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Polarium model: Coherent radiation by a resonant medium
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In the absence of incoherent relaxation processes, the emission, absorption, and transport of resonant radia-
tion by an extended medium are all cooperative processes in which the medium participates as a whole. Such
radiative processes depend sensitively on the geometry of the source, on its size and density, and on the
interplay of electric polarization resonances with the ambient electromagnetic field. By making a succession of
simple approximations, we reduce the radiative interaction problem to one of solving a linear integral equation
for the time-dependent polarization of the radiating medium. For the example of one-dimensional geometry,
we show that the polarization possesses a sequence of exponentially decaying eigenmodes that oscillate at
frequencies slightly shifted from that of the fundamental resonance. Only a few of these modes, for any
radiating medium, are strongly coupled to the electromagnetic field, and thereby radiate efficiently. All of the
other modes, infinitely many of them, are found to radiate quite slowly, or not at all. We consider in detail the
radiation emitted by an arbitrary initial polarization distribution when the electromagnetic field is initially
empty. Analytical and numerical results are presented for the time-dependent fields that follow from a wide
variety of initial excitations. A locally oscillatory exchange of energy is found to take place between the
electric and polarization fields, which gives rise to a ringing of the radiated intensity. The spectra of the emitted
light are shown accordingly to be complex in structure, and to have a frequency gap which becomes indepen-
dent of the size of the medium and its initial polarization distribution for media that are sufficiently large. The
gap is caused by the interference and interaction of oppositely propagating excitations.

PACS numbseps): 42.50.Fx, 42.50.Gy, 42.50.Md

[. INTRODUCTION the coherent process. The descent from coherence into inco-
herence is irreversible, but may only be partial. It will be an
Most of the light we perceive is radiated, not by isolatedinteresting task for future work to see how much of the ra-
atoms, but by atoms embedded in more or less extensivéiation process survives in a coherent form.
aggregates of other and similar atoms. The quantum radiated The process of coherent emission was discussed many
by a resonant excitation of any one of these atoms canngtears ago in its most elementary form by Dicf&]. He
travel any significant distance in such a medium before beingointed out that an aggregate bf atoms, lying within a
absorbed and re-emitted by identical atoms situated nearbyolume small in dimension compared to the wavelength of
The quantum tends thus to be trapped within the mediLin  light radiated, will only emit that radiation in somewhat un-
and to make its way only slowly to the surface. This trappingfamiliar ways. The excitations of the atoms can be described
of radiated quanta takes place both coherently and incohein terms of collective excitation modes, and it is only the
ently. It is the coherent aspect of the process that we addresymmetrical one among these that is appreciably coupled to
in the present paper. In this sense, the radiating elements attge field. Any one of the atoms therefore can only radiate to
not individual atoms so much as the medium as a whole. Ththe extent that it partakes in the symmetrical excitation. That
problem we address is thus the coupling of the entire atomits an effect of order M, so nearly all of its excitation energy
medium to the electromagnetic field. We find that by makingremains trapped in that atotantil the much weaker effects
suitable approximations we are able to treat a number o6f higher-order multipole couplings releasg iThe emission
aspects of this daunting problem, and to predict some interchanges drastically when inhomogeneities are present, or
esting features of the fields that are radiated. nonradiative transitions are allowed to intervene. The excited
Bulk matter abounds, of course, in properties that tend t@tom may then radiate more or less independently of the
break down the coherence of propagating waves. Randomwthers, and the quantum it radiates may then suffer succes-
inhomogeneities of all sorts in a radiating medium tend tosive scattering processes. What happens in realistic situations
reduce its radiation to a state of incoherence. It is in the lattemust surely combine and elaborate upon these contrasting
terms, as a problem of incoherent multiple scattering, that thénages.
larger question of radiation trapping has usually been ad- Our treatment of the coherent emission of radiation by
dressed2-7]. The effects of incoherence will surely tend to matter is based upon three approximations. In the first of
dilute, or perhaps even wash out, the various features that weese, we assume that the atoms remain on the average close
find present in the coherent emission process, and we shath their ground states. This is the assumption of weak exci-
eventually have to address them. We have omitted thertation that embraces all of the familiar phenomena of linear
here, however, since the analysis must obviously begin witloptics. It implies that, with appropriate interpretation in
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terms of coherent state amplitudes, much of our analysis cahibit a much greater variety of ringing phenomena, according
be carried out in essentially classical terms. to the selection of modes excited.

The second approximation we make is the smoothing of Our paper begins with a discussion in Sec. Il of the basic
the discrete structure of the atomic medium. It is thismodel of resonant medium-field coupling. We assume that
smoothing that eliminates incoherent processes and treatde polarization of our atomic medium is initially different
matter as a continuous medium we shall gadlarium The from zero, while the electromagnetic field begins in its
polarization modes of this medium exchange energy with th&/acuum state. Those assumptions are shown in Sec. Ill,
electromagnetic field, but remain confined within finite Where the rapid-transit approximation is introduced to define
boundaries. They therefore emit radiation freely at theAn initial value problem governed by a linear homogeneous

boundaries, unlike the plane-wave modes that are often did0tegral equation. That equation is simplified in Sec. IV by
cussed for infinite medigg]. assuming a slab geometry and excitations that are uniform in

The third approximation we make is a simplification in directions parallel to the slab faces. Under these conditions

treating the time dependence of the radiative interactiondh€ problem is reduced to one dimension, and involves only
We assume that all of the essential time dependences of ﬂ.?@alar.flelds. A detailed discussion of _the elgenvalue probl'em
problem can be regarded as relatively slow modulations oftSSociated with our homogeneous linear integral equation,
an extremely rapid oscillation at the atomic resonance frelncluding its general features, certain exact sum rules, and
quencyw,. We assume further that light waves can cross the@pproximate analytical anq numerical expressions for the ei-
radiating medium in times much shorter than those in whicrfenvalues are presented in Sec. V. The exponentially decay-
the modulation takes place. It is important to understand thdP'd €igénmodes of the polarization can be superposed to ex-
this rapid-transit approximation neglects only a small part of?ress the solution of the general time-dependent problem in
what are usually called retardation effects. As far as the rapi@€¢: V- There we also discuss the results of a more direct
oscillations at the resonant frequency are concerned, retard@dmerical solution of the integral equation, and illustrate the
tion effects remain accounted for fully. The rapid transit ap-COMPIex spectra radiated by a variety of initial excitations.
proximation permits us to reduce the mathematical problenyVe conclude that section with an approximate analytical
of treating the radiative interactions to an elementary forrfréatment of the long-time behavior of a symmetric excita-
that can be solved analytically. It is a most convenient simdion that is initially very sharply localized. In Sec. VII, we
plification, but it does place certain limits on the dimensions2ddress the problem of adding a frequency-independent sus-
of the media we can treat. It is worth noting thus that theceptibility to thg resonant one discussed in the prior sgcthns,
rapid transit approximation is the easiest of our three ap&nd show that it can be accounted for without complicating
proximations to lift. the mathematical methqu introduced earlier. Some closing
Each of the confined polarization modes we discuss de"®marks are presented in Sec. VIII.
cays exponentially with the emission of light. The decay pe-
riods are distributed, in general, over a broad range of values. [l. ATOM-FIELD INTERACTION

Some of the modes for any medium are found to decay su- We consider a sample & identical two-level atoms in-

perrad|aptly, while the vast major|ty of them, an infinite teracting with the electromagnetic field. The ground and ex-
number in fact, are found to radiate extremely slowly, or not

at all. The decay of any given initial excitation, which may cited statega) and|b) have opposite parities, and are sepa-

be expressed as a superposition of these modes, then p'rg_ted by energy wo. We assume the wavelengthre/ wg IS
ceeds according to a succession of different rates as the rg]-.UCh larger than the atomic radius, SO that the atoms Interact
diation of the faster modes precedes that of the slower one .'th the eIec_tromagneUc field pr_edommantly throygh eIectr_lc
The exponential decay periods of the different modes ar |p9Ie cogpllng. F_urtberrpore, since 'th_a atorr?s.d|ffer only in
inevitably accompanied by certain shifts of the frequenciedheir spatial locations;, i=1,... N, it is sufficient to be-
radiated. The total spectrum radiated thereby assumes a co@in by discussing the interaction of a single atom with the
plex shape. It has a multipeaked structure that can contaifield and then to generalize our equations to include all the
sharply resonant dips as well. As the size of the mediunftoms. o o o
increases, the spectrum develops a gap, representing frequen-In the electric dipole approximation, the Hamiltonielrof
cies at which propagation within the medium is strongly sup-an atom located at interacting with the electromagnetic
pressed. Several of these features can be varied with tHeeld takes the form
mode content of the initial polarization.

Our analysis bears a certain relation to one carried out H— @U —d-E()+H )
many years ago by Burnham and Chid®] and then, in 2 F F
further detail, by otherfl1,12. They studied the response of
a semi-infinite medium of two-level atoms to a pulse of lightin which ¢, is a familiar Pauli spin-1/2 operato& is the
incident upon it. The pulse was found to excite an oscillatoryatomic dipole moment operator, aftk is the Hamiltonian

exchange of energy between the polarization of the mediurgs ye free field. Sinca is odd under spatial inversion and
and the electric field. This ringing phenomenon was actually

observed in the tail of superradiant emission from an excited® tWo atomic statgs have oppgsne parities, t.he ope(ihtor
volume of gas atompl3]. Analogous oscillatory exchanges may E’e expressed in terms of its vector matrix element
of energy are present in the polarium model, which can ex=(b|d|a) and the remaining Pauli spin operaters as
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d=d,+d_ with d.=po., d_=g*c_. (2) operatorE()(r,t) in the Heisenberg picture, but, since it is
linear, it may be regarded equally well as a relation between
The Pauli spin operators act on the atomic states as followshe expectation values of these operators, and in that sense it
furnishes a classical equation as well.

oilay=|b), o_la)=0, o,a)=—la), The reason the classical and quantum-mechanical treat-
ments correspond so closely is that the electromagnetic field
o.[0)=0, o_|b)=]a), o,|b)=[b), behaves as an ensemble of harmonic oscillators while, as we

have noted earlier, weakly excited atoms can also be repre-
sented by harmonic oscillators. The special coupling be-
tween these oscillators described by our equations of motion
is of a type[14] that always carries coherent states of the

When written in terms ofi. and the positive and nega- system into new coherent states in the time-dependent Schro
) = (2), 2 . o dinger p_|cture. Furthermore, t_he amplltydes of tho;e coherept
tive frequency part&'=’(r) of the Hermitian electric field  giates simply obey the classical equations of motion. In this
E, the product- E consists of four terms. We now make the sense, then, there is no loss of generality in solving just the
rotating-wave approximation, which drops the two antiresoclassical equations. All quantum fluctuations can be found,
nant termsd - E() andd_-E*), but retains and correctly for example, by using the classical solutions to construct the

treats the resonant and near-resonant interaction&(*) ~ @ppropriate coherent states.

andd_.EC) that characterize the standard treatments of ra. -6t US now define a microscopic polarization density op-
_ X : o erator for the collection of point dipoles, and separate it into
diation damping. The effective Hamiltonian is then

its positive and negative frequency partsP(r,t)
=PM)(r 1)+ PI(r 1), so that

and obey the familiar commutation rules

[0;,0-]=*20., [0oi,0-]=0;.

ho I I
H= 520, {0 [ BN+ o [a*-EO(N ]+ He.

