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Nonclassical effects of a driven atoms-cavity system in the presence
of an arbitrary driving field and dephasing
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We investigate the photon statistics of light transmitted from a driven optical cavity containing one or two
atoms interacting with a single mode of the cavity field. We treat arbitrary driving fields with emphasis on
departure from previous weak field results. In addition effects of dephasing due to atomic transit through the
cavity mode are included using two different models. We find that both models show the nonclassical corre-
lations are quite sensitive to dephasing. The effect of multiple atoms on the system dynamics is investigated by
placing two atoms in the cavity mode at different positions, therefore having different coupling strengths.

PACS numbdps): 42.50.Ct, 42.50.Lc, 42.50.Ar

[. INTRODUCTION effect does not. This has led us to consider complications in
the experiments that may be responsible for the discrepancy,
In this paper we report on extensions to previous work orincluding deviations from the weak field limit and dephasing
dynamical cavity QED effects in the photon statistics ofdue to the atoms entering and leaving the cavity. The experi-
transmitted light from a driven optical cavity coupled to an ments use an atomic beam to introduce atoms into the cavity
ensemble of two-level atoms. Much work has been done o0 that the time of flight across the mode is on the order of
structural cavity QED effects such as energy level shifts and€n Spontaneous emission lifetimé8]. We expect that
the modification of spontaneous emission rates. These stru@éphasing due to atomic traversal of the cavity will have a
tural effects can be seen to arise from semiclassical modeldetrimental effect on nonclassical correlations. In addition,

In addition, work has been done on dynamical effects Wher‘g'eviations from the weak driving field limit and interactions

the coupling between the cavity field and atoms has a sigWIth spectator” atoms far from the mode waist may be

nificant effect on the evolution of the system, in particular inlmportant. These effects are investigated in this paper by

. ! ; numerically solving the master equation for the system and
the strong coupling regime where a single quantum of energy

and hence single quantum fluctuations give rise to nontrivial
dynamics. In this regime the field cannot be viewed as mildly

perturbed by the atom{good cavity limiy, nor are the atoms 107 (a)
mildly perturbed by the fieldbad cavity limi). For a review l
of the work on structural and dynamical effects in cavity 0.5
QED, see Ref[1].

The problem of a single two-level atom coupled to a 0.0 ' . . : ' : '
single-mode field was originally studied by Jaynes and Cum- 0 2 4 6 8
mings[2] and extended to many atoms by Tavis and Cum-

mings[3,4]. These models have been extended in recent the- 1'5'_ (b)

~

N . .. . [
oretical work to include spontaneous emission and cavity =~
e

field decay[5,6], and atomic transit time broadening and 1o 1

detunings[7]. Nonclassical correlations in photon statistics 0.5

that violate a Schwarz inequality have been predicted for this ;

system, including photon antibunchinglefined here as 0.0 T T T
g@(0),>g@(0)], and sub-Poissonian statistidg?)(0) 9 2 4 6 8
<1]. Other effects have also been predicted, which we refer I (©)

to as overshoots and undershodtg®(7)—1|>|g®(0)
—1|, whereg®(7) is the normalized second-order correla-
tion function. Examples of these nonclassical correlations
from previous weak field results are shown in Fig. 1. Figure
1(a) shows photon antibunching and sub-Poissonian statis-

tics, (b) shows an overshoot violation, ait¢) shows an un- 6 8
dershoot violation. v

Photon antibunching has been seen experimentally in this
system by Rempet al. [8]. Overshoot violations have re-  F|G. 1. Examples of nonclassical photon statistics in the weak

cently been seen by Mielke, Foster, and Oro@p In gen- field limit. (a) Sub-Poissonian statistics and photon antibunching;
eral, the theory matches the experiments in terms of qualita) an overshoot violation of the Schwarz inequality} an under-
tive behavior while the quantitative size of the nonclassicakhoot violation of the Schwarz inequality.
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v of the field where the coupling is a maximum. In this paper
we allow the atoms to be placed anywhere in the mode so
that a range of couplings is allowed for different atoms. The

E é é X cavity field is driven by a classical laser field with the driving
£ v field—cavity field coupling described by the Hamiltonian
—_— (o

H =i%E(aTe '@d—add), ®)

whereE is the classical laser intensity scaled such Hat is

the photon flux injected into the cavity. Throughout the pa-

) o per we assume the atom, cavity field, and driving field are on
FIG. 2. A diagram of the system_. The cavity field decgys at aresonance(()ozwc= W= wg).

