finifge exactground state energy of this quantum many-body

Aw—

we obtain, from Eq(40),

E&N>>[N/2](mw—
Kp

E. Exact N-particle ground state (D=2,3)

N )hkga )
-1 (D=2,3. (46

\Y,

volume provided there is n@g self-interaction term. system:
In order to estimate the ground state enefg’ , in two
and three dimensions, we employ a trial wave function that N N f(xp)?
gives an upper boun&{"Y to the energyE{"). We use an EE)N):E E(OZ):E(hAw_ P ) (D=2,3, (47

ansatz that represen2 (where we assumH is ever) in-

dependent two-particle quantum solitons or dibosons with
K=0: and that the ansatf£44) can be regarded as the exact

N-particle eigenstate in this case. TiRegarticle ground state

~(N)\ _ Dot D. D energy diverges agp— 0. This is in contrast to the behavior
|0 >_“ d XWS(XHJ f d“rd"Rg(r) of the corresponding classical theory, which has rigorous
N2 lower bound to the Hamiltonian ener@¥5].
myr myr (33)
&t R T For a nonzeroky™ the same result, Eq47), for the
x| R+ M \PZ(R M ” 0). (44 ground state energy would be valid in an infinitely large
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volume, corresponding to largely separated and effectively R

. . A - . A =4 dPrd®RdPzyp(r,4)
noninteracting dresse; quanta at a vanishing density. int
More generally, for a finite interaction volume or a finite
density, the above results imply that the aqi&tﬁ gi_ves an x| oI R+ il \i,Z( R— myr
upper bound to the ground state energy. It is possible that the my+m; m;+m;

true ground state energy is simply equal to the lower bound

E,=[N/2]E{?) in this case as well, in analogy with the treat- XW4(R+ &)+ H.c.
ment of a simple single-component Bose gas with a repulsive

S-function interaction27], which reproduces the results of
the noninteracting theory.

; (48)

where we use the same notatigp for the translationally
invariant coupling potential.
In Fourier space, where

IV. CUTOFF DEPENDEE'II;SALIIIB_SI\;/IEAN-FIELD THEORY \ifi(x):dekéi(k)exp(ik-x)/(ZW)D’Z

The zero-radius behavior of the quantum solitons in twoand the commutation relations for the operatayg) and
and three dimensions represents a rather unusual situatio&f[(k) are[éi(k),éj’r(k’)]z 8ij8(k—k’), this transforms into
since the classical counterpart of the bosonic theory has well-

behaved, stable, multidimensional soliton solutidis$]. ~( _op bu Dl ~ ~t 1

This leads to a paradox of how such a quantum field theoryint = (27) ﬁj J’ d"Kd"k| xo(k,K)ag| —————
relates to real physical processes. To resolve this paradox, v

we note that physical applications usually involve some type ~t N

of momentum cutoff. In systems with dimensi®>1 it is X8| i m, +kjag(K)+H.c.. (49)

known that an effective Hamiltonian of the type we consider

here should be renormalized, with a coupling constant that i§ye next assume that the Fourier compongptk,K) de-

cutoff dependent, in order to compare the coupling param- . ~
eters with observable values. Since the exact form of thé’endS only ork, and impose a momentum cutoff a (k),

interaction potentials is not well known, we simply employ aSuch thatxp(k) vanishes if [k|>kmn and is a constant,
finite bound on the relative momentum. xo(K)=xp, for |k|<kp.

In the case of nonlinear optical parametric interactions, Similar considerations can be applied to the quartic inter-
the cutoff originates from the fact that parametric couplingsaction terms in our Hamiltonian, given by E@t). Because
are usually restricted to a finite range of relative momenta obf translational invariancex{!(x,y,x’,y’) is written as
the interacting fields. To estimate the cutoff in this case, wac{!)(r,r’, R—R’), where r=x—y, r'=x'—y’, R=(mx
note that the origins of the theory involve rotating-wave and+ m;y)/(m+m;), and R’ =(mx’+my’/m;+m;). Trans-
paraxial approximations, and the neglect of higher-order disforming to Fourier space, we assume that the Fourier com-
persion[3,29]. Th_erefpre, ir_1 higher dimension_s we should ponent}g”(k,k’,K), whereK =k; +k; , does not depend on
include nonparaxial diffraction if the characteristic radius of di ¢ toff h the) (k k'
solutions becomes less than the field carrier wavelengths. T anc fMpose a momenum cLifon sue (k,k’)

represent this we can introduce a cutofkatin the relative :f’iﬁ if |tk|f,f||((j,|<kra' atn_d tiS ze:o otuerw_ilie. The final fom;)
momentak of the fields¥, and¥,. Since the paraxial ap- ot ‘he cultolt dependent interaction Hamitionian can now be

T . : written as
proximation is valid only fork, <2w/\,, where\, is as-

sumed to be the longest carrier wavelength, then a momen- ki [ mK
tum cutoff of at mosk,,~2m/\, should be imposed on the Him:(Zw)*D’ZﬁXDJ def d®K|a] ——+k
nonlinear couplings. In the case of atomic BEC interactions lk|=0 my M,
[30], the cutoff is usually introduced at the level of inverse
swave scattering length, and a similar cutoff occurs in cases X aj —k|ag(K)+H.c|+(27) P
where fermionic fields are involved 2,26]. my+my
3 (j)
hk k k
x> Df"‘defm de'deK
A. Hamiltonian with momentum cutoff iT=1 2 Jik=0 [k’|=0
To implement a cutoff in the interaction part of our s ~ MK
Hamiltonian we first consider the parametric interaction term X a; P Al mam
which is of the form of Eq(3). Assuming translational in- o o
variance we note thagp(x,y,z) can only depend on the ~ [ mK = [ mK ,
relative coordinates, which we choose accordingtoy=r Xay| otk | oK (50)
and z—R=¢, where R=(m;x+myy)/(m;+m,) is the b b
center-of-mass coordinate for trtiel and‘ifz fields. That is, The noninteracting part of the Hamiltonian, in terms of
HX can be written as a;(k), is
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A 3 42 A A Here k=|k|, K=|K|, A is given by Eq.(20), while g is
Ho=> =— f dPkk?al(k)a;(k) defined as
i=12m,
S a=2u[xp+ kpg(0 Ky /4. (56)
+hAwf d®kal(k)as(k). (51)

The above equations represent the Fourier transform equiva-

In the case of nonlinear optical interactions, the couplinglﬂe)rr]t| I?|f<ES'(15) and Eq.(18), except that now they are valid
m-

() i

constantsyp an_d kp - are proporyqr_w_all o the Bloembergen In order to evaluate the soliton binding energy and the
second- and third-order susceptibilities of the nonlinear Me-toctive radius. we solve these equations 60k, ), and
dium [3,29], while in the case of atomic/molecular BEC in- . ' q ms

. . . i) obtain
teractions the quartic couplmg@ are related to the-wave
scattering amplitudef$30]. For example, in the diagonal case
and in three space dimensionsS” is given by «§" g(0k,)= _XD( P
=4mha; /m;, where a; is the swave scattering length
within the ith species, while the interspecies couplings are ) ) o )
K(3ij): ngi)zzwﬁaij I, whereay; is the corresponding Here the dimensionless cutoff structure function is defined as
cross-scattering length and;; =mm;/(m;+m;) is the re-
duced masg$24,30. The form of the parametric coupling 1 rokm dPx
will depend on the particular mechanism that can be used for Fo(rokm) = (2m)° Ji=0 1+x?’
atomic dimerization, such as Feshbach resonance or Raman
phOtoaSSOC.'at'p'ﬁg.l’ZZ' In _addmon, we note that N CaSES and its explicit form in one, two, and three dimensioms (
where fermionic fields are involved, the corresponding quar-—_ 1,2,3) is given b
tic self-interaction terms must be omitted from the Hamil- =’ g y
tonian.

