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Nonclassical effects of a driven atoms-cavity system in the presence
of an arbitrary driving field and dephasing
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We investigate the photon statistics of light transmitted from a driven optical cavity containing one or two
atoms interacting with a single mode of the cavity field. We treat arbitrary driving fields with emphasis on
departure from previous weak field results. In addition effects of dephasing due to atomic transit through the
cavity mode are included using two different models. We find that both models show the nonclassical corre-
lations are quite sensitive to dephasing. The effect of multiple atoms on the system dynamics is investigated by
placing two atoms in the cavity mode at different positions, therefore having different coupling strengths.

PACS number~s!: 42.50.Ct, 42.50.Lc, 42.50.Ar
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I. INTRODUCTION

In this paper we report on extensions to previous work
dynamical cavity QED effects in the photon statistics
transmitted light from a driven optical cavity coupled to
ensemble of two-level atoms. Much work has been done
structural cavity QED effects such as energy level shifts
the modification of spontaneous emission rates. These s
tural effects can be seen to arise from semiclassical mod
In addition, work has been done on dynamical effects wh
the coupling between the cavity field and atoms has a
nificant effect on the evolution of the system, in particular
the strong coupling regime where a single quantum of ene
and hence single quantum fluctuations give rise to nontri
dynamics. In this regime the field cannot be viewed as mil
perturbed by the atoms~good cavity limit!, nor are the atoms
mildly perturbed by the field~bad cavity limit!. For a review
of the work on structural and dynamical effects in cav
QED, see Ref.@1#.

The problem of a single two-level atom coupled to
single-mode field was originally studied by Jaynes and Cu
mings @2# and extended to many atoms by Tavis and Cu
mings@3,4#. These models have been extended in recent
oretical work to include spontaneous emission and ca
field decay@5,6#, and atomic transit time broadening an
detunings@7#. Nonclassical correlations in photon statisti
that violate a Schwarz inequality have been predicted for
system, including photon antibunching@defined here as
g(2)(0)1.g(2)(0)], and sub-Poissonian statistics@g(2)(0)
,1#. Other effects have also been predicted, which we re
to as overshoots and undershoots@ ug(2)(t)21u.ug(2)(0)
21u, whereg(2)(t) is the normalized second-order correl
tion function#. Examples of these nonclassical correlatio
from previous weak field results are shown in Fig. 1. Figu
1~a! shows photon antibunching and sub-Poissonian sta
tics, ~b! shows an overshoot violation, and~c! shows an un-
dershoot violation.

Photon antibunching has been seen experimentally in
system by Rempeet al. @8#. Overshoot violations have re
cently been seen by Mielke, Foster, and Orozco@9#. In gen-
eral, the theory matches the experiments in terms of qua
tive behavior while the quantitative size of the nonclassi
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effect does not. This has led us to consider complication
the experiments that may be responsible for the discrepa
including deviations from the weak field limit and dephasi
due to the atoms entering and leaving the cavity. The exp
ments use an atomic beam to introduce atoms into the ca
so that the time of flight across the mode is on the orde
ten spontaneous emission lifetimes@9#. We expect that
dephasing due to atomic traversal of the cavity will have
detrimental effect on nonclassical correlations. In additi
deviations from the weak driving field limit and interaction
with ‘‘spectator’’ atoms far from the mode waist may b
important. These effects are investigated in this paper
numerically solving the master equation for the system a

FIG. 1. Examples of nonclassical photon statistics in the w
field limit. ~a! Sub-Poissonian statistics and photon antibunchi
~b! an overshoot violation of the Schwarz inequality;~c! an under-
shoot violation of the Schwarz inequality.
©2000 The American Physical Society10-1
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J. P. CLEMENS AND P. R. RICE PHYSICAL REVIEW A61 063810
by quantum trajectory simulations. Rather than investigat
all possible effects at once, we isolate them and try to und
stand what is most critical.

The general outline of this paper is as follows. In Sec
we present the physical model of the system under inve
gation and describe the methods of solution. In Sec. III
discuss the photon statistics of the transmitted light outs
the weak field limit. Section IV presents two models
atomic transit dephasing and the resulting photon statis
In Sec. V we include effects of a spectator atom with
coupling that is a fraction of the maximum coupling, a
finally we conclude in Sec. VI.