rate «, the atom spontaneously emits at a rafeand there is an Dissipation in the system gives rise to nontrivial irrevers-

electric dipole coupling between the atom and cavity field with jple dynamics. Cavity field damping and atomic population

strengthg. and polarization decay are described by superoperators act-

ing on the density matrix of the system which are derived

by quantum trajectory simulations. Rather than investigating = S T .
all possible effects at once, we isolate them and try to unde?ﬁISIng standard method$0,11]. Cavity field damping is de

stand what is most critical. scribed by
The general outline of this paper is as follows. In Sec. I

we present the physical model of the system under investi-

gation and describe the methods of solution. In Sec. Ill Weyhere « is the rate of cavity field damping. Atomic popula-

discuss the photon statistics of the transmitted light outsid@on and polarization decay are described by

the weak field limit. Section IV presents two models of

atomic transit dephasing and the resulting photon statistics. y o o o

In Sec. V we include effects of a spectator atom with a Lap=7 2 (20 pol,—d ol p—pd.a), (D

coupling that is a fraction of the maximum coupling, and !

finally we conclude in Sec. VI.

Lep=k(2apa’—atap—pa'a), (6)

where vy is the spontaneous emission rate of an atom. The

full master equation in the Born-Markov approximation is
IIl. PHYSICAL MODEL then

The system under investigation is an extension of the i
Jaynes-Cummings Hamiltonian to include effects of atomic  ,_ _ %[HA+HF+ Hap+H ,pl+ Lep+ Lap— Lp.
and cavity field decay as well as a coherent driving field. A
schematic diagram of the system is shown in Fig. 2. The field (8

and atomic Hamiltonians are given b . . . : :
g y A numerical solution of the master equation is carried out in

He=hw.a'a, (1)  the Fock state basis, and also a quantum trajectory simula-
tion is developed from the master equation.

- j . . .
Ha= 2,: hiwaos, 2 A. Numerical solution of the master equation

o o _ ~ The master equation in the Fock state basis is
and the atom-field interaction in the rotating wave approxi-

mation is given by bn,+;m,+=_g N+t1pnig—im+—9VM+1pn wimer -

+ E\/ﬁpn—1,+;m,++ E\/apn,+;m—1,+

Har= 2, ifigj(a’al —adl). 3
. —EVn+1pnigem+—EVM+1pn pimea s
The cavity field creation and annihilation operators afe +2kN(N+1)(M+1)ppig 4 me1+
and a, respectively, andr’. and ¢}, are Pauli operators for T
the jth two-level atom. The atom-field coupling strength is —[x(n+m)+ylpn +:m+ (93

determined by _
Pn,—im-= g\/ﬁpnflﬁ;m,f + g\/ﬁpnﬁ;mfu

1/2
We .
gj_M(ZﬁGOV) SII’]ij ’ @ +E\/ﬁpnfl,f;m,f"'E\/Epn,f;mfl,f
whereu is the dipole transition matrix element between the —BVn+lpniaim-—EVM+1pn mia-
two atomic statesy is the cavity mode volume, and &z 2k T D (m+1)
. o ! ky(n+1)(m+1 _. _
takes into account the position of the atom in the mode. In (n+1)( )P ime1,
previous work it was assumed that the atoms are at antinodes —k(N+M)py =+ YPn +:m + » (9b)
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Prtim—=—0VN+1pnitim—+OVMpn 41+ where[O,p]. denotes the anticommutator &f and p. A
' ' ' non-Hermitian Hamiltonian that reproduces the continuous
+ENpn-14im-+EVMpy s 1 evolution of the density matrix is defined as
—EVn+1lpnigom-—EVM+1py oimea- H=Hg+iAaHp. (13
T2k NN+ 1)(M+1)ppsg+imen— The rest of the master equation enters as collapse operators
B B which are applied at random times whig(0,1)<P., where
[r(n+m)=¥2pn,+m.— (%9 R(0,1) is a random number between zero and 1 and
Pt = Pt in— (9d) P.=(y|O10|y) dt. (14)

wherep,, +.m = =(n,=|p|m, %) and+ and — denote upper In our system we have two collapse operators, corresponding
and lower atomic states, respectively. to spontaneous emission out of the side of the cavity and
We have numerically solved the master equation for thghotons lost through the cavity mirror,

steady state for arbitrary driving field by truncating the Fock
basis at a point where the population |of,,,,*) is less Osponem = Vyo_, (153
than 10 4. The second-order correlation function