Arp-2 )—1 o

+—
2ufp(rokm)

(58)

1
f1(rokm) = Lan Y(rokm), (59
B. Exact diboson solutions
We can now analyze the eigenvalue problem 1
Al (k) = E (ki) | () (k) directly, by considering Fa(rokm) = 7 In(1+ 1ok, (60)
the two-particle eigenstate in Fourier space:

- Km 1
| (k)= aE(K)+(2w)‘D/2Jk_Ode G(k) f3(r0,km)=ﬁ[rokm—tan’l(rokm)]. (61)
Ay m; K ~t m,K ) .
Xay WH( a W_k [0), (52 This result clearly shows the difference caused by the
dimensionality of the space. In one dimensiqirk,,) ap-

proaches a constant valuekif,— <, while in two and three
so that the cutoff dependent correlation functioy(s,kyn)  dimensionsf(rk,,) has a logarithmic or linear divergence,
=f|k;|“=odeG(k)eprk- r)/(2w)P. respectively. The effect of this divergence depends on
This implies that, due to the cutoff in the nonlinearities, whether or not the additional quartic interaction is present. If
we need only investigate eigenstates for wh@ik) satisfies it is present(with x5>0), there are exact solutions without
the equation cutoff, andg(0,k,—)=—xp/kp, SO that the energy ei-
genvalue EZ)(k,—) takes the form of Eq.(36), and
(k®+r1,9)G(k)=—q, (53 g(r)=0 if [r[>0. In other words, the solutions in two and
three dimensions have a finite energylike the energy di-
if |k| <k, and vanishes fofk|>k,,. The energy eigenvalue Vergence in the nonlinear Schiinger model with an attrac-
E(KZ)(km) is given by tive s-function potentigl but zero radius in th.e limit o_km
—oo, If, however, kp<0, as in the attractive nonlinear
KK2 42 Schralinger model, we must impose a finite cutoff on the
_ (54) couplings to prevent an energy divergence. Simultaneously,
2M 2,”(2)' a finite cutoff prevents singularities in space.

With a finite cutoff, the eigenvalue problem &) (k,,),
where the length scalk, is to be found by solving the fol- EQ.(54), reduces to the solution of the following eigenvalue
lowing eigenvalue equation: equation:

92 |\t
)

“oF 2ufp(rokm)

E (k) =

2 2K

2 _
o= (A= xp9(0kn)]. (55) ro*=4 A+ (xo)?
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which is Eq.(55) rewritten in terms of the cutoff structure field, is negligible since we have used a free space expansion
function fp(roky), usingg(Oky) from Eg. (57). Herery  of ¥,(x) in terms ofa;(k). This means that the result for

must be real and positive for a localized bound state. BN (k,,) corresponds to an infinite volume or zero particle

{A?fal¥5|stof tr]:'s e?uagé)sr);, L(nglr)lg tr?e ex![or:|ct|t rejults fotr .thedensity, where the contributions due to the quartic interac-
cutolt structure functionsss)—~{5.), Shows that under certain ;. ,¢ oiher than the coupling (which affects the binding

conditions a positive solution far, is available. This condi- within individual dibosonsvanish.

tion in the cases of one and two dimensions can be written in PN -

- . ) . The lower bound in this cutoff dependé¥iparticle prob-
theﬁ_rrr:j of Eq.(%S),Awhne |n2t;/e thliee-dn(r)]ensmnal case Itis lem can also be estimated following previous methods. Since
mol "ﬁ to (’(3') + [K3J;;T_0(“ ﬁ)]h> : b dered the previous cutoff independent result was obtained by ig-

n the simplest case ofp = .(W Ich can be considere noring kinetic energy terms, the lower bound is unchanged
only if the cutoff and the couplings are independent of eact}rom the previous section, Eq43). Consequently, for the

_ . . . s 71 . _
o_ther_), A._O’_ gnd in the limitky,>r, ~ the e!genva.llue €qua- trye cutoff dependent ground state eneEdS))(km) we have
tion is simplified, and even solved analytically in one- andnow the result that

three-dimensional cases. The resulting ragdiiand binding

energiesE(?)=#2/(2ur2) are determined by:
" ° e _Nee_ EM (k) <EM (k)= EE(Z)(km),
292, 2113 () (52, |\ 13 o, \413 270 0 0 20
Fo=(7"2x1un)™" Ep’=(A"ul2)"(x1)™> (D=1); (66)
ro=(ml2)Y4#l In(rokm) ]~ Y2 -
o= (m/2) (Al xzp)LIN(r okim)] whereEW£EM (k.), unlessky—o.
Eg2)=h2/(2,ur§) (D=2): (63 _ Thus, with a finite cutoff the an;atz corresponding\l_Vd. _
independent dibosons no longer gives the energy coinciding
ro=(mh/ 2k )~ 12 with the lower bound, and only provides an upper bound to
o= (mh!xap)(2km) the ground state energy. In other words, it is no longer the
(2) 2 2 _ exact eigenstate and therefore does not necessarily result in
Eo"=(xs)"pkm/ 7™ (D=3). the lowest possible energy.
Here, in the two-dimensional case, the diboson radjesnd
the binding energf(? can easily be found numerically. The D. N-particle results: Coherent variational ansatz
one-dimensional resufin the limit of k,>rg ") reproduces The second type of ansatz that we employ here is the

the result of Egs(32) and (33) obtained using the cutoff coherent or mean-field theoMFT) ansatz:
independent treatment.

3
TNy — 3 ()T
C. N-particle results: Independent diboson ansatz e )—ex;{ J d Xgl g (x) [10). (67)

To estimate the ground state energy, in the cutoff depen- ) ) )
dent N_partide prob|em, we use the f0||owing momentum- The coherent ansatz is equivalent to a mean-field theory de-
space ansatz, correspondingNé2 (where we assumbl is  Scription of the system, where the operators are replaced by

even independent dibosons: their mean values and a factorization is assumed. It is an
approximate(semiclassical eigenstate that describes three
~ - B Km coupled fields at larghl, under broken symmetry conditions.
(N) _ T D/2 D
[e0” (km)) =] a3(0) +(2) fkod KG(k) Compared with the previous case of th#2 independent

diboson ansatz, the coherent ansatz can provide a lower en-

ergy at largeN and for certain parameter values. To show

this, we use a variational approach and choose trial functions

Ji(x) in the form of Gaussians, assuming in addition that
Operating with the cutoff dependent Hamiltonian on this #1(X) = ¢(X):

ansatz we find, for an infinite interaction volume, the follow-

ing result for the corresponding ener(gee Appendix B P1(X) = p(x) =gy exd — [x|%/(2w3)],

R R N/2
xaI(k)aZ(—k)) |0). (64)

(68)
ESN)(km): gEg)(km), (65) P3(X)=—03 eXF[_|X|2/(2W§)]-

) Hereg; andw; are regarded as free variational parameters,
where E?) (k) is determined by Eqs(54) and (62. This  the negative sign fowss(X) is to ensure that the coupling
result represents an upper bound to the ground state energnergy is negative fog,>0, and the normalization implies
and is no longer the exact solution unldss—c. Itis ex-  that the Gaussian parameters must satisty32g2w?
pressed in terms of the enerds{?(ky) of individual di-  +g3w3]=N. We will assume that the coherent ansatz is
bosons, and depends only on the parametric couplingnd  slowly varying such that the Gaussian width scales are much
the quartic Cross—couplingD. The contribution of the other |arger thankrgl, a||owing the momentum cutoff to be ne-
quartic terms, including the self interactienk®® of theW;  glected. Substituting these trial functions into the Hamil-
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tonian(1), (2), and(5), we find that the corresponding varia- herent variational ansatz gives optimum Gaussian parameters
tional energyE(N) , in two and three space d|mens|0ns is which Correspond to the apprOXImate analytlcal form of clas-

given by
D/2 D-2)/2 2
E(N)— u 2WP—2
2 2/1/ gl 1
2(D_2)/2Dﬁ2 -
+2—rngg§Wg 2+2D/2ﬁAwg§W3D
_2D+1hXDgig3W?W3D K(E;Ll)+ (D22) 4. D
(W2+ 2w2)DP2 Koty |9
ﬁK(33)
+t— 2 g3W3