II. PHYSICAL MODEL

The system under investigation is an extension of
Jaynes-Cummings Hamiltonian to include effects of atom
and cavity field decay as well as a coherent driving field
schematic diagram of the system is shown in Fig. 2. The fi
and atomic Hamiltonians are given by

HF5\vca
†a, ~1!

HA5(
j

\vasz
j , ~2!

and the atom-field interaction in the rotating wave appro
mation is given by

HAF5(
j

i\gj~a†s2
j 2as1

j !. ~3!

The cavity field creation and annihilation operators area†

and a, respectively, ands6
j and sz

j are Pauli operators fo
the j th two-level atom. The atom-field coupling strength
determined by

gj5mS vc

2\e0VD 1/2

sinkzj , ~4!

wherem is the dipole transition matrix element between t
two atomic states,V is the cavity mode volume, and sinkzj
takes into account the position of the atom in the mode
previous work it was assumed that the atoms are at antin

FIG. 2. A diagram of the system. The cavity field decays a
rate k, the atom spontaneously emits at a rateg, and there is an
electric dipole coupling between the atom and cavity field with
strengthg.
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of the field where the coupling is a maximum. In this pap
we allow the atoms to be placed anywhere in the mode
that a range of couplings is allowed for different atoms. T
cavity field is driven by a classical laser field with the drivin
field–cavity field coupling described by the Hamiltonian

HL5 i\E~a†e2 ivdt2aeivdt!, ~5!

whereE is the classical laser intensity scaled such thatE/k is
the photon flux injected into the cavity. Throughout the p
per we assume the atom, cavity field, and driving field are
resonance (v0[vc5va5vd).

Dissipation in the system gives rise to nontrivial irreve
ible dynamics. Cavity field damping and atomic populati
and polarization decay are described by superoperators
ing on the density matrix of the system which are deriv
using standard methods@10,11#. Cavity field damping is de-
scribed by

LFr5k~2ara†2a†ar2ra†a!, ~6!

wherek is the rate of cavity field damping. Atomic popula
tion and polarization decay are described by

LAr5
g

2 (
j

~2s2
j rs1

j 2s1
j s2

j r2rs1
j s2

j !, ~7!

whereg is the spontaneous emission rate of an atom. T
full master equation in the Born-Markov approximation
then

ṙ52
i

\
@HA1HF1HAF1HL ,r#1LFr1LAr→Lr.

~8!

A numerical solution of the master equation is carried out
the Fock state basis, and also a quantum trajectory sim
tion is developed from the master equation.

A. Numerical solution of the master equation

The master equation in the Fock state basis is

ṙn,1;m,152gAn11rn11,2;m,12gAm11rn,1;m11,2

1EAnrn21,1;m,11EAmrn,1;m21,1

2EAn11rn11,1;m,12EAm11rn,1;m11,1

12kA~n11!~m11!rn11,1;m11,1

2@k~n1m!1g#rn,1;m,1 , ~9a!

ṙn,2;m,25gAnrn21,1;m,21gAmrn,2;m21,1

1EAnrn21,2;m,21EAmrn,2;m21,2

2EAn11rn11,2;m,22EAm11rn,2;m11,2

12kA~n11!~m11!rn11,2;m11,2

2k~n1m!rn,2;m,21grn,1;m,1 , ~9b!

a

0-2
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NONCLASSICAL EFFECTS OF A DRIVEN ATOM- . . . PHYSICAL REVIEW A 61 063810
ṙn,1;m,252gAn11rn11,1;m,21gAmrn,1;m21,1

1EAnrn21,1;m,21EAmrn,1;m21,2

2EAn11rn11,1;m,22EAm11rn,1;m11,2

12kA~n11!~m11!rn11,1;m11,2

2@k~n1m!2g/2#rn,1;m,2 , ~9c!

ṙn,2;m,15 ṙm,1;n,2* , ~9d!

wherern,6;m,65^n,6urum,6& and1 and2 denote upper
and lower atomic states, respectively.

We have numerically solved the master equation for
steady state for arbitrary driving field by truncating the Fo
basis at a point where the population ofunmax,6& is less
than 1024. The second-order correlation function

g(2)~t!5
^a†~0!a†~t!a~t!a~0!&

^a†a&ss
2

~10!

is calculated from steady state matrix elements using
quantum regression theorem due to Lax@12#. This correla-
tion function is, of course, the conditional probability of d
tecting a photon att5t, conditioned on detecting one att
50.0. It is normalized to the conditional probability one o
tains from a field in a coherent state.