Ocavityloss: 2ka. (15b)
(a'(0a'(na(na(0))

> (10 The time step size is (20~ wherer is the fastest rate in the
(a'a)ss problem. In the event that both collapse probabilitiés

spontaneous emission and cavity emissiare greater than

is calculated from steady state matrix elements using thgne random number, yielding two collapse processes in a

quantum regression theorem due to L{a®]. This correla-  single time step, we use a random number to choose one of

tion function is, of course, the conditional probability of de- the collapses. The time step is small enough that very few of

tecting a photon at= 7, conditioned on detecting one &t these events happen, if any. At each time step, the wave

=0.0. It is normalized to the conditional probability one ob- function must be normalized. If the random number is such

g(n) =

tains from a field in a coherent state. that we perform Hamiltonian evolution, the norm is not pre-
served as the trajectory Hamiltonian is non-Hermitian. Also,
B. Quantum trajectory simulation a collapse operator must be augmented by normalization, as

fthe norm changes upon application of the collapse operator.

We have developed a quantum trajectory simulation %n Sec. IV we describe dephasing due to an atom leaving the

this system from the master equation following the formal-__~ .
cavity using another collapse operator.

ism of Carmichae]13]. We unravel the master equation into Because this unraveling of the master equation is based

a piece describing continuous evolution and a set of collapsen photon counting experiments, the calculation of the

operators in a way that is based on a simulated photon couns . o . .
. . second-order correlation function is carried out quite natu-
ing experiment,

rally. The collapse operata corresponds to emission and
Lp=(L—S)p+Sp, (11)  detection of a photon from the cavity field mode. We calcu-

late g®(7) by building up a histogram of delay times be-
where (C—S)p is identified as the terms that can be written tween photon detections averaged over a long evolution time
as commutators or anticommutators afja is identified as  in a way analogous to experimental measurement.

all terms which can be written a®'pO. This particular The photon statistics of the transmitted light have already

unraveling is well suited for studies of photon statistics ag’@en calculated in the weak field limit using a truncated five-

the O’s represent quantum jumps due to emission of a pho__state basis where the system has up to two quanta of energy

ton. The continuous evolution of the system is described by it [5]. The three types of n.onclassical behavior_previously
(L—S)p while Sp describes collapse events which punctu- iscussed have been seen in subseq'uent' experlments;. how-
ate the evolution. We define a closed system Hamiltoniarf VS Current experiments are not strictly in the weak field

and a dissipative Hamiltonian from the unraveled masteEm't' It_ is of m_tgrest_then to calculate the photon statistics
equation as or arbitrary driving field and to see to what extent the non-

classical effects persist. It is expected that for strong enough
i driving field, the atoms will saturate and the nonclassical

(L—8)p=— %[HSvP]"_[HD N photon_ correlatlo_ns will be washed out as the ca_V|ty will
essentially contain a coherent state that is only mildly per-

i turbed by the presence of the atom.

=——[Ha+Hg+Hae+H_ ,p] Let us look at the photon correlations in the weak field

h limit from the point of view of quantum trajectories. In this

case the system can be described in the steady state by a
, (120  wave function, as described j6]. The detection of the first

+ photon emitted from the steady state collapses the wave

p

afa+> ol ol
]
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function of the system|{)ss)—a|#ss)) and the subsequent 20
time evolution as the system returns to the steady state de-
termines the photon correlations. The second-order correla-

tion function is given by the probability of detecting a sec-

ond photon normalized to the probability of detecting a

photon in the steady state, 1.5

S8

t
g(z)(T)Z <a (T)a(7)>c‘ (16)

(a'a)ss

+
C/<a a>
P

From a trajectory point of view we can interpret Efj6)
as the relative probability of a second cavity decay coming at
time 7, given that one occurred &t 0.0. This is because the
cavity collapse event probability is proportional to the mean
photon number. This is extremely small in the weak field
limit, and so the most common thing after an emission of a
photon out of the cavity is that the system evolves back to
the steady state. Only very occasionally for very weak fields
does a second collapse occur before the system returns to

+

<a a>

steady state. Also, spontaneous emission events, where the %% s 4 s s
atom emits out of the side of the cavity, are proportional to
the excited state probability, which again is small for weak L

fields. So rarely do we get a cavity or spontaneous emission

collapse, and thus even more rarely two collapses in a t'mgteady state photon number for the cavity field. This is identical to

span on the order of 1 or y 1. Exp_erimentally, these event @(7) in the weak field limit. Parameters arg/y=1, «/y
pairs are the source of delayed coincidence counts. For weagigolﬁ andE/y=0.01.

fields, the rarity of these events means long counting times.