2071 (22 + ) GRS

2, .2
2(wi+ws) blz

(D=2,3). (69

The result of minimization oE(Y), under the constraint
of 2% g?w3+ g5w3]=N, is considerably simplified in the
region where the parametric coupling is dominant &hib
not too large, so that one can neglect the terms dugdo
and the quartic couplings(D”). In this region, and fom;,
=m;+m, and m;=m, (so thatmz=4u), we obtain the
MFT minimum energy of

(D=2,3,
(70)

where AD is a dimensionless constant given Wz—
7.42<10°2 in two dimensions, and by;=1.2x10"°

three dimensions. The ener@) scales ad\? in two d|-

BN = — A N(6-D)(4- D)(ﬁ )(2;;)(

4/(4-D)
2u )

sical solitons in this pure parametric case, in two and three
space dimensions. The optimum length scales corresponding
to soliton widths(for Aw=0, m;=m,, and mz=m;+m,)

are nearly identical for the three fields and are givennhy
=w,=1.2X10°N"Y(2ux3/%) 2 andw;=0.88n, in three
space dimensions. The corresponding values of the field am-
plitudes are determined by

01=0,=1.7x10 *N%(2ux3/h)3

andgs;=1.1g,. These, in turn, give the following relation for
the average number of partlclplﬁI Jd3x| ¢ (x,1)|] present

in the fields ¢, and i3 N1 2/N3—1 21. In two dimen-
sions, the parametric soliton optimum widths and amplitudes
are given by

Wi =W,=6.9N"YA2ux, /%)L,
=0.86w,
01=0,=4.06<10 2N(2ux, /%),

andgs=1.05y,, yielding N; ,/N3=1.24. Clearly the soliton
width must be much larger thda.* for our use of the cutoff
independent Hamiltonian to be justified.

V. PHYSICAL APPLICATIONS:
PHOTONIC INTERACTIONS

An important application of the results of our parametric
field theory is in optics, where it describes the nonlinear
optical process of frequency conversion or sum-frequency
generation. Here the parametric coupligg is due to the

mensions, and as® in the three-dimensional case. Compar-second-order nonlinearity of a nonlinear medium, while the

ing this with the linear dependence dhof the energy esti-

x4 terms are due to self- and cross-phase modulation.

mate E{V(k,,) from the independent diboson ansatz, Eq.Straightforward application of the previous results is, how-
(65), we conclude that there exists a crossover or a criticaver, prevented by the fact that the noninteracting Hamil-

boson numbeNlN,, beyond which(i.e., for N>N,) the co-
herent variational ansatz becomes more favorableE 85

<EMN (k). The value ofN,, is easily found using the above

simple result forE(" which neglects the role of the quartic
couplings so that all parameter dependences are explicit. For
nonzero quartic couplings, the dependence of the minimum

energyNEQ“) is no longer given by such a simple expression.
The minimization does not reveal explicit scaling properties
similar to those in Eq(70) and it must be carried out for
different values oN independently. This is further analyzed
in Sec. VI as applied to parameter values characteristic of

BEC interactions.

To conclude our discussion of the results in the case oivave numbers ky,, kz=k;+k;
pure parametric interactions, we note that for the symmetric= w(k;) (i=

tonianl:|O for the propagating light fields is in general differ-
ent from Eq.(2). It is defined in a moving reference frame
and is asymmetric with respect to the longitudifditection
of propagation and transverse directiof$5,29:

o= | e

+hAwV]v,

%2 R
LIVﬁI'iI2

P

—|V||‘1' |2+

(71)

HereV¥, , and ¥ 5 represent three optical fields with carrier
and frequencies w;
1,2,3), whileAw= w3~ (w1 + w,) is the phase

case under consideration, i.e., fd{(x) = ,(x), the system mismatch. The longitudinal coordinate is defined in a
can be formally reduced to the model of degenerate paramefoving frame x;=x_—vt, wherex, is the laboratory frame
ric interaction which is known to support higher-dimensionalcoordinate and)=dw;/dk is the group velocity, which is
classical solitong15-17. Thus, together with providing a assumed equal at all three carrier frequencies. In addition,
minimum energy to the classical Hamiltonian, the above com = il o] are effective longitudinal masses due to the group
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velocity dispersion, where! =d%w;/dk? is the dispersion 1 fokin dPx
coefficient in theith frequency band. The transverse massesfp(rokm,u,) = 5 f ———— (D=2)3),
m;, =% o;/v? are caused by diffraction, and the correspond- (2m)7 JId=0 14X[+X1/ uy
. oA . . . (79
ing term inH, is only relevant in two and three dimensions.
The coupling constantg, and«! in the interaction Hamil-  and the effective detuning is now given by
tonian are proportional to the Bloembergen second- and
third-order nonlinear susceptibilities® and x& [32]) of Ch(KEOKZ) A (K} KE
the nonlinear medium, respectivdlg,14,29: A=3 M M, 2 m_3H+ ms, —Ao. (79
2 U2 3 In the limit of k,,—, which corresponds to the simpli-
o= ﬁ ﬁw1w2w3) 1  kp= M, fied cutoff independent treatment, one can again arrive at the
n3 289 d®-Dby2 4gon*d3P same conclusions as in Sec. Ill on the pointlike structure of

(72)  the multidimensional two-particle bound states. The cutoff
dependent results are modified due to the dependence of the

wheren is the refractive index, which we assume is nearlycutoff structure function(75) on the relationu, = u, /u;.
the same at all three frequencies, ahid the effective modal The integrations infp(rokny,x,) cannot be carried out as
(waveguide diameter. easily as in the symmetric case of Sec. IV corresponding to

Our treatment here is similar to a previous theory of de-u,=1. Instead, for arbitrary values ¢f, , the integrals and
generate optical parametric interactidil], except that the the resulting binding energies can be evaluated numerically.
present nondegenerate theory has an additional degree Bf however,\/u,<1 andrk,>1 one can obtain the follow-
freedom due to the fact that the low-frequency fields,(  iNg approximate results:
andW,) are different. In practical terms, this gives the pos- Ji
_S|b|I|ty of _employmg elthe_r type | or type Il phase mf’;\tchlng_, fo(F oK s i) = 2—rln(2r0km), (77
i.e., the fields can be different either in frequencies or in ™
polarization, or else in both.