B. Quantum trajectory simulation

We have developed a quantum trajectory simulation
this system from the master equation following the form
ism of Carmichael@13#. We unravel the master equation in
a piece describing continuous evolution and a set of colla
operators in a way that is based on a simulated photon co
ing experiment,

Lr5~L2S!r1Sr, ~11!

where (L2S)r is identified as the terms that can be writt
as commutators or anticommutators andSr is identified as
all terms which can be written asÔ†rÔ. This particular
unraveling is well suited for studies of photon statistics
the Ô’s represent quantum jumps due to emission of a p
ton. The continuous evolution of the system is described
(L2S)r while Sr describes collapse events which punc
ate the evolution. We define a closed system Hamilton
and a dissipative Hamiltonian from the unraveled mas
equation as

~L2S!r52
i

\
@HS ,r#1@HD ,r#1

52
i

\
@HA1HF1HAF1HL ,r#

2F S a†a1(
j

s1
j s2

j D ,rG
1

, ~12!
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where @Ô,r#1 denotes the anticommutator ofÔ and r. A
non-Hermitian Hamiltonian that reproduces the continuo
evolution of the density matrix is defined as

H5HS1 i\HD . ~13!

The rest of the master equation enters as collapse oper
which are applied at random times whenR(0,1),Pc , where
R(0,1) is a random number between zero and 1 and

Pc5^cuÔ†Ôuc& dt. ~14!

In our system we have two collapse operators, correspon
to spontaneous emission out of the side of the cavity
photons lost through the cavity mirror,

Ospon.em.5Ags2 , ~15a!

Ocav i ty loss5A2ka. ~15b!

The time step size is (20r )21 wherer is the fastest rate in the
problem. In the event that both collapse probabilities~for
spontaneous emission and cavity emission! are greater than
the random number, yielding two collapse processes i
single time step, we use a random number to choose on
the collapses. The time step is small enough that very few
these events happen, if any. At each time step, the w
function must be normalized. If the random number is su
that we perform Hamiltonian evolution, the norm is not pr
served as the trajectory Hamiltonian is non-Hermitian. Al
a collapse operator must be augmented by normalization
the norm changes upon application of the collapse opera
In Sec. IV we describe dephasing due to an atom leaving
cavity using another collapse operator.

Because this unraveling of the master equation is ba
on photon counting experiments, the calculation of t
second-order correlation function is carried out quite na
rally. The collapse operatorâ corresponds to emission an
detection of a photon from the cavity field mode. We calc
late g(2)(t) by building up a histogram of delay times be
tween photon detections averaged over a long evolution t
in a way analogous to experimental measurement.

The photon statistics of the transmitted light have alrea
been calculated in the weak field limit using a truncated fi
state basis where the system has up to two quanta of en
in it @5#. The three types of nonclassical behavior previou
discussed have been seen in subsequent experiments;
ever, current experiments are not strictly in the weak fi
limit. It is of interest then to calculate the photon statisti
for arbitrary driving field and to see to what extent the no
classical effects persist. It is expected that for strong eno
driving field, the atoms will saturate and the nonclassi
photon correlations will be washed out as the cavity w
essentially contain a coherent state that is only mildly p
turbed by the presence of the atom.

Let us look at the photon correlations in the weak fie
limit from the point of view of quantum trajectories. In thi
case the system can be described in the steady state
wave function, as described in@6#. The detection of the first
photon emitted from the steady state collapses the w
0-3
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J. P. CLEMENS AND P. R. RICE PHYSICAL REVIEW A61 063810
function of the system (ucss&→aucss&) and the subsequen
time evolution as the system returns to the steady state
termines the photon correlations. The second-order corr
tion function is given by the probability of detecting a se
ond photon normalized to the probability of detecting
photon in the steady state,

g(2)~t!5
^a†~t!a~t!&c

^a†a&ss

. ~16!

From a trajectory point of view we can interpret Eq.~16!
as the relative probability of a second cavity decay coming
time t, given that one occurred att50.0. This is because th
cavity collapse event probability is proportional to the me
photon number. This is extremely small in the weak fie
limit, and so the most common thing after an emission o
photon out of the cavity is that the system evolves back
the steady state. Only very occasionally for very weak fie
does a second collapse occur before the system return
steady state. Also, spontaneous emission events, wher
atom emits out of the side of the cavity, are proportional
the excited state probability, which again is small for we
fields. So rarely do we get a cavity or spontaneous emis
collapse, and thus even more rarely two collapses in a t
span on the order ofk21 or g21. Experimentally, these even
pairs are the source of delayed coincidence counts. For w
fields, the rarity of these events means long counting tim
In the trajectory formalism, this is also the case, except
we can ignore the long times the atom spends in the ste
state before the next collapse. In the weak field limit, for
trajectory calculations, we start the system in the ste
state, collapse the wave function, and let it evolve to
g(2)(t), as in@7#.