In the trajectory formalism, this is also the case, except thafacqrg the time till the next 10 or so cavity emissions. This

we can ignore the long times the atom spends i_n t_he Steaqéﬁstogram is turned intg®(7) by normalizing the long de-
state before the next collapse. In the weak field limit, for thelay time value to unity.

trajectory calculations, we start the system in the steady

state, collapse the wave function, and let it evolve to get
9®@(7), as in[7]. IIl. NONWEAK DRIVING FIELD

An example of this is shown in Fig. 3 for the case of the 1 gbtain results outside the weak field limit, we pursue
overshoot violation, where the above formula reproduces thg,e density matrix approach. The computations are much
earlier r_esults{5,6]. Outside the weak field limit thg photon ¢5ster than the trajectory methad(N— 1)/2 equationgwith
correlations are altered for two reasons. Most simply, they the total number of statesre solved instead o, but in
time evolution following a collapse from steady state will be (e trajectory approach thoge equations must be solved
altereq by the stronger dr|V|_ng field. Another effect, hOW'many times, usually averaging over a million or so realiza-
ever, is the presence of multiple collapses before the systegyns. The trajectories can still help us untangle the physics
returns to the steady state. Consider a multiple-collapse P'Gnvolved, however. Figure 4 shows the time evolution of
cess. The first photon comes from the steady state and cc;da*ra>c following a photon emission from the steady state for
lapses the wave function of the systeMydoiapsa)  a variety of system parameters. The overshoot persists in the
=alsg)). Now the time evolution occurs as before. How- eyolution of the field following emission of a photon from
ever, the second photon collapses t_he system to a new stajg, cavity for a driving field as large &/E,=0.41. The
which depends on the delay time since the emission of thggershoot and sub-Poissonian statistics survive for driving
first photon[|coiiapse) =&l Ycoliapsa(7))]- If @ third pho-  fielgs as large a€/E.,=0.8 and E/E.,=0.37, respec-

ton is emitted before the system returns to steady state thgRjely. The saturation field strengt,, is the driving field
its delay time will depend on the details of the evolution ¢4, \which

from |¢conapse)- When averaged over many instances, this

process will wash out the nonclassical effects because of the 2

different evolution following differentwconapsg). To obtain (n)= nsat:y_- (17)
g®(7), outside the weak field limit, we start the system in 8g°

the ground state, and let it evolve for 10—20 cavity or atomic

lifetimes (whichever is longest and then keep track of the The photon statistics of the transmitted field are shown in
time between cavity emission events and build up a histoFig. 5 for the three types of nonclassical effects seen in this
gram of photon detection delay times. This is exactly what issystem at a variety of driving field intensities. Figure)5
done experimentally. After a cavity emission event, weshowsg®)(7) for system parametersg(y=1,x/y=0.77)

FIG. 3. The conditioned photon number normalized by the
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(@)

6 8
(®)

6 8
©

5 :

FIG. 4. Time evolution of the conditioned cavity photon number  FIG. 5. Photon statistics of the transmitted field for varying
following emission of a photon from the cavity and collapse of thedriving field strength. The plots are fofa) g/y=1, «/y
wave function from steady state. The plots are fay g/y =0.77, E/y = 0.025(solid line), 0.125(dashed ling 0.2 (dotted
=1, k/y=0.77, E/ y=0.1(solid line), 0.2 (dashed ling 0.3 (dot- line), 0.35 (dash-dotted ling (b) g/y=2, x/y=5, E/y=0.025
ted line; (b) g/y=2, x/y=5, E/y=0.1 (solid line), 0.5 (dashed (solid ling), 0.25 (dashed ling 0.35(dotted ling, 0.5 (dash-dotted

line), 1 (dotted ling; (c) g/y=1, k/ y=1.6,E/y = 0.1(solid line), line), 1 (small-dashed line (c) g/y=1, «/y=1.6, E/y=0.025
0.5 (dashed ling 1 (dotted ling. (solid line), 0.25(dashed ling 0.425(dotted ling, 0.6 (dash-dotted
line).