M rok
_ Far ok )= ——= (1= Inay). (78)
A. Analytic results 2w

The asymmetric form of the noninteracting Hamiltonian  \wjith these functions and foep>0, the condition(25) of
does not qualitatively change the results of the previous S€G1aving a positive solution for, in the eigenvalue equation

tions. The results are, however, modified quantitatively in74) remains unchanged in two dimensions, while in three
two and three dimensions. Omitting the details of the deri-yimensions it is transformed into

vation we give only the final expressions for the two-particle

eigenvalue problem and the simplest diphoton solutions. (x3) 2+ A{ kst m2hI[ e Ke( 1= NN ) 11>0,  (79)
First we mention that in one dimension the results of the

earlier sections are unchanged, with the understanding thatith A given by Eq.(76) in both cases.

the effective massesy; are interpreted as dispersive ones,

m;=m;. In two and three dimensions, the two-particle or  B. Diphoton binding energies for pure parametric case

diphoton energy is determined by In the case ofkp=0 and A=0 Egs. (73),(74 and

52/K2 K2 52 (77),(78), together with the earlier one-dimensional result
E&Z)(km): ?(M_l M_L) -, (73) (where we replaces py M), Ieaq to the”following .sim'ple
I Ll 2urg expressions for the diphoton soliton radii and the binding
energiesE{Y) =2/ (2 rd):
wherer is to be found by solving the following eigenvalue
equation: ro=(h212xud)"?  E{P =(h2w/2(x)** (D=1);
2u hrd-2 -1 ro=(m/2) Yl x o))ty " LINC2r oK) 1~ 2,
-2 2
S 71U RO S
0 h 2 fo(rokm,aer) EéZ) IﬁZ/(ZMHrg) (D=2); (80)

(749

ro=(mh/ 2pckn) " YA(1=Inyp,) Y2,
Here the diphoton momentulk is decomposed into longi- o=(mhlXapup) (2perkm) X fr

H 2_p?2
tudlgal and t.rgnsverse components SO tK§E|K| .—K” Eb(z)Z(Xs)zﬂuﬂrkm(l—m\/ﬁ)/wz (D=3).
+ K7 . In addition, we have introduced the longitudinal and
transverse reduced massgg=mymy/(my+my) and To illustrate how large a binding energy might be ob-

mo=my my /(Mg +my, ), and have definedVj=my tained we consider parameter values characteristic of highly
+my, M;=my +my , and u,=u, /p . The cutoff nonlinear parametric materials, such as GaAs asymmetric
structure functiorf 5(r ok, u,) is defined as quantum well structureg33]. We note, however, that these
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types of materials often have practical limitations involving VI. BEC INTERACTIONS

restn'cted wavelengths, Iack.of phase match(lgg, or high ab- Another example of a physical system that can be treated
sorpt|on;7 For example, high values ofg” (up 10 p ' the Hamiltonian(1),(2), and (5) or (50) is a coupled
~9x10" " m/V) observed in the GaAs case were only gtomic/molecular BEC. Here the parametric coupling repre-
around the fundamentésubharmonigwavelength of about  sents the coherent process of formation of dimer molecules
N~9.2 um, a_nd the a_bsorptlon was high. Other candldates(\i,3 field) from pairs of atoms‘ifl and‘ifz fields) either of
such as organic materig84] have the advantage of operat- gistinct atomic species, or in distinct quantum states. In the
mg2 at shorter wavezlengthx(pl.S wm), but the values of 556 of degenerate parametric interaction this has been con-
X are smaller ¢§)~10"° m/V). Other factors and re- sidered in Refs[19,22,23,35,3p Here we extend the basic
quirements that may have practical importance are similar teesults to the case of nondegenerate parametric interaction,
those discussed in Rdfl1] for the case of degenerate para-i.e., to three coupled Bose condensates, thus extending the
metric interaction. variety of ultracold molecular gases that could be created via
For the present nondegenerate parametric interaction, WBEC interactions.
summarize the estimates of the diphoton radii and binding In this directly applicable case of BEC interactions, ,
energies by considering reference parameter values similar @dmz=m;+m,=M are the atomic and molecular masses,
those of GaAs. These are chosen as followg? = the coupling constangy, is related to the molecular forma-
9x1077 m/V, \;=9.2 um, andn=3.3. In addition, we tion rate, WhiIeK(D”) are the effective intra- and interspecies
assume thatw;=w,=w3/2 (A\;=\,=2\3), resulting in coup!ings due_tc&wave scattering amplitudes; [24,30. In
wu, =1.3x10° % kg, and we choose the dispersion coeffi- 2ddition,zA w is the bare formation energy of the molecular
cientsw) =} such thatu, = u, /;1;=0.01. The waveguide species. Physmal mechanisms that can realize goherent
diameterd required to evaluate the value of the coupling atomic dimerization and produce ultracold molequl_es include
constantyp = ysd® 3”2 (D=1,2) in one and two dimen- Feshbach resonance and Raman photoassocifdib35.

) . B . Feshbach resonances have already been obsg@vEdvhile
sions is chosen a$=>5),. Finally, for the cutoff dependent experiments of this type with Raman photoassociation are

two- and three-dimensional cases, we choose the cutoff at ﬂlﬁ1der way[39] in the case of single-specidgegenerate
inverse of the longest wavelengkiy=2m/X,, while in the  5imic BEC, the theory of which is given elsewh§2e].
one-dimensional case the cutoff dependences can be ne- 1y simplest nontrivial objects in such coupled atom-
glected as long aspk,,>1. ic/molecular BEC systems that can be described by our
With these parameter values, the resulting ragiiand  theory, are two-particlédiboson quantum solitons in three
binding energie€(?) of the parametric diphotons are given dimensions DP=3), i.e. “dressed” molecules, each of

in the following table which exists in a superposition with a pair of atoms. With a
characteristicy; value estimate of abouf;=10 6 m®?s
Coupling xp ro (um) E? (eV)  [35,39,22, the atomic masses,=m,=10"2° kg, and as-

_ 2 - suming that thes-wave scattering length;,=5 nm, so that
D=1 = 54x10° (m%s) 22 5.3 10 u=m2=05x10"2 kg and  ks=2mhaLlu=
D=2 3.7 10 (mi/s) 43 1.4x10 "  6.6x10°Y7 m?3/s, Eq.(36) results in a quantum soliton bind-
D=3 2517 (m¥¥s) 47 1.2x10°7  ing energy of EfY)=—E{?=1i(xs)?/xs=10""" eV, for

Aw=0. This is the result of the idealized quantum theory
(81)  without a momentum cutoffi.e., k,— ), which strictly
speaking cannot be applied in a self-consistent way to BEC

indicating that we expect the higher-dimensional uamuminteractions with a nonzero value &k
9 P 9 q If we include the effect of momentum cutoffs and assume

tsrf)llitons tod.be Ie;s stlronglytboun? and of larger radius thar'Elwat the scattering length,, provides a natural cutoff &,
elr one-dimensional counterparts. =21la,,, thenk,=4mh/(ksu). In this case the energy

Thus we have shown that nondegenerate parametric integ—gz)(km) is found from Eqgs(54) and (62) where the cutoff

actions can provide diphoton bound states in one, two, an . S .
- - - tructure functionf(rgk,,) is given by Eq.(61), with k.,
three space dimensions. The diphoton has the form of 8:4772h/(;<3,u). For Aw=0 and assumingro>1, this

guantum superposition of two states one of which contains ves
photon of the sum-frequency fiel;, while the other in-
volves a pair of photons of the lower-frequency fielts Egz)(km):—4h()(3)2/(51<3). (82
and¥,. The diphoton can be viewed as a photonic analog of

a two-quark state model of mesons, and be termed, as in tHEhe resulting binding energ? (k) = — E{ (k) and the
case of degenerate parametric interacfibd], an “optical  corresponding radius,=7%(2uE{?) "2, for the parameter
meson.” The relatively large binding energy, as compared tovalues as above andk,=2w/a;,=1.26 nm!, are
quantum solitons based ai®) nonlinearitie§21], combined  E{? (k) =0.8x10"** eV andr,=0.3 um. Thus, the bind-
with low-temperature experimental techniques, could make iing energy with momentum cutoff is very close to the ideal-
feasible to observe this simple quantum soliton in experiized result from Eq(36), and its magnitude is comparable to
ment. achievable temperatures in current BEC experiments.
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To give the simplest treatment of coupled atom- Y
ic/molecular BEC systems, we neglect any loss processes »
such as three-body inelastic collisions. This may not be easy =
to realize in practice and will depend on the particular o -2
mechanism for atom-molecule coupling. For example, in the o _a
case of a Feshbach resonance that couples pairs of atoms to a = "
guasibound excited molecular state, losses due to inelastic g, 4 S
atom-molecule collisions can occur at a significant fa&. u _5
This is clearly a disadvantage that reduces the condensate !
lifetime. The Raman photoassociation mechanism is, in this -4 > 4 6 8 10
sense, more promisinf22]. Here the free-bound Raman N (10° atoms)

transitions are induced by two laser fields that couple pairs of ) )
atoms to a bound molecular state through excited intermedi- /G- 1. Estimates for the ground state energy per particle

