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Polarium model: Coherent radiation by a resonant medium
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In the absence of incoherent relaxation processes, the emission, absorption, and transport of resonant radia-
tion by an extended medium are all cooperative processes in which the medium participates as a whole. Such
radiative processes depend sensitively on the geometry of the source, on its size and density, and on the
interplay of electric polarization resonances with the ambient electromagnetic field. By making a succession of
simple approximations, we reduce the radiative interaction problem to one of solving a linear integral equation
for the time-dependent polarization of the radiating medium. For the example of one-dimensional geometry,
we show that the polarization possesses a sequence of exponentially decaying eigenmodes that oscillate at
frequencies slightly shifted from that of the fundamental resonance. Only a few of these modes, for any
radiating medium, are strongly coupled to the electromagnetic field, and thereby radiate efficiently. All of the
other modes, infinitely many of them, are found to radiate quite slowly, or not at all. We consider in detail the
radiation emitted by an arbitrary initial polarization distribution when the electromagnetic field is initially
empty. Analytical and numerical results are presented for the time-dependent fields that follow from a wide
variety of initial excitations. A locally oscillatory exchange of energy is found to take place between the
electric and polarization fields, which gives rise to a ringing of the radiated intensity. The spectra of the emitted
light are shown accordingly to be complex in structure, and to have a frequency gap which becomes indepen-
dent of the size of the medium and its initial polarization distribution for media that are sufficiently large. The
gap is caused by the interference and interaction of oppositely propagating excitations.

PACS number~s!: 42.50.Fx, 42.50.Gy, 42.50.Md
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I. INTRODUCTION

Most of the light we perceive is radiated, not by isolat
atoms, but by atoms embedded in more or less exten
aggregates of other and similar atoms. The quantum radi
by a resonant excitation of any one of these atoms can
travel any significant distance in such a medium before be
absorbed and re-emitted by identical atoms situated nea
The quantum tends thus to be trapped within the medium@1#,
and to make its way only slowly to the surface. This trapp
of radiated quanta takes place both coherently and inco
ently. It is the coherent aspect of the process that we add
in the present paper. In this sense, the radiating element
not individual atoms so much as the medium as a whole.
problem we address is thus the coupling of the entire ato
medium to the electromagnetic field. We find that by mak
suitable approximations we are able to treat a numbe
aspects of this daunting problem, and to predict some in
esting features of the fields that are radiated.

Bulk matter abounds, of course, in properties that tend
break down the coherence of propagating waves. Ran
inhomogeneities of all sorts in a radiating medium tend
reduce its radiation to a state of incoherence. It is in the la
terms, as a problem of incoherent multiple scattering, that
larger question of radiation trapping has usually been
dressed@2–7#. The effects of incoherence will surely tend
dilute, or perhaps even wash out, the various features tha
find present in the coherent emission process, and we s
eventually have to address them. We have omitted th
here, however, since the analysis must obviously begin w
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the coherent process. The descent from coherence into i
herence is irreversible, but may only be partial. It will be
interesting task for future work to see how much of the
diation process survives in a coherent form.

The process of coherent emission was discussed m
years ago in its most elementary form by Dicke@8#. He
pointed out that an aggregate ofN atoms, lying within a
volume small in dimension compared to the wavelength
light radiated, will only emit that radiation in somewhat u
familiar ways. The excitations of the atoms can be descri
in terms of collective excitation modes, and it is only th
symmetrical one among these that is appreciably couple
the field. Any one of the atoms therefore can only radiate
the extent that it partakes in the symmetrical excitation. T
is an effect of order 1/N, so nearly all of its excitation energ
remains trapped in that atom~until the much weaker effects
of higher-order multipole couplings release it!. The emission
changes drastically when inhomogeneities are present
nonradiative transitions are allowed to intervene. The exc
atom may then radiate more or less independently of
others, and the quantum it radiates may then suffer suc
sive scattering processes. What happens in realistic situa
must surely combine and elaborate upon these contras
images.

Our treatment of the coherent emission of radiation
matter is based upon three approximations. In the first
these, we assume that the atoms remain on the average
to their ground states. This is the assumption of weak e
tation that embraces all of the familiar phenomena of lin
optics. It implies that, with appropriate interpretation
©2000 The American Physical Society14-1
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terms of coherent state amplitudes, much of our analysis
be carried out in essentially classical terms.

The second approximation we make is the smoothing
the discrete structure of the atomic medium. It is th
smoothing that eliminates incoherent processes and tr
matter as a continuous medium we shall callpolarium. The
polarization modes of this medium exchange energy with
electromagnetic field, but remain confined within fini
boundaries. They therefore emit radiation freely at
boundaries, unlike the plane-wave modes that are often
cussed for infinite media@9#.

The third approximation we make is a simplification
treating the time dependence of the radiative interactio
We assume that all of the essential time dependences o
problem can be regarded as relatively slow modulations
an extremely rapid oscillation at the atomic resonance
quencyv0. We assume further that light waves can cross
radiating medium in times much shorter than those in wh
the modulation takes place. It is important to understand
this rapid-transit approximation neglects only a small part
what are usually called retardation effects. As far as the ra
oscillations at the resonant frequency are concerned, reta
tion effects remain accounted for fully. The rapid transit a
proximation permits us to reduce the mathematical prob
of treating the radiative interactions to an elementary fo
that can be solved analytically. It is a most convenient s
plification, but it does place certain limits on the dimensio
of the media we can treat. It is worth noting thus that t
rapid transit approximation is the easiest of our three
proximations to lift.

Each of the confined polarization modes we discuss
cays exponentially with the emission of light. The decay p
riods are distributed, in general, over a broad range of val
Some of the modes for any medium are found to decay
perradiantly, while the vast majority of them, an infini
number in fact, are found to radiate extremely slowly, or n
at all. The decay of any given initial excitation, which ma
be expressed as a superposition of these modes, then
ceeds according to a succession of different rates as th
diation of the faster modes precedes that of the slower o
The exponential decay periods of the different modes
inevitably accompanied by certain shifts of the frequenc
radiated. The total spectrum radiated thereby assumes a
plex shape. It has a multipeaked structure that can con
sharply resonant dips as well. As the size of the medi
increases, the spectrum develops a gap, representing freq
cies at which propagation within the medium is strongly su
pressed. Several of these features can be varied with
mode content of the initial polarization.

Our analysis bears a certain relation to one carried
many years ago by Burnham and Chiao@10# and then, in
further detail, by others@11,12#. They studied the response o
a semi-infinite medium of two-level atoms to a pulse of lig
incident upon it. The pulse was found to excite an oscillat
exchange of energy between the polarization of the med
and the electric field. This ringing phenomenon was actu
observed in the tail of superradiant emission from an exc
volume of gas atoms@13#. Analogous oscillatory exchange
of energy are present in the polarium model, which can
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hibit a much greater variety of ringing phenomena, accord
to the selection of modes excited.

Our paper begins with a discussion in Sec. II of the ba
model of resonant medium-field coupling. We assume t
the polarization of our atomic medium is initially differen
from zero, while the electromagnetic field begins in
vacuum state. Those assumptions are shown in Sec.
where the rapid-transit approximation is introduced to defi
an initial value problem governed by a linear homogene
integral equation. That equation is simplified in Sec. IV
assuming a slab geometry and excitations that are uniform
directions parallel to the slab faces. Under these conditi
the problem is reduced to one dimension, and involves o
scalar fields. A detailed discussion of the eigenvalue prob
associated with our homogeneous linear integral equat
including its general features, certain exact sum rules,
approximate analytical and numerical expressions for the
genvalues are presented in Sec. V. The exponentially de
ing eigenmodes of the polarization can be superposed to
press the solution of the general time-dependent problem
Sec. VI. There we also discuss the results of a more di
numerical solution of the integral equation, and illustrate
complex spectra radiated by a variety of initial excitation
We conclude that section with an approximate analyti
treatment of the long-time behavior of a symmetric exci
tion that is initially very sharply localized. In Sec. VII, w
address the problem of adding a frequency-independent
ceptibility to the resonant one discussed in the prior sectio
and show that it can be accounted for without complicat
the mathematical methods introduced earlier. Some clos
remarks are presented in Sec. VIII.

II. ATOM-FIELD INTERACTION

We consider a sample ofN identical two-level atoms in-
teracting with the electromagnetic field. The ground and
cited statesua& and ub& have opposite parities, and are sep
rated by energy\v0. We assume the wavelength 2pc/v0 is
much larger than the atomic radius, so that the atoms inte
with the electromagnetic field predominantly through elect
dipole coupling. Furthermore, since the atoms differ only
their spatial locationsrW i , i 51, . . . ,N, it is sufficient to be-
gin by discussing the interaction of a single atom with t
field and then to generalize our equations to include all
atoms.

In the electric dipole approximation, the HamiltonianH of
an atom located atrW interacting with the electromagneti
field takes the form

H5
\v0

2
sz2dW •EW ~rW !1HF , ~1!

in which sz is a familiar Pauli spin-1/2 operator,dW is the
atomic dipole moment operator, andHF is the Hamiltonian
of the free field. SincedW is odd under spatial inversion an
the two atomic states have opposite parities, the operatdW

may be expressed in terms of its vector matrix elemenmW

5^budW ua& and the remaining Pauli spin operatorss6 as
4-2
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POLARIUM MODEL:COHERENT RADIATION BY . . . PHYSICAL REVIEW A61 063814
dW 5dW 11dW 2 with dW 15mW s1 , dW 25mW * s2 . ~2!

The Pauli spin operators act on the atomic states as follo

s1ua&5ub&, s2ua&50, szua&52ua&,

s1ub&50, s2ub&5ua&, szub&5ub&,

and obey the familiar commutation rules

@sz ,s6#562s6 , @s1 ,s2#5sz .

When written in terms ofdW 6 and the positive and nega
tive frequency partsEW (6)(rW) of the Hermitian electric field
EW , the productdW •EW consists of four terms. We now make th
rotating-wave approximation, which drops the two antire
nant termsdW 1•EW (2) anddW 2•EW (1), but retains and correctly
treats the resonant and near-resonant interactionsdW 1•EW (1)

anddW 2•EW (2) that characterize the standard treatments of
diation damping. The effective Hamiltonian is then

H5
\v0

2
sz2$s1@mW •EW (1)~rW !#1s2@mW * •EW (2)~rW !#%1HF .

~18!

Application of the commutation rules to this Hamiltonia
yields the Heisenberg equation of motion for the dipole o
eratordW 2 :

d

dt
dW 252 iv0dW 22 i

mW *

\
@mW •EW (1)~rW,t !#sz . ~3!