that produce an overshoot violation of the Schwarz inequal- _ _
ity [g@(7)>g®(0)] in the weak field limit. At a driving it has been assumed that the atoms are all fixed at antinodes

field of E/Eq4=0.17 the overshoot violation is gone; thus (1f the cavity ﬁ?,lzd and SO have the rT‘aXim“m coupligg
this nonclassical effect is quite dependent on the weak driv=#4(@c/2h€V) ™ Experiments on this system have used
ing field. Figure %b) shows photon statistics for system pa- l0Mic beams to send atoms through a cavity. This atomic
rameters §= 2/, x/y="5) that produce an undershoot vio- traversal of the cavity will introduce two new effects. First,
lation of the Schwarz inequality1—g®(7)n>g?(0) the atom-cavity fleld_couplmg will depend on the position of
—1] in the weak field limit. Here the nonclassical effect the atom in the cavity, which changes in time as the atom
disappears at a driving field d&/E,,=0.28, showing that traverses the cavity. One might think that this would destroy
this is a more robust effect Figurgcaig shows photon statis- the nonclassical correlations. However, the atoms with the
tics for system parametergl(y=1,</y=1.6) that produce largest coupling interact most strongly with the field and are
photon _antibunching [g®(0) ’>g(2)(0)] and sub- Most likely to contribute to the correlations. So the atoms
Poissonian statistidsy(0)<1] i+n the weak field limit. |n  Nearan antinode will have the largest contribution and other

this case the nonclassical effect persists UBLIE, .= 0.16 atoms may have little effect on the correlations. This issue

where the system shows slight bunching and super\_/viII be further addressed in Sec. V. The second effect of

Poissonian statisticg§Notice that the nonclassical effects are threnrlsc J:?Z:\r/sezl tlr?edczp\)/ri]tagl??s, tvr\]/g(:f]fg;ctl:]; vagigr?sr; dztroirr?
not as robust as the time evolution of the cavity field would Y-

indicate. Therefore the destruction of nonclassical effects i%h'?/\/s:ﬁg?/g'used o aporoaches to model the dephasing due
in part a result of multiple-photon procesgdsor all system PP P 9

parameters the transmitted light becomes super—Poissoni%% atomic traversal. The first, and most common for theorists
as the driving field is increased. 0 use, is to add a term to the master equation which de-

scribes nonradiative decay of atomic polarization

IV. ATOMIC TRANSIT DEPHASING p=Lp+ ypon(op0,—p). (18

We now turn our attention to the effects of atomic tra- This term in the master equation has its origins in collisional
versal of the cavity on the photon statistics. In previous workprocessegl1l] and so may or may not accurately describe the

063810-5



J. P. CLEMENS AND P. R. RICE PHYSICAL REVIEW &1 063810

dephasing that occurs when an atom leaves the cavity. For 2.5
this approach, we use density matrix methods and the quan- :
tum regression theorem to calcul@®)(7). We refer to this
ascollisional dephasing.

The second approach uses a quantum trajectory simula-
tion of the system to model the dephasing. In this approach
we assume that there is always exactly one atom in the cav-
ity. An atom leaves the cavity and another atom enters the
cavity in the ground state at a rajg,. The atom enters the
cavity in the ground state, but it is not immediately clear how
to deal with the atom that leaves the cavity. This atom is in
some superposition of excited and ground states and these
states are entangled with the cavity field state. One approach
would be to leave the photon number distribution of the cav-
ity field unchanged using a collapse operator, which has the
following action on the state of the system:

(@)

(b)

g’

©

9= (Conlen) +cqlgn) |40

=2 (Centcnlg.n). (19

However, this is not a consistent application of the quantum

trajectories. Consider the evolution of the atom after it leaves FIG._6. Photon statistics of the transmitted field with collisional
the cavity. The atom at some later time may emit a photorfléphasing. The plots are fofa) g/y=1, «/y=0.77, Ely
into the vacuum, meaning it was in the excited state when if- -1 ¥pn/=0 (solid line), 0.05(dashed ling 0.2 (dotted line;
left the cavity. Or it will never emit a photon, meaning it was (b) g/y=2, «ly=5, E/y=0.1, ypn/y=0 (solid line), 0.05 (dashed

in the ground state when it left the cavity. In general, the!in®), 02 (dotted ling; (c) g/y=1, x/y=1.6, Bly=0.1, ypn/y=0
atom and environment and by entanglement the atom-cavity?®'d e 01 (dashed ling 0.2 (dotted fine.

system will then be described by a density operator. HoW—pis collapse operator is then applied at a Gaussian distrib-

ever, we wish to use a pure state to describe the atom-cavimed series of times with averagey}4 and a full width of

system conditioned on the detection of transmitted photonsl/yph as this approximates the traversal times of atoms with

To be consistent we must use a pure state to describe they;ayvell-Boltzmann velocity distribution. As with any col-
atom after it has left the cavity. This corresponds to foIIow—|apse operator, the wave function must be normalized after

ing the atom after it has left the cavity and determiningits application. This model of dephasing differs from colli-

whether it ever_emits a photqn or not. Rather than actuall)éional dephasing in two important ways. First, it does not
follow the atom in the calculation, we use a collapse operatoper the deterministic Hamiltonian evolution between col-

that picks either the excited state field distribution or thejhqeg ot all, whereas the collisional dephasing in the trajec-
ground state field distribution of the system and then place§Ory picture would have a collapse component as well as

the new atom in the ground state. This operator has the fo'éausing the decay of coherence in the continuous evolution.

lowing action: Second, this dephasing always places the atom into the
ground state whereas the collisional dephasing places the
atom in the ground or excited state with probabilities deter-
|¢>:; (Cenl€M)+Cqnlg,n)—4c) mined by the populations. We refer to this second approach
astransit timedephasing.
= el n) with probabilit S 2 Now we turn to our results and a comparison of the two
— CenlY, P Wy 2 Cen» types of dephasing. Because transverse dephasing does not
affect the deterministic evolution of the system, we expect
(208 that for a given dephasing rate it will be less destructive of
the nonclassical photon statistics than collisional dephasing.
In Fig. 6 we show the second-order correlation function with
) =2 (Cenl€.N)+Cqnlg.N))— 1) collisional dephasing. All three types of nonclassical effect
" are quite sensitive to this dephasing with,= 0.05 destroy-
) - ) ing the overshodiFig. 6(a)] and undershodfig. 6(b)] while
:; Cg.nlQ,n)  with probability ; Cqpn - the sub-Poissonian statistics survive unjj,=0.2 in Fig.
6(c). Our results for the transit dephasing are shown in Fig.
(20b 7. The overshoot in Fig.(d) is again extremely sensitive to
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1.5

1.0 .

0.54

g ()

FIG. 7. Photon statistics of the transmitted field with atomic  FI!G. 8. Photon statistics of the transmitted field with two atoms
transit dephasing. The plots are fé@ g/y=1, x/y=0.77, Ely in the cavity at arbitrary coupling Strength: The plots are (@r
=0.1, yn/y=0.05(solid line), 0.1 (dashed ling 0.5 (dotted ling; ~ 91/y=1, «/y=0.77, E/y=0.1, g,/y=0.1 (solid line), 0.5 (dashed
() g/y=1, kly=1.6, Ely=0.1, y,n/y=0.05 (solid ling, 0.1  line), 1 (dotted ling; (b) g,/y=2, «/y=0.77, E/y=0.1, g,/y=0.2
(dashed ling 0.5 (dotted line. (solid line), 1 (dashed ling 2 (dotted ling; (c) g./y=1, «ly

=1.6, E/y=0.1,g9,/y=0.1(solid line), 0.5 (dashed ling 1 (dotted

dephasing with classical statistics fgg,/y=0.05 while the line).

sub-Poissonian statistics in Figby are more robust, surviv- In Fig. 8 we plotg®(7) while allowing the coupling of
ing up to ypn/y=0.5. Notice that transit time dephasing is the spectator atongp) to vary fromg/10 tog,. We see that
not as destructive to the nonclassical effects as COIliSionqbr all three sets of parameters the photon statistics vary con-
dephasing. This is consistent with experimental results thainuously from the single-atom result to the two-atom result
observe antibunching with transit traversal times on the ordeith no qualitative deviation in the photon statistics. By
of an atomic lifetime[8,9]. “two-atom” result, we mean the result obtained [i] for
N=2 atoms. Recall that the theory in that paper was valid
for arbitrary numbers of atoms, but did assume that they all
had the sameg and were motionless. Also it is noticeable
We now consider the effect of placing two atoms insidethat N=2 atoms can have a large amount of antibunching.
the cavity, either both at antinodes of the field, or allowingThis is due to the fact that the pair of atoms acts as a collec-
one of the atoms to be arbitrarily placed so that its couplingive dipole with g.;;=+/(N)g. The plots in Fig. 8 suggest
is in the range O t@,. Dephasing is not considered in this that the spectator atoms can have an observable effect on the
section. In the experiments conducted on this system it istatistics but they do not destroy the nonclassical correla-
likely that there is some effect from spectator atoms whichtions, at least when close to the ideal condition of hawihg
are located away from an antinode of the field and so do naditoms at antinodes in the cavity. A group of many spectator
contribute to the nonclassical photon statistics. In actualityatoms may be more detrimental to nonclassical correlations.
as the atoms fly through the cavity, some are strongly We now consider the case where both atoms are placed at
coupled and some are not. We refer to the weakly coupledntinodes of the field. The photon statistics for this system
atoms as spectator atoms. If there are enough of these atormave been solved for arbitrary number of maximally coupled
they may simply absorb light and emit it out of the cavity, atoms using a set of symmetrized Dicke states to describe the
thus effectively decreasing the quality of the cavity. Areatomic excitation7]. This would correspond to an experi-
there other effects as well? As a first step toward understananental setup where it is not possible to tell which atom spon-
ing the effect of spectator atoms, we place one extra atom itaneously emitted a given photon. The Dicke states are most
the cavity with a coupling that is some fraction of the origi- appropriate when atoms are localized within a wavelength of
nal atom’s coupling. We use a quantum trajectory simulatiorone another. However, there would be experimental situa-
to calculate photon statistics. tions where the symmetrized states are not valid states with

V. TWO-ATOM EFFECTS
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2.5 For weak driving field we expect that there will be no
2.0 difference between these types of collapse because in this
154 limit we detect only photons emitted from steady state. How-
104 ever, for stronger driving fields we begin to detect photons
1 emitted from the collapsed state and the two collapses give
2'2_. different collapsed states ol |ys) or o%|¢sd VS
. T T T T 4 T

CDickel Ws9), and therefore, different photon statistics. Also,
if the atoms all have different coupling strengths, the
symmetrized Dicke states are not appropriate.

In Fig. 9 g®®(7) is plotted for the two types of collapse
for a driving field of E=0.5. Figure 9a) shows a significant
difference as the nonclassical statistics are completely gone
for the nonsymmetrized collapse. FigurébPshows no de-
pendence on the type of collapse. Figufe) $hows a mild
dependence on the type of collapse, with a slightly larger
value ofg‘®(0) for the nonsymmetrized collapse.

o
n
I
o
[}

VI. CONCLUSION

0.0 . L . L . L . We have investigated extensions to previous theoretical
0 2 4 6 8 work on a driven atoms-cavity system with dissipation. We
YT have calculated the normalized second-order correlation

FIG. 9. Photon statistics for the transmitted field with two atomsfuncuon, fpr th'e transmltted. I'ght lncludlng effects of a}rbl—
comparing the symmetrized Dicke spontaneous emission witrary .drIVIng fields, nonra_d'at've dephasing, and arbitrary
nonsymmetrized spontaneous emission. The plots aréafay; /y ~ coupling strength for multiple atoms. We have found that
=g,/y=1, kly=0.77, Ely=0.1; (b) g;/y=0,/y=2, xly=5, nonclassical field states are easily destroyed by deviations
E/y=0.1;(c) g;/y=0,/y=1, «ly=1.6, E/y=0.1. The solid line from the weak field limit and by nonradiative dephasing
is the nonsymmetrized collapse and the dashed line is the symmeaodeled both as collisional dephasing and as atomic transit
trized collapse. dephasing. We have also found that allowing two atoms in

the cavity with different atom-field coupling strengths does
respect to spontaneous emission. Here, using quantum trajegot have a detrimental effect on the nonclassical field. The
tories, we consider both a symmetrized collapse and an urexperiments that have been done on this system have not
symmetrized collapse for spontaneous emission. The opergeally been in the weak field limit. AE—0 the number of

tor for the Dicke collapse is counts also goes to zero, so it is difficult to carry out experi-
1 ments in this regime, but this work suggests that it is impor-
éDicke:E(O{ +a?), (21 tant
so that when a spontaneous emission event occurs, both at- ACKNOWLEDGMENTS
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