. (N) i —10°6 m32 —
ate states. This has the advantage that one can tune the cdw-/N_as a function of N for x3=10"° m”9s, m;=m,

— 1025 — — — 25 —
pling to a deeply bound molecular state, in which case the:io 722910(732% lihat “;Tllzjoo'?alo kg anddrr|1372m|1
rate of inelastic collisions can be significantly redu¢aé]. k;oulrl;c;s are for —9)6 ;? 10*Lf7—mé /s c?bti?r?:c;(l&i;r; _O\éverr“(ﬂ)
The losses due to collisions with the molecules in the inter- K300 Y N . 2= ’
mediate(virtual) excited states and those due to spontaneouanOI the cutoff for(u) is ky=2m/a,,=1.26 nm " Curvec corre-

S . . gponds to the coherent variational ansatz and represents the mini-
emission can also be reduced by operating in an off- 1n_ (22) i

5 =ky “=0, together with

, , ; mum energyE®™ for th f
resonance regime with respect to the excited levels. K(‘;s)_‘i(g)%yK(gS)_% © case ol
3 — A3 TR3 Y

A. Quantum gas to “liquid” transition ) . . )
ration” into a low-density gas of dibosons or “dressed”

Of more importance than the simplest two-particle boundygjecyles. To answer this question in the general case of
states areN-particle eigenstates and the ground state energy hirary values of the relevant parameters is a difficult prob-
of this quantum many-body system, in three space dimengm ‘additional complications emerge from the need to ana-
sions. While this is a difficult problem, some important con-y,»e stapility properties of the actual soliton dynamics, with
clusions can be made by comparing the results obtained it parametric and repulsive quartic couplings. It is clear

(i) the ansatz of Sec. IIIE and IV C, correspondingN® 4 sirong quartic repulsion terms destabilize soliton propa-
independent dibosons, afit) the coherent ansatz employed yation, If, however, these couplings are not too strong com-

in Sec. IVD. ared to the parametric coupling, then the parametric inter-
As discussed in Sec. Il and IV, a remarkable result thaty tion can still act as a “glue” and compensate the

emerges with the treatment of the first type of ansatz is thajerparticle repulsion, so that stable soliton propagation may
in the limit ky,— and for «$*¥=0, it turns into anexact  geeyr.

eigenstate and provides the exact ground state energy given To proceed with our analysis we note tisatvave scatter-

by Eq.(47). The ground state energy has no lower bound agng amplitudes for atom-molecule and molecule-molecule
x3—0. This is in contrast to the mean-field behavior corre-collisional processes are currently not well known. For this

sponding to the classical Hamiltonian energy, which isreason and for simplicity we neglect the corresponding cou-
known to have a rigorous lower bound and to support clasp)jings (V= k{¥= k29=0) compared to the atom-atom

sical solitong15]. For the case of nonzere;, this idealized (11)

result serves as a lower bound to the true ground state enerCOUplingSKs' <5, and . In addition, we note that
sult Serves as a lower bou ue ground s @nploying the symmetric Gaussian ansat£x) = ,(x) can
with a finite momentum cutoff. For a finite cutoff, ploying 4 SALX) = 12(X)

_ only be justified if V= «??. We restrict our analysis to
=27la,=4m?hl(kau), the ansatz corresponding td/2 y bel s TS 4

. ; X ; 11)
independent dibosons is no longer the exact eigenstate, allnr(]je cases wherd) the atomic self-interactions due Ké

therefore does not necessarily result in the lowest possibl@nd"gﬂ) are negllgl%)llle; Cor(g%ared t_(_) the cross-l_nteractt@n
energy. The corresponding estimate of the energy in threg® that we can sety™=«3™=0; (ii) the atomlczllself- ?Z”d
dimensions is obtained from Eq¢65) and (82), for Aw  Cross-couplings are all equal to each other, i) = Kk
—0 andkyro>1: =2k3. B
5 The result of minimization of the variational energg" ,
EMN(km=2m/a15)=—2N#(x3)%/(5k3). (83 EQq.(69), in caseli) is given in Fig. 1(curvec, where we plot
the estimates for the ground state energy per parEfie/N
This corresponds to a low-density regime of a quantum gagersusN. The horizontal lingl) represents the lower bound

of N/2 independent dibosons or “dressed” molecules. to the energy given by the idealized solutiﬁN)/N=
We next address the question of whether the coherent or 7 (y.,)2/(2«5), Eq.(47), while the lineu is an upper bound
MFT variational ansatz can give a minimum eneiig§" , EMNV(k)/N obtained with the cutoff dependent ansatz corre-

from Eq. (69), that is lower tharE()N)(km). This would cor-  sponding to a low-density regime of a quantum gadN¢#
respond to a liquidlike regime of coupled Bose condensatesndependent dibosons, E@3). The coherent or MFT ansatz
where formation of stable localized wave forms or matter-gives a lower energy than the diboson ansatz Mor N,
wave solitons is more energetically favorable than “evapo-=3.5x 10°, so that transition to a liquidlike regime of local-
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ized BEC solitons is more favorable in this domain. The

21 -3
n1,2(10 m™™)

\
\

I

relative number of particles in the atomic and molecular soli-
tons N; ,/N3, obtained from the optimum values of the
Gaussian parameters, decreaseN axreases, implying that A fs R \\\‘\\ik\\\\\\
the coupled condensates stabilize against the interatomic re- \\\\Q\\\&&\\\\\\\\\\\\ “&&&%&%Mw
pulsions by converting a larger fraction of atoms into mol- WWW&NM\%@NS
ecules. For example, for the total number of partichés WWWWW
—_—  — N

— 1P, this fraction is given byN; ,/N3=0.08. W\\\\\\\\\\\@m\“ .

In case(ii), we find thatE{") stays above the value of 3
Eg’\‘)(km) for all N and no crossover occurs, implying that the
regime of a low-density quantum gas of independent di-
bosons is always lower in energy than the coupled soliton
regime.