The further equations of motion couple the time derivative
the operatorsz in turn to thes6 operators, but we need no
construct them here since all the phenomena we propos
discuss can be described in terms of weak atomic excitati
We thus assume that the atom is never far from its gro
state ua& and thatsz in Eq. ~3! can be replaced approx
mately by its eigenvalue21, so that

d

dt
dW 252 iv0dW 21 i

mW *

\
@mW •EW (1)~rW,t !#. ~4!

This linearization of the equation of motion is equivalent
replacing the two-level atom by a harmonic oscillator of fr
quencyv0, an approximation that remains accurate as lo
as the occupation probabilities for the states of quan
numbern>1 remain negligible. While the compass of th
linearized model is not without restrictions, its range of v
lidity does include virtually all the phenomena of ordinary
linear optics, i.e., refraction, reflection, scattering, radiat
damping, etc.

Restricting our considerations to weak excitations of in
vidual atoms or oscillators will not stand in the way of o
macroscopically treating measurable polarization fields, o
we take into account the large number of atoms in
sample. Equation~4! has been derived, strictly speaking, as
relation between the polarization operatordW (t) and the field
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operatorEW (1)(rW,t) in the Heisenberg picture, but, since it
linear, it may be regarded equally well as a relation betwe
the expectation values of these operators, and in that sen
furnishes a classical equation as well.

The reason the classical and quantum-mechanical tr
ments correspond so closely is that the electromagnetic
behaves as an ensemble of harmonic oscillators while, as
have noted earlier, weakly excited atoms can also be re
sented by harmonic oscillators. The special coupling
tween these oscillators described by our equations of mo
is of a type@14# that always carries coherent states of t
system into new coherent states in the time-dependent Sc¨-
dinger picture. Furthermore, the amplitudes of those cohe
states simply obey the classical equations of motion. In
sense, then, there is no loss of generality in solving just
classical equations. All quantum fluctuations can be fou
for example, by using the classical solutions to construct
appropriate coherent states.

Let us now define a microscopic polarization density o
erator for the collection of point dipoles, and separate it in
its positive and negative frequency parts,PW (rW,t)
5PW (1)(rW,t)1PW (2)(rW,t), so that

PW (1)~rW,t !5(
i 51

N

dW 2
( i )~ t !d~rW2rW i !5@PW (2)~rW,t !#†, ~5!

wheredW 2
( i ) is the dipole moment operator for thei th atom. By

appending the labeli to dW 2 , mW , andrW in Eq. ~4!, multiplying
the resulting equation byd(rW2rW i), and then summing ove
all i 51, . . . ,N, we obtain the equation of motion for th
microscopic polarization densityPW (1)(rW,t),

S ]

]t
1 iv0D PW (1)~rW,t !5

i

\
M ~rW !•EW (1)~rW,t !, ~6!

in which M (rW) is a second-rank tensor with the followin
dyadic form:

M ~rW !5(
i 51

N

mW i* mW id~rW2rW i !. ~7!

While Eq. ~6! describes how the polarization density is i
fluenced by the electromagnetic field, the field responds
turn to the polarization density via the Maxwell wave equ
tion

2¹W 3~¹W 3EW (1)!2
1

c2

]2

]t2EW (1)5
1

c2

]2

]t2PW (1). ~8!

We have, to this point, retained the microscopic picture
the polarization density and the electric field that is impli
in the singular expressions~6! and ~8!. The atomic medium
we shall be concerned with, however, will be essentially c
tinuous in nature, and so we will treat bothPW (rW,t) and
EW (rW,t) as continuous functions ofrW. Mathematically, the re-
quired smoothing is accomplished by averaging Eqs.~6! and
4-3
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SUDHAKAR PRASAD AND ROY J. GLAUBER PHYSICAL REVIEW A61 063814
~8! over volumes large enough to contain many atomic
poles, but still much smaller in their dimensions than t
wavelength 2p/k0. We shall assume, furthermore, that t
atomic medium is isotropic, so that its electric polarization
always parallel to the inducing field. That will be so in o
two-state model as long as the dipole matrix-element vec
of the atoms within any smoothing volume are random
oriented. When they are distributed thus and averaged o
the dyadic functionM (rW) reduces to the unit dyadic multi
plied by (umW u2/3)n(rW), wheren(rW) is the smoothed numbe
density function. Thus Eq.~6! reduces to the simpler form

S ]

]t
1 iv0D PW (1)~rW,t !5 i

umW u2

3\
n~rW !EW (1)~rW,t !. ~9!

In deriving Eq.~9!, we have implicitly ignored local field
effects by assuming that the electric field acting on e
atom is the same as the averaged fieldEW (1)(rW,t). In fact, in a
familiar approximation@15#, the local field can be written in
terms of the smoothed fields asEW (1)(rW,t)1(1/3)PW (1)(rW,t).
The effect of that correction in a uniform medium is th
equivalent to a downward shift of the resonant frequency

Dv52
n0umW u2

9\
.

If we redefinev0 to include this correction, we may retai
Eq. ~9! as shown.

The derivation of Eq.~9! has also assumed that th
smoothed productM (rW)•EW (rW,t) in Eq. ~6! is well approxi-
mated by the product of the smoothed functionsM (rW) and
EW (rW,t). By doing this, we have postponed consideration
certain density fluctuation effects that typically lead to inc
herent scattering. We shall refer to this idealized model o
continuous, isotropic, polarizable medium aspolarium.

Since Eq.~9! will play a fundamental role in our analysis
we should note that it holds for atomic models considera
more realistic than the elementary two-state model we h
used to derive it. A more direct way of achieving isotrop
for example, is to let each atom respond isotropically. T
atomic ground states might thus bes states, and the excite
states three degeneratep states. In this four-state model w
likewise secure a relation betweenPW (1) andEW (1) similar to
Eq. ~9!, but with umW u2/3 replaced by the squared matrix el
ment connecting thes state to any of the threep states@16#.

For the geometrically simple problems that we shall co
sider in the present paper, the smoothed electric field
polarization will be purely transverse fields:

¹W •PW (1)~rW,t !50, ¹W •EW (1)~rW,t !50.

In that case, all of the terms in Eq.~8! are transverse, and
reduces to the form

S ¹22
1

c2

]2

]t2DEW (1)~rW,t !5
1

c2

]2

]t2PW (1)~rW,t !. ~10!
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When we deal with other geometries in later work, we sh
have to return to Eq.~8! and treat the longitudinal field com
ponents more explicitly.

It is worth emphasizing that we have only treated t
resonant interaction of a single atomic transition with t
electromagnetic field. The atoms we are considering w
typically have many spectral resonances at other frequen
Any other atoms that are present in the medium will a
further contributions to the polarization density. If we restr
our consideration to a narrow enough spectral inter
aroundv0, the contributions of other resonances and ot
atoms can be treated as a frequency-independent backgr
susceptibility to be added to the resonant susceptibility
plicit in our calculations. This modification of the treatme
of our central problem, that of the resonant interaction,
introduced in Sec. VII.

III. AN INITIAL VALUE PROBLEM
FOR THE POLARIZATION

The physical problem we shall consider first concerns
way in which an initial excitation of the atomic samp
evolves and propagates under interaction with the elec
magnetic field. We shall take the electric field to begin in
vacuum state. Any vacuum fluctuations that are present
tially induce a random polarization background and do
contribute to the expectation values of the polarization or
any of its normally ordered moments. Since these are
only moments we need to calculate, we may in effect ign
the zero-point field. For this problem, Eq.~10! can be con-
veniently cast into an integral form by making use of t
retarded potential

EW (1)~rW,t !52
1

c2E ]2

]t82
PW (1)~rW8,t8!

3

dS t2t82
urW2rW8u

c
D

4purW2rW8u
drW8dt8

52
1

c2E
]2

]t2P̃(1)S rW8,t2
urW2rW8u

c
D

4purW2rW8u
drW8. ~11!

By expressingEW (1) and PW (1) in terms of their slowly vary-
ing envelopesEW andPW ,

EW (1)~rW,t !5EW~rW,t !e2 iv0t, PW (1)~rW,t !5PW ~rW,t !e2 iv0t,
~12!

and dropping the relatively small time derivatives ofPW , we
may reduce Eq.~11! to the form

EW~rW,t !5k0
2E PW S rW8,t2

urW2rW8u
c

D eik0urW2rW8u

4purW2rW8u
drW8. ~13!
4-4
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POLARIUM MODEL:COHERENT RADIATION BY . . . PHYSICAL REVIEW A61 063814
The use of the envelopes~12! in Eq. ~6! leads to the equation
of motion for the polarization:

]

]t
PW ~rW,t !5 i

umW u2

3\
n~rW !EW~rW,t !. ~14!

We shall take Eqs.~13! and~14! to be fundamental in the
work that follows. The densityn(rW), and therefore the polar
ization PW (rW,t), we shall assume, both vanish outside so
restricted volumeV. An interesting initial value problem is
one in which the polarizationPW (rW,0) at timet50 takes on a
given value within some subvolume ofV, while the electric
field, as noted earlier, vanishes everywhere att50. We use
the equations of motion to investigate the spreading and
timate decay of the polarization within the medium, and
discuss the electric field that is generated and eventually
diated. It is clear from Eq.~13! that the electric fieldEW(rW,t)
must obey an outgoing wave boundary condition at the s
face of the volumeV; Eq. ~14! shows that the polarization
must also satisfy an outgoing wave boundary condition in
surface region.

When we substitute the expression given by Eq.~13! for
the electric field amplitude into Eq.~14!, we secure a single
equation for the polarization amplitude:

]

]t
PW ~rW,t !5 i

umW u2n~rW !k0
2

3\ E eik0urW2rW8u

4purW2rW8u
PW S rW8,t2

urW2rW8u
c

D drW8.

~15!

It is worth emphasizing that the polarization amplitude d
scribed by Eq.~15! is the slowly varying envelope functio
defined by Eq.~12!. The integrand on the right side of Eq
~15! requires evaluating the functionPW at the retarded time
t2urW2rW8u/c, but if its temporal variation is sufficiently slow
a good approximation may be achieved by neglecting
retardation inPW and writing

]

]t
PW ~rW,t !5 i

umW u2n~rW !k0
2

3\ E eik0urW2rW8u

4purW2rW8u
PW ~rW8,t !drW8. ~16!