An example of this is shown in Fig. 3 for the case of t
overshoot violation, where the above formula reproduces
earlier results@5,6#. Outside the weak field limit the photo
correlations are altered for two reasons. Most simply,
time evolution following a collapse from steady state will
altered by the stronger driving field. Another effect, ho
ever, is the presence of multiple collapses before the sys
returns to the steady state. Consider a multiple-collapse
cess. The first photon comes from the steady state and
lapses the wave function of the system (uccollapse1&
5aucss&). Now the time evolution occurs as before. How
ever, the second photon collapses the system to a new
which depends on the delay time since the emission of
first photon@ uccollapse2&5auccollapse1(t)&]. If a third pho-
ton is emitted before the system returns to steady state
its delay time will depend on the details of the evoluti
from uccollapse2&. When averaged over many instances, t
process will wash out the nonclassical effects because o
different evolution following differentuccollapse2&. To obtain
g(2)(t), outside the weak field limit, we start the system
the ground state, and let it evolve for 10–20 cavity or atom
lifetimes ~whichever is longest!, and then keep track of th
time between cavity emission events and build up a his
gram of photon detection delay times. This is exactly wha
done experimentally. After a cavity emission event,
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record the time till the next 10 or so cavity emissions. Th
histogram is turned intog(2)(t) by normalizing the long de-
lay time value to unity.

III. NONWEAK DRIVING FIELD

To obtain results outside the weak field limit, we purs
the density matrix approach. The computations are m
faster than the trajectory method.N(N21)/2 equations~with
N the total number of states! are solved instead ofN, but in
the trajectory approach thoseN equations must be solve
many times, usually averaging over a million or so realiz
tions. The trajectories can still help us untangle the phys
involved, however. Figure 4 shows the time evolution
^a†a&c following a photon emission from the steady state
a variety of system parameters. The overshoot persists in
evolution of the field following emission of a photon from
the cavity for a driving field as large asE/Esat50.41. The
undershoot and sub-Poissonian statistics survive for driv
fields as large asE/Esat50.8 and E/Esat50.37, respec-
tively. The saturation field strengthEsat is the driving field
for which

^n&5nsat5
g2

8g2
. ~17!

The photon statistics of the transmitted field are shown
Fig. 5 for the three types of nonclassical effects seen in
system at a variety of driving field intensities. Figure 5~a!
shows g(2)(t) for system parameters (g/g51,k/g50.77)

FIG. 3. The conditioned photon number normalized by t
steady state photon number for the cavity field. This is identica
g(2)(t) in the weak field limit. Parameters areg/g51, k/g
50.77, andE/g50.01.
0-4
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NONCLASSICAL EFFECTS OF A DRIVEN ATOM- . . . PHYSICAL REVIEW A 61 063810
that produce an overshoot violation of the Schwarz inequ
ity @g(2)(t).g(2)(0)# in the weak field limit. At a driving
field of E/Esat50.17 the overshoot violation is gone; thu
this nonclassical effect is quite dependent on the weak d
ing field. Figure 5~b! shows photon statistics for system p
rameters (g52/g,k/g55) that produce an undershoot vio
lation of the Schwarz inequality@12g(2)(t)min.g(2)(0)
21# in the weak field limit. Here the nonclassical effe
disappears at a driving field ofE/Esat50.28, showing that
this is a more robust effect. Figure 5~c! shows photon statis
tics for system parameters (g/g51,k/g51.6) that produce
photon antibunching @g(2)(0)1.g(2)(0)# and sub-
Poissonian statistics@g(2)(0),1# in the weak field limit. In
this case the nonclassical effect persists untilE/Esat50.16
where the system shows slight bunching and sup
Poissonian statistics.~Notice that the nonclassical effects a
not as robust as the time evolution of the cavity field wou
indicate. Therefore the destruction of nonclassical effect
in part a result of multiple-photon processes.! For all system
parameters the transmitted light becomes super-Poisso
as the driving field is increased.

IV. ATOMIC TRANSIT DEPHASING

We now turn our attention to the effects of atomic tr
versal of the cavity on the photon statistics. In previous w

FIG. 4. Time evolution of the conditioned cavity photon numb
following emission of a photon from the cavity and collapse of t
wave function from steady state. The plots are for~a! g/g
51, k/g50.77, E/g50.1 ~solid line!, 0.2 ~dashed line!, 0.3 ~dot-
ted line!; ~b! g/g52, k/g55, E/g50.1 ~solid line!, 0.5 ~dashed
line!, 1 ~dotted line!; ~c! g/g51, k/g51.6,E/g 5 0.1 ~solid line!,
0.5 ~dashed line!, 1 ~dotted line!.
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it has been assumed that the atoms are all fixed at antin
of the cavity field and so have the maximum couplingg0
5m(vc/2\e0V)1/2. Experiments on this system have us
atomic beams to send atoms through a cavity. This ato
traversal of the cavity will introduce two new effects. Firs
the atom-cavity field coupling will depend on the position
the atom in the cavity, which changes in time as the at
traverses the cavity. One might think that this would dest
the nonclassical correlations. However, the atoms with
largest coupling interact most strongly with the field and a
most likely to contribute to the correlations. So the ato
near an antinode will have the largest contribution and ot
atoms may have little effect on the correlations. This iss
will be further addressed in Sec. V. The second effect
atomic traversal is dephasing, which occurs when an a
enters or leaves the cavity. It is this effect that we conside
this section.

We have used two approaches to model the dephasing
to atomic traversal. The first, and most common for theor
to use, is to add a term to the master equation which
scribes nonradiative decay of atomic polarization

ṙ5Lr1gph~szrsz2r!. ~18!

This term in the master equation has its origins in collisio
processes@11# and so may or may not accurately describe

r FIG. 5. Photon statistics of the transmitted field for varyi
driving field strength. The plots are for~a! g/g51, k/g
50.77, E/g 5 0.025 ~solid line!, 0.125~dashed line!, 0.2 ~dotted
line!, 0.35 ~dash-dotted line!; ~b! g/g52, k/g55, E/g50.025
~solid line!, 0.25 ~dashed line!, 0.35 ~dotted line!, 0.5 ~dash-dotted
line!, 1 ~small-dashed line!; ~c! g/g51, k/g51.6, E/g50.025
~solid line!, 0.25~dashed line!, 0.425~dotted line!, 0.6 ~dash-dotted
line!.
0-5



F
ua

u
ac
ca
th

ow
i

he
a

av
th

um
ve
to
n
s
he
v
w
v
n
t

w
ng
al
to
he
ce
fo

trib-

ith
l-
fter
li-
ot

ol-
jec-
as

ion.
the
the

er-
ach

wo
s not
ect
of

ing.
ith
ct

ig.
o

al

J. P. CLEMENS AND P. R. RICE PHYSICAL REVIEW A61 063810
dephasing that occurs when an atom leaves the cavity.
this approach, we use density matrix methods and the q
tum regression theorem to calculateg(2)(t). We refer to this
ascollisional dephasing.

The second approach uses a quantum trajectory sim
tion of the system to model the dephasing. In this appro
we assume that there is always exactly one atom in the
ity. An atom leaves the cavity and another atom enters
cavity in the ground state at a rategph . The atom enters the
cavity in the ground state, but it is not immediately clear h
to deal with the atom that leaves the cavity. This atom is
some superposition of excited and ground states and t
states are entangled with the cavity field state. One appro
would be to leave the photon number distribution of the c
ity field unchanged using a collapse operator, which has
following action on the state of the system:

uc&5(
n

~ce,nue,n&1cg,nug,n&)→ucc&

5(
n

~ce,n
2 1cg,n

2 !ug,n&. ~19!