Thus, at low particle density, the formation of individual
“dressed” moleculegdibosons is favored, as atoms couple
to molecules in garticlelikeway. These dressed states have

interesting properties, reminiscent of Cooper pairs, but can- 15 .:\\\ ~\ \\\\ \\\\\\\%\\\\\\\\
not be described by the classical parametric soliton equa- g ORI N -
tions. At large densitybut not too large so thatwave scat- Em “WNW&W@&&
tering is dominantand for parameter values characteristic of < w\\\\\\\\\\w&m&\&m -
the casdi), the coherent coupling of three entire condensates \\\\\\\\“&\N

is dominant. With large enough parametric coupling, and

provided other recombination processes are negligible, there .
are coherent nonlineawavelike interactions between the 10

. . t(ms
atomic and the molecular Bose condensdjest as in non- r(km) (ms)

linear opticg, which make it possible to form stable three- £ 2 Mean-field densitiesn, ,=| b, Ax1)[2 and Ny

dimensional BEC solitons. For largewave scattering, case —|4.(x,1)|2, representing simultaneous atont@ and molecular

(ii) illustrates a classically stable soliton that is unstabley) solitary waves, as depending on timand the radial coordinate

against “ev.aporation’.’ to a quantum gas of diboson_s. r=|x for x=6.6<10"7 m¥s (ks=6.6x10"7 m¥s, «{1V
As mentioned earller, loss processes can be detrlmenta_ll tQngz)zo), KBV= B=  2I-0 m=m,=10"% kg, xs

the above properties of coupled condensates. In practical 15-6 1325 andN=1Cf. The initial optimum Gaussian param-

terms, the time scale for inelastic losses must be much long&fiers are g;=g,~8.6x10° m 32 g,~4.8x10° m 32 w,

than the coupled condensate formation time scale. We havew,~0.97 um, andw;=0.71 um.

not given any experimental technique for generating the

coupled condensate in its ground state. However, a possiblghere we recall thak;= («§2+ k) /2= k{2

method is to employ evaporative cooling while the atom- \ve consider for simplicity the symmetric case ®f(x)
molecule coupling is switched on. =y(x), with «{P=xkF? and k= k{P=xF¥=0. In

these cases Eq&4) reduce to
B. Coherent BEC soliton dynamics

In performing experiments on coupled atom/molecular -‘9_‘/’1: _ ﬁ 2 * | 1|2
BECs, the first signature of the nonlinear interactions we are "ot 4p Vit xavsyi+ kgl
interested in is likely to be in the dynamical behavior of the
coupled condensates. This also allows us to check the stabil- O3 5 2
ity, at the mean-field level, of the coherent soliton ansatz. We T z_msV YatAwst xay, (85)

therefore consider 3+ 1) spatiotemporal dynamics of the
coupled condensates, obtained by direct numerical simulayhere we have defined= x3+ («{9+ «22)/2.

tion of the MFT equations for the field amplitudes(t,x). The coupled atomic/molecular soliton dynamics can be
These are modified Gross-Pitaevskii equations of the form gy died by direct numerical simulation of the above equa-

tions, starting with initial Gaussian atomic and molecular

-‘9_‘/’1:_ i 2. * 124 mean fields. The results of simulations are given in Figs. 2
ot om, ¥ Vit XavaUa- T welvas [y and 3, where we plot the density profiles, Smd|¢3|2 ag
ij ' ; depending on time and the radial coordinate=|x|. This
Pyt g2l ey (1=1.2, deFr)nonstrgtes stable propagation of coupled atc|>n|1ic and mo-
Oy b, ), 12 Igcular solitons, for two yalues o?cgrresl;zondigzg, respec-
== Z_mSV Y3t Aot Xzt k5| sl Ps tively, to previously considered cases: K )=_Kg )=0, so
that k= k3, and (i) k§=k{??)=2k;, so thatk=3k5. The
+ (k5 |2+ 1< 0l ) s, (84  graphs represent a phase match&d & 0) parametric inter-
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FIG. 3. Same as in Fig. 2 but for the value of=
19.8< 107 m¥/s (k§V2=k{??2=K3=6.6x10"*" m’/s). The
optimum Gaussian parameters ar@;=0,=3.13
X100 m™32 g;=1.92x10° m™32 w;=w,=1.8 um, andws
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action, with the initial optimum Gaussian parameters evalu
ated forN=1CP. Clearly the Gaussian profile is only an ap-
proximate version of the true soliton envelopeénich can be

calculated numerically, as ifl6]); hence we observe small
in-phase oscillations. We note that although the case of Fi

PHYSICAL REVIEW A 61 063816

and a “superchemistry” dynamics, where the condensate in-
terconversion is dominated by the coherent stimulated emis-
sion of bosonic atoms or molecules into their respective con-
densates. The phenomenon would be the matter-wave analog
to optical frequency summation.

We note that similar behavior, in the case of degenerate
parametric interaction, has recently been studied for a Fesh-
bach resonance coupling of single atomic and molecular con-
densateq41]. Assuming uniform condensate wave func-
tions, the system was analyzed in the context of quantum
tunneling emerging from the oscillatory behavior of the
number of atoms and molecules in their respective conden-
sates. The oscillatory dynamics was in response to a sudden
change of the detuning of the resonance, applied to a homo-
geneous atomic/molecular BEC that was initially in equilib-
rium.

For the case of Raman photoassociation coupling, and a
trapped atomic BEC as the initial condition, the nonlinear
dynamics of the coupled condensates was studi¢@ddhby
direct simulation of the resulting degenerate MFT equations.
This gave further insights into the rich variety of dynamical
behavior and a theoretical prediction of the possibility of
coherent chemistry or “superchemistry” behavior in
coupled BEC systems.

Here we extend this study to the case of two atomic and
one molecular condensates, and analyze the nondegenerate
MFT equations modified by the trap potential terms. The trap
terms are of the fornv;(x) ¢; (i=1,2,3), to be added on the
right-hand sides of Eqs(84). We consider a rotationally
symmetric harmonic trap potential;(x) =m,w?|x|%/(2%),
wherew; is the trap oscillation frequency for théh species,
and restrict our analysis to the symmetric caseyo{x)
=1ir(x), with Kgll)= K%22)22K3 and Kg?’g): K(313)= K(323)
=0. In addition, we choosAw=1.5x10*s ! and the trap
frequenciesw /27 = w,/27m= w3/27=100 Hz.

We simulate Eqs(85) together with the trap potential

é_erms in two stages. In the first stage, we assume that the

2 has higher energy than the low-density regime of a quanparametric couplings _is switched off, and that only atomic
tum gas of independent “dressed” molecules, nevertheless fPECies are present in the trap. The result achieved is the

appears from the mean-field theory that soliton propagatio

steady state of the Gross-Pitaevskii equations for a two-

can be possible as a metastable regime, presumably wiffPmponent atomic Bose condensate, which we choose to
guantum evaporation. St vt
This soliton propagation behavior leads to the remarkable=N;+N,~4.8<10* at a concentration of n~
property that coupled BEC solitons or localized matter-5x10" m~3. This provides the starting condition for the
waves could be generated in three space dimensions withogecond stage of simulations, where we switch on the cou-
an external trapping potential. Similar spatiotemporal soli-pling xs. The results are shown in Fig. 4, where we observe
tons have recently been observed with optical fields, but igiant collective oscillations between the atomic and molecu-

the degenerate case of parametric interacfiddi. The re-

correspond to an initial total number of atomic partichks

lar condensates, which take place on short time scales. These

sults of the present nondegenerate theory indicate that addbscillations are due to the coherent process of stimulated
tional s-wave scatteringgor phase modulation processes, in emission into a condensate of molecular dimers, followed by
the optical casethat exist among all three fields would tend the reverse process of stimulated emission into the atomic
to make solitons less stable than in the degenerate case. condensates. The integrated number of particles in the

C. “Superchemistry” behavior

atomic and molecular condensates as depending on time is
shown in Fig. 5.
This “superchemistry” is a type of coherent chemical

Another possible experimental approach to generating théeaction that can take place in BEC systems at ultralow tem-
coupled condensates is by first cooling an atomic vapor to &eratures. Itis characterized by Bose-enhanced reaction rates
BEC, and then switching on the atom-molecule coupling.(hj(3)ocnj ns, j=1,2) due to the effect of bosonic stimu-
This can lead to the formation of the molecular condensatéated emission. This is in a sharp contrast to the predictions
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(a) VII. SUMMARY

In summary, we have presented quantum soliton or
bound-state solutions to a nondegenerate parametric quan-

B &

;E ,‘0;0;0";‘\.‘ ¥\ tum field theory, in one, two, and three space dimensions. As

© : '10.0.0.:000“\\ ,'2";':‘;‘:%%“ f e in the degenerate parametric case, the results have quantum

T Mi’%‘\ "5‘{"{‘:‘2‘%\\‘\\ PR AN pointlike (zero-radiug structures in the eigenstates in more

Rl S X Q than one space dimension, if there is no momentum cutoff.
NI . This is quite different from the behavior of solitons in the

corresponding classical theory, and the reason for this is the
inherently nonclassical structure of the bound state, which is
a quantum superposition state. We note that most previous
analyses of quantum solitons treated cases where the quan-
(b) tum soliton was at least qualitatively similar to the corre-
sponding classical theory. This is not the case here.