This equation, as we shall see, is a convenient one
solve as an initial value problem. By approximating only t
slowly varying envelope, furthermore, it omits, in gener
only a small part of the overall effect of retardation. T
larger part of that effect, represented by the rapidly oscil
ing factor in the polarization of Eq.~12!, is still accounted
for by the factor exp(ik0urW2rW8u) present in the integrand o
Eq. ~16!. The assumption underlying Eq.~16!, which we
shall call the rapid-transit approximation, will clearly be
good one as long as the envelope functionPW varies slowly
enough in time, and that, as we shall see, is often the case
course, any such approximation will tend to place limits
how large the system can be, and we shall address the
detail in Sec. V. We shall show that there is ample ro
within these constraints to observe many physically inter
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ing behaviors of both the polarization and the electric fie
To discuss the problem further, we shall have to solve
~16!.

IV. REDUCTION TO ONE DIMENSION

We shall undertake the solution of Eq.~16! as a three-
dimensional problem in later work. It will be most helpfu
here to consider an essentially one-dimensional version
the problem it poses. Let us assume that the atomic med
has a uniform densityn0 within the bounds2L/2<z<L/2,
and that its extent in the transverse directionsx and y is
unbounded. The polarization amplitude, we assume, depe
only on z and t, and must vanish foruzu.L/2.

To carry out the reduction of Eq.~16!, we write the coor-
dinate vectorsrW and rW8 in terms of their transverse and lon
gitudinal components asrW5(rW ,z) and rW85(rW 8,z8), and let
rW 95rW 82rW and s5@r921(z82z)2#1/2. Then Eq. ~16! be-
comes

]

]t
PW ~z,t !5 i

umW u2n0k0
2

3\ E
2L/2

L/2

PW ~z8,t !dz8E
uz2z8u

` eik0s

4ps
2psds.

We may, at this stage, suppress the vector character o
polarization amplitudePW by noting that the two independen
transverse components ofPW obey the same equation, a fa
that leads merely to a twofold degeneracy of the charac
istic solutions of our initial-value problem. The integratio
over the variables is elementary, but the oscillating contr
bution of its upper limit remains ambiguous. This contrib
tion can be taken to vanish either by giving tok0 an infini-
tesimal positive imaginary part, or alternatively by breaki
slightly the invariance ofP under transverse displacemen
to allow for an infinitesimally slow decrease ofP(rW,t) asr
→`. In either case, the equation for the polarization in o
dimension reduces to

]

]t
P~z,t !52

umW u2n0k0

6\ E
2L/2

L/2

P~z8,t !eik0uz2z8udz8 ~17!

for uzu<L/2. The corresponding value of the electric fie
E(z,t) is given as

E~z,t !5
ik0

2 E
2L/2

L/2

P~z8,t !eik0uz2z8udz8. ~18!

It is convenient to reduce Eq.~17! to a form involving
only scaled space and time coordinates by introducing
variablesZ andT,

Z5
z

L
, T5

t

tR
, ~19!

where

1

tR
[

n0mW u2b

6\
with b[k0L. ~20!
4-5
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The quantity 1/tR is essentially the Dicke superradiance ra
defined by Arecchi and Courtens@17#, and we shall discuss i
further in Sec. V.

In these scaled units, Eq.~17! reduces to the form

]

]T
P~Z,T!52E

21/2

1/2

dZ8eibuZ2Z8uP~Z8,T!, uZu<1/2,

~21!

in which the only surviving parameter isb, the sample thick-
ness measured in units of the reduced wavelength 1/k0.

As we have noted earlier, in the absence of any ini
electric field, only outgoing polarization waves can exist
the boundaries of the medium,Z561/2. These waves sup
port an outflow of energy that is irretrievably lost from th
medium as electromagnetic radiation. That the polariza
energy can only decrease is directly implied by Eq.~21!. To
see this, we multiply Eq.~21! by P* (Z,T), and consider the
real part of the resulting equation:

]

]T
@ uP~Z,T!u2#52E

21/2

1/2

dZ8@eibuZ2Z8uP~Z8,T!P* ~Z,T!

1e2 ibuZ2Z8uP* ~Z8,T!P~Z,T!#.

By integrating this equation overZ, we obtain an equation
that describes the rate of change of polarization energy in
volumeV:

d

dT F E
21/2

1/2

uP~Z,T!u2dZG
52E

21/2

1/2

dZE
21/2

1/2

dZ8@eibuZ2Z8uP~Z8,T!P* ~Z,T!

1e2 ibuZ2Z8uP* ~Z8,T!P~Z,T!#.

The variablesZ and Z8 may be freely interchanged in th
second term of the integrand, with the result

d

dT F E
21/2

1/2

uP~Z,T!u2dZG
522E

21/2

1/2

dZE
21/2

1/2

dZ8cos~buZ2Z8u!

3P~Z8,T!P* ~Z,T!.

Since cosbuZ2Z8u5 cosbZcosbZ81 sinbZsinbZ8, the
double integral may be reduced to an explicitly positiv
definite form, so that we find
06381
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d

dT F1

2E21/2

1/2

uP~Z,T!u2dZG
52FU E

21/2

1/2

dZP~Z,T!cosbZU2

1U E
21/2

1/2

dZP~Z,T!sinbZU2G<0. ~22!

In other words, the total polarization energy stored in t
medium can only decay with time as a result of interact
with the electric field.

V. ONE-DIMENSIONAL EIGENVALUE PROBLEM

The task of solving Eq.~21! is simplified greatly by the
separability of its dependences onZ and T. In particular, if
we seek solutions of the forme2lTPl(Z), thenPl(Z) must
satisfy the homogeneous Fredholm integral equation

lPl~Z!5E
21/2

1/2

dZ8eibuZ2Z8uPl~Z8!. ~23!

This equation defines an eigenvalue problem for which
relation ~22! assures us that all the eigenvalues will ha
non-negative real parts, Re(l)>0. The boundary conditions
implicit in Eq. ~23! are the outgoing-wave conditions

Pl~Z!→eibuZu3const for uZu→ 1
2 , ~24!

and these, as we shall see, restrict the eigenvalues to a
crete sequence.

Many of the important properties of the functionsPl(Z)
and the eigenvaluesl follow simply from the general struc
ture of Eq.~23!. It will be useful to demonstrate several o
them before undertaking an explicit solution of the equati
Let Pl8(Z) be an eigenfunction of Eq.~23! corresponding to
the eigenvaluel8Þl. Then it obeys

l8Pl8~Z!5E
21/2

1/2

dZ8eibuZ2Z8uPl8~Z8!. ~25!

Now if we multiply Eq. ~23! by Pl8(Z) and Eq.~25! by
Pl(Z), take the difference of the two equations, and th
integrate overZ, we find

~l2l8!E
21/2

1/2

Pl~Z!Pl8~Z!dZ

5E
21/2

1/2

dZE
21/2

1/2

dZ8eibuZ2Z8u

3@Pl~Z8!Pl8~Z!2Pl~Z!Pl8~Z8!#.

Interchange of the integration variablesZ andZ8 in the inte-
grand on the right shows that the integral vanishes. It follo
then that forlÞl8, the two solutionsPl(Z) andPl8(Z) are
orthogonal:
4-6
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E
21/2

1/2

Pl~Z!Pl8~Z!dZ50 ~lÞl8!. ~26!

The eigenfunctions can be given unit normalization, so t
the general orthonormality relation is obtained:

E
21/2

1/2

Pl~Z!Pl8~Z!dZ5dl,l8 . ~27!

The kernel function exp(ibuZ2Z8u) is symmetric under
spatial inversionZ→2Z and Z8→2Z8, as is the medium
itself. It follows that if Pl(Z) is a solution of Eq.~23!, then
Pl(2Z) is also a solution corresponding to the same eig
valuel. We shall show presently that the eigenvalues in
one-dimensional problem are, in general, nondegene
Hence Pl(Z) and Pl(2Z) can only differ by a constan
factor, and that factor can only be61. The eigenfunctions
Pl(Z) are thus either even or odd functions ofZ.

From the general theory of Hilbert-Schmidt symmet
kernels@18#, it follows that the eigenfunctionsPl(Z) form a
complete set on the interval21/2<Z<1/2. Thus we can
expand the kernel function exp(ibuZ2Z8u) in terms of thePl

as

eibuZ2Z8u5(
l

cl~Z!Pl~Z8!,

where the expansion coefficientcl(Z) is given by

cl~Z!5E
21/2

1/2

eibuZ2Z8uPl~Z8!dZ85lPl~Z!.

The kernel thus possesses the expansion

eibuZ2Z8u5(
l

lPl~Z!Pl~Z8!. ~28!

An immediate application of this relation is obtained by le
ting Z85Z and integrating overZ from 21/2 to 1/2. The
result is a sum rule showing that the eigenvalues all add
to unity,

(
l

l51. ~29!

Since the eigenvalues are complex, this relation amount
two sum rules

(
l

Rel51, (
l

Im l50. ~30!

There are a number of other sum rules that follow from
expansion in Eq.~28!. These concern sums of powers of t
eigenvaluesl and partial sums of eigenvalues taken over
even and odd solutions. These sum rules are derived in
pendix A.
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A. Radiation by a thin slab, b™1

A helpful introductory problem, and the simplest one
discuss, is the limiting case in which the slab thicknessL is
much smaller than the reduced wavelength|051/k0. For b
5k0L!1 we see that Eq.~23! reduces to

lPl~Z!'E
21/2

1/2

Pl~Z8!dZ8. ~31!

If we integrate both sides of this equation from21/2 to 1/2,
we find

~l21!E
21/2

1/2

Pl~Z8!dZ850,

a relation that can only be obeyed if eitherl51 or, alterna-
tively,

E
21/2

1/2

Pl~Z!dZ50. ~32!

If l51, then according to Eq.~31! the polarization must be
uniform over the volume of the slab. Otherwise Eq.~32!
must hold and the polarization averages to zero. All pol
ization modes of this character, according to Eq.~31!, must
havel50. The thin slab then represents a limiting case
which there is a single fundamental mode withl51, and a
sequence of spatially oscillating modes with the comm
eigenvaluel50. The eigenvaluel51 for the fundamental
uniform mode corresponds to a decay period for the po
ization of tR56\/(n0umW u2k0L)56\/(n0umW u2b).

The remaining modes withl50 clearly do not decay a
all. It is not difficult to see why that should be so if we ref
back to Eq.~18! for the electric field. In scaled form it is

E~Z,T!5
ib

2 E
21/2

1/2

P~Z8,T!eibuZ2Z8udZ8, ~33!

and forb!1 it reduces within the slab to

E~Z,T!5
ib

2 E
21/2

1/2

P~Z8,T!dZ8. ~34!

The contribution of any eigenfunctionPl to the field can
then be written as

El~Z,T!5
ib

2 E
21/2

1/2

Pl~Z8!dZ8e2lT. ~35!