However, this is not a consistent application of the quant
trajectories. Consider the evolution of the atom after it lea
the cavity. The atom at some later time may emit a pho
into the vacuum, meaning it was in the excited state whe
left the cavity. Or it will never emit a photon, meaning it wa
in the ground state when it left the cavity. In general, t
atom and environment and by entanglement the atom-ca
system will then be described by a density operator. Ho
ever, we wish to use a pure state to describe the atom-ca
system conditioned on the detection of transmitted photo
To be consistent we must use a pure state to describe
atom after it has left the cavity. This corresponds to follo
ing the atom after it has left the cavity and determini
whether it ever emits a photon or not. Rather than actu
follow the atom in the calculation, we use a collapse opera
that picks either the excited state field distribution or t
ground state field distribution of the system and then pla
the new atom in the ground state. This operator has the
lowing action:

uc&5(
n

~ce,nue,n&1cg,nug,n&)→ucc&

5(
n

ce,nug,n& with probability (
n

ce,n
2 ,

~20a!

uc&5(
n

~ce,nue,n&1cg,nug,n&)→ucc&

5(
n

cg,nug,n& with probability (
n

cg,n
2 .

~20b!
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This collapse operator is then applied at a Gaussian dis
uted series of times with average 1/gph and a full width of
1/gph as this approximates the traversal times of atoms w
a Maxwell-Boltzmann velocity distribution. As with any co
lapse operator, the wave function must be normalized a
its application. This model of dephasing differs from col
sional dephasing in two important ways. First, it does n
enter the deterministic Hamiltonian evolution between c
lapses at all, whereas the collisional dephasing in the tra
tory picture would have a collapse component as well
causing the decay of coherence in the continuous evolut
Second, this dephasing always places the atom into
ground state whereas the collisional dephasing places
atom in the ground or excited state with probabilities det
mined by the populations. We refer to this second appro
as transit timedephasing.

Now we turn to our results and a comparison of the t
types of dephasing. Because transverse dephasing doe
affect the deterministic evolution of the system, we exp
that for a given dephasing rate it will be less destructive
the nonclassical photon statistics than collisional dephas
In Fig. 6 we show the second-order correlation function w
collisional dephasing. All three types of nonclassical effe
are quite sensitive to this dephasing withgph50.05 destroy-
ing the overshoot@Fig. 6~a!# and undershoot@Fig. 6~b!# while
the sub-Poissonian statistics survive untilgph50.2 in Fig.
6~c!. Our results for the transit dephasing are shown in F
7. The overshoot in Fig. 7~a! is again extremely sensitive t

FIG. 6. Photon statistics of the transmitted field with collision
dephasing. The plots are for~a! g/g51, k/g50.77, E/g
50.1, gph /g50 ~solid line!, 0.05 ~dashed line!, 0.2 ~dotted line!;
~b! g/g52, k/g55, E/g50.1, gph /g50 ~solid line!, 0.05 ~dashed
line!, 0.2 ~dotted line!; ~c! g/g51, k/g51.6, E/g50.1, gph /g50
~solid line!, 0.1 ~dashed line!, 0.2 ~dotted line!.
0-6
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dephasing with classical statistics forgph /g50.05 while the
sub-Poissonian statistics in Fig. 7~b! are more robust, surviv
ing up to gph /g50.5. Notice that transit time dephasing
not as destructive to the nonclassical effects as collisio
dephasing. This is consistent with experimental results
observe antibunching with transit traversal times on the or
of an atomic lifetime@8,9#.

V. TWO-ATOM EFFECTS

We now consider the effect of placing two atoms insi
the cavity, either both at antinodes of the field, or allowi
one of the atoms to be arbitrarily placed so that its coupl
is in the range 0 tog0. Dephasing is not considered in th
section. In the experiments conducted on this system
likely that there is some effect from spectator atoms wh
are located away from an antinode of the field and so do
contribute to the nonclassical photon statistics. In actua
as the atoms fly through the cavity, some are stron
coupled and some are not. We refer to the weakly coup
atoms as spectator atoms. If there are enough of these a
they may simply absorb light and emit it out of the cavit
thus effectively decreasing the quality of the cavity. A
there other effects as well? As a first step toward understa
ing the effect of spectator atoms, we place one extra atom
the cavity with a coupling that is some fraction of the orig
nal atom’s coupling. We use a quantum trajectory simulat
to calculate photon statistics.