2
(1r)

Application of the commutation rules to this Hamiltonian

yields the Heisenberg equation of motion for the dipole op- <) ; _
eratord._ whered?” is the dipole moment operator for thi atom. By

appending the labélto d_ , x, andr in Eq. (4), multiplying
d. Y AP the resulting equation by(r — Fi), and then summing over
gid-= Tiwed-—iZ—[u-E(r.0]o;. (3 alli=1,... N, we obtain the equation of motion for the
microscopic polarization density{*)(r t),
The further equations of motion couple the time derivative of
the operatowr, in turn to theo .. operators, but we need not
construct them here since all the phenomena we propose to
discuss can be described in terms of weak atomic excitations.
We thus assume that the atom is never far from its groungy, \yhich M(F) is a second-rank tensor with the following
state|a) and thato, in Eq. (3) can be replaced approxi- dyadic form:
mately by its eigenvalue- 1, so that

N
ﬁ<+>(F,t)=Zl dOt)s(r—r)=[PO)r,n1f, (5

>

PO =2 M(D)-EDFD, )

J .
E‘Flwo

N
M(F>=i§l B s(r—r,). @)

>

O P
—d_=—iwod—+iT[M'E(ﬂ(r't)]' (4)

This linearization of the equation of motion is equivalent toWhile Eq. (6) describes how th_e p_olarization density Is in-_
fluenced by the electromagnetic field, the field responds in

replacing the two-level atom by a harmonic oscillator of fre- to th larization density via the M I
guencywg, an approximation that remains accurate as Ion’i.urn 0 Ihe polarization densily via the Maxwell wave equa-

as the occupation probabilities for the states of quantu
numbern=1 remain negligible. While the compass of this

2 2
linearized model is not without restrictions, its range of va- —VX(VXEM®)— iz &_2§(+): iz a_2§(+)_ 8
lidity does include virtually all the phenomena of ordinary or c” dt ¢t dt
linear optics, i.e., refraction, reflection, scattering, radiation ) ] ] . o
damping, etc. We have, to this point, retained the microscopic picture of

Restricting our considerations to weak excitations of indi-the polarization density and the electric field that is implicit
vidual atoms or oscillators will not stand in the way of our in the singular expressior§) and(8). The atomic medium
macroscopically treating measurable polarization fields, onc@e shall be concerned with, however, will be essentially con-
we take into account the large number of atoms in outinuous in nature, and so we will treat bot(r,t) and
sample. Equatiofd) has been derived, strictly speaking, as ag(r,t) as continuous functions af Mathematically, the re-
relation between the polarization operatift) and the field quired smoothing is accomplished by averaging EGsand
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(8) over volumes large enough to contain many atomic di-When we deal with other geometries in later work, we shall
poles, but still much smaller in their dimensions than thehave to return to Eq8) and treat the longitudinal field com-
wavelength 2Zr/ky,. We shall assume, furthermore, that the ponents more explicitly.

atomic medium is isotropic, so that its electric polarization is It is worth emphasizing that we have only treated the
always parallel to the inducing field. That will be so in our resonant interaction of a single atomic transition with the
two-state model as long as the dipole matrix-element vectorslectromagnetic field. The atoms we are considering will
of the atoms within any smoothing volume are randomlytypically have many spectral resonances at other frequencies.
oriented. When they are distributed thus and averaged oveAny other atoms that are present in the medium will add

the dyadic functionM (r) reduces to the unit dyadic multi- further contributions to the polarization density. If we restrict

plied by q;2|2/3)n(F) Wheren(F) is the smoothed number ©Yr consideration t_o a narrow enough spectral interval
density function Thl;S Eq(6) reduces to the simpler form aroundwg, the contributions of other resonances and other
' ’ atoms can be treated as a frequency-independent background

P M susceptibility to be added to the resonant susceptibility im-
(—+iw0 POI(r,t)=i 'u_n(r*)é(ﬂ(f’t)_ (99  plicitin our calculations. This modification of the treatment
ot 3 of our central problem, that of the resonant interaction, is

introduced in Sec. VII.
In deriving Eq.(9), we have implicitly ignored local field

effects by assuming that the electric field acting on each

atom is the same as the averaged f&{&(r ,t). In fact, in a
familiar approximatiori15], the local field can be written in
terms of the smoothed fields £§+)(F,t)+(1/3)5(+)(F,t). The physical problem we shall consider first concerns the
The effect of that correction in a uniform medium is thenway in which an initial excitation of the atomic sample
equivalent to a downward shift of the resonant frequency, €volves and propagates under interaction with the electro-
magnetic field. We shall take the electric field to begin in its
nolﬁlz vacuum state. Any vacuum f_Iuct_uations that are present ini-
Aw=— ) tially induce a random polarization background and do not
9% contribute to the expectation values of the polarization or to
. ) ) . . any of its normally ordered moments. Since these are the
If we redefinewq to include this correction, we may retain only moments we need to calculate, we may in effect ignore
Eq. (9) as shown. the zero-point field. For this problem, E€L0) can be con-
The derivation of EqQ.(9) has also assumed that the yepjently cast into an integral form by making use of the
smoothed produck (r)-E(r,t) in Eq. (6) is well approxi- retarded potential
mated by the product of the smoothed functiMSF) and

IIl. AN INITIAL VALUE PROBLEM
FOR THE POLARIZATION

E(F,t). By doing this, we have postponed consideration of IO 17 9% . ..
certain density fluctuation effects that typically lead to inco- EC(r,t)=— Ezf —PM(rt)
herent scattering. We shall refer to this idealized model of a o
continuous, isotropic, polarizable medium @darium |F— F’|
Since Eq.(9) will play a fundamental role in our analysis, 5( t—t' — )
we should note that it holds for atomic models considerably _ dr'dt’

more realistic than the elementary two-state model we have 4a|r—r'|
used to derive it. A more direct way of achieving isotropy,

for example, is to let each atom respond isotropically. The (72~(+) -, lr—r’

atomic ground states might thus bestates, and the excited 1 EZP rt= c .

states three degenergiestates. In this four-state model we =— ?f o 9,| dr'. (11
alr—r

likewise secure a relation betwe@&™) andE(*) similar to

Eq. (9), but with | z|%3 replaced by the squared matrix ele- i S(+) - _

ment connecting the state to any of the threg stateg16]. ~ BY expressing=""" and P17 in terms of their slowly vary-

For the geometrically simple problems that we shall condng envelopesS and P,

sider in the present paper, the smoothed electric field and

polarization will be purely transverse fields: EC(r t)=5(F t)e~iwot F3(+)(F t)=75(F t)e ioot
. . (12
V-PM(r,t)=0, V-EM)(r,t)=0.

and dropping the relatively small time derivatives7af we

In that case, all of the terms in E(B) are transverse, and it may reduce Eq(11) to the form

reduces to the form

ve_ * il ECI(F 1) = — i POI(r,t 10 E(Ft)=k2f 75( r t—|F_F,|) eror dr'. (13
p =z P Y. 10 =Ko ' ¢ Jani—r|
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The use of the envelopé€$2) in Eq. (6) leads to the equation ing behaviors of both the polarization and the electric field.
of motion for the polarization: To discuss the problem further, we shall have to solve Eq.
(16).

-

| |2

q . . .
PO =i-n(rEr,y. (14) IV. REDUCTION TO ONE DIMENSION
_ We shall undertake the solution of EQL6) as a three-

We shall take Eq913) and(14) to be fundamental in the dimensional problem in later work. It will be most helpful
work that follows. The density(r), and therefore the polar- here to consider an essentially one-dimensional version of
ization P(r,t), we shall assume, both vanish outside somdh€ problem it poses. Let us assume that the atomic medium
restricted volumeV. An interesting initial value problem is Nas a uniform densityo within the bounds-L/2<z<L/2,

. . - S and that its extent in the transverse directionandy is

one in which the polarizatio®(r,0) at timet=0 takes on a o .

) e . . unbounded. The polarization amplitude, we assume, depends
given value within some subvolume ¥f while the electric .

: . ) only onz andt, and must vanish fojz|>L/2.
field, as noted earlier, vanishes everywher¢=a0. We use . ,

. . : . . To carry out the reduction of E¢16), we write the coor-

the equations of motion to investigate the spreading and ul- - N 4
timate decay of the polarization within the medium, and tod!”atfa vectors andr’ in terms of their transverse and lon-
discuss the electric field that is generated and eventually regitudinal components as=(p,z) andr'=(p',z'), and let
diated. It is clear from Eq(13) that the electric field(r,t)  p"=p'—p and s=[p"?+(z'—2)?]¥2 Then Eq.(16) be-
must obey an outgoing wave boundary condition at the surcomes
face of the volumeV; Eq. (14) shows that the polarization _
must also satisfy an outgoing wave boundary condition in the ¢ . ] |,u|2nok§ L2
surface region. SHzy=i—p8p

When we substitute the expression given by &d@) for
the electric field amplitude into Eq14), we secure a single \ye may, at this stage, suppress the vector character of the
equation for the polarization amplitude: polarization amplitudé® by noting that the two independent,

) transverse components @fobey the same equation, a fact
d_)/

0 ikoS
2mwsds

Pzt dz’f
—LR2 (.1 |z—2'|4 7S

that leads merely to a twofold degeneracy of the character-

istic solutions of our initial-value problem. The integration
(15)  over the variables is elementary, but the oscillating contri-

bution of its upper limit remains ambiguous. This contribu-
It is worth emphasizing that the polarization amplitude de-tion can be taken to vanish either by givingkg an infini-
scribed by Eq(15) is the slowly varying envelope function tesimal positive imaginary part, or alternatively by breaking
defined by Eq(12). The integrand on the right side of Eq. slightly the invariance of® under transverse displacements
(15) requires evaluating the functioh at the retarded time to allow for an infinitesimally slow decrease #{r,t) asp
t—|r—r"|/c, but if its temporal variation is sufficiently slow —>- In €ither case, the equation for the polarization in one
a good approximation may be achieved by neglecting th&imension reduces to

retardation inP and writing

N P O =L L R I T
—7>(r,t)=|| | Of — r’,t—| |
at 3 A|r—r’|

J
E'P(Z,t)z— o7

L2 _ ,
j P(z t)e*olz=ZIdz  (17)
—L/2

0 - AplPn(nkg e
—P(r,t)=i f ——P(r',t)dr’. (16) i o
at 3h Ag|r—r’| for |z|<L/2. The corresponding value of the electric field
&(z,t) is given as
This equation, as we shall see, is a convenient one to i
solve as an initial value problem. By approximating only the Sz t)= 'k_O Lz P(2' )€ o7 gz (18)
slowly varying envelope, furthermore, it omits, in general, ' 2 )-1p ' '
only a small part of the overall effect of retardation. The
larger part of that effect, represented by the rapidly oscillat- It is convenient to reduce Eq17) to a form involving
ing factor in the polarization of Eq12), is still accounted only scaled space and time coordinates by introducing the

for by the factor exgkor—r’|) present in the integrand of VvariablesZ andT,
Eqg. (16). The assumption underlying Eq16), which we
shall call the rapid-transit approximation, will clearly be a 7= T=— (19)

good one as long as the envelope funct@varies slowly TR
enough in time, and that, as we shall see, is often the case. Of
course, any such approximation will tend to place limits on"/here
how large the system can be, and we shall address them in
detail in Sec. V. We shall show that there is ample room
within these constraints to observe many physically interest- R 6%

with B=KoL. (20)
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The quantity 14 is essentially the Dicke superradiance rate
defined by Arecchi and Courtefis7], and we shall discuss it
further in Sec. V.