The polarization modes with eigenvaluel50 are inhibited
in their decay because for them the polarization integrals
Eq. ~35! all vanish. Their polarization energy remain
trapped within the slab in the limitk0L!1 because their
mode functions are orthogonal to the electric field waves
frequencyv0. The latter waves are nearly uniform within th
thin slab.

The fundamental mode for the polarization which is sp
tially uniform is the only one that radiates efficiently for
thin slab. Its decay rate in unscaled physical units is
4-7
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tR
215

n0umW u2k0L

6\
. ~36!

We can see in the proportionality of this number ton0L, the
number of atoms per unit area of the slab, that the radia
process, viewed from an atomic standpoint, must be a co
erative one. The radiative decay rate for a single free atom

t215
umW u2k0

3

6p\
. ~37!

The decay ratetR
21 is enhanced overt21 by a factor of order

n0L/k0
2, which we must assume to be larger than unity

order to have the right to consider the slab as a continu
medium. There must, in other words, be more than one a
in the slab per square wavelength on the average. The a
within each such area then radiate cooperatively in the6z
directions through mutual interference.

We can explain the enhancement factorn0L/k0
2 from a

more dynamical viewpoint by taking the thin slab to be lar
but finite in its lateral dimensions. If it has areaA, then it
containsN5n0AL atoms. The enhancement factor can th
be written as

n0L

k0
2 5N

1

k0
2A

. ~38!

The rate of decay of the excitation of any atom in the slab
increased by the Dicke superradiance factorN/4 since all of
the atoms in the slab radiate coherently. The decay rat
decreased, on the other hand, because each atom can
radiate into a solid angle@17# smaller than 4p by a factor of
order (k0

2A)21. That inhibition, on the radiation by any on
atom, is another feature of the cooperative effect of all
other atoms radiating in the same phase.

B. Solution for the eigenfunctions and eigenvalues

The solutions to Eq.~23! merit careful attention since, a
we shall later see, they also occur in three-dimensional p
lems defined in spherical volumes. The Fredholm equa
~23! is a particularly simple one to solve since it can
reduced to a familiar differential equation. To accompli
that reduction, we need only observe that the ker
exp(ibuZ2Z8u) is the Green’s function of the differential op
erator]2/]Z21b2, i.e., that

S ]2

]Z2 1b2DeibuZ2Z8u52ibd~Z2Z8!. ~39!

When we apply the differential operator to both sides of E
~23! we see thatPl(Z) must satisfy the differential equatio

S ]2

]Z2 1b22
2ib

l D Pl~Z!50, ~40!

for 21/2<Z<1/2.
The electric-field amplitudeEl(Z) that corresponds to th

polarization modePl(Z) is simply proportional toPl(Z)
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according to Eq.~14!. It therefore satisfies the same diffe
ential equation asPl(Z) for 21/2<Z<1/2. ForuZu.1/2, on
the other hand, it obeys the free-wave equation

S ]2

]Z2 1b2D El~Z!50. ~41!

The electric-field amplitudeEl(Z) thus satisfies a species o
stationary-state Schro¨dinger equation for a particle of pos
tive energy proportional tob2, but interacting with a com-
plex ‘‘square-well’’ potential. Because the imaginary part
the potential is positive, the polarizationsPl(Z) tend to be
amplified spatially with increasinguZu.

It is convenient to define a complex parameter,

gl5Ab22
2ib

l
, ~42!

so that Eq.~40! can be written more compactly as

S d2

dZ2 1gl
2D Pl~Z!50, ~43!

and the quantitygl /L plays the role of a complex propaga
tion constant. The even solutions, normalized according
Eq. ~27!, then take the form

Pl
(e)~Z!5A 2

11
singl

gl

cosglZ. ~44!

Their logarithmic derivatives must match those of exp(ibuZu)
at the boundariesZ561/2, and these conditions are m
provided that

2gl tanS gl

2 D5 ib. ~45!

The odd solutions to Eq.~43! may be obtained by simila
means. They take the form

Pl
(o)~Z!5A 2

12
singl

gl

singlZ, ~46!

where the outgoing-wave boundary conditions atZ561/2
requiregl to satisfy the relation

glcotS gl

2 D5 ib. ~47!

Because the tangent and cotangent functions each hav
infinite set of discrete branches, the eigenvalue conditi
~45! and ~47! restrict the permissible values ofl to two
discrete, infinite, nondegenerate sets via the relation inv
to Eq. ~42!:

l5
2ib

b22gl
2 . ~48!
4-8
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The two sets of eigenvalues cannot have any common
ments, however, since then Eqs.~45! and~47! would lead to
the contradiction

sin2
gl

2
1 cos2

gl

2
50.

The real part of any such eigenvalue represents the d
rate of the associated mode, while its imaginary part rep
sents a shift of the oscillation frequency of the mode fro
the medium resonancev0. The precise values of the eigen
value roots of Eqs.~45! and ~47! can only be found in gen
eral by numerical means. It is possible to approximate
roots analytically, however, for all values ofb and for broad
ranges of the complexl plane.

C. Approximate expressions for the eigenvalues

Although exact closed-form expressions cannot be
tained for the eigenvalues, relations~45! and ~46! permit
approximate perturbative solutions in certain limits.

For a vanishingly thin medium, as we saw earlier, th
are only two eigenvalues possible;l51 for the fundamenta
superradiant mode, andl50 for all other, nondecaying
modes. With increasing medium thickness, although s
with b!1, the fundamental eigenvalue develops an ima
nary part, of orderO(b), which can be obtained by settin
tan(gl/2) equal togl/2 in Eq. ~45!:

g0
2'22ib and l0'11 i

b

2
.

All the other eigenvalues are considerably smaller, and
shall estimate them shortly.

For an arbitrary value ofb, the approximate solutionsgl

and the associated eigenvaluesl naturally separate into two
classes according to whetheruglu!b of uglu@b. For large
values of b, it is possible to treat the intermediate ran
uglu;b as well; indeed, the maximum values of the real a
imaginary parts of the eigenvalues occur in this range.
tails may be found in Appendix B. Here we present only t
final expressions.

1. Even-mode eigenvalues
(a) uglu!b. The mth root of Eq.~45!, correct to order

O„(2m11)p/b…, and the associated eigenvalue, correct
O(1/b)4, are

gm5~2m11!p2
2i ~2m11!p

b
,

lm5F 2

b
1

2~2m11!2p2

b3 G i 1 8~2m11!2p2

b4 . ~49!

Obviously, these expressions are consistent with the requ
ment uglu!b only for m small enough that (2m11)p!b.

(b) uglu@b. In this limit the mth root, correct to order
O„b/(2mp)…, and the associated eigenvalue, correct to or
O(b)2, are
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gm52mp2
ib

mp
, lm5

b2

2m4p4 2
ib

2m2p2 . ~50!

Because of the requirementuglu@b, only eigenvalues with
m large enough that 2mp@b are well approximated by Eq
~50!.

(c) uglu;b: maximum Rel and Iml, and validity of ne-
glect of retardation of the envelopes.The largest real and
imaginary parts of all the eigenvalues are located in this
gion, and approximate expressions for them can be der
for largeb, although there is no simple approximate formu
for all of the roots in this region. As shown in Appendix B
the maximum values of Rel and Iml are given by the
relation

max~Rel!'2 max~ Im l!'
1

log~2b/ log 2b!
. ~51!

Based on the expression~51!, we can state a quantitativ
criterion for the validity of the rapid-transit approximatio
on which our one-dimensional treatment is largely based.
the approximation to hold, it is clearly sufficient for th
shortest time scales over which the field envelopes vary,
the reciprocal of the largest decay rate and frequency s
~51!, to be long compared to the maximum retardation int
val, which is the transit time of light through the one
dimensional medium. Thus we require, in physical units, t

L

ctR
! logS 2b

log 2b D .

Since the logarithmic right-hand side of this inequality is
practice never of an order of magnitude much larger th
unity, the inequality is substantially equivalent to a simp
one,

L!ctR ,

which, in view of definition~20!, is in turn equivalent to the
inequality

L!Lc[cS 3\

n0umW u2v0
D 1/2

. ~52!

The parameterLc is essentially the cooperation length, d
fined by Arecchi and Courtens@17#, that characterizes the
maximum distance over which a medium of coherently e
cited atoms can cooperate and emit purely superradiant li
For typical gas densities and natural lifetimes of isola
atoms,Lc can be comfortably large, as large perhaps as th
sands to hundreds of thousands of wavelengths, and
poses no real obstacle to experimental observation of
effects predicted in the paper.

As an overall characterization of the behavior of the
genvalues, we note that for fixedb the decay rates of the
modes first rise quadratically with the mode labelm accord-
ing to Eq. ~49!, and eventually fall quartically withm21

according to Eq.~50!. The imaginary parts of the eigenva
ues, that represent the frequency shifts of the modes from
4-9
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atomic resonance, on the other hand change sign as th
sociatedgl values cross from class~a! into class~b!. The
variations of the real and imaginary parts of the eigenval
lm with increasing value of the mode indexm bear a con-
siderable resemblance to the linear dispersion curves for
real and imaginary parts of the susceptibility of a continuo
medium with a single resonance. This analogy is discus
in further detail in Appendix B.

2. Odd-mode eigenvalues

For a fixed value ofb, approximate perturbative expre
sions for the roots of Eq.~47! may be derived, as we show i
Appendix B, much as they are for the even modes. O
again, the roots fall into two classes according to whet
uglu,b or uglu.b, but we need not say more here than th
their discussion is quite parallel to that for the even-mo
roots. There is one distinction, however: In the limit of a th
slab,b!1, all of the odd modes correspond to trapped p
larization. In the other extreme case of a thick slab,b@1, all
of the eigenmodes, whether even or odd, tend to bec
perfectly trapped.

D. Numerical evaluation of the eigenvalues

The approximate formulas that we derived for the roots
the eigenvalue equations~45! and ~47! are quite accurate in
the two regionsuglu!b andugl@b, but in the intermediate
regionuglu;b we have no recourse but to compute the ro
numerically. An iterative procedure, described in Appen
B, was employed for the purpose.

In Figs. 1~a! and 1~b!, we have displayed the real an
imaginary parts of the eigenvaluesl for the first four of the
even modes as functions ofb. For each of the modes, th
real part of the eigenvalue has a maximum in accorda
with the general form of Eq.~B8!, the mth mode having a
peak at a valuebm'2mp for large m. Note the slow de-
crease of the peak values of the successive modes, whic
a logarithmic character given by Eq.~51!. On the other hand
the imaginary part, the scaled frequency shift of a mo
crosses from negative to positive values at about the s
places as the peaks in the plot of the real part, in accorda
with the structure of Eq.~B9!.