FIG. 7. Photon statistics of the transmitted field with atom
transit dephasing. The plots are for~a! g/g51, k/g50.77, E/g
50.1, gph /g50.05 ~solid line!, 0.1 ~dashed line!, 0.5 ~dotted line!;
~b! g/g51, k/g51.6, E/g50.1, gph /g50.05 ~solid line!, 0.1
~dashed line!, 0.5 ~dotted line!.
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In Fig. 8 we plotg(2)(t) while allowing the coupling of
the spectator atom (g2) to vary fromg0/10 tog0. We see that
for all three sets of parameters the photon statistics vary c
tinuously from the single-atom result to the two-atom res
with no qualitative deviation in the photon statistics. B
‘‘two-atom’’ result, we mean the result obtained in@6# for
N52 atoms. Recall that the theory in that paper was va
for arbitrary numbers of atoms, but did assume that they
had the sameg and were motionless. Also it is noticeab
that N52 atoms can have a large amount of antibunchi
This is due to the fact that the pair of atoms acts as a col
tive dipole with ge f f5A(N)g. The plots in Fig. 8 sugges
that the spectator atoms can have an observable effect o
statistics but they do not destroy the nonclassical corr
tions, at least when close to the ideal condition of havingN
atoms at antinodes in the cavity. A group of many specta
atoms may be more detrimental to nonclassical correlatio

We now consider the case where both atoms are place
antinodes of the field. The photon statistics for this syst
have been solved for arbitrary number of maximally coup
atoms using a set of symmetrized Dicke states to describe
atomic excitation@7#. This would correspond to an exper
mental setup where it is not possible to tell which atom sp
taneously emitted a given photon. The Dicke states are m
appropriate when atoms are localized within a wavelength
one another. However, there would be experimental sit
tions where the symmetrized states are not valid states

FIG. 8. Photon statistics of the transmitted field with two ato
in the cavity at arbitrary coupling strength. The plots are for~a!
g1 /g51, k/g50.77, E/g50.1, g2 /g50.1 ~solid line!, 0.5 ~dashed
line!, 1 ~dotted line!; ~b! g1 /g52, k/g50.77, E/g50.1, g2 /g50.2
~solid line!, 1 ~dashed line!, 2 ~dotted line!; ~c! g1 /g51, k/g
51.6, E/g50.1,g2 /g50.1 ~solid line!, 0.5 ~dashed line!, 1 ~dotted
line!.
0-7
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respect to spontaneous emission. Here, using quantum tr
tories, we consider both a symmetrized collapse and an
symmetrized collapse for spontaneous emission. The op
tor for the Dicke collapse is

ĈDicke5
1

A2
~s2

1 1s2
2 !, ~21!

so that when a spontaneous emission event occurs, bot
oms are collapsed symmetrically. For the non-Dicke colla
the atomic operators are used separately so that one ato
the other collapses.

FIG. 9. Photon statistics for the transmitted field with two ato
comparing the symmetrized Dicke spontaneous emission
nonsymmetrized spontaneous emission. The plots are for~a! g1 /g
5g2 /g51, k/g50.77, E/g50.1; ~b! g1 /g5g2 /g52, k/g55,
E/g50.1; ~c! g1 /g5g2 /g51, k/g51.6, E/g50.1. The solid line
is the nonsymmetrized collapse and the dashed line is the sym
trized collapse.
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For weak driving field we expect that there will be n
difference between these types of collapse because in
limit we detect only photons emitted from steady state. Ho
ever, for stronger driving fields we begin to detect photo
emitted from the collapsed state and the two collapses g
different collapsed states (s2

1 ucss& or s2
2 ucss& vs

ĈDickeucss&), and therefore, different photon statistics. Als
if the atoms all have different coupling strengthsgi , the
symmetrized Dicke states are not appropriate.

In Fig. 9 g(2)(t) is plotted for the two types of collaps
for a driving field ofE50.5. Figure 9~a! shows a significant
difference as the nonclassical statistics are completely g
for the nonsymmetrized collapse. Figure 9~b! shows no de-
pendence on the type of collapse. Figure 9~c! shows a mild
dependence on the type of collapse, with a slightly lar
value ofg(2)(0) for the nonsymmetrized collapse.

VI. CONCLUSION

We have investigated extensions to previous theoret
work on a driven atoms-cavity system with dissipation. W
have calculated the normalized second-order correla
function for the transmitted light including effects of arb
trary driving fields, nonradiative dephasing, and arbitra
coupling strength for multiple atoms. We have found th
nonclassical field states are easily destroyed by deviat
from the weak field limit and by nonradiative dephasi
modeled both as collisional dephasing and as atomic tra
dephasing. We have also found that allowing two atoms
the cavity with different atom-field coupling strengths do
not have a detrimental effect on the nonclassical field. T
experiments that have been done on this system have
really been in the weak field limit. AsE→0 the number of
counts also goes to zero, so it is difficult to carry out expe
ments in this regime, but this work suggests that it is imp
tant.
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