In these scaled units, E¢L7) reduces to the form

J 12 ) ,
—P(Z,T)= —J dz'ef?z=2lpiz’\ 1), |z|<1/2,
aT —12

(21)

in which the only surviving parameter & the sample thick-
ness measured in units of the reduced wavelendth 1/

PHYSICAL REVIEW A61 063814

1 (1
{—J |P(z,T)|?dz
2) -1

1/2
- [ j dZP(Z,T)cosBZ
—-1/2

d
dT

2

1/2
+ f dZP(Z,T)sinBZ
~1/2

2
}so. (22)

In other words, the total polarization energy stored in the
medium can only decay with time as a result of interaction
with the electric field.

As we have noted earlier, in the absence of any initial

electric field, only outgoing polarization waves can exist at

the boundaries of the mediurd= *+1/2. These waves sup-
port an outflow of energy that is irretrievably lost from the
medium as electromagnetic radiation. That the polarizatio
energy can only decrease is directly implied by E2{). To
see this, we multiply Eq21) by P*(Z,T), and consider the
real part of the resulting equation:

i[|7>(z T|2]=— fllz dz'[efZ=Z'lp(z’ T)P*(Z,T)
aT ' 12 ' '
+e BZ=Zlpr (' TYP(Z,T)].

By integrating this equation ovet, we obtain an equation

V. ONE-DIMENSIONAL EIGENVALUE PROBLEM

The task of solving Eq(21) is simplified greatly by the

r§eparabi|ity of its dependences @randT. In particular, if

we seek solutions of the fore TP, (Z), thenP, (Z) must
satisfy the homogeneous Fredholm integral equation

12 _ ,
de’e'B‘Z’Z P, (Z").

1
\PA(2)= f ) (23

This equation defines an eigenvalue problem for which the
relation (22) assures us that all the eigenvalues will have
non-negative real parts, Re(=0. The boundary conditions
implicit in Eq. (23) are the outgoing-wave conditions

P,(Z)—€#Zxconst for|z|—1, (24)

that describes the rate of change of polarization energy in the

volumeV:

1/2

i“ |P(Z,T)|?dZ
—-1/2

dT

172 172 _ )
dZJ dz'[eAZ=Z'lpz' T)P*(Z,T)
1/2 —-1/2

+e BZ=Zllpr (' TYP(Z,T)].

The variablesZ and Z' may be freely interchanged in the
second term of the integrand, with the result

|

1/2
de dZ'cogB|Zz—-2'])
—-1/2

d fl/Z ,
-= P(Z2,T)|“dz
| [

1/2
-2

1/2

XP(Z"\TYP*(Z,T).

Since cogB|Z—Z'|=cosBZcosBZ’+ sinpBZsinpz’, the
double integral may be reduced to an explicitly positive-
definite form, so that we find

and these, as we shall see, restrict the eigenvalues to a dis-
crete sequence.

Many of the important properties of the functioRg(Z)
and the eigenvalues follow simply from the general struc-
ture of Eq.(23). It will be useful to demonstrate several of
them before undertaking an explicit solution of the equation.
Let P,.(Z) be an eigenfunction of Eq23) corresponding to
the eigenvalue.’ #\. Then it obeys

1/2 ) ,
)\’P,\,(Z)zf dz'e'flz=2'lp, ,(z"). (25)
1/2

Now if we multiply Eq. (23) by P,.(Z) and Eg.(25 by
P,(2), take the difference of the two equations, and then
integrate ove&Z, we find

1/2
()\_)\')f_llsz(z)Pw(Z)dZ

1/2 12 _ ,
= dzf dz'e'flz=7'l
—-1/2 —-1/2

X[P\(Z")P\/(Z)—P\(2)Py(Z")].

Interchange of the integration variablésandZ’ in the inte-
grand on the right shows that the integral vanishes. It follows
then that forn #\’, the two solutiond, (Z) andP,(Z) are
orthogonal:
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fllz A. Radiation by a thin slab, 8<€1

_1,2P>‘(Z) Pr(2)dZ=0 (A#NT). (26) A helpful introductory problem, and the simplest one to

discuss, is the limiting case in which the slab thicknkess
The eigenfunctions can be given unit normalization, so thafnuch smaller than the reduced wavelengy+ 1/k,. For g
the general orthonormality relation is obtained: =koL <1 we see that Eq23) reduces to

1/2 o vz ' '
J 1/2P}\(Z)P>\’(Z)dzz . 27 )\P)\(Z)~J71/2P>\(Z )ydz'. (32

) ) . . If we integrate both sides of this equation fronil/2 to 1/2,
The kernel function expg|Z—Z2'|) is symmetric under ;e fing

spatial inversionZ——Z andzZ’'——Z2', as is the medium
itself. It follows that if P, (Z) is a solution of Eq(23), then 12 ) )
P,(—2) is also a solution corresponding to the same eigen- (A 1)ﬁmp>\(z )dz'=0,
value\. We shall show presently that the eigenvalues in the
one-dimensional problem are, in general, nondegeneratg. relation that can only be obeyed if either 1 or, alterna-
Hence P\ (Z) and P,(—Z2) can only differ by a constant tjvely,
factor, and that factor can only bel. The eigenfunctions B
P, (2) are thus either even or odd functionsf ! _
From the general theory of Hilbert-Schmidt symmetric j ,2PA(Z)dZ_0' (32
kernels[18], it follows that the eigenfunctionB, (Z) form a
complete set on the interval 1/2<Z<1/2. Thus we can If A=1, then according to Eq31) the polarization must be
expand the kernel function exp{Z—Z2’|) in terms of theP,  uniform over the volume of the slab. Otherwise E§2)
as must hold and the polarization averages to zero. All polar-
ization modes of this character, according to E3{l), must
iBIZ*Z’I—E , have =0. The thin slab then represents a limiting case in
€ < e(Z2)PA(Z7), which there is a single fundamental mode witk 1, and a
sequence of spatially oscillating modes with the common
eigenvaluex =0. The eigenvalua. =1 for the fundamental
uniform mode corresponds to a decay period for the polar-
12 , ization of rr=67/(Ng| x| ?keL) =64/ (No| £|2B).
CA(Z)ZJ ehlz=2'lp,(2")dZ' =\P,(2). The remaining modes with=0 clearly do not decay at
sz all. It is not difficult to see why that should be so if we refer
back to Eq.(18) for the electric field. In scaled form it is

where the expansion coefficieat(Z) is given by

The kernel thus possesses the expansion

iB (12 ) ,
, &z,MN=—| Pz TerzZldz, 33
eBlZ=Z'1=3" \P,(Z)P,\(Z). (28) (20 2f,1,2( e 59
A

and for 8<1 it reduces within the slab to
An immediate application of this relation is obtained by let-

ting Z'=Z and integrating oveZ from —1/2 to 1/2. The 82Z,T)= i_'Bfllz P(z',T)dZ'. (34)
result is a sum rule showing that the eigenvalues all add up ' 2 J-ap ’
to unity,

The contribution of any eigenfunctioR, to the field can
then be written as

> a=1. (29)

A iB (U2
&(Z,T)= 7f P,(Z')dZ'e T, (35)
Since the eigenvalues are complex, this relation amounts to iz

two sum rules The polarization modes with eigenvalde=0 are inhibited

in their decay because for them the polarization integrals in
2 Ren=1, 2 ImA=0. (30) Eq. (35 all vanish. Their polarization energy remains
) ) trapped within the slab in the limikoL<1 because their
mode functions are orthogonal to the electric field waves of
There are a number of other sum rules that follow from thefrequencywy. The latter waves are nearly uniform within the
expansion in Eq(28). These concern sums of powers of the thin slab.
eigenvaluesa. and partial sums of eigenvalues taken over the The fundamental mode for the polarization which is spa-
even and odd solutions. These sum rules are derived in Agially uniform is the only one that radiates efficiently for a
pendix A. thin slab. Its decay rate in unscaled physical units is
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Nol /2| 2koL according to Eq(14). It therefore satisfies the same differ-
TF§1=T. (36)  ential equation a®, (Z) for — 1/2<Z<1/2. For|Z|>1/2, on
the other hand, it obeys the free-wave equation
We can see in the proportionality of this numbemntt., the pr
number of atoms per unit area of the slab, that the radiation ﬁ“L'BZ E(Z)=0. (41

process, viewed from an atomic standpoint, must be a coop-

erative one. The radiative decay rate for a single free atom i?he electric-field amplitudé, (Z) thus satisfies a species of

> 1243 stationary-state Schdinger equation for a particle of posi-
—1:|'““| o (37) tive energy proportional tg8?, but interacting with a com-
6mh plex “square-well” potential. Because the imaginary part of

e . the potential is positive, the polarizatioR5(Z) tend to be
The decay ratey ~ is enhanced over™ ~ by a factor of order  gmpiified spatially with increasinz|.

noL/k§, which we must assume to be larger than unity in |t js convenient to define a complex parameter,
order to have the right to consider the slab as a continuous

medium. There must, in other words, be more than one atom / , 2B
in the slab per square wavelength on the average. The atoms n=\ B~ BN (42)
within each such area then radiate cooperatively intie
directions through mutual interference. so that Eq.(40) can be written more compactly as
We can explain the enhancement factgi./k3 from a 5
more dynamical viewpoint by taking the thin slab to be large 192 |P.(2)=0 43)
but finite in its lateral dimensions. If it has aréa then it dzz " "™ :
containsN=nyAL atoms. The enhancement factor can thus
be written as and the quantityy, /L plays the role of a complex propaga-
tion constant. The even solutions, normalized according to
% _ Nzi. 38) Eq. (27), then take the form
k& KA 3
€ —
The rate of decay of the excitation of any atom in the slab is P(” (2)= Sinyy COSNZ. (44
increased by the Dicke superradiance fadiof since all of 1 "

the atoms in the slab radiate coherently. The decay rate is

decreased, on the other hand, because each atom can omiyeir logarithmic derivatives must match those of ég{#])
radiate into a solid angleL7] smaller than 4r by a factor of  at the boundarieZ=+1/2, and these conditions are met
order (kSA)‘l. That inhibition, on the radiation by any one provided that

atom, is another feature of the cooperative effect of all the

other atoms radiating in the same phase. o tar( %) —ig. (45)