A somewhat different representation of the eigenvalue
provided by Figs. 2~a! and 2~b!, where we have plotted Rel
and Iml as functions of the mode indexm for four values of
b. Once again, the peaked nature of the first of these p
agrees with the general relation~B8! while the zero-crossing
contained in Eq.~B9! characterizes the second of these plo

The slow logarithmic decrease of the largest of the sca
decay rates and frequency shifts of the modes, as pred
by Eq. ~51!, is exhibited in Figs. 3~a! and 3~b!, where the
plots show these largest values as a function ofb for values
of b as high as 106. Even for such largeb, our iterative
method worked quite rapidly to produce hundreds of th
sands of roots in a matter of minutes on a Pentium Pro
computer. These plots are semilogarithmic in order to
commodate the large range ofb. We have shown our two
term asymptotic result~51! by a solid curve. Note the exce
lent accuracy of this result when compared with o
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numerically obtained results, shown here by crosses,
large values ofb.

VI. GENERAL TIME-DEPENDENT PROBLEM
IN ONE DIMENSION

Once we have determined the eigenvaluesl characteristic
of the one-dimensional problem posed by Eq.~21!, we are in
a position to study the temporal evolution of an arbitra
initial polarization P(Z,0). If this function possesses th
mode expansion

P~Z,0!5(
l

clPl~Z!, ~53!

with the expansion coefficientscl given by the overlap inte-
grals

cl5E
21/2

1/2

P~Z,0!Pl~Z!dZ, ~54!

then the time-dependent solution to Eq.~21! is

P~Z,T!5(
l

clPl~Z!e2lT. ~55!

The total energy lodged in the polarization of the mediu
is proportional, as we have noted in Sec. IV, to the expr
sion

FIG. 1. ~a! Decay rates Relm and ~b! frequency shifts Imlm ,
both in units oftR

21 as defined by Eq.~20!, for the first four even
modes as functions ofb.
4-10
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W~T!5E
21/2

1/2

uP~Z,T!u2dZ. ~56!

Because the orthonormality relation~27! does not involve
complex conjugation, expressionW(T) does not, in general
reduce to a sum of contributions from the individual deca
ing modes. We find in addition a sum containing importa
cross-relaxation terms contributed by pairs of excited mod

W~T!5(
l

uclu2e22 RelTE
21/2

1/2

dZuPl~Z!u2

1 (
lÞl8

cl* cl8e
2(l* 1l8)TE

21/2

1/2

dZPl* ~Z!Pl8~Z!.

~57!

The interference terms can cause interesting behavior in
time dependence ofW(T), as we shall presently see, eve
thoughW(T) must decrease monotonically with timeT for
all times, according to Eq.~22!.

A. Direct numerical integration for the time evolution

Use of the mode functions and their eigenvalues to w
down the general time dependence of an arbitrary excita
has given us valuable physical insight into the nature of
decay of both the amplitude of polarization and the ass
ated energy. But the final expressions for these quantities

FIG. 2. ~a! Decay rates Relm and ~b! frequency shifts Imlm ,
both in units oftR

21 , as functions of the mode indexm, for b51,
10, 50, and 100. The straight segments joining the discrete po
are provided only to indicate the behavior of the eigenvalues w
increasing mode index.
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only be given as sums over modes, which may be awkw
to evaluate. Alternatively, we can integrate the integral eq
tion ~21! directly in numerical terms. By choosing time an
position stepsDT and DZ that are small compared to th
reciprocal of the largest decay rate~51! andb, respectively,
we see from Eq.~21! that the value ofP(Z,T) at time point
T is obtained, to an excellent approximation, in terms of
valuesP(Z8,T2DT) at the previous time step from the re
lation

P~Z,T!5P~Z,T2DT!2DTDZ(
Z8

eibuZ2Z8uP~Z8,T2DT!.

~58!

We have used this relation to solve for the time depende
numerically with high accuracy for two varieties of symme
ric distributions of the initial polarization amplitude, th
Gaussian form

P~Z,0!5e2Z2/(2s2), ~59!

and the step-function form

P~Z,0!5H 1 for uZu,s

0 otherwise.
~60!

In both cases 2s represents the characteristic width of th
initially excited region.

ts
h

FIG. 3. ~a! Maximum decay rates and~b! frequency shifts, both
in units of tR

21 , as functions ofb. The approximate analytical for
mulas~51! are shown by solid curves, while the numerically com
puted values are exhibited by crosses.
4-11
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SUDHAKAR PRASAD AND ROY J. GLAUBER PHYSICAL REVIEW A61 063814
In Fig. 4~a!, we plot the numerically obtained time depe
dence of the polarization energyW(T) given by Eq.~56! for
a polarization amplitudeP(Z,T) that is initially real and has
a Gaussian form~59! with s50.1 andb510. The plot has
several features that can be understood in terms of the
derlying eigenfunction decomposition~55!. The initially
steep, approximately exponential, drop ofW(T) represents
the radiation of the fastest decaying eigenmode, which
b510 has an energy decay rate 2 Max(Rel)'0.63. The
subsequent decay is characterized by plateaus that punc
periods of nearly exponential damping of energy. These
ponential decay stages correspond to the radiation of the
gressively more slowly decaying eigenmodes, with ene
decay rates 2 Rel equal to 0.30, 0.03, 0.02, and smaller, th
we have already presented in Fig. 2~a!. The plateaus, on the

FIG. 4. The decay of the total polarization energy, in arbita
units, as a function of time, in units oftR , for the initially Gaussian
excitation of Eq.~59! for ~a! b510, s50.1; ~b! b51, s50.1; and
~c! b520, s50.1.
06381
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other hand, represent periods of greatly slowed radiation
the medium and arise from the interference of modes, c
tained in thelÞl8 terms of Eq.~57!. The interference terms
in W(T) evolve at rates that are determined both by the su
of the decay rates and the differences of the frequency s
of the various mode pairs. Without such interferences,
energyW(T) would have been a superposition of pure d
caying exponentials with positive coefficients, and as su
the slope of the energy decay curve would have decrea
monotonically with time.

The interferences and the associated plateaus are
pronounced for values ofb that are around 10. They ar
nearly absent for much smaller values ofb, as forb51 @Fig.
4~b!#, since for thin samples the modes are essentially r
Pl* (Z)'Pl(Z), so that the mode overlap integrals in E
~57! are quite small whenlÞl8. Furthermore, only one
mode, the one that is spatially uniform, has a large decay
while the others tend not to decay at all. The decay of t
fundamental mode is easily seen on the figure, while
energy in the remaining modes tends to remain trapped.

For values ofb much larger than 10, the time dependen
of W again loses the interesting attributes of theb510 case.
To create a Gaussian initial excitation~59! with s50.1, one
need only excite modes for which the wave vectorsgl are in
magnitude no larger than of order 1/s510. But the fastest
decaying modes have wave vectorsgl nearly equal in mag-
nitude tob, which forb@10 thus tend to be absent from ou
initial value problem. We see in Fig. 4~c! that for b520
there is only a small initial drop in the energy with tim
because the fastest decaying modes are largely absent i
expansion~53!. A close examination of the subsequent tim
dependence reveals low-amplitude ripples, arising from
terferences, but the structure of plateaus and exponentia
cay periods is evidently difficult to discern.

In the next set of figures, Figs. 5~a!–5~c!, we have dis-
played, forb510, the spatial distribution of the real part, th
imaginary part, and the squared modulus of the polariza
at three different times,T50,5, and 20. ByT55, the fastest
decaying mode with a characteristic decay period of or
1/0.63'1.6 has been almost completely radiated away, wh
the other modes have evolved only partially. This pictu
suggests that by the timeT'1.6, the polarization amplitude
must have developed spatial oscillations. They result from
subtraction of the oscillatory amplitude distributionclPl(Z)
from the smooth initial polarization amplitude. Such spat
oscillations are clearly present in all three figures. With t
passage of time, more and more oscillations develop
represent the removal of successively decaying modes.

Similar features to those described above also occur in
time dependence of an initial step-function distribution
polarization. Forb510 and a uniform initial excitation with
a half-width s50.1, the energy has a time dependen
shown in Fig. 6~a!, that exhibits a somewhat slower deca
than for the Gaussian initial excitation, although the quali
tive features are nearly the same. This relative slownes
the overall time dependence has to do with the fact that
create a sharply discontinuous excitation, we must superp
a substantially larger number of eigenmodes than are ne
sary for the smoother Gaussian profile of the same
4-12
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POLARIUM MODEL:COHERENT RADIATION BY . . . PHYSICAL REVIEW A61 063814
fective width. This means that a larger fraction of the ene
resides, for the step-function initial excitation, in modes t
have a slower decay than for the smoother Gaussian in
profile. This fact is also directly observed in Fig. 6~b!, where
we have plotted the real part of the polarization amplitude
different times. Note that the slow decay of the higher h
monic modes leads to a persistence of the sharp step dis
tinuities even at long times. The oscillations in the win
have an origin similar to those for the Gaussian case.

The oscillations are more directly seen in the time evo
tion of the polarization energy density at a fixed position a
the power radiated by the medium. In Fig. 7~a! we display
the polarization energy density at the boundaries,Z561/2,
for b510, and a symmetric step-function initial excitation

FIG. 5. The distributions of~a! the real part,~b! the imaginary
part, and~c! the squared modulus of the polarization, in arbitra
units, as functions of the scaled spatial variableZ5z/L, for the
initially Gaussian excitation of Eq.~59! at three different times, in
units of tR , for b510 ands50.1.
06381
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half-width s50.2. This energy density, proportional t
uP(Z561/2,T)u2, is initially zero, but builds up quite rap
idly in an oscillatory fashion and eventually decays away
long times. The ringing oscillations, which are similar
those of Burnham and Chiao@10# but somewhat less regula
arise from a coherent exchange of energy between diffe
regions of the medium by means of the electromagnetic fi
The radiated power undergoes a similar ringing. The plo
u]P(Z561/2,T)/]Tu2, which, by Eq.~14!, is proportional to
the radiated power, is shown versus the timeT in Fig. 7~b!.
The initial sharp spike, not entirely contained in the figu
because of its large amplitude, arises from the radiation
the fastest decaying mode. The oscillations in the two
ures, Figs. 7~a! and 7~b!, have commensurate patterns, wi
the maxima of one coinciding with the minima of the othe

B. Frequency spectrum of radiated power

The presence of vastly differing decay rates and f
quency shifts of the eigenmodes leads to the possibility
interesting spectral distributions of radiation. Because e
eigenmode undergoes exponential decay, the power s
trum it radiates has a simple Lorentzian shape. Its charac
istic half-width and frequency shift from the atomic res
nance are, respectively, equal to the real and imaginary p
of the associated eigenvalue. An arbitrary initial polarizati

FIG. 6. ~a! The decay of the total polarization energy, in arb
trary units, as a function of time, in units oftR , and~b! the distri-
bution of the real part of the polarization at three different times
units oftR , for an initial step-function excitation given by Eq.~60!
with s50.05.
4-13
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SUDHAKAR PRASAD AND ROY J. GLAUBER PHYSICAL REVIEW A61 063814
distribution, regarded as a coherent superposition of eig
modes, will emit radiation with a power spectrum that co
sists of a sequence of Lorentzian peaks for the individ
modes as well as cross-spectral interferences that can ch
the shape of the spectrum significantly and lead to sha
resonant dips. Resonant dips of this and less symmetric s
are familiar in the energy dependence of nuclear cross
tions, which often contain interferences between compe
resonances. They are somewhat more novel in the conte
atomic spectra, where they are called Fano resonances@19#.