With the inclusion of momentum cutoffs on the nonlinear
couplings, the two-particle bound state has a finite radius,
even in the simplest case of a pure parametric interaction—
;i i.e., without the quartic interaction term. We can estimate, in
NN the case of nonlinear optical or atomic BEC interactions, that
the nonlinear couplings should have a momentum cutoff no
higher than an inverse carrier wavelength or inverse scatter-
ing length, respectively. These estimates can be improved by

0.5 more careful treatment of the theory at large relative mo-
1.5 t (ms) menta. Such an improved treatment would be especially ap-
propriate in the three-dimensional case where we obtain a

FIG. 4. “Superchemistry” oscillations: atomi@ and molecu- linear divergence with,,—o°.

Q0N i
\ ARRN ARR
W DARAKRN :,‘:,'t'
it L

19 -3
n3(10 m~)

r (umj

lar (b) condensate densitieg=|¢;(x,t)|?> as depending on time Most significantly, the quantum solitons form in physi-
and the radial dis@nce=|x| from the trap center. The values of cally testable regimes. Our estimates for characteristic soli-
parameters are k=19.8x10 1" m¥s («{!V12=«k{?I2=k;=  ton radii and binding energies, in the case of photonic inter-

6.6x10°Y m¥s), «kPV=xk{P=k{®=0, m=m,=10"% kg,  actions in highly nonlinear parametrig®)) media, result in

x3=10"° m¥¥s, Aw=15x10" s}, and wi/2m=w,/2r  much more realistic values than examplesyét solitons,

= w3/2r=100 Hz. with the required experimental environment being nearly
available with current technology. In the case of BEC inter-

of conventional(Boltzmann chemical kinetics, where the actions, we point out the possibility of transition between the

chemical reaction rates do not depend on the number dju@ntum(diboson soliton regime, where atoms couple to

product particles and go to zero at low temperatures, accorc’grtrn mcl)lecglels(;n a Ipcatlhway,hto a ?lass'clal sol;t?hn reg|mtg.
ing to the Arrhenius law. We emphasize that this type of h the classical domain, the conerent coupling ot three entire

coherent density dependent oscillation is a signature of thgondensates takes the place of the nonlinear optical process

nonlinear parametric coupling, and would represent a firsgf sum-frequency generation. This gives the possibility of

tep t d ob ing the liquid h i ition di imultaneous atom and molecular matter-wave solitons in
Step toward observing the fiquid-gas phase transition ISt'hreespace dimensions, and therefore an intense, stable, and

cussed earlier. nondiverging atom/molecular laser output. The stability
properties of these solitons depend on the details of the
swave scattering lengths between all three species present.

25
We note that earlier examples of matter-wave BEC type soli-

2 tons(see, e.g.[42], and references thergiwere only for a
g one dimensional geometry. Of even more interest is a type of
g15 coherent BEC-enhanced chemical reaction or “superchemis-

© ] try” behavior at ultralow temperatures, which follows from
> the underlying dynamics of coupled condensate nonlinear
05 equations.

Finally, the bosonic character of the fields is not relevant
0 for the quantum bound-state theory derived here. Exactly the

t (ms) ‘ same results would occur if fermionic fields were involved,
and we changed the corresponding commutation relations to
FIG. 5. Total number of particles in the atomit,2) and mo-  anticommutators. In this respect, the present theory differs
lecular (3) Bose condensatds; = [d3x| ¢;(x,t)|2 as a function of from the degenerate cag#1,23, where the results were
time t. only applicable to bosonic fields. This suggests that part of
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these resultgbut not the classical soliton thegrgould be We first simplify the calculation by applying the commu-

extended to possible atomic fermionic superconductors, imation relations and reordering the operators so that all de-

which coupling between fermionic atoms is enhanced by thatruction operators stand on the right. Then all terms \yith

coherent production of bosonic molecules. Another possiblezj’ in the above double sum will vanish due to extra factors

application is to models of mesonlike coupling in mixed y,(x) [or ¥(x)] acting on the vacuum statg;) from the

fermionic-bosonic systems. right (or on (0;| from the lefy. The remaining terms with
j'=] are combined into a single sum according to
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stimulating discussions. The nonvanishing terms in this sum contain no operators and

can be further simplified by integrating with respect do
APPENDIX A functions from the commutators. The result of these integra-
tions is that all terms, except the one corresponding to
=0, will contain factors of the formf fd®xdPy g?(x—y)
which vanish due to the zero-radius property of the)
EM =M A8 (oM oV) function [ fdPr g?(r)=0] in two and three dimensiond(
=2,3). The remaining nonvanishing contribution of the term

with the ansatz44) we first transform to the coordinates With =0 results in
=R+myr/M andy=R-—m;r/M, and use binomial expan-

To calculate the energy

N (e§V1e8v)
sion, so thate{") becomes o170
R N/2 - N/2
— Dy’ ’ D
|206N)>:<JdDX‘i'£(X)+J JdDXdDy <03|(f d=x" W3(x") (J d°xW3(x)| [03)
. N/2 N/2
xg(x=y)¥Ix)¥i(y)| [0) =(N/2)!(diX =(N/2!VNV?  (D=2.3),
N/2 N/2 N/2— ]
—E (J dPx¥] (x) (f JdedD whereV= [dPx.
Similar calculations apply to the other averages involved
xg(x—y) ¥ix)¥iy) |0>_ in (oA V), so that one can obtaifior D=2,3)
(N1 (N) N/2 D
Here the vacuum stat®) is defined a$0)=|0;)|0,)|03), so (eo”Hleo™)=(N/2)tV fd X|Vg(x)|®
that¥;|0;)=0.
atwiloy +hAw+2ﬁXDg(0)+ﬁKDgz(O)

Calculating the averages involved TEﬁ,N) uses the com-
mutation relation§¥;(x), ¥(x')]1= &; 8(x—x'), and relies
on the zero-radius property of the two-particle correlation
functiong(r), i.e.g(r)=0 forr+#0 andg(0)=— xp/xp, in
two and three dimensions. We demonstrate this on the exdere the contribution from the kinetic energy part
ample of (3024 which is written using the above ex- Jd°x|Vg(x)|*=—Jd®xg(x)V?g(x) can be shown to van-
pansion as ish, using Eq.(15) and the property thafd®xg?(x)=0