B. Solution for the eigenfunctions and eigenvalues

. . , , The odd solutions to Eq43) may be obtained by similar
The solutions to Eq(23) merit careful attention since, as means. They take the form

we shall later see, they also occur in three-dimensional prob-

lems defined in spherical volumes. The Fredholm equation 2

(23) is a particularly simple one to solve since it can be P§\°)(Z)= ———siny,Z, (46)
reduced to a familiar differential equation. To accomplish 1— SN

that reduction, we need only observe that the kernel Y

exp(B|Z—2'|) is the Green’s function of the differential op-

eratord?/9Z2+ B2, i.e., that where the outgoing-wave boundary conditionsZat +1/2

requirey, to satisfy the relation
2

J . ’
EJrﬁz ehl2-2'1=2igs(z—2"). (39

Yh| .
yxcot( ?) =ip. (47
When we apply the differential operator to both sides of Eq.
23 thaP, (Z t satisfy the diff tial ti
(23) we see thaP) (2) must satisfy the differential equation infinite set of discrete branches, the eigenvalue conditions

32 2iB (45) and (47) restrict the permissible values af to two
ﬁJF,BZ— — | PA(2)=0, (40)  discrete, infinite, nondegenerate sets via the relation inverse
to Eq. (42):

Because the tangent and cotangent functions each have an

for —1/2<7Z<1/2. 2i8
The electric-field amplitud€, (Z) that corresponds to the A= ——7. (48)
polarization modeP, (Z) is simply proportional toP,(Z) B ="
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The two sets of eigenvalues cannot have any common ele- iB B? i3
ments, however, since then E¢45) and(47) would lead to Ym=2M7T— ==, An=5 72" 572 (50

the contradiction

Because of the requiremehg, |> B, only eigenvalues with
St 4 co2 ™ —g m large enough that@m=> 3 are well approximated by Eq.
2 2 - (50).
(©) | yx|~ B: maximum Re and Im\, and validity of ne-

The real part of any such eigenvalue represents the decqyact of retardation of the envelopeShe largest real and
rate of the associated mode, while its imaginary part répréj,qinary parts of all the eigenvalues are located in this re-

sents a shift of the oscillation frequency of the mode fromgion, and approximate expressions for them can be derived

the medium resonanag,. The precise values of the eigen- f : : :
. or large B3, although there is no simple approximate formula
value roots of Eqs(45) and(47) can only be found in gen- for all of the roots in this region. As shown in Appendix B,

eral by numerical means. It is possible to approximate th . .
roots analytically, however, for all values gfand for broad e[he maximum values of Re and Im\ are given by the

ranges of the complex plane. relation
1
C. Approximate expressions for the eigenvalues max Re\N)=~2 maxIm\)~ m. (51
Although exact closed-form expressions cannot be ob- _ o
tained for the eigenvalues, relatio45) and (46) permit ‘Based on the expressidhl), we can state a quantitative
approximate perturbative solutions in certain limits. criterion for the validity of the rapid-transit approximation

For a vanishingly thin medium, as we saw earlier, thereon which our one-dimensional treatment is largely based. For
are only two eigenvalues possible=1 for the fundamental the approximation to hold, it is clearly sufficient for the
superradiant mode, and=0 for all other, nondecaying Shortest time scales over which the field envelopes vary, i.e.,
modes. With increasing medium thickness, although stilthe reciprocal of the largest decay rate and frequency shift
with B<1, the fundamental eigenvalue develops an imagi{51), to be long compared to the maximum retardation inter-
nary part, of ordeO(B), which can be obtained by Setting val, which is the transit time of ||ght through the one-

tan(y,/2) equal toy,/2 in Eq. (45): dimensional medium. Thus we require, in physical units, that
L 2B
> . LB o
shall estimate them shortly. practice never of an order of magnitude much larger than

For an arbitrary value o, the approximate solutiong, unity, the inequality is substantially equivalent to a simpler
and the associated eigenvaluesaturally separate into two 9N€,
classes according to whethler, | <3 of |y,|> 8. For large
values of B, it is possible to treat the intermediate range
| 72l ~ B as well; indeed, the maximum values of the real andhich, in view of definition(20), is in turn equivalent to the
imaginary parts of the eigenvalues occur in this range. Dernequality
tails may be found in Appendix B. Here we present only the
final expressions.

L<CTR,

34 1/2

L<lL.=c (52)

. =12
1. Even-mode eigenvalues No| u|“wg

(@) |y»]<B. The mth root of Eq.(45), correct to order ) ) .
O((2m+1)m/pB), and the associated eigenvalue, correct to-l.-he parametet.c is essentially the cooperation Ie_ngth, de-
O(1/B)*, are fined by Arecchi and Courtenldl7], that characterizes the

maximum distance over which a medium of coherently ex-

2i(2m+ 1) cited atoms can cooperate and emit purely superradiant light.
Ym=(2m+1)7— , For typical gas densities and natural lifetimes of isolated
B atoms,L . can be comfortably large, as large perhaps as thou-

) o ) o sands to hundreds of thousands of wavelengths, and thus
- E+ 22m+1)°m i 8(2m+1)°w (49) poses no real obstacle to experimental observation of the
m B B3 B effects predicted in the paper.
As an overall characterization of the behavior of the ei-
Obviously, these expressions are consistent with the requirgienvalues, we note that for fixe@l the decay rates of the
ment| y,|< B only for m small enough that (@+1)7<3. modes first rise quadratically with the mode labehccord-
(b) |yA|>B. In this limit the mth root, correct to order ing to Eq. (49), and eventually fall quartically withm™?!
O(B/(2m)), and the associated eigenvalue, correct to ordeaccording to Eq(50). The imaginary parts of the eigenval-
0(B)?, are ues, that represent the frequency shifts of the modes from the
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atomic resonance, on the other hand change sign as the as-
sociatedy, values cross from clas@) into class(b). The
variations of the real and imaginary parts of the eigenvalues
A m With increasing value of the mode index bear a con-
siderable resemblance to the linear dispersion curves for the
real and imaginary parts of the susceptibility of a continuous
medium with a single resonance. This analogy is discussed
in further detail in Appendix B.

Decay Rate

2. Odd-mode eigenvalues

40 50

For a fixed value of3, approximate perturbative expres-
sions for the roots of Eq47) may be derived, as we show in (a) B
Appendix B, much as they are for the even modes. Once

: ) . 0.75
again, the roots fall into two classes according to whether
[ v\]|< B or|y,|> B, but we need not say more here than that € 050
their discussion is quite parallel to that for the even-mode @
roots. There is one distinction, however: In the limit of a thin g 025 .
slab, <1, all of the odd modes correspond to trapped po- & 0.00 o ; N
larization. In the other extreme case of a thick sjab; 1, all = B 7
of the eigenmodes, whether even or odd, tend to become 0251
perfectly trapped. 050 -

0.75 : ‘ ‘ ‘
D. Numerical evaluation of the eigenvalues ) 0 10 20 A 30 40 50

The approximate formulas that we derived for the roots of
the eigenvalue equatiorfd5) and (47) are quite accurate in FIG. 1. (a) Decay rates R, and (b) frequency shifts I,
the two regiongy, | < and|y,> 8, but in the intermediate both in units ofrz* as defined by Eq(20), for the first four even
region| y,| ~ B we have no recourse but to compute the rootgnedes as functions qf.
numerically. An iterative procedure, described in Appendix
B, was employed for the purpose. numerically obtained results, shown here by crosses, for
In Figs. Xa) and 1b), we have displayed the real and large values ofs.
imaginary parts of the eigenvalugsfor the first four of the
even modes as functions ¢f. For each of the modes, the VI. GENERAL TIME-DEPENDENT PROBLEM
real part of the eigenvalue has a maximum in accordance IN ONE DIMENSION
with the general form of Eq(B8), the mth mode having a
peak at a value3,,~2mm for large m. Note the slow de-
crease of the peak values of the successive modes, which h o d .
a logarithmic character given by E¢1). On the other hand, a position to s.tudy the tempor.al eVO"%“"” of an arbitrary
the imaginary part, the scaled frequency shift of a modem't'al polarlza}tlon P(Z,0). If this function possesses the
crosses from negative to positive values at about the sameOde expansion
places as the peaks in the plot of the real part, in accordance
with the structure of Eq(B9). _ _ _ P(Z,00= 2, ¢,P\(2), (53)
A somewhat different representation of the eigenvalues is X
provided by Figs. @) and 2Zb), where we have plotted Re
and Im\ as functions of the mode indew for four values of  with the expansion coefficients, given by the overlap inte-
B. Once again, the peaked nature of the first of these plotgrals
agrees with the general relatigB8) while the zero-crossing
contained in Eq(B9) characterizes the second of these plots. 12
The slow logarithmic decrease of the largest of the scaled C\= _1/2P(Z,0)PA(Z)dZ, (54)
decay rates and frequency shifts of the modes, as predicted
by Eq. (51), is exhibited in Figs. @& and 3b), where the
plots show these largest values as a functio dér values
of B as high as 10 Even for such larges, our iterative
method worked quite rapidly to produce hundreds of thou- P(Z,T)=2, c,P,(Z)e . (55)
sands of roots in a matter of minutes on a Pentium Pro200 A
computer. These plots are semilogarithmic in order to ac-
commodate the large range gf We have shown our two- The total energy lodged in the polarization of the medium
term asymptotic resulsl) by a solid curve. Note the excel- is proportional, as we have noted in Sec. IV, to the expres-
lent accuracy of this result when compared with oursion

Once we have determined the eigenvalneharacteristic
(&L_the one-dimensional problem posed by Ex{), we are in

then the time-dependent solution to ER1) is
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FIG. 2. (a) Decay rates RE,, and (b) frequency shifts Im\,,

both in units ofr*, as functions of the mode indew, for 5=1, FIG. 3. (@) Maximum decay rates an) frequency shifts, both
10, 50, and 100. The straight segments joining the discrete point® units of 7, as functions of3. The approximate analytical for-
are provided only to indicate the behavior of the eigenvalues withmulas(51) are shown by solid curves, while the numerically com-

increasing mode index. puted values are exhibited by crosses.
12 ) only be given as sums over modes, which may be awkward
W(T)= 71/2| P(Z,T)|*dzZ. (56) {0 evaluate. Alternatively, we can integrate the integral equa-

tion (21) directly in numerical terms. By choosing time and
Because the orthonormality relatiq@7) does not involve Position stepsAT and AZ that are small compared to the
complex conjugation, expressiah(T) does not, in general, reciprocal of the largest decay raf&l) and 3, respectively,
reduce to a sum of contributions from the individual decay-we see from Eq(21) that the value ofP(Z,T) at time point
ing modes. We find in addition a sum containing importantT is obtained, to an excellent approximation, in terms of the
cross-relaxation terms contributed by pairs of excited modes?la!ueSP(Z' ,T—AT) at the previous time step from the re-
ation

1/2

W(T)=2 [c,[%e? Re”f dZ|P\(2)|? S

X —1p2 P(Z,T)=P(Z,T-AT)—ATAZY, eBflZ=Z'lp(z' T—AT).

Z/

12
+ 2/ cre e (A )Tf_l/ZdZP{(Z)P)\,(Z). (58)
A We have used this relation to solve for the time dependence
(57)  numerically with high accuracy for two varieties of symmet-

. . , .. ric distributions of the initial polarization amplitude, the
The interference terms can cause interesting behavior in thg 5 ,ssian form

time dependence ofV(T), as we shall presently see, even
thoughW(T) must decrease monotonically with tinfefor

: . 7 0)=e 2259
all times, according to Eq22). Pz0=e ' (59

and the step-function form
A. Direct numerical integration for the time evolution

Use of the mode functions and their eigenvalues to write P(Z,0)= 1 for|Z|<o
down the general time dependence of an arbitrary excitation ' 0 otherwise.
has given us valuable physical insight into the nature of the

decay of both the amplitude of polarization and the associtn both cases & represents the characteristic width of the
ated energy. But the final expressions for these quantities canitially excited region.

(60)
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0.20 other hand, represent periods of greatly slowed radiation of
the medium and arise from the interference of modes, con-
0.15 tained in thex #\ ' terms of Eq(57). The interference terms

in W(T) evolve at rates that are determined both by the sums

z of the decay rates and the differences of the frequency shifts
g 010 of the various mode pairs. Without such interferences, the
energyW(T) would have been a superposition of pure de-
0.05 - caying exponentials with positive coefficients, and as such
the slope of the energy decay curve would have decreased
‘ K ‘ ‘ | monotonically with time.
0'000 20 40 60 80 100 The interferences and the associated plateaus are most
(a) Time pronounced for values oB that are around 10. They are
nearly absent for much smaller values@fas forB=1 [Fig.
020 4(b)], since for thin samples the modes are essentially real,
PX(Z)~P,(2), so that the mode overlap integrals in Eq.
0.18 (57) are quite small whe\#\’. Furthermore, only one
| mode, the one that is spatially uniform, has a large decay rate
9] 0-12 while the others tend not to decay at all. The decay of this
E 0.08 - fundamental mode is easily seen on the figure, while the
' energy in the remaining modes tends to remain trapped.
0.04 - For values of3 much larger than 10, the time dependence
of W again loses the interesting attributes of e 10 case.
0.00 ‘ ‘ i To create a Gaussian initial excitati@®®) with 0=0.1, one
0 4 8 12 16 20 need only excite modes for which the wave vectgysare in
(b) Time magnitude no larger than of ordero® 10. But the fastest
0.20 decaying modes have wave vectgrsnearly equal in mag-
nitude toB, which for >10 thus tend to be absent from our
016 \ initial value problem. We see in Fig.(@ that for 3=20
there is only a small initial drop in the energy with time,
. 042" because the fastest decaying modes are largely absent in the
é" expansion53). A close examination of the subsequent time
2 508" dependence reveals low-amplitude ripples, arising from in-
terferences, but the structure of plateaus and exponential de-
0.04 cay periods is evidently difficult to discern.
In the next set of figures, Figs(&-5(c), we have dis-
0.00 ‘ : : : played, for@= 10, the spatial distribution of the real part, the
0 20 40 60 80 100 imaginary part, and the squared modulus of the polarization
(c) Time at three different timesl = 0,5, and 20. Byl =5, the fastest

o ] ~decaying mode with a characteristic decay period of order

FIG. 4. fThe _decafy_Of the total zgla?zatrllon' e_r_1e|r|gyc,; in arbitary 1 /5 63~ 1.6 has been almost completely radiated away, while
units, as a function of time, in units of, for the initially Gaussian o other modes have evolved only partially. This picture
?é;c'tait'gg Of_Eg'(lsg) for @ £=10,0=0.1;(b) f=1, 0=01;and g, 44eqts that by the tinfe~1.6, the polarization amplitude

p=20,0=0.1 must have developed spatial oscillations. They result from a

subtraction of the oscillatory amplitude distributiogP, (Z)

In Fig. 4(@), we plot the numerically obtained time depen- from the smooth initial polarization amplitude. Such spatial
dence of the polarization ener§y(T) given by Eq.(56) for  oscillations are clearly present in all three figures. With the
a polarization amplitud®(Z,T) that is initially real and has passage of time, more and more oscillations develop that
a Gaussian fornt59) with o=0.1 andB=10. The plot has represent the removal of successively decaying modes.
several features that can be understood in terms of the un- Similar features to those described above also occur in the
derlying eigenfunction decompositiofb5). The initially  time dependence of an initial step-function distribution of
steep, approximately exponential, drop\WW{T) represents polarization. For3=10 and a uniform initial excitation with
the radiation of the fastest decaying eigenmode, which for half-width =0.1, the energy has a time dependence,
B=10 has an energy decay rate 2 Max(Be=0.63. The shown in Fig. 6a), that exhibits a somewhat slower decay
subsequent decay is characterized by plateaus that punctuak@n for the Gaussian initial excitation, although the qualita-
periods of nearly exponential damping of energy. These extive features are nearly the same. This relative slowness of
ponential decay stages correspond to the radiation of the proke overall time dependence has to do with the fact that, to
gressively more slowly decaying eigenmodes, with energyreate a sharply discontinuous excitation, we must superpose
decay rates 2 Re equal to 0.30, 0.03, 0.02, and smaller, thata substantially larger number of eigenmodes than are neces-
we have already presented in FigaR The plateaus, on the sary for the smoother Gaussian profile of the same ef-
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i FIG. 6. (a) The decay of the total polarization energy, in arbi-
08 trary units, as a function of time, in units e, and(b) the distri-
2 bution of the real part of the polarization at three different times, in
g 06 units of 7g, for an initial step-function excitation given by E@O)
A with 0=0.05.
8 041
2
= ozl half-width ¢=0.2. This energy density, proportional to
' |P(Z=+1/2T)|?, is initially zero, but builds up quite rap-
00 == - idly in an oscillatory fashion and eventually decays away at
20.50 0.25 0.00 0.25 0.50 long times. The ringing Qscillations, which are similar to
© Position those of Burnham and Chid&0] but somewhat less regular,

arise from a coherent exchange of energy between different
FIG. 5. The distributions ofa) the real part(b) the imaginary  regions of the medium by means of the electromagnetic field.
part, and(c) the squared modulus of the polarization, in arbitrary The radiated power undergoes a similar ringing. The plot of
units, as functions of the scaled spatial variaile z/L, for the  |9P(Z=+1/2,T)/4T|?, which, by Eq.(14), is proportional to
initially Gaussian excitation of Eq59) at three different times, in  the radiated power, is shown versus the tilmm Fig. 7(b).
units of 7, for 5=10 ando=0.1. The initial sharp spike, not entirely contained in the figure
because of its large amplitude, arises from the radiation of
fective width. This means that a larger fraction of the energythe fastest decaying mode. The oscillations in the two fig-
resides, for the step-function initial excitation, in modes thatures, Figs. %) and 7b), have commensurate patterns, with
have a slower decay than for the smoother Gaussian initizhe maxima of one coinciding with the minima of the other.
profile. This fact is also directly observed in Figh§ where
we have plotted the real part of the polarization amplitude at
different times. Note that the slow decay of the higher har-
monic modes leads to a persistence of the sharp step discon- The presence of vastly differing decay rates and fre-
tinuities even at long times. The oscillations in the wingsquency shifts of the eigenmodes leads to the possibility of
have an origin similar to those for the Gaussian case. interesting spectral distributions of radiation. Because each
The oscillations are more directly seen in the time evolu-eigenmode undergoes exponential decay, the power spec-
tion of the polarization energy density at a fixed position andirum it radiates has a simple Lorentzian shape. Its character-
the power radiated by the medium. In Figajfwe display istic half-width and frequency shift from the atomic reso-
the polarization energy density at the boundaries,=1/2,  nance are, respectively, equal to the real and imaginary parts
for =10, and a symmetric step-function initial excitation of of the associated eigenvalue. An arbitrary initial polarization

B. Frequency spectrum of radiated power
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0.15 Our numerical treatment of the radiated spectra begins
with an evaluation of the complex amplitudes of Eq. (54)

for a variety of initial polarization distribution®(Z,0). We

then use these amplitudes and the numerically evaluated ei-
genvalues\ in Eq. (61) to find the spectra. This approach
proves to be considerably simpler than taking the Fourier
transform of the numerically calculated time dependence of
the polarization.

In Figs. §a)—8(c), we show the spectra of power radiated
by step-function initial polarization distributions in media of
three different values 0B, 1, 10, and 50. A symmetric ex-

300 citation of the medium, as in all but the bottom part of Fig.
8(b), contains only the even eigenmodes, and therefore radi-
ates a spectrum with a resonant structure provided only by
those modes. When the excitation is localized at a boundary
of the medium, the spatial symmetry is broken and the radi-
ated spectrum consists of peaks arising from the odd modes
0.004 as well, as can be seen clearly in the bottom half of Filg).8
The even and odd modes are interleaved in their frequency
shifts, as noted earlier, and that leads to a doubling of the
number of peaks in the spectrum when compared with the
0.002 upper half of Fig. &). In the bottom half of Fig. &), cor-
responding to a symmetric excitation that uniformly spans
98% of the medium initially, the dominant excitation is that
of the nearly uniform superradiant mode. Its spectrum pro-
) % 100 150 20 230 % vides the broad background in the figure. The small admix-
Time ture of other, more slowly decaying modes, however, leads

FIG. 7. () The polarization energy density at the boundariesto sharp resonant dips as well as peaks impressed upon the
and(b) the power radiated by the medium, both in arbitrary units, asoroad spectrum. The dips, in particular, are due to the de-
functions of time, in units ofrg, for an initial excitation given by  structive cross-spectral interferences between the dominant
Eg. (60) with =10 ando=0.2. superradiant mode and the weaker, more slowly decaying

modes.

distribution, regarded as a coherent superposition of eigen- There is also a frequency gap for the larger values, 10 and

modes, will emit radiation with a power spectrum that con-50, of 8, in which no significant radiation is present. All of

sists of a sequence of Lorentzian peaks for the individuathe central frequencies of the radiating modes tend to accu-
modes as well as cross-spectral interferences that can changeilate near the two boundaries of the gap. Unmistakable in
the shape of the spectrum significantly and lead to sharpl¥ig. 8(c) and in the top curve in Fig.(B), it represents, as
resonant dips. Resonant dips of this and less symmetric sorssiggested by the approximate expressi@® and(B7), the

are familiar in the energy dependence of nuclear cross seabsence of eigenmodes with a frequency shift in the interval

tions, which often contain interferences between competindrom 0 to 23 for > 1. The gap arises from the inability of

resonances. They are somewhat more novel in the context ofaves of frequencies in that interval to propagate freely in-
atomic spectra, where they are called Fano resondii®és side the medium. For frequencies within that interval, the

Because of the separation of the time scales of succegorrespondingy, , according to Eq(48), would have to be
sively decaying modes, as in Figa$ for example, there is essentially purely imaginary and the modes would be expo-
an interesting sense in which the spectra observed over apentially damped according to Eqg4) and(46). An initial
propriately short time intervals can be regarded as varyingxcitation close to the surface of the medium, on the other
with time. Here, however, we shall only derive the morehand, can still emit at frequencies lying within the gap, as
customary spectra associated with long measurement timeshown by Fig. 8), since the radiation does not have to

For a time-dependent polarization of foi(®5), the spec- travel any significant distance within the medium. The light
tral amplitude at a scaled frequency detuninds propor- radiated from the surface opposite to the excitation, by con-
tional to the Fourier transform, trast, has to traverse nearly the entire medium, and must

therefore show this frequency gap clearly.

61) That the frequency gap must all but disappear for thin
samples withB=KkoL <1 is also evident from the same ar-
gument. To see this, we first note that since for any eigen-

The spectrum of the radiated intensity is in turn proportionalvalue \ its imaginary part representing the frequency shift

to the squared modulus(Z,»)=|Q(Z,v)|?, evaluated at dominates its real part, which represents its decay rate, we

the boundarieZ= *+1/2. may write Eq.(48) approximately as

o
=)

Energy Density

o
o
by

0.006

Power Radiated

0.000
0

Cx
A—iv

Q(Z,v)= J:P(Z,T)e‘VTdT:; P, (2).
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Spectrum of Radiated Power only in this range of frequency shifts is there a significant
exponential attenuation of the fields, as they propagate
through the medium.

Within the gap, the interference and resonant interaction
between the forward- and backward-traveling waves is too
strong for the light to be able to leave the medium. By con-
trast, for the Burnham-Chiao problefhO] the spectrum of
the radiated field, which is readily evaluated, contains no
frequency gap because it neglects the backward waves com-
pletely. It does show, however, an accumulation of ever
faster oscillations in the spectrum as the resonance fre-
quency, renormalized by the field-medium interaction, is ap-

0.00 : : : proached from either side. These accumulations of peaks are

-0.75 -0.25 0.25 0.75 . .
(@ requency Deturing & eyldently Qnalqgous to the accumulations of mode frequen-
cies seen in Figs.(B) and &c) at the two edges of the fre-
Spectrum of Radiated Power quency gap in our problem.

B=l, 6=02

Power (arbitrary units)
=]

=10, 6 =025 . . -
P C. Decay of a sharply localized symmetric excitation

A problem of some interest concerns the time dependence
of the polarization and the total excitation energy when the
slab has initially a sharply localized excitation, which we
shall take to be of the Gaussian fofs0). We shall assume
P =10, Edge Excilation of Width 0.04 further that the widthgL in physical units, of the initially
excited region is small compared to the wavelength. We as-
sume, in other words, that<min (1,1/3).

For this problem, the expansion coefficients in the solu-
tion (55) take the form

Power (arbitrary units)
[~}

-03 02 -0.1 0.0 0.1 0.2 03
(b) Frequency Detuning A
Ch=
—-1/2

1/2 P P
e #19P (2)dz,
Spectrum of Radiated Power

40
which can be evaluated by noting that, te 1, the limits of

integration may be extended tbe without significant loss

of accuracy. Since the symmetric eigenfunctiod® are just
cosines, the preceding integral can then be evaluated in a
w5 closed form:

_ 4o — 20?2 62
] ““NT1tsing /ne = (62)

-0.08 -0.04 0.00 0.04 0.08 Note that, sincey,~2ns for largen, a number, roughly of
() Frequency Detuning A order 1/(2r o), of thec,, have a significant amplitude. Fer

FIG. 8. The f ‘  th diated by th sufficiently small compared to 1/¢2), this number can be

1. . The Trequency spectrum ot the power radiated by G1arge. Furthermore, since<<1/B, this number also greatly
medium, in arbitrary units, witfa) 8=1 ando=0.2 (upper fig- .

o _ ' , B - exceedsB/(2). Under such conditions, a large part of the
ure); B=1, o=0.49 (lower figure; (b) B=10 ando=0.2 (upper itati ide | d f hi > d
figure); initial excitation confined to the region betwe&n=0.46 e);](f"?]:jon may hreSI Ie n mo es (()jr w Id?}’”' B, an
and 0.50 withg=10 (lower figure; and (c) =50 ando=0.05. W Ich decay 'fat er sluggishly according to the re€s(. It
The abscissa represents frequency detuning in unitsz0f The 'S then, precisely these modes that would govern the long-
paramete is the fractional half-width of the region, which has a fime behavior of the decaying polarization. These modes
uniform initial excitation and sharply defined boundaries. have amplitude$Eq. (62)] in which they, may be replaced

by their approximate valuesnzr. Ignoring small terms of
order 1/(h), we have finally the result

B=50, 5=0.05

Power (arbitrary units)

ImX\ 28
mA= .

B*=7x R 63)
On inverting this relation to express as a function of Im\, By using in Eq.(55), the eigenvalue&0), eigenfunctions

we can see that only in the range of frequency shifts 0(44), and coefficient$63) as well as our approximationy,
<ImA<2p/(1+ B?), which vanishes a8—0, is y, appre- ~2nm, we may express the long-time behavior7fz,T)
ciably imaginary, exceeding 1 in magnitude. Consequentlyaccurately as

063814-15



SUDHAKAR PRASAD AND ROY J. GLAUBER PHYSICAL REVIEW A61 063814

1
p(Z,T)m,/ng.Z; e_2”2772‘72 cog2nw2) T”:B?'
/32 iB 1/2 ) ) ) )
xexg —| =4—2— =—5—|T| . (64) In physical units, this decay time has the value
2n*w*  2ncTw
Since, for hm> g, ro= ! 67 (68

2TR™ > )

2 T BT T nglul?pre?
Re\ ~ﬁ<lm)\ ~o—>7,
no2ntnw " 2nmw which is inversely proportional to the square of the initial

it seems plausible that the evolution of the polarization amyvidth oL =oplk, of the excited region. The more localized
P b -~ the initial excitation, the longer its amplitude takes to decay

of the successive modes, because of their different 1‘requen§/|>,'éar the coherent dephasing process we have mentioned ear-

2E'£Z tmgrt]obget?ri:?cfrat)rl:ggmr:r%((jei ta?np(;'ttl:]%is\'/g/r\{; ?r?:t”i taiz_ Similar results may be obtained for the decay of the total
- N energyW(T). However, because of a different dependence
an acceptable approximation. Ignoring the decay rates for thg

temporal evolution of the polarization amplitu@$z,T), we f;rtf\}s i?gﬂzlgaet?\?gl;%ﬁfe(r)enn;he mode laehe final result
have '

P(ZT)~ —877_0_22 672n2”2”2 COSZI’]WZ)e(iBIZHsz)T. W(T)~20'f0 e_X2_165204T/X4dX. (69)
n

(65)
) The integral cannot be expressed exactly in a closed form,
By contrast, it follows from Eq(64), and the orthogonal- 1t it does represent a monotonically decaying function of

ity relation the variable?c*T. As such, its characteristic decay time
12 must be of order
f cog2nwZ)cod2mnZ)dZ=3%6,,,, mn>1,
—-1/2
T =—, (70
that the polarization energ{6) has the long-time behavior Bo
W(T)~4mrzz e—4n2ﬂ—20—2e_(52/n4ﬂ—4)T’ (66) or, in physical units, of order
n
o 1 6%
which is thus affected only by the decay rates of the modes. T = TR=—— ) (7
Furthermore, Eq(66) contains no mode-mode interference Bo n(2)|M|2B304
terms, which tend to be present only over relatively short
times. Since oL = apB/kKq is the physical width of the initially ex-

As a special case, we consider the long-time evolution otited region, the decay of the total energy extends over a
the polarization amplitude at the midpoizit=0 in the slab, time that increases linearly with the slab thicknéssnd
for which all of the cosines in Eq65) are unity. Since the quartically with 14 as the initial excitation widtlr becomes
term inside the sum there changes very littlenas changed  smaller. We also note that since we have assumgglo
by one unit, particularly when is large, we may replace the <1, T/ =T2>T_, so that the decay of the polarization am-
sum by an integral oven with limits 0 and>, and thereby pjitude takes a much shorter time than that of the total en-

obtain the following asymptotically correct expression: ergy. This also justifies the neglect of the decay of mode
amplitudes when compared to the effect of mode dephasing
POT)~ \/EJme—x2+iﬁ02T/x2dX_ as the principal mechanism for the decay of polarization am-

7Jo plitude, proving an assertion made earlier.

The asymptotic form of the decay @ may be derived by
The integral on the right can be expres$2d] in the closed a version of the steepest-descent method. The details of the
form derivation are provided in Appendix C. The long-time be-
havior of W(T) turns out to have the form

P(O,T)%efo'v’m(l*i). (67)
_ 1\1/3
Thus even though each of the constituent modes of our ini- W(T)~2m/30e 3¢TTo) ™

tially sharply localized coherent excitation decays exponen-

tially, the summation over a large number of such modesvhich is a “stretched” exponential with a qualitatively dif-
gives rise to a “slowed-down” subexponential decay of theferent character and time scale from the deldag. (66)] of
superpositiorfP?(0,T) with a characteristic decay time the polarization amplitude.
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VII. INCLUSION OF A NONRESONANT BACKGROUND

9 112 A /
REFRACTIVE INDEX —’P(Z,T): —J dZ’e"”'Z‘Z \
aT 12

We have, in the interest of simplicity, to this point con-

2 ’
sidered a medium we have called polarium, consisting of Py (e"—1)B IMZ',T)
. . - . X|P(Z"\T)—i ,
atoms that only interact with the field through a single reso- 2 aT
nant transition. Whatever atoms are present in an actual me-
dium, of course, will have many spectral resonances which, |Z|<1/2. (76)

though scarcely excited, contribute a certain smoothly vary-

ing background to the dramatically varying polarizability in It is worth emphasizing tha®(Z,T) represents only a part of

the neighborhood of the resonant frequegy A more re-  the total polarization density, the part that is resonant and of

alistic picture of the behavior of the medium near its resoprimary interest in this paper.

nant frequency, in other words, should include a certain The presence of the derivative term inside the integral in

frequency-insensitive background refractive index Eq. (76) does not hinder formulation of E76) as an eigen-
The polarization densit§i(*)(,t) contributed by other ~Value problem. Solutions of E¢76) of the forme™" TP (2)

distant resonances, we may assume, follows the fiel@re Seen to obey the eigenvalue integral equation

E(+)(F,t), essentially instantaneously with a susceptibility

1/2 _ ,
(0?—1): APA(Z)zj dz'efz=2lp,(z"), (77)
—-1/2
IO, H)=(0?-1EM(r 1), @ o .
in which eigenvalue is defined by the relation
The quantityﬁ(” must be added to the polarization density 11 (0%-1)
p(+) resulting from the resonant transition in Ed0), which =+ U—’B_ (78)
generalizes that equation to AA 2
1 9%\ . . The integral equatioii77) is identical to Eq.(21), the inte-
(Vz— 2 EC)(r,t) gral equation for the interaction with a single resonance. All
of the eigenvalues and eigenfunctions are therefore the same
1 2 as those that we have already discussed in the previous sec-
== W[ﬁ(ﬂ(ﬁt)ﬂ,ﬂ_ 1)I§(+)(F,t)]. (73 tions. The only change is that the eigenvaluand the com-

plex decay constamt are no longer one and the same.
) . ) = (4) ) To see how the relatio(v8) between the decay constants
At this point we could combine th&™™’ terms in Eq.  ang the eigenvalues affects our important conclusions, we

(73), and seem thereby to simplify its structure. But thefirst note that their real and imaginary parts are simply re-
Green’s function for the wave equation would then have tQated. Forg? real, we have, e.g.,

be changed to account for multiple internal reflections within
the medium. It is much more convenient instead to retain the
formulation of the integral equation we have already used by

leaving the ¢~ 1)E‘*) term on the right-hand side of Eq.
(73) intact, and treating it as an additional source term for the | ) . . .
wave equation in free space. As a result, E44), (13), and An |mmed|ate consequence of the first of these relations is
(15)—(17) are only modified by adding the term given by Eq. that, like\, all of the modified decay constants also have

(72) to the corresponding integrands. The modified versiof’On-negative real parts, representing a radiative damping of
of Eq. (17), in particular, has the form energy from the medium in the absence of an external energy

source. This is consistent with the outgoing-wave boundary
conditions(24) that are also implicit in Eq(77).

Since the imaginary part of an eigenvalng, generally
dominates its real part according to the approximate expres-
sions(B4) and (B7), it follows from Eq. (79) that

ReA Rex ImA Im\x (o?-1)B
= , = + :
A2 NP JAR AP 2

(79

|ﬁ|2nokofu2

d
EP(z,t)z— o L/2[73(2 )+ (0?—1)Ez' 1)]

Xeik0|z—z'\dzl’ (74)

while the response of the resonant polarization dergitg

2_
ReA Re\ ImA 1 (o°=1)B @0

the field £ described by Eq(15) is formally unchanged:

d . nol w2
EP(Z,'[)—I 37

&(z,1). (75

Eliminating £ between Eqs(74) and(75) yields the desired

integral equation fof®, which in the scaled units defined by

Egs.(20) and(21) becomes

=~ , ~ +
A2 (Imn)2 A2 ImA 2

When expressiondg4) and(B7) are employed in Eq80), it

is readily seen that the imaginary parts of the constants
also tend to dominate their real parts. We may thus replace
|A|? in the denominators in Eq(80) approximately by
(Im A)2. This yields the following approximate expressions
for ReA and ImA:
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Re\ Im\ ferent, but experimentally more accessible, way of studying
ReA= 5> (Im A)?, ImA= =1 . the coherent resonances that we have described in the present
mA\) 14 UTﬂ”m\ paper.
(81)

APPENDIX A: CERTAIN SUM RULES

The eigenvalues for the nearly trapped modes for which FOR THE EIGENVALUES
Rg)x are small, as we have seen, .faII |_nto tW(_) classes: those From  the expansion of the kernel function
with |y,|<B, and therefore positive line shifts v and exdifZ—2']]
those with|y,|> 8, and therefore negative line shifts kn ’
For the eigenvalues that obey the former inequality and are _
given by expressionéB4), formulas(81) then yield the ap- eBlZ=Z' =3 \P,(2)P,(Z), (A1)
proximate values A

\ Re\ we can derive a succession of sum rules for the sums of
ImA= — ReA = — (82 integer powers of the eigenvalues. A simple example is the
o o linear sum rulg29). To find these, we construct ah-order

. , , , product of kernel functions that takes the cyclic form
For the eigenvalues defined by the latter inequality|> 3,

on the other hand, for which expressiqii¥) hold, there is 8121~ Zo| i B1Z - Z4 i1~ 24

. . . g'Plerc2lglblea= 4l L glPlen™ 21l
hardly any change in the decay rates and line shifts.

Adding a frequency-independent background susceptibil- ) .

ity also affects the local-field corrections. On average, thétnd integrate the product over the variablgsi=1,...n,
local field consists of the smoothed macroscopic field?hemefn thedhr_nlts 1/2 anddlls. When ea?r;;;;r;el f%CE[cr’]r In
=(+)(0 - 3(4)(7 e integrand is expressed by a sum of fop#dl) and the
E (ﬁr('i)) Elus contributions{15] of the form P*7(r,1)/3 orthonormality relation27) is employed, we find a remark-
andII*"’(r,t)/3 from the resonant and nonresonant parts ofp|y simple result. The multiple sums collapse into a single
the total polarization density. The effect of the resonant parkym over thenth powers of the eigenvalues, and we obtain
P(+)/3 of the local-field correction is merely to shift the reso-
nant frequency downward, as we noted in Sec. Il. We see 172 12 12 _
from Eq. (72), on the other hand, that the nonresonant part f lef dz, f 1/2dzn exfiB(|1Z,—Z,|

[1*)/3 adds to the macroscopic field*) a term 2

-1/2 —12

—1)I§(+)/3, which just renormalizes the resonant suscepti- . _ _ n
bility by the factor 1+ (02— 1)/3= (02+2)/3. 2=zt HZemziI= 2N (A2)
VIll. CONCLUDING REMARKS Partial sums over all of the even-mode eigenvalues or

We h developed a th ¢ ¢ coh over all of the odd-mode eigenvalues and of their powers
Ve avfe eveloped a td.eorybo transpor]E OI coherent e>fl'”nay also be obtained quite simply from Eé1). By replac-
citations of a resonant medium by means of e ectromagnetlﬁ1g Z' by —Z' in Eq. (A1), we obfain a closely related sum

radiation. When incoherent processes like Doppler or COI”'which, when added to and subtracted from E&L), pro-

sional broadening and density fI_uctuations_ are entirely i93,c05 two different sums: the first over all of the even
nored, spatially extended excitations tend in general to re- odes. and the second over all of the odd modes. This is

main trapped within the medium. The electromagnetic fiel ecause paired sums and differences of foRy(Z’)

can stimulate the dipoles of the medium to radiate efficiently P,(—Z') vanish, respectively, for odd and even modes
— I\ ) H

only if the spatial distribution of their phases is similar to the P, . In these even- and odd-mode sums, wis set equal

spatlal variation of the phase c_Jf the radiated field. SL_ICh effl;[0 Z' and an integration is performed over the range
ciently radiating modes of excitation have an essentially su;

perradiant character, with a characteristic rate of orger (—1/2,1/2), the partial sums are found to be
given by Eq.(36). The need for phase matching requires that

. ] (eziﬁ_l) (e2i,8_1)
these modes have wave vectors that are close in magnitude » \(e—14 2"~ a@O=1_2" =7
. . . . 2 H 1) 2 H L)
to the resonant valueg/c. All other polarization distribu- NG 2ip NG) 2iB
tions are only weakly coupled to the radiation field. Such (A3)

distributions must decay relatively slowly, if at all. They

represent modes of coherent excitation of the medium thawvhere the superscriptsando denote even and odd modes,

tend to remain trapped in the absence of incoherent relaxespectively. Note the special case of a thin sjab; 0, for

ation processes. which the sum over the even-mode eigenvalues tends to 1,
A somewhat different physical problem that can also bewhile that over the odd-mode eigenvalues vanishes. By fol-

described by our general theoretical model is that of refleclowing the same strategy as for the unrestricted $A),

tion and transmission of a wave externally incident on arwe can easily derive partial sums of any power of the eigen-

otherwise unexcited slab. That arrangement provides a difvalues for the cases of even and odd modes.
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APPENDIX B: ANALYTICAL AND NUMERICAL As for situation (a), we may label the roots again by an
CONSIDERATIONS OF THE EIGENVALUES integer indexm, and by means of a perturbative procedure
very similar to that used above, we can easily show that the

Here we derive approximate analytical expressions for th?oots take on the values

roots of the transcendental equatio@d$) and (47). When

either|y,|<B or |y,|> B, the roots may be approximated B 28
well by simple expressions. ym=2mm—i_—— and yn=(2m+1)7—i Zmr D’
(B6)
1 |nl<B

for the even and odd modes, respectively. The eigenvalues

Forms for the two equationgt5) and (47) that suggest Jiow follow from Eq, (48), and to ordei0()? are

simple approximations for the roots, when they obey th

condition|y,|< g, are B2 B
. . M=o 2 1 5p2 2
cot(y,/2)=iy, /B and tay,/2)=—ivy,/B. (Bl m-a m=m
2
It is obvious that the roots, for the two equations must be and A= 8B i 2B (B7)
close to (2n+1)7 and 2nar, respectively, wheren is an mo2m+1)4at  (2m+1)%27%

integer. We shall henceforth label the rogtsby the integer ] ) )
m, and suppress the subscripaltogether. The small correc- Because of the requiremepy,|> g, only eigenvalues with
tions, saye,,, to these zeroth-order approximations may be2M7>p and (2n+1)m>pg are well approximated by the

obtained by requiring that the corrected expressions for th&V0 expressions of EqB7). For largem, the eigenvalues for
roots; that is, the even and odd modes are again close to each other.

Ym=02m+1)7+e€, and yp=2mn+ey,, (B2) 3. Distribution of real and imaginary parts of eigenvalues

. o and the intermediate regime|y,|~B>1
separately obey the two equatiof®l). When this is done, o . . .
tane,, is set equal toe,, and e, is ignored in the ratio This intermediate case is much harder to treat and, in fact,

vl B—a procedure that is clearly valid for smalj,—the N0 general analytical approximations of high accuracy have
results are the following two-term expressions for the rootd@€n found. Itis possible, however, to find accurate approxi-

for the two equation$B1): mations for the maxima in the real and imaginary parts of the
eigenvalues when they are plotted as functiong &r large
22m+1) 7w values of 8. To do so, we need to understand better the
Ym=(2m+1)7—i T distributions of the real and imaginary parts.
From Eq.(48), the real and imaginary parts of the eigen-
Amm values\ ,, may be expressed in terms of the real and imagi-
and  yp=2mm—i B B3 nhary parts ofy2 as
The eigenvalues now follow from Ed48), and to order —2B1my?
O(1/B)*, are Rex= (B8)

[B2—Rey21?+[Im 1%’

N 2 . 2(2m+ 1)2772} 8(2m+1)272 X 5
=% 3 I 7 2 —Re
mT| g B 3 ma=— B[,BZ i Y\J . B9)
2 8m27T2 32,n2,n,2 [ﬁ - Re’}/)\] +[Im ’Y)\]
d Ap=|=+ i+ ., (B4 o
and Am B B’ ! B’ B4) As Egs.(B3) and (B6) suggest,y? has only a small imagi-

. nary part, while its real part increases essentially quadrati-
respectively. Note that rooteB3) for the even and odd gy with the mode indexm. As a result, for fixeds, the

modes are interleaved along the line joining the origin andyistribution (B8) of the real parts of the eigenvaluas, is
the point(1-2i/B) in the complexy, plane. As a final com-  pighiy peaked, as a function af, aroundm=~ B/(2), while
ment, we note that consistency with the requirement e distribution(B9) of the imaginary parts of the eigenval-
<p implies that for the two cases only those eigenvalues fof,e5 changes sign. This behavior is quite analogous to that of
which (2m+1)m<p and 2nw<p are well approximated {he real and imaginary parts of the complex susceptibility of
by expressiongB4). a dielectric medium with a single resonance frequency when
the frequency of incident monochromatic radiation is tuned
2. n>B through the resonance.
For this situation, we write the two transcendental equa- W€ shall now exploit this structure to compute the maxi-

tions in a form that exhibits the ratig/y, on their right- mum values of R& and ImA as functions of3. According
hand sides: to Eq. (B8), the largest value of Re,, is obtained roughly

when B8 has a value for which one of the allowed values of
tan(y,\/2)=—iBly, and coty,\/2)=iBly,. (B5) y% obeys the equality
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B=Reyi=(Reyy)?—(Im y,)2. (B10)

At each of these special values @f of which there are
infinitely many, Re\, assumes, as seen from E&8), its
locally maximum value

2p B

[Im ‘yﬁq| - Reym[Im vyl

max Re\,) = (B11)

We may similarly compute the largest values ofNmas a
function of 8. In the plots of In\,, versusg for differentm,
the local maxima are, according to BE®9), approximately
located at those values @f that obey the relation

B*=Reys—Im y5H=(Reym)?—(IM yp)?—2Reyy IM yp,.
(B12)

At thesep values, Im\,, attain their maximum magnitudes:

B B
||m’yr2n| 2|Re7m|m7m|.

maxImh\,) = (B13)

Note that the maximum values of the real and imaginary

parts of\ occur at values of3 that are not in general coin-
cident, although, since Rg,~ 8 and Imy,, does not change
much through the peak of EqB10), with the help of Egs.

(B11) and (B13) we may write

max Re\ ) ~2XmaxImA,,)~ (B14)

1
||m ')’m| .

Since for large|y,| the real part ofy,, dominates its
imaginary part, we see from Eq10) and (B12) that the
maximum values of Re and Im\A are obtained in the do-
main where| y,|~ 3. As a solution of Eq(45), let us write

Ym=2mm+2(e' +i€"), (B15)

wherem is integral ande’ and €” are real quantities which
are of order 1. Then an expansion to the lowest ordef iof
the right-hand side of the first of Egd5), and use of some
simple trigonometric identities, lead to the relation

tane’ +itanhe” . B

1—i tane’tanhée”

EH B

| — .
2ma+2e’  2mia?

(B16)
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requires that tag’~1. With this condition and the preced-
ing equation, the imaginary parts of E@®16) obey the re-
lation

1 (Im ym)?
—tanhImy,~1— —ﬂ

2 (Reym)? (B17

Since the right side is very close to 1, we may replace
—tanhlmy,, by its asymptotically correct value 1
—2 exp(=2]lm y,|). Further, since Re,, is close tog, we
have the result

1
e Imyml = ﬁﬂm Yenl- (B18)

For very large values of3, a convenient form of Eq.
(B198) is obtained on taking its logarithm

|Im y,|=log 28—log|Im 7, .

This relation may be solved fdim v, | iteratively with the
following two-term result:

2pB
002 B) . (B19)

The largest real and imaginary parts of the eigenvalues now
immediately follow from Eq(B14):

||mm=|og(

max Re\ ) ~2Xx max Im\ )~ log(2/10g 28) "
(B20)

Similar considerations to these may be used to find the
largest real and imaginary parts of the eigenvalues for odd
solutions. However, since the distinction between the odd
and even solutions becomes small at large mode indices, the
final results corresponding to E@B20), but for the odd
modes, are nearly the same.

4. Numerical considerations

Our considerations of the eigenvalues have, so far, dealt
with approximate analytical expressions for them. Numerical
calculations are necessary, however, to compute the eigen-
values with high accuracy, particularly whep, |~ 8. A nu-
merical method that converges rapidly for all valuesygfis

Given that the imaginary part dominates the real part ortn iterative one based on the identity

the right in Eq.(B16), we have a variety of possibilities, it
would seem, for values o&¢’ and €” that would lead to

consistency with the left side of that equation. In particular,

for the largest R& for which relation(B10) holds, since the
purely imaginary quantity on the right side of E(B16)
assumes the value

1— (Im 7m)2
(RE’ym)2

_1(myy)?
2 (Reym)?’

it may be shown that consistency with the purely real quan-

tity on the right of Eq.(B16), which is of order 18, then

1+z)

el (B21)

i

— 1/ - _
tan ~(iz) 2Iog(

When|v,|> 8, the solutions to the eigenvalue equatidh)
for the even modes may be written conveniently in the form

Ym=2Mm+ 2¢,
in which the correction 2 obeys the equation

iB

2mm+2e

e=—tan !
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Use of identity(B21) then generates the equation APPENDIX C: ASYMPTOTIC EVALUATION
OF AN INTEGRAL
B iI 2mm+ B+ 2e€ R22 The int |
6——509 m ) ( ) e Integra
: . . . i 2 (=
in which, on the right-hand side, we initially setequal to a F(u)= _f e*X2*16u/X4dX (C1
complex value with small modulus, but then refine its value Valo

iteratively by means of the equation.
When|y,| < B, the solutions to Eq45) are best obtained
by first writing it as

may be evaluated approximately whenis positive and
large. Because the integrand is highly peaked as a function of
X, the largest contributions to the integral come from the
" immediate vicinity of the maximum of the integrand. It is
cot( y,/2)=i—, sufficient to carry out, in the integrand, a Taylor expansion
B of the exponent to the lowest quadratic order around its

and then looking for its solutions of form maximum, which yields

Y= (2m+ 1) 7+ 25, e—(x2+16u/x4)%e—3~22/3u1/3e—6(x—x0)2’ (C2)
wherex,, the maximum of the exponent, is equal %2/,
The neglected third-order term in the exponent depends on
as 1Y% and so, throughout the range arouxd x, over
i B+(2m+1)m+28 which the expressiofC2) has a value significantly different
o=— Elog B—(2mi)m—25)" (B23)  from zero, a range of order 1, the neglected term is small,
provided u¥®>1. For such largeu values, approximation
In much the same way as fet we could then determine a (C2 represents the integrand quite accurately over'th.at
highly accurate value fof by a repeated use of E@B23). In range. To a similar accuracy, we may also extend the; limits
most instances, we needed no more than about ten iteratioR$ integration for the variable—xo to +o. The resulting
to obtaine and 5—and therefore the roog,—to a precision Gaussian integral is a simple one to evaluate, and we obtain

of a part in 18° A similar procedure can be implemented to

It is straightforward to show tha® obeys an equation analo-
gous to Eq(B22):

solve Eq.(47) efficiently for the roots of the odd modes as F(u)~ ie73(4u)1’3. (C3)
well. V6
[1] R. Wood, Physical Optics 3rd ed. (McMillan, New York, (1991).
1934, reprinted by Dover, New York, 1967%. 597. [10] D. Burnham and R. Chiao, Phys. Re\b8 667 (1969.
[2] L. Biberman, Zh. ksp. Teor. Fiz17, 416 (1947. [11] M. Crisp, Phys. Rev. AL, 1604(1970; 5, 1365(1972.
[3] T. Holstein, Phys. Revz2, 1212(1947; 83, 1159(1951). [12] S. Prasad and R. Glauber, Phys. Rev31A 1575(1985.
[4] H. Post, Phys. Rev. 83, 2003(1986. [13] N. Skribanowitz, I. Herman, J. MacGillivray, and M. Feld,
[5] J. Huennekens and A. Gallagher, Phys. Re28A238(1983; Phys. Rev. Lett30, 309 (1973; J. MacGillivray and M. Feld,
J. Huennekens, H. Park, T. Colbert, and S. McClérd. 35, Phys. Rev. Al4, 1169(1976); F. Mattar, H. Gibbs, S. McCall,
2892 (1987; T. Colbert and J. Huennekeniid. 41, 6145 and M. Feld, Phys. Rev. Let6, 1123(1981).
(1990. [14] R. Glauber, Phys. Let21, 650 (1966.

[6] M. van Albada, B. van Tiggelen, A. Lagendijk, and A. Tip,
Phys. Rev. Lett66, 3132(1991); G. Watson, P. Fleury, and S.
McCall, ibid. 58, 945 (1987).

[7] M. van Albada and A. Lagendijk, Phys. Rev. Le®b, 2692
(1985; P. Wolf and G. Maretjbid. 55, 2696 (1985; M. van

[15] J. JacksonClassical Electrodynami¢cs2nd ed.(Wiley, New
York, 1979, p. 154.

[16] S. Prasad and R. Glauber, Phys. Rev31 1583(1985.

[17] F. Arecchi and E. Courtens, Phys. Rev2A1730(1970.

Albada, M. van der Merk, and A. Lagendijibid. 58 361 [18] See, .e.g., R. Cou.rant and D Hilbevtethods of Mathematical
(1987). Physics 1st English ed.Wiley, New York, 1953, Vol. I,

[8] R. Dicke, Phys. Rev03, 99 (1954. Chap. Ill, Sec. 5.
[9] J. Hopfield, Phys. Rev12, 1555(1958; C. Kittel, Quantum  [19] U. Fano, Phys. Revl24, 1866(1961). ,
Theory of Solids2nd ed.(Wiley, New York, 1987, p. 42 B. [20] I. Gradshteyn and I. RyzhikTables of Integrals, Series, and

Huttner, J. Baumberg, and S. Barnett, Europhys. 1&t177 Products(Academic Press, 1965formula 3.325.

063814-21