Because of the separation of the time scales of suc
sively decaying modes, as in Fig. 4~a!, for example, there is
an interesting sense in which the spectra observed over
propriately short time intervals can be regarded as vary
with time. Here, however, we shall only derive the mo
customary spectra associated with long measurement tim

For a time-dependent polarization of form~55!, the spec-
tral amplitude at a scaled frequency detuningn is propor-
tional to the Fourier transform,

Q~Z,n!5E
0

`

P~Z,T!einTdT5(
l

cl

l2 in
Pl~Z!. ~61!

The spectrum of the radiated intensity is in turn proportio
to the squared modulus,S(Z,n)5uQ(Z,n)u2, evaluated at
the boundariesZ561/2.

FIG. 7. ~a! The polarization energy density at the boundar
and~b! the power radiated by the medium, both in arbitrary units,
functions of time, in units oftR , for an initial excitation given by
Eq. ~60! with b510 ands50.2.
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Our numerical treatment of the radiated spectra beg
with an evaluation of the complex amplitudescl of Eq. ~54!
for a variety of initial polarization distributionsP(Z,0). We
then use these amplitudes and the numerically evaluate
genvaluesl in Eq. ~61! to find the spectra. This approac
proves to be considerably simpler than taking the Fou
transform of the numerically calculated time dependence
the polarization.

In Figs. 8~a!–8~c!, we show the spectra of power radiate
by step-function initial polarization distributions in media
three different values ofb, 1, 10, and 50. A symmetric ex
citation of the medium, as in all but the bottom part of F
8~b!, contains only the even eigenmodes, and therefore r
ates a spectrum with a resonant structure provided only
those modes. When the excitation is localized at a bound
of the medium, the spatial symmetry is broken and the ra
ated spectrum consists of peaks arising from the odd mo
as well, as can be seen clearly in the bottom half of Fig. 8~b!.
The even and odd modes are interleaved in their freque
shifts, as noted earlier, and that leads to a doubling of
number of peaks in the spectrum when compared with
upper half of Fig. 8~b!. In the bottom half of Fig. 8~a!, cor-
responding to a symmetric excitation that uniformly spa
98% of the medium initially, the dominant excitation is th
of the nearly uniform superradiant mode. Its spectrum p
vides the broad background in the figure. The small adm
ture of other, more slowly decaying modes, however, le
to sharp resonant dips as well as peaks impressed upon
broad spectrum. The dips, in particular, are due to the
structive cross-spectral interferences between the domi
superradiant mode and the weaker, more slowly decay
modes.

There is also a frequency gap for the larger values, 10
50, of b, in which no significant radiation is present. All o
the central frequencies of the radiating modes tend to ac
mulate near the two boundaries of the gap. Unmistakabl
Fig. 8~c! and in the top curve in Fig. 8~b!, it represents, as
suggested by the approximate expressions~B4! and~B7!, the
absence of eigenmodes with a frequency shift in the inte
from 0 to 2/b for b@1. The gap arises from the inability o
waves of frequencies in that interval to propagate freely
side the medium. For frequencies within that interval, t
correspondinggl , according to Eq.~48!, would have to be
essentially purely imaginary and the modes would be ex
nentially damped according to Eqs.~44! and~46!. An initial
excitation close to the surface of the medium, on the ot
hand, can still emit at frequencies lying within the gap,
shown by Fig. 8~b!, since the radiation does not have
travel any significant distance within the medium. The lig
radiated from the surface opposite to the excitation, by c
trast, has to traverse nearly the entire medium, and m
therefore show this frequency gap clearly.

That the frequency gap must all but disappear for t
samples withb5k0L,1 is also evident from the same a
gument. To see this, we first note that since for any eig
value l its imaginary part representing the frequency sh
dominates its real part, which represents its decay rate,
may write Eq.~48! approximately as

s
s

4-14
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Im l5
2b

b22gl
2 .

On inverting this relation to expressgl as a function of Iml,
we can see that only in the range of frequency shifts
,Im l,2b/(11b2), which vanishes asb→0, isgl appre-
ciably imaginary, exceeding 1 in magnitude. Consequen

FIG. 8. The frequency spectrum of the power radiated by
medium, in arbitrary units, with~a! b51 ands50.2 ~upper fig-
ure!; b51, s50.49 ~lower figure!; ~b! b510 ands50.2 ~upper
figure!; initial excitation confined to the region betweenZ50.46
and 0.50 withb510 ~lower figure!; and ~c! b550 ands50.05.
The abscissa represents frequency detuning in units oftR

21 . The
parameters is the fractional half-width of the region, which has
uniform initial excitation and sharply defined boundaries.
06381
0

y,

only in this range of frequency shifts is there a significa
exponential attenuation of the fields, as they propag
through the medium.

Within the gap, the interference and resonant interact
between the forward- and backward-traveling waves is
strong for the light to be able to leave the medium. By co
trast, for the Burnham-Chiao problem@10# the spectrum of
the radiated field, which is readily evaluated, contains
frequency gap because it neglects the backward waves c
pletely. It does show, however, an accumulation of e
faster oscillations in the spectrum as the resonance
quency, renormalized by the field-medium interaction, is
proached from either side. These accumulations of peaks
evidently analogous to the accumulations of mode frequ
cies seen in Figs. 8~b! and 8~c! at the two edges of the fre
quency gap in our problem.

C. Decay of a sharply localized symmetric excitation

A problem of some interest concerns the time depende
of the polarization and the total excitation energy when
slab has initially a sharply localized excitation, which w
shall take to be of the Gaussian form~59!. We shall assume
further that the width,sL in physical units, of the initially
excited region is small compared to the wavelength. We
sume, in other words, thats!min (1,1/b).

For this problem, the expansion coefficients in the so
tion ~55! take the form

cn5E
21/2

1/2

e2Z2/(2s2)Pn~Z!dZ,

which can be evaluated by noting that, fors!1, the limits of
integration may be extended to6` without significant loss
of accuracy. Since the symmetric eigenfunctions~44! are just
cosines, the preceding integral can then be evaluated
closed form:

cn'A 4ps2

11 singn /gn
e2gn

2s2/2. ~62!

Note that, sincegn'2np for largen, a number, roughly of
order 1/(2ps), of thecn have a significant amplitude. Fors
sufficiently small compared to 1/(2p), this number can be
large. Furthermore, sinces!1/b, this number also greatly
exceedsb/(2p). Under such conditions, a large part of th
excitation may reside in modes for whichugnu@b, and
which decay rather sluggishly according to the result~50!. It
is, then, precisely these modes that would govern the lo
time behavior of the decaying polarization. These mod
have amplitudes@Eq. ~62!# in which thegn may be replaced
by their approximate values 2np. Ignoring small terms of
order 1/(2np), we have finally the result

cn'A4ps2e22n2p2s2
. ~63!

By using in Eq.~55!, the eigenvalues~50!, eigenfunctions
~44!, and coefficients~63! as well as our approximation,gn
'2np, we may express the long-time behavior ofP(Z,T)
accurately as

e

4-15
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P~Z,T!'A8ps2(
n

e22n2p2s2
cos~2npZ!

3expF2S b2

2n4p4 2
ib

2n2p2DTG1/2

. ~64!

Since, for 2np@b,

Reln'
b2

2n4p4 !Im ln'
b

2n2p2 ,

it seems plausible that the evolution of the polarization a
plitude is dictated more by the dephasing of the oscillatio
of the successive modes, because of their different freque
shifts, than by the decaying mode amplitudes. We shall
sume this to be true for the moment, and then verify that i
an acceptable approximation. Ignoring the decay rates for
temporal evolution of the polarization amplitudeP(Z,T), we
have

P~Z,T!'A8ps2(
n

e22n2p2s2
cos~2npZ!e( ib/2n2p2)T.

~65!

By contrast, it follows from Eq.~64!, and the orthogonal-
ity relation

E
21/2

1/2

cos~2npZ!cos~2mpZ!dZ5 1
2 dmn , m,n.1,

that the polarization energy~56! has the long-time behavio

W~T!'4ps2(
n

e24n2p2s2
e2(b2/n4p4)T, ~66!

which is thus affected only by the decay rates of the mod
Furthermore, Eq.~66! contains no mode-mode interferen
terms, which tend to be present only over relatively sh
times.

As a special case, we consider the long-time evolution
the polarization amplitude at the midpointZ50 in the slab,
for which all of the cosines in Eq.~65! are unity. Since the
term inside the sum there changes very little asn is changed
by one unit, particularly whenn is large, we may replace th
sum by an integral overn with limits 0 and`, and thereby
obtain the following asymptotically correct expression:

P~0,T!'A4

pE0

`

e2x21 ibs2T/x2
dx.

The integral on the right can be expressed@20# in the closed
form

P~0,T!'e2sAbT/2(12 i ). ~67!

Thus even though each of the constituent modes of our
tially sharply localized coherent excitation decays expon
tially, the summation over a large number of such mod
gives rise to a ‘‘slowed-down’’ subexponential decay of t
superpositionP(0,T) with a characteristic decay time
06381
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Ts5
1

bs2 .

In physical units, this decay time has the value

ts5
1

bs2 tR5
6\

n0
2umW u2b2s2

, ~68!

which is inversely proportional to the square of the init
width sL5sb/k0 of the excited region. The more localize
the initial excitation, the longer its amplitude takes to dec
via the coherent dephasing process we have mentioned
lier.

Similar results may be obtained for the decay of the to
energyW(T). However, because of a different dependen
of the mode decay rates on the mode labeln, the final result
for W is qualitatively different:

W~T!'2sE
0

`

e2x2216b2s4T/x4
dx. ~69!

The integral cannot be expressed exactly in a closed fo
but it does represent a monotonically decaying function
the variableb2s4T. As such, its characteristic decay tim
must be of order

Ts85
1

b2s4 , ~70!

or, in physical units, of order

ts85
1

b2s4 tR5
6\

n0
2umW u2b3s4

. ~71!

SincesL5sb/k0 is the physical width of the initially ex-
cited region, the decay of the total energy extends ove
time that increases linearly with the slab thicknessL and
quartically with 1/s as the initial excitation widths becomes
smaller. We also note that since we have assumeds,bs
!1, Ts85Ts

2@Ts , so that the decay of the polarization am
plitude takes a much shorter time than that of the total
ergy. This also justifies the neglect of the decay of mo
amplitudes when compared to the effect of mode depha
as the principal mechanism for the decay of polarization a
plitude, proving an assertion made earlier.

The asymptotic form of the decay ofW may be derived by
a version of the steepest-descent method. The details o
derivation are provided in Appendix C. The long-time b
havior of W(T) turns out to have the form

W~T!'A2p/3se23(4T/Ts8 )1/3
,

which is a ‘‘stretched’’ exponential with a qualitatively dif
ferent character and time scale from the decay@Eq. ~66!# of
the polarization amplitude.
4-16
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VII. INCLUSION OF A NONRESONANT BACKGROUND
REFRACTIVE INDEX

We have, in the interest of simplicity, to this point co
sidered a medium we have called polarium, consisting
atoms that only interact with the field through a single re
nant transition. Whatever atoms are present in an actual
dium, of course, will have many spectral resonances wh
though scarcely excited, contribute a certain smoothly va
ing background to the dramatically varying polarizability
the neighborhood of the resonant frequencyv0. A more re-
alistic picture of the behavior of the medium near its re
nant frequency, in other words, should include a cert
frequency-insensitive background refractive indexs.

The polarization densityPW (1)(rW,t) contributed by other
distant resonances, we may assume, follows the fi
EW (1)(rW,t), essentially instantaneously with a susceptibil
(s221):

PW (1)~rW,t !5~s221!EW (1)~rW,t !. ~72!

The quantityPW (1) must be added to the polarization dens
PW (1) resulting from the resonant transition in Eq.~10!, which
generalizes that equation to

S ¹22
1

c2

]2

]t2DEW (1)~rW,t !

5
1

c2

]2

]t2 @PW (1)~rW,t !1~s221!EW (1)~rW,t !#. ~73!

At this point we could combine theEW (1) terms in Eq.
~73!, and seem thereby to simplify its structure. But t
Green’s function for the wave equation would then have
be changed to account for multiple internal reflections wit
the medium. It is much more convenient instead to retain
formulation of the integral equation we have already used
leaving the (s221)EW (1) term on the right-hand side of Eq
~73! intact, and treating it as an additional source term for
wave equation in free space. As a result, Eqs.~11!, ~13!, and
~15!–~17! are only modified by adding the term given by E
~72! to the corresponding integrands. The modified vers
of Eq. ~17!, in particular, has the form

]

]t
P~z,t !52

umW u2n0k0

6\ E
2L/2

L/2

@P~z8,t !1~s221!E~z8,t !#

3eik0uz2z8udz8, ~74!

while the response of the resonant polarization densityP to
the fieldE described by Eq.~15! is formally unchanged:

]

]t
P~z,t !5 i

n0umW u2

3\
E~z,t !. ~75!

Eliminating E between Eqs.~74! and ~75! yields the desired
integral equation forP, which in the scaled units defined b
Eqs.~20! and ~21! becomes
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]

]T
P~Z,T!52E

21/2

1/2

dZ8eibuZ2Z8u

3FP~Z8,T!2 i
~s221!b

2

]P~Z8,T!

]T G ,
uZu<1/2. ~76!

It is worth emphasizing thatP(Z,T) represents only a part o
the total polarization density, the part that is resonant and
primary interest in this paper.

The presence of the derivative term inside the integra
Eq. ~76! does not hinder formulation of Eq.~76! as an eigen-
value problem. Solutions of Eq.~76! of the forme2LTPL(Z)
are seen to obey the eigenvalue integral equation

lPL~Z!5E
21/2

1/2

dZ8eibuZ2Z8uPL~Z8!, ~77!

in which eigenvaluel is defined by the relation

1

l
5

1

L
1 i

~s221!b

2
. ~78!

The integral equation~77! is identical to Eq.~21!, the inte-
gral equation for the interaction with a single resonance.
of the eigenvalues and eigenfunctions are therefore the s
as those that we have already discussed in the previous
tions. The only change is that the eigenvaluel and the com-
plex decay constantL are no longer one and the same.

To see how the relation~78! between the decay constan
and the eigenvalues affects our important conclusions,
first note that their real and imaginary parts are simply
lated. Fors2 real, we have, e.g.,

ReL

uLu2
5

Rel

ulu2
,

Im L

uLu2
5

Im l

ulu2
1

~s221!b

2
. ~79!

An immediate consequence of the first of these relation
that, likel, all of the modified decay constantsL also have
non-negative real parts, representing a radiative dampin
energy from the medium in the absence of an external ene
source. This is consistent with the outgoing-wave bound
conditions~24! that are also implicit in Eq.~77!.

Since the imaginary part of an eigenvaluelm generally
dominates its real part according to the approximate exp
sions~B4! and ~B7!, it follows from Eq. ~79! that

ReL

uLu2
'

Rel

~ Im l!2
,

Im L

uLu2
'

1

Im l
1

~s221!b

2
. ~80!

When expressions~B4! and~B7! are employed in Eq.~80!, it
is readily seen that the imaginary parts of the constantsL
also tend to dominate their real parts. We may thus repl
uLu2 in the denominators in Eq.~80! approximately by
(Im L)2. This yields the following approximate expressio
for ReL and ImL:
4-17
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ReL5
Rel

~ Im l!2
3~ Im L!2, Im L5

Im l

11
~s221!b

2
Im l

.

~81!

The eigenvaluesl for the nearly trapped modes for whic
Rel are small, as we have seen, fall into two classes: th
with uglu!b, and therefore positive line shifts Iml; and
those withuglu@b, and therefore negative line shifts Iml.
For the eigenvalues that obey the former inequality and
given by expressions~B4!, formulas~81! then yield the ap-
proximate values

Im L5
Im l

s2
, ReL5

Rel

s4
. ~82!

For the eigenvalues defined by the latter inequalityuglu@b,
on the other hand, for which expressions~B7! hold, there is
hardly any change in the decay rates and line shifts.

Adding a frequency-independent background suscept
ity also affects the local-field corrections. On average,
local field consists of the smoothed macroscopic fi
EW (1)(rW,t) plus contributions@15# of the form PW (1)(rW,t)/3
andPW (1)(rW,t)/3 from the resonant and nonresonant parts
the total polarization density. The effect of the resonant p
PW (1)/3 of the local-field correction is merely to shift the res
nant frequency downward, as we noted in Sec. II. We
from Eq. ~72!, on the other hand, that the nonresonant p
PW (1)/3 adds to the macroscopic fieldEW (1) a term (s2

21)EW (1)/3, which just renormalizes the resonant susce
bility by the factor 11(s221)/35(s212)/3.

VIII. CONCLUDING REMARKS

We have developed a theory of transport of coherent
citations of a resonant medium by means of electromagn
radiation. When incoherent processes like Doppler or co
sional broadening and density fluctuations are entirely
nored, spatially extended excitations tend in general to
main trapped within the medium. The electromagnetic fi
can stimulate the dipoles of the medium to radiate efficien
only if the spatial distribution of their phases is similar to t
spatial variation of the phase of the radiated field. Such e
ciently radiating modes of excitation have an essentially
perradiant character, with a characteristic rate of ordertR

21

given by Eq.~36!. The need for phase matching requires th
these modes have wave vectors that are close in magn
to the resonant valuev0 /c. All other polarization distribu-
tions are only weakly coupled to the radiation field. Su
distributions must decay relatively slowly, if at all. The
represent modes of coherent excitation of the medium
tend to remain trapped in the absence of incoherent re
ation processes.

A somewhat different physical problem that can also
described by our general theoretical model is that of refl
tion and transmission of a wave externally incident on
otherwise unexcited slab. That arrangement provides a
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ferent, but experimentally more accessible, way of study
the coherent resonances that we have described in the pr
paper.

APPENDIX A: CERTAIN SUM RULES
FOR THE EIGENVALUES

From the expansion of the kernel functio
exp@ibuZ2Z8u#,

eibuZ2Z8u5(
l

lPl~Z!Pl~Z8!, ~A1!

we can derive a succession of sum rules for the sums
integer powers of the eigenvalues. A simple example is
linear sum rule~29!. To find these, we construct annth-order
product of kernel functions that takes the cyclic form

eibuZ12Z2ueibuZ22Z3u
•••eibuZn2Z1u,

and integrate the product over the variablesZi , i 51, . . . ,n,
between the limits 1/2 and21/2. When each kernel factor in
the integrand is expressed by a sum of form~A1! and the
orthonormality relation~27! is employed, we find a remark
ably simple result. The multiple sums collapse into a sin
sum over thenth powers of the eigenvalues, and we obta

E
21/2

1/2

dZ1E
21/2

1/2

dZ2•••E
21/2

1/2

dZn exp@ ib~ uZ12Z2u

1uZ22Z3u1•••1uZn2Z1u!#5(
l

ln. ~A2!

Partial sums over all of the even-mode eigenvalues
over all of the odd-mode eigenvalues and of their pow
may also be obtained quite simply from Eq.~A1!. By replac-
ing Z8 by 2Z8 in Eq. ~A1!, we obtain a closely related sum
which, when added to and subtracted from Eq.~A1!, pro-
duces two different sums: the first over all of the ev
modes, and the second over all of the odd modes. Thi
because paired sums and differences of formPl(Z8)
6Pl(2Z8) vanish, respectively, for odd and even mod
Pl . In these even- and odd-mode sums, whenZ is set equal
to Z8 and an integration is performed over the rang
(21/2,1/2), the partial sums are found to be

(
l(e)

l (e)5 1
2 1

~e2ib21!

2ib
, (

l(o)
l (o)5 1

2 2
~e2ib21!