(D=2,3). Substituting thely(0)= — xp/xp from Eq. (35)
we finally obtain

N 7 k(39
; ) 0

2 ] 2v

N/2  N/2 (N/Z)

g led?)= 2 2 2 N, h(XD)Z) ﬂ(g_l)m&m
N ) N2 0 2 KD 412 Vv
x| ><03|(f dPx’ Wy(x") =23,
N/2—j
XU dPx¥d(x) |03) which is the result given in Eq45).
For the case of odd values ®&f the N-particle ansatz
X (01,0, f f d®x’d®y’'g(x’—y") contains an extra factor gfd®xW }(x) acting on the vacuum
i’ state|0) from the left, in Eq.(44), andN/2 is replaced by its
X\ifl(x’)\ifz(y’)) ( J f dPx dPy integer parf N/2]. The final result for the enerdg{" in this
i case has the form of the above equation where the same
X g(X—y) \if{(x)\ifz(y)) 101,0,). replacemeniN/2—[N/2] is applied.
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APPENDIX B ) » | \ |
(O30 V= ROV 105)= 5 - 13002,

To calculate the N-particle energy E{V(kp) ©2)

= (@5 (k) A8 (k)Y (8" (k) [ 05 (k) with  the

cutoff dependent ansatf4) and the Hamiltonian given by where §(0) is to be understood a$(0)=[dPx/(27)

Egs.(1), (50), and(51), we first use the binomial expansion, =v/(2) in the limit of infinitely large volumev— .

so that Similarly, reordering the operators 04,0,| . ..]|01,0,)
produces nonvanishing terms involving productssdiunc-

tions, so that

oS (k)= a1(0)+(2m) P2

Km . . j

K o N/2 (01,02|((27T)D’2J’, de'G(k')al(k')az(—k’)>

xf'kl deG(k)a{(k)a;(—k)) |0) Ik’I=0
=0

X <2w>-D’2fk"“ deG(k)éI<k>é£<—k>)Jlol,oz>

lk|=0

j
1 (% [(m
= dPk;d°k, G(k/)) G(k
pH1<(27T)D fk,u—ojwpl—o 1 HpCky) Gl ”))

xpgm [8(Ka)— kD) 8(kezy—kp) - 8(ky—k/)]

N/2

N/2
=2( . )[é£<0>]N’2i
=0\ ]

(277)7D/2

xfk”‘ deG(k)éI(k>é£(—k>)'|0>,
|k|=0

where we assuméN is even, and the vacuum stat8)
=10,)|0,)|03) is defined such thai;|0;)=0.

We show the main steps involved in the calculation of X > [8(kay—ki) 8(kz)—kp)- Ok — k)],
EM (k) on the example ofe{™ (k)| 30 (k). Using the perm
above expan5|on(<p(N)(k )|<p(N)(km)> is expressed as a

double sumE;/z =%}y, which is reduced to a wherezX ., represents summation with respect to permuta-
single sumZN’O{ }J r—j as the terms with’ #j will van-  tions referring to the set of bracketed |nd|cE(§L) (2),
ish, after reorderlng the operators, due to the unequal number ., (j)] in the product ofé functions 8(k)—k1) 8(k)
of creation and destruction operators acting on the vacuum.- K5) . . (kg — k! ) There arej! terms in each of the

The terms that can give nonvanishing contributions are writsyms, such as

(B3)

ten as
d(ky—kq) 8(ka—k3) - - - 8(kj—kj) + d(ky—K7)
P (N)
<<P m)|<P (Km)) X 8(ky—K5) - - (k]-—kj’)+---
N/2 2
=> | . ) (03][a5(0) V2" i[al(0)1V2~1|05) The product of the two sums will contain diagonal terms,
j=o\ ] i.e., terms in which the permutation arrangement of the
% (04,0,] bracketed indiceg(1),(2),...,(j)] is the same in both sets
b of & function products, so that these terms have the following
Km - - J form:
X (zw)—szf , de’G(k’)al(k’)az(—k’))
K=o (kg —k}) 82 (kp—K5) - - - 8%(kj—k/)
Km R ~ i ’ ’ ’
X (27)0/2f| | deG(k)a{(k)ag(—k)) 0,,0,). + 6%(ko—ky) 8%(ky—kp) - - - 8°(kj—k[) +- - -.
k|=0

(B1) The remaining terms are the off-diagonal terms in which the
arrangement of indices is different, as in a term like

Here the calculation of the average®s|...|03) and S(Ke— k') 8(Ko— K1) S(Ka KLY -+ - 5(Ki — K
(01,05 ...101,0;) uses the commutation relations (ki—ka) (ka k) olks —ks) - - 6k —kj)
[a(K), aT(k )1=6;j6(k—k’") to change the order of creation X 8(kp—kyp) 8(ky—k3) 8(kg—kz) - - - 8(k;— k).

and destructlon operators in the operator products, so that all

the destruction operators act on the vacuum from the right, The diagonal terms can be combined into a single sum
while the creation operators act on the vacuum from the leftover the number of permutations with respect to the set of
This gives vanishing terms and simultaneously generateldracketed indices:

nonvanishing terms due to thefunctions from the commu-

tators. For the case of the avera@g| . . .|03) the nonvan- D [8%(ky—K}) 8Ky~ k) - - 82Ky —k)1.

ishing terms give perm J
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The integrations in EqB3) over thes functions involved in

these diagonal terms will result in a factor jdf§(0)!. The R(rg,km) =
integrations over theS functions in the off-diagonal terms
can produce a factor af(0)* only with k<j, and therefore
the contribution of these terms can be neglected as compar
to the contribution of the diagonal terms in the limit ‘of

1 Km
— f dPkk?G2(k),
(2m)P Jik=o

ga]d

— o, This results in 9(0Ky) = 1 jkm dPkG(k).
. (2m)® Jik=o
: 1 km [ km
5 J , J d°k,d®k,G(kp) G(kp) We next note that for the casé=2 the expression for
p=1 (277) ‘kp‘zo |kp|:0 =(N) . . .
Ey ' (ky) must give the exact two-particle solution for the
) ) , energyE?)(k.,), given by Eqgs(54) and(62), i.e.,
perm =(2) _ (2 32 2
j B (km) =Eg”(Km) = =15/ (2urg),
km
=j!48(0) f dPk,G3(ky) | . B4)  and therefore
jro( )<(2w)D od P (kp) (B4)
ﬁ2
Combining Eqs(B1)—(B4) we obtain [1+ F(ro,km)]1(ER(ro,km)+hAw+2ﬁXDg(O,km)

(oM (k) [ o5V (ki) )

N2 INJ2 1 . j
=(N/2)! 5(0)N2 ()( desz)
(N/2)72(0) JZO I\ @2mP fk|=o o

+ﬁKDgz(0,km)) =—h2(2urd). (B5)

Thus our final step in proving E65) consists in showing
that Eq.(B5) is equivalent to the eigenvalue equati@®).
This equivalence can be shown with the use of the explicit

K N/2
=(N/2)! 5(0)'\”2( 1+ —— jlkl—OdepGZ(kp)> : expression foiG(k), from Eq.(53),

(2m)°

Applying similar procedures to other averages involved in G(k)=— q
(e k) |A[eV (k) and keeping only the leading terms K2+ 1/
~ 8(0)N? we obtain that

(@8 (k) [H[ @8V (k)

which allows one to expredR(rg,k,,) as

EM (k) =—= — 2 1
T k) [689 (k) R(Foskm) = o Fo(F ki) = = F( oK),
N 72 0 0
_ -1
a E[l+ F(To,km)] (ﬂR(ro’kahAw In addition, we use the definition @f Eqg.(56), and express

g(0ky) in terms off5(r k), using Eq.(57). This makes it
possible to rewrite Eq(B5) in the form of Eq.(62), thus

+2%ixp9(0Km) + A kpg%(0K ) -
X9 (0 Km) + 7 kp g™ (O proving thatE{? (k) =E?)(k.), and therefore

where we have defined ~ N N_,
ESY (ki) = 5 EF (k).

km
F(rg,kmy) = f dPkG?3(k),
(To-Km) (2m)P Ji=0 (k) which is the result of Eq(65).
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