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Entanglement and generation of superpositions of atomic coherent states
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After making a general description of the properties of macroscopic superpositions of collective atomic
states, we present a detailed analysis of a method for their experimental realization recently proposed by C.C.
Gerry and R. GrobgPhys. Rev. A56, 2390(1997)] which is based on cavity QED techniques involving the
manipulation of electromagnetic and matter fields. Specific conditions and limitations of the procedure are
discussed.

PACS numbd(s): 42.50.Dv, 32.80-t, 03.65—w

[. INTRODUCTION states on the sphere. Under certain conditions and in the limit
when the number of atoms tends to infinity it reduces exactly
A realization of a Sch'mjnger caf{1] is considered to be to the Kerr Hamiltonian. On the other hand, Gerry and Grobe

a quantum superposition of two coherent states which indihave recently proposed two alternative methods for the gen-

vidually would evolve in different regions of the phase Spaceeration of these states, where the essential ingredients are the

; - : f state reduction techniques and of dispersive interac-
associated to the physical problem under considerdgign use o .
These states have their historical origin in the Sdhrger tions between the atoms and the fig8tl(J. Other proposals

cat paradox formulated in 1935, whose main motivation wa to yield special cases of macroscopic atomic states are re-
P ’ Yated to methods that produce maximally entangled states in

to illqstratg the bewildering paradoxes arising from thea system ofN trapped ions. The construction of such en-
seemingly incomplete character of quantum thddly They  y5ng1ed states have been also important for the elucidation of

are considered to be essential for the analysis of the bordefyngamental questions in the interpretation of quantum me-
line region between the classical and quantum worlds. ACthanics[14,15. So-called “crystallized” Schidinger cat
cording to Zureket al., superpositions of states are not ob- states, related to point group representations, were intro-
served in classical physics because the density matriyuced as an extension of the symmetry construction for the
associated to macroscopic objects becomes diagonal, that isyen and odd coherent states of the electromagnetic field
the off diagonal terms tend to zero almost instantaneouslysscillator[16].
i.e., decoherence time is extremely sH&it Recently, how- In this work, we analyze in detail one of these proposals
ever, methods have been proposed to diminish the dissipatiy8] which is particularly illustrative of quantum engineering
effects of the environment by imposing couplings with atechniques. Our objective is twofold. On the one hand we
certain symmetry conditiofy]. reconstruct and extend the steps of R6f.in a simple and
Lately new experiments have lead to the generation ofransparent fashion which can be followed by nonspecialists.
mesoscopic Schdinger cats for the quantized electromag- On the other, we co_ntribute to the_a_lnalysis of fea_sibility of
netic field[5] and for the quantized vibrational motion of the the proposed experiment by exploiting the analytic expres-
center of mass of a trapped if6]. An alternative and quite Sions we find at each step. The procedure of Gerry and Grobe
attractive realization would correspond to superpositions ofvolves a sequence of interactions which suitably modify
the coherent states of a system of spins or equivalently!n® State of the\ two-level atoms confined in a cavity and
within the Dicke mode[7], a system ol two-level atoms the quantum electromagnetic field within it. The dimensions
[8-10. In the latter case, experimentalists are interested pf the cavity are chosen to be much smaller than the wave-

; : o ._length associated to the atomic transition in order to have
studying the practical limits of quantum control methods Ncontrol of the interaction of the atoms with the cavity elec-

trapped atoms for several reasons besides the generation f\tﬁ magnetic field. This interaction becomes relevant only

analysis of .nonclassmal states, attempting to |_mpleme hen an external driving field produces a Stark shift of the
quantum logic and quantum computatidril] and trying 10 a4mic levels. At some stages of the procedure, the cavity