2ib
,

~A3!

where the superscriptse ando denote even and odd mode
respectively. Note the special case of a thin slab,b→0, for
which the sum over the even-mode eigenvalues tends t
while that over the odd-mode eigenvalues vanishes. By
lowing the same strategy as for the unrestricted sum~A1!,
we can easily derive partial sums of any power of the eig
values for the cases of even and odd modes.
4-18
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APPENDIX B: ANALYTICAL AND NUMERICAL
CONSIDERATIONS OF THE EIGENVALUES

Here we derive approximate analytical expressions for
roots of the transcendental equations~45! and ~47!. When
either uglu!b or uglu@b, the roots may be approximate
well by simple expressions.

1. zglz™b

Forms for the two equations~45! and ~47! that suggest
simple approximations for the roots, when they obey
condition uglu!b, are

cot~gl/2!5 igl /b and tan~gl/2!52 igl /b. ~B1!

It is obvious that the rootsgl for the two equations must b
close to (2m11)p and 2mp, respectively, wherem is an
integer. We shall henceforth label the rootsgl by the integer
m, and suppress the subscriptl altogether. The small correc
tions, sayem , to these zeroth-order approximations may
obtained by requiring that the corrected expressions for
roots; that is,

gm5~2m11!p1em and gm52mp1em , ~B2!

separately obey the two equations~B1!. When this is done,
tanem is set equal toem, and em is ignored in the ratio
gm /b—a procedure that is clearly valid for smallem—the
results are the following two-term expressions for the ro
for the two equations~B1!:

gm5~2m11!p2 i
2~2m11!p

b

and gm52mp2 i
4mp

b
. ~B3!

The eigenvalues now follow from Eq.~48!, and to order
O(1/b)4, are

lm5F 2

b
1

2~2m11!2p2

b3 G i 1 8~2m11!2p2

b4

and lm5S 2

b
1

8m2p2

b3 D i 1
32m2p2

b4 , ~B4!

respectively. Note that roots~B3! for the even and odd
modes are interleaved along the line joining the origin a
the point~122i/b! in the complexgl plane. As a final com-
ment, we note that consistency with the requirementuglu
!b implies that for the two cases only those eigenvalues
which (2m11)p!b and 2mp!b are well approximated
by expressions~B4!.

2. zglzšb

For this situation, we write the two transcendental eq
tions in a form that exhibits the ratiob/gl on their right-
hand sides:

tan~gl/2!52 ib/gl and cot~gl/2!5 ib/gl . ~B5!
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As for situation ~a!, we may label the roots again by a
integer indexm, and by means of a perturbative procedu
very similar to that used above, we can easily show that
roots take on the values

gm52mp2 i
b

mp
and gm5~2m11!p2 i

2b

~2m11!p
,

~B6!

for the even and odd modes, respectively. The eigenva
now follow from Eq.~48!, and to orderO(b)2 are

lm5
b2

2m4p4 2 i
b

2m2p2

and lm5
8b2

~2m11!4p4 2 i
2b

~2m11!2p2 . ~B7!

Because of the requirementuglu@b, only eigenvalues with
2mp@b and (2m11)p@b are well approximated by the
two expressions of Eq.~B7!. For largem, the eigenvalues for
the even and odd modes are again close to each other.

3. Distribution of real and imaginary parts of eigenvalues
and the intermediate regimezglzÈbš1

This intermediate case is much harder to treat and, in f
no general analytical approximations of high accuracy h
been found. It is possible, however, to find accurate appro
mations for the maxima in the real and imaginary parts of
eigenvalues when they are plotted as functions ofb for large
values of b. To do so, we need to understand better
distributions of the real and imaginary parts.

From Eq.~48!, the real and imaginary parts of the eige
valueslm may be expressed in terms of the real and ima
nary parts ofgm

2 as

Rel5
22b Im gl

2

@b22Regl
2#21@ Im gl

2#2
, ~B8!

Im l5
2b@b22Regl

2#

@b22Regl
2#21@ Im gl

2#2
. ~B9!

As Eqs.~B3! and ~B6! suggest,gm
2 has only a small imagi-

nary part, while its real part increases essentially quadr
cally with the mode indexm. As a result, for fixedb, the
distribution ~B8! of the real parts of the eigenvalueslm is
highly peaked, as a function ofm, aroundm'b/(2p), while
the distribution~B9! of the imaginary parts of the eigenva
ues changes sign. This behavior is quite analogous to tha
the real and imaginary parts of the complex susceptibility
a dielectric medium with a single resonance frequency w
the frequency of incident monochromatic radiation is tun
through the resonance.

We shall now exploit this structure to compute the ma
mum values of Rel and Iml as functions ofb. According
to Eq. ~B8!, the largest value of Relm is obtained roughly
whenb has a value for which one of the allowed values
gm

2 obeys the equality
4-19
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b5ARegm
2 5A~Regm!22~ Im gm!2. ~B10!

At each of these special values ofb, of which there are
infinitely many, Relm assumes, as seen from Eq.~B8!, its
locally maximum value

max~Relm!5
2b

uIm gm
2 u

5
b

RegmuIm gmu
. ~B11!

We may similarly compute the largest values of Iml as a
function ofb. In the plots of Imlm versusb for differentm,
the local maxima are, according to Eq.~B9!, approximately
located at those values ofb that obey the relation

b25Regm
2 2Im gm

2 5~Regm!22~ Im gm!222Regm Im gm .
~B12!

At theseb values, Imlm attain their maximum magnitudes

max~ Im lm!5
b

uIm gm
2 u

5
b

2uRegm Im gmu
. ~B13!

Note that the maximum values of the real and imagin
parts ofl occur at values ofb that are not in general coin
cident, although, since Regm'b and Imgm does not change
much through the peak of Eq.~B10!, with the help of Eqs.
~B11! and ~B13! we may write

max~Relm!'23max~ Im lm!'
1

uIm gmu
. ~B14!

Since for largeugmu the real part ofgm dominates its
imaginary part, we see from Eqs.~B10! and ~B12! that the
maximum values of Rel and Iml are obtained in the do
main whereugmu'b. As a solution of Eq.~45!, let us write

gm52mp12~e81 i e9!, ~B15!

wherem is integral ande8 ande9 are real quantities which
are of order 1. Then an expansion to the lowest order ine9 of
the right-hand side of the first of Eqs.~B5!, and use of some
simple trigonometric identities, lead to the relation

tane81 i tanhe9

12 i tane8tanhe9
'2 i

b

2mp12e8
2

e9b

2m2p2
. ~B16!

Given that the imaginary part dominates the real part
the right in Eq.~B16!, we have a variety of possibilities,
would seem, for values ofe8 and e9 that would lead to
consistency with the left side of that equation. In particul
for the largest Rel for which relation~B10! holds, since the
purely imaginary quantity on the right side of Eq.~B16!
assumes the value

A12
~ Im gm!2

~Regm!2
'12

1

2

~ Im gm!2

~Regm!2
,

it may be shown that consistency with the purely real qu
tity on the right of Eq.~B16!, which is of order 1/b, then
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requires that tane8'1. With this condition and the preced
ing equation, the imaginary parts of Eq.~B16! obey the re-
lation

2tanh Imgm'12
1

2

~ Im gm!2

~Regm!2
. ~B17!

Since the right side is very close to 1, we may repla
2tanhImgm by its asymptotically correct value 1
22 exp(22uIm gmu). Further, since Regm is close tob, we
have the result

e2uIm gmu5
1

2b
uIm gmu. ~B18!

For very large values ofb, a convenient form of Eq.
~B18! is obtained on taking its logarithm

uIm glu5 log 2b2 loguIm glu.

This relation may be solved foruIm glu iteratively with the
following two-term result:

uIm glu5 logS 2b

log 2b D . ~B19!

The largest real and imaginary parts of the eigenvalues n
immediately follow from Eq.~B14!:

max~Relm!'23max~ Im lm!'
1

log~2b/ log 2b!
.

~B20!

Similar considerations to these may be used to find
largest real and imaginary parts of the eigenvalues for
solutions. However, since the distinction between the o
and even solutions becomes small at large mode indices
final results corresponding to Eq.~B20!, but for the odd
modes, are nearly the same.

4. Numerical considerations

Our considerations of the eigenvalues have, so far, d
with approximate analytical expressions for them. Numeri
calculations are necessary, however, to compute the ei
values with high accuracy, particularly whenuglu;b. A nu-
merical method that converges rapidly for all values ofgl is
an iterative one based on the identity

tan21~ iz!5
i

2
logS 11z

12zD . ~B21!

Whenuglu.b, the solutions to the eigenvalue equation~45!
for the even modes may be written conveniently in the fo

gm52mp12e,

in which the correction 2e obeys the equation

e52tan21S ib

2mp12e D .
4-20
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Use of identity~B21! then generates the equation

e52
i

2
logS 2mp1b12e

2mp2b12e D , ~B22!

in which, on the right-hand side, we initially sete equal to a
complex value with small modulus, but then refine its va
iteratively by means of the equation.

Whenuglu,b, the solutions to Eq.~45! are best obtained
by first writing it as

cot~gl/2!5 i
gl

b
,

and then looking for its solutions of form

gm5~2m11!p12d.

It is straightforward to show thatd obeys an equation analo
gous to Eq.~B22!:

d52
i

2
logS b1~2m11!p12d

b2~2m11!p22d D . ~B23!

In much the same way as fore, we could then determine
highly accurate value ford by a repeated use of Eq.~B23!. In
most instances, we needed no more than about ten itera
to obtaine andd—and therefore the rootgm—to a precision
of a part in 1010. A similar procedure can be implemented
solve Eq.~47! efficiently for the roots of the odd modes a
well.
,
.
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APPENDIX C: ASYMPTOTIC EVALUATION
OF AN INTEGRAL

The integral

F~u!5
2

Ap
E

0

`

e2x2216u/x4
dx ~C1!

may be evaluated approximately whenu is positive and
large. Because the integrand is highly peaked as a functio
x, the largest contributions to the integral come from t
immediate vicinity of the maximum of the integrand. It
sufficient to carry out, in the integrand, a Taylor expans
of the exponent to the lowest quadratic order around
maximum, which yields

e2(x2116u/x4)'e23•22/3u1/3
e26(x2x0)2

, ~C2!

wherex0, the maximum of the exponent, is equal to 25/6u1/6.
The neglected third-order term in the exponent depends ou
as 1/u1/6, and so, throughout the range aroundx5x0 over
which the expression~C2! has a value significantly differen
from zero, a range of order 1, the neglected term is sm
provided u1/6@1. For such largeu values, approximation
~C2! represents the integrand quite accurately over t
range. To a similar accuracy, we may also extend the lim
of integration for the variablex2x0 to 6`. The resulting
Gaussian integral is a simple one to evaluate, and we ob

F~u!'
2

A6
e23(4u)1/3

. ~C3!
,
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