improve the signal-to-naise ratio in spectroscopy using maxig|eciromagnetic field is entangled with an additional atom
mally entangled stated.2] which turn out to be examples of y5ssing through the cavity. For each step in the procedure, it
atomic Schrdinger cats. is possible to obtain analytic expressions for the states of the
In the last years several proposals have been made for thgstem making the subsequent physical analysis more trans-
realization of atomic Schabnger cat states. One of them, parent. TheQ function of the system dfl atoms is explicitly
introduced by Agarwal, Puri, and Singh, considers an effecpresented. Partial characterizations of the atoms-light system
tive Hamiltonian quadratic in the population inversion opera-illustrate clearly the consequences of quantum entanglement
tor which is analogous to the Hamiltonian of a radiation fieldand nonlocality. Some restrictions on the transit times and
in a Kerr medium8]. In addition, a spin model was studied interactions are pointed out.
in [13] that leads to the generation of atomic Sclinger cat This work is organized as follows. In the next section, the
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basic properties of coherent atomic states are described. Sub- J 2731

sequent steps of the procedure are then treated in individugd;J)=(1+|7%) ™ >, \/ Y ITAEY, MM,
sections. Finally, a brief discussion is given at the end of the M= V( ) )!

article. J

S Dho(b— 0= $)IM) 2.7

M= —

Il. ATOMIC COHERENT AND
SCHRODINGER CAT STATES where D35 is the Wigner rotation matrix. That is, as ex-
Atomic coherent states have properties which can be a§ecteq from the nature of thboperatqrs, this transformation
sociated to the angular momentum algeldr, 18. Given an IS €quivalent to performing a rotation through an angle
assembly ofN two-level atoms, the corresponding Hilbert about an axis1= (sin¢,—cos¢,0) in the Bloch sphere:
space is spanned by the set df groduct states,

Ry, g=ex+ -, (2.9

N
|¢i1'i2*"'viN>:k1;[1 G0k (=12. (2.2) '(I';,uz)the Bloch state.7) can be labeled by either or by
Defining collective operators in terms of the Pauli matri- |“;J>E|9'¢>:R0,¢|J’_J>- 2.9

ces which connect the two internal states of each atom, Notice that, by construction, two-level atoms in a coher-

ent state are not entangled sin@7) can be written as a
product state for individual atoms. In fact, each atom is rep-

1
= —_— n =
Ju 2 2 Tu (R=XY2) resented by d=1/2 coherent state

N
1 a;J)= a; . .
J+:§; o, (2.2 |@;J) kl;[l |a; 1/2)y (2.10

Atomic coherent states have many properties analogous to
J2=0%2+32+ )2 those of harmonic coherent states. They span an overcom-
plete set

one arrives to the $8) or angular momentum algebra

dQ
@+ [ olosnod-1, @1
[‘]1’1‘]*]:2‘]21 [‘]Zv‘]i]:i‘]i' (23) T
) ) _ and they are not orthogonal
A natural alternative basis set to that defined(dyl) would
be the set of eigenstates of the operakpwhich is propor-
tional to the energy operator for a free evolution of the sys- (0,90',¢")=
tem

(1+T*7")2 )J
(1+]72)2+]7»)]

—all(o—9") Leo—p Lot
o= hodd,. (2.4 e [cosz(6—0")cosz(p— ')
—icosi(6+0")sinz(p—o')]%.
wherefi w, is the energy difference between the two atomic
levels. The elements of this basis are usually written in the (212
forglﬁﬂgﬁ&; %3 :h’:\,rrﬁg?]isreoggllllzgo?lilf)i :rt':;?%]étates theThey are also minimum uncertainty states Ior the set of ro-
atomic coherent states are obtained by applying a unitarglated operatorsX, ,J,,Ju) =Rag(Jx dy IR »
transformation exp¢J, —«*J_) to the collective ground (3233 =1(3,)?, (2.13
state|J—J) for which theN atoms are in the ground state: T
where it was used thgt,)=(J,)=0.
|a;J>EeaJ+fa*J,|J,_J>' (2.5 .T.he a_tomlc coherent states can be produced by classical
driving fields of constant amplitudéSec. I\) and behave

almost as classical dipoles. As shown by Arecehal., the
similarities are not fortuitous, but are related to the group
contraction method of the angular momentum generators to
the harmonic oscillator operatof&8].

Also in analogy with vibrational cat stat¢®,16], atomic
_ _ cat states can be defined as a superposition of a finite number
with a=6/2 e %, and r=tan(6/2) e '¢. The latter repre- of atomic coherent states. For instance, even and odd cat
sentation leads directly to the result states correspond to

By using a matrix representation df, and J_ it can be
shown that

el —a* I — gl gIn(L+]7) I (2.6)
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|\P1-(7-5)>:Nt[|7-5>i|71[5+ T | mod 27T>]! (2.14

where (y, ) correspond to the angles (2.9) and the nor-
malization factor is given by

1—|7?

N.=
1+|7?

1
T2

2J‘| —-1/2

1
Sha— % 2.1
V2+2 cos’y @13

The state$W , ) and|W _) are orthogonal since they carry
the symmetric and antisymmetric irreducible representations
of the point groupC,, respectively{16]. Contrary to coher-
ent states, atoms in a Schinger cat state are in general
entangled as their wavefunctions cannot be written as a prod-
uct of individual functions.

The maximally entangled state

|\I’max>:1/\/§[

is a particularly relevant example of a Schimger cat. It
cannot be written as a direct product of functions comprising
any subset of thé\ two-level atoms. This state maximizes
the signal-to-noise ratio in spectroscopic measurenéis

As usual, the phase space description for a collection of
atoms involves the introduction of@number function with
a one-to-one correspondence to the quantum mechanical
state of the system. Similarly to the harmonic oscillator case,
coherent states provide a natural scheme for the definition of
quasiprobability distribution functions. Given a density ma-
trix p its expression in a diagonal Bloch representafib®|

3,-3)=|3,9)] (2.1

o= | PLo.0)10.9)(0.9l00 (2.1

defines the function. Another useful function is th@ func-
tion defined by[8]

FIG. 1. (a) Plot of theQ,, 5(6,¢) function for five two-level
atoms in a y=m/4,6= w/4) Bloch state.(b) The (y,d) values of
the Bloch state are shown. This and the followf@glots are made
in spherical coordinategQ( 0, ®), 0, ¢].

2J+1
Q(6,¢)=——6,4[p| 6, 9). (2.18

The Q. function of a Dicke stat¢JM) is proportional to . _
the probability Fy., of finding [J=N/2;M=(N—N,)/2] cos{=cosf cosy+sindsinycog ¢—35). (2.21)
the distribution ofN atoms in the groundN, or excitedN,

states of a system described by a Bloch functiéns), Notice that theQ function takes the maximum value in the

direction (y,5), whereas it is a minimum in the direction
(7—7y,m+ 8), as can be seen in Figs. 1. In addition, it is

47
Z]—+1QJ;M(0,¢)= | DYy (b, — 6,— ¢)|? symmetric around they, §) axis.
Finally, the Q% function of the even and odd cat states

=F 4 4(J,M). (2.19  can be written in the form

The Q.. 5 function of a coherent stafey; 5) can be directly . 2

obtainéd from Eq(2.12) yielding Qy:s(0, ) =NL| Qy5(0,0)+ Q54 2(0,8)
2J+1(1+cos¢\¥ 2+1 (-1’

Qyolbd)=—4— 5 ) : (2.20 o > {[singsinysin(¢— )
with £ the angle betweené(¢) and (y,8) given by +i(cosf+cosy)]?+[singsinysin(¢p— )
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state of the electromagnetic field and tNeatoms in their
—i(cosf+cosy)]?} |. (2.22  ground state. That is, the initial state of the system is,

|1(0))=0)emI= I [X)1- 3.3

The atom 1 transition frequency is chosen so that o, .
2J+1 1 Thus, ther.e is an intgraction between. the atom aﬂd the cavity
Qrpo(0.p)=—— —5i(L1+sin 6 cosg)?’ field that, in the rotating wave approximation, valid for weak
4m 2 coupling, can be described by the Hamiltonian

In particular,

+(1—sinf cos¢)?’

, ¢_ _ H=Hqy+ iﬂogl)+hﬂ((r§)a+a‘})aT)
+(—1)[(sin#singp+i cosh)? 2
+(sin@sing—i cosg)?]}. (2.23 X{O(t)— 6(t— 1)}, (3.9

We observe that the interference terms are zero when thf\%here 6(t—1) is the step function and, is the time of

direct terms are maximal, that is, f&=m/2,¢6=0 or , ght of the atom passjng through the cgvity. The cou_pling
while in the orthogonal plané= 7/2, the direct terms take frequency() is determined by the magnitude of the dipole

their minimum value and the interference terms reach theiffoment of the atomic transitiofe,|x|g;) and is a measure
maximum absolute value (2-1/47)2"2) at 6=0 orm of the strength of the coupling of the atom with the electro-
which, however, diminish exponentially with magnetic field20]. o _

The simplest Schidtinger cat atomic states are superposi- I our case the problem reduces to finding the action of
tions of two distinguishable coherent atomic states whicHhe evolution operator on the staf.3), or equivalently to
have a clear classical counterpédead and alive cat in the Solving the corresponding time-dependent Sdimger equa-
language of Schidinge). To have a complete analogy to the tion. We follow the procedure used by Jaynes and Cum-
well-known paradox, these superpositions must be entangle®ings[20,21], in which the Hamiltonian is rewritten in terms
with another quantum systefthe analog of the radioactive Of & pair of commuting operators. The evolution operator of
atom). In the procedure for constructing a realization of athe system then takes the form
Schralinger cat analyzed here, thé-atom system is en- . A oA
tangled to the quantum electromagnetic field. In the next Uo=exp{—iwaJ;7ijexp{—i(C1+Co) 7y}, (3.9
section, a technique for the manipulation of the quantu
state of a cavity quantum electromagnetic field is describe toms, while the second characterizes the interaction be-

A similar proce_dure was used b_y Brueeal.[5,19] to crez_ate tween the passing atom and the cavity field, that is
electromagnetic cat states and it also constitutes the first step

here the first exponential corresponds to dthewo-level

in Gerry and Grobe’s proposal. . Ugl)
Ci=w.| a'a+ >
Ill. FIRST ATOM PASSING THROUGH THE CAVITY
A Aw
. . . = (1) Mty (1)
We consideN identical two-level atoms of frequeney, Co=Q(oato7a’) 2 9z (3.6

inside a cavity whose characteristic frequency nearest,to

is .. The dimensions of the cavity should be much smallewith the definitionA w=w,— w;.

than the wavelength\,=2wc/w, corresponding to the These operators commute, implying that from the set of
atomic transition. Then the Hamiltonian of the system is ap+ock states for the radiation field and spin eigenstates for the
proximately given by two terms, the first determining thetwo-level atoms we can construct a representation in which
free behavior of the N two-level atoms and the second repthey are both diagondR0]. The states that diagonalize the

resenting the free electromagnetic field two-level atom interacting with a single mode of the radia-
tion field are known as dressed states. In general, their struc-
Ho=fw.J,+hoa'a. (3.1)  ture can be considered a clear manifestation of the entangle-
ment between the atom and the electromagnetic field.

A different type of two-level aton{from here on called Here we only need to find the expansion of the states
atom 1) is prepared with classical microwave fields in the|0,9,) and |0,e;), defining the states of the field and the
superposition of statd$] atom, in terms of the eigenstates of the operai@s$),

|p(n,k)), with k=1,2, i.e.,
1
= A w
|X>1 \/§(|gl>+|el>)1 (32) Cl|¢(0,k)>=7c|¢(0,k)>,
with |g;) and|e;) indicating its ground and excited states, Czl¢>(0,k))=(—1)k+1)\0|¢(0,k)), (3.7)

respectively. This atom is sent through the cavity where the
initial state of the system is a combination of the vacuumwith A o= (A w/2)%*+ Q2.
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It is then easy to show that

~ w
C1/0g1)=— 510g1), 3.9

n Aw
C,09,)= 7|0791>, (3.9

and as a consequence the evolution of the d@) is
determined by the expression

A . Aw o
exp{—i(C1+Cy) 7'1}|0:91>:eXp[ _i(T_ ?) 7'1] 10gy)-
(3.10

The state|0,e;) can be expanded in terms of the kets

|¢(n.k)) as
|0,e1) =sinf| $(0,1)) +cosby| $(0,2)),  (3.11)

where tan 2,=20/Aw. By means of(3.7) and (3.8) we
also obtain the result

exp{—i(C;+Cy) 71}|0,e;)
=el=1 02711l (cosh gy +i €OS 26y Sinh71)[0.6;)
—isin 26y sin\o71|1,91)} (3.12
Therefore, evaluatingy(7,))=U,|#(0)), we get
|[4(71))=€*2771]3,=3)[0(Q,w¢,60,71)), (3.13

where

10(Q,0¢,6,71))

1
— E{el(wc—Am)71/2|O’gl>

—ie 1912 5in 20, sink g7/ 1,91)
+e 19cm/2(cosh g7, +i SN\ g7y COS 265)|0,8;)}.
(3.14

In resonance, we havkw=0, A\ (=), andfy= w/4, which

simplifies the expressiof8.14) for the state of the system to

|©0)=]|0(Q,0.,7/4,71))

fwe 71/2 )
= —{|Orgl>_ ieilwcrl Sir](2’7-l| 1vgl>

V2

+e 9 cosQ7|0,1)}.

(3.19
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FIG. 2. Q(0,¢) function for five two-level atoms in their
ground state. As the number of atoms is increased the spheroid
becomes longer and narrower.

The Q function for theN two-level atoms during this step
of the procedure

2J+1
4ar

Qj_s(6,0)= cos™o/2, (3.1

is illustrated in Fig. 2.

IV. GENERATION OF BLOCH STATES

Consider now a classical driving field of constant ampli-
tudee, produced by a single mode laser, applied to the atoms
inside the cavity for an intervalr,— 71). This driving field
is described, in the rotating wave approximation, by the in-
teraction Hamiltonian

ike
Hi=—-(J+—J-), (4.9)
wherek is the dipole moment coupling the atoms to the
driving field. The state of the syste(B.15 will evolve ac-
cording to the expression

| ‘/’( T1, 72)>
— e—imaJZ(Tz— 71)tKel2h (I —I_)(mp— Tl)ei“’aJTl|J, _ J>
XefiwcaTa(rszl)|®l>, (42)

where the evolution operator has been separated into two

The superposition character of the original atoml stateieces. The first part has effect only on the state-J). Itis
has been now transferred to the cavity’s electromagneticlearly related to the rotatioi2.8) and will generate an
field. Notice that the presence of a photon within the cavitySU(2) coherent or Bloch state. The second part of the evo-

yields an interaction with th& atoms in the cavity which,

lution operator yields the free evolution of the stésel4).

however, changes the energy spacing between the levels in a We now use a faithful representation for the (8Ugen-
negligible way because of the large detuning with the cavityerators (spin operators to evaluate the Baker-Campbell-

mode.

Hausdorff formula
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A ke . .
ex _lwa‘Jz(Tz_Tl)+ﬁ(JJr_J—)(Tz_Tl)

=e”‘+j+e“*j*e“032, (4.3

finding that the parameters are related by the expressions

-2
w
ag= In( COSWq(7o— 71) ti —asinwo( T |
2(.00
(4.9
ke
a._ = T SiNwqg( 75— 71)| COSwo( 12— 71)
. Wy
+|2—wosmw0(72—rl) ) (4.9
_ k€ Sin(l)o(’Tz_Tl)
a+_2hwo L Wa '
COSwO( To— Tl) +1—sSIn (1)0( To— 7'1)
2(,()0
(4.6
with

k?e? wg
wo= W+ T

The second exponential operator appearin@ti@) can be
evaluated directly.
The state of the system is then given by

[(71,72)) =€y ;3)[01), 4.7
where

1 iwe71/2 —iws 712

|®12)=E{e ¢"1'2)0,g,) + e~ '“c1%cosQ 74| 0,e1)

_ieio)C 7-1/264(%72 siner|1,gl>, (48)

and the phase takes the value
W3y
{,=arcta Z—wotanwo(rz— T (- (4.9

By introducing the strength parameter (ke/%w,), the pa-
rametersd, and ¢, (. =0,/2e"'*+) of the Bloch state
can be written in the form

2Xx

0= )
V(14 x?)ctarfwg(m,— ) +1

(4.10

tanwg(7mo—71) |-

1
=arctan ——
P+ '(\/1+x2

For a given value ok, 6, and ¢, are periodic functions of
time with frequencywy. The maximum valué,, ,,= 2x cor-
responds to  fHh—7)=(2n+1)(7/2wq), with n
=0,1,2 .... InFig. 3, the direction ¢, ,¢,) as a function

PHYSICAL REVIEW A 61 063808

FIG. 3. Precession of thed( ,¢.) axis on the Bloch sphere,
characterizing the atomic coherent state generated by the classical
fields, as a function obq(7,— 71) and the strength parameter~or
a given value ofx, the (6, ,¢,) axis starts in the direction for
wo(7,— 71)=0 and evolves counterclockwise /10 steps. The
parameter is varied from zero to one in steps of 0.05 along the
meridians.

of time is shown for interactions with<9x<1. It can be
observed that the precession of theé (¢.) axis on the
Bloch sphere depends strongly on the application time of the
classical fields, particularly fowg(7,— 7¢) ~nr.

Once the atomic Bloch state has been generated, the next
step has the purpose of entangling thi@tom system with
the cavity electromagnetic field.

V. STARK EFFECT

If an additional electric field is properly applied, tive
atoms experience a modification on their energy levels lead-
ing to a new transition frequency, which is again as-
sumed to be different from the characteristic frequedag\f
the cavity, but near enough to induce a dispersive interaction
[9]

H=fo, J,+hoa'a+hya’al,. (5.1
The parametey is proportional to the square of the dipole
atomic moment and inversely proportional to the detuning.
Notice that the interaction Hamiltonian does not change ei-
ther the population of the Dicke atomic system or the num-
ber of photons within the cavity.

This Hamiltonian yields an evolution operator which can
be factorized as a product of three terms, that is

U=e Xa'al(r3=m)g=iwy I(r3- ) g~iwca'alrs—7p)

(5.2

The action of the last exponential on the stiig,) can
be easily calculated and yields

063808-6
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1 )
10129 :E{el ©c712/0,g,)+e e /2 cos)74|0.)

—ielecm2g 1973 5in) 71| 1,94)). (5.3

The second exponential operator of expresg®a) can
now be applied to the stafer, ;J). If the result

exp{—iw,'J,7texp{a . J, texpliw,’J,7}
=exp{a,e @]} (5.4)

is used, one obtains

exp{—iw,'J,(r3— 1)} |a. ;J)=€'0a ", 1 J),
(5.9
wherea, ' =a, e '?a (3~72) This expression implies that

0.=0, (5.6

(5.7

Finally, by means of expressiofis.2) to (5.5 the evolu-
tion of the statg4.7) is found to be

lp(71,72,73))
=Ul¢(71,72))

_ ai20qdpiwy (13— o) a—ixaad,(rg— .
= @l2813gioa 3= ) g —ixa ady (3 T2)|a+’,J>|®123>

PL=¢twy (13— 7).

— ei2{1Jei wy' (73— 75) %[ei w071/2|0’gl> | a. ’ ,J)
2

+e 920050 7|0,81)| ey "} d)

ooy /2n ] iXJ(73—72) ai
—ielwcniZg 10cT3gix (73~ 72) sin() 74| 1,94)

|, )], 5.8
with o, "= a, e X377 We thus find that
L=¢ (0 +X) (13— 7). (5.10

PHSICAL REVIEW A 61 063808

FIG. 4. The evolution of th€.{ 4, ¢) function, Eq.(5.12), for
five two level atoms is displayed, as a function of the valyés;
—7,)=km/4 with k=1,2,...,6. Theunction is considered to be
in a frame rotating around axis with frequencyw, and with the
parameter®), = w/4, ¢, =0 andQ 7= 7/4.

In this caseQ,¢q cOrresponds to th® function of a mixture

of coherent atomic states not exhibiting the characteristic in-
terference terms of an atomic Schinger cat state. The be-
havior of Q,.q as a function ofy(r3— 7,) is illustrated in
Figs. 4. The purpose of the next step is to create Stthger

cat states of the system.

The main consequence of this step is that the cavity electro-vi. SECOND ATOM PASSING THROUGH THE CAVITY

magnetic field and thBl two-level atoms are now entangled,
that is, the collective atomic state will be affected by the

A detector can be connected to measure the state of the

presence or absence of a photon within the cavity. Noticdi'St atom when it leaves the cavity. Then, depending on

that at this stage the two-level atom@ function can be
obtained from the reduced density matrix

pred= 001/ p0g1) +(191|p|191) +(0ey|p|Oey),
(5.11

resulting in
Qred 0, )= %[(1+0032971)Q0’+¢’+(91¢)

+sin297-1Q0i¢1(0,q§)]. (5.12

wether the atom 1 is in its ground or excited state, the system
can be either

|¢gl>:Ngl<91|¢(7'1a7217'3)> 6.1
or
|be,)=Ne (1|Y(T1,72,73)). (6.2

The parametersle, and Ng, denote the corresponding nor-
malization factors.
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A second two-level atom, prepared to be in its ground
state|g,), is sent through the cavity. Similarly to the first N.=
atom, this atom has a transition frequensy= w, close to
the one of the cavity and thus the interaction can be modeled,
within the same rotating wave approximation, by a Hamil- XA
tonian analogous to that given by E(.4). By a similar
procedure to that outlined in the third section one can find _ X 2
the evolution of these states, leading to the following reso- +1 0050+S|n§(7-3— 7-2))
nance results

1+sirfQ 7+ 2 sinQ 7y sinQ( 74— 73)

e“"c”( Co%(’Tg_ )

12
] , (6.9

No=e '@ X737 §inQ) 7, SinQ (7, — 73),

|¢gl(T1!7-21T3!T4)> (61@
1 . - A= —ie 10X 72 sinQ 7y cosQ (7, — 73).
:m {elwc(TA_TS)/2|o,gz>|a;_ :J) 6.1
V Sl T1

From expressiong6.7) and (6.8), one concludes that the
states of the system will attain the exact form of atomic
%|1.0,)—isinQ(7,— 0e) a1V, 6.3 Schralinger cat,(2.14), if the following conditions on the

I1.92) (=3[08} 0)} (69 strength parameters and application times of the different
interactions are satisfied

—je19c(ma* 791261375~ T 5in () 7, {cOSQO( 7, — T3)

where;; =a, reiwa(14=73) and?i = a+”e““’a(74‘ 3 and

_ 971=(2k1+1)g, K,=012...,
| e, (71,72,73,74))=[095)| @’ ;3)}. (6.9

)((7'3_7'2):(2k2+ 1)7T, k2=0,1,2 ey
We observe that the structure of the wave function has a
mixture of Bloch states if, after leaving the cavity, atom 1 is -
determined to be in the ground state. From now on, we re- Q(74—713)=(2k3+ 1)5, k;=0,12..., (6.12
strict the discussion to this case.
When the second atom is outside the cavity, it can still be

. . : where the sumk;+ks; must be equal to an even integer.
manipulated by means of &/2 pulse with a resonant field 113 i )
that yields the transformatici@] These expressions are related to the time of flight through the

cavity of atom 1 and atom 2, and the interval that the electric
field yielding the Stark effect is applied to the system, which

1 leads to the result’, = —a’, . Once these conditions are
|eZ>HE{|92>+ l€2)} (6.9 established we find that
weTa=(2ka+ ), k4=0,1,2.... (6.13
1
|92>HE{|92>_|92>}- (6.6 By means 0f(6.12 and (6.13, we can determine the time
interval that the classical driving field will act to generate the
B Bloch state,
We denote by¢gl> the state function resulting from apply-
ing this transformation t¢¢gl) Finally, a selective device - Tﬁl( (2k4+J)&—(kl+k3+ 1)&
discriminating the state of the second atom is activated. As a Wa Wc Q
result the system within the cavity will be described by one ©
of the normalized wave functions, —(2ky+ 1)7"‘] _ (6.14
|%g,.9,0=Ng,(g2l bg,) =N _{[| & ;3) = \o|} ;3)]|0) If these conditions are satisfied the staﬂ&rgl,eZ) and
. |;ﬁ :3)[ 1)) 6.7) |¢~pg1,g2> exactly correspond to the even and odd atomic
1 + ’ .

Schralinger cat states, respectively. These cat states depend
on the angles

|"7/gl,ez> = Ne2<ez|agl>: N+{[|;,+ 1)+ )\'O|E,‘;’ ;3)10)

—N\qla’t ;)10 (6.9)

0.=0,,

¢.=d +( 2k + 1) (Tl x) +(2ks+ 1) (Tw,/2Q)).
with (6.195
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TABLE I. Possible application times of the interactions are il-
lustrated in units of us]. In the first row the results correspond to
(2k,+J)=3.1x 10° while all the other cases useK2+J)=10'.

71 Tp— T1 T3~ T Tg— T3
ky=k,=ks=0 5 1 20 5
ky=k,=ks=0 5 70 20 5
ky=ks=1,k,=0 15 50 20 15
ky=ks;=0,k,=1 5 30 60 5
ky=k,=ks=1 15 10 60 15
ky=kz=2k,=0 25 30 20 25
ky=ks=3k,=0 35 10 20 35

cessfully carried out using procedures similar to those stud-
ied in this work. In this context, circular Rydberg atoms, as
already mentioned by Gerry and Grof#, are perhaps the
ideal physical realizations of both the two level atoms inside
the cavity and the atoms that are sent through it. These kinds
of atoms are characterized by a large principal quantum
numbern together with its corresponding maximum orbital
I=n—1 and magnetien=1 quantum numbers. These levels
can be selectively detected by field ionization. In addition,
they have an extremely long lifetime, 30 ms fo=50, and
their coupling to millimiter wave radiation on a transition
between neighboring circular states is very large. For in-
stance, the dipole matrix element takes the valael250

FIG. 5. TheQ" (6, 4) functions, associated to collective atomic gy, for the transition witlw,/27=51.099 Ghz between the
Schralinger cat statesV . (w/4,0)), of five two level atoms are =51 andn=50 circular Rydberg states of Rubidiuia2].
shown. TheQ function for the even cat state is presenteddn oy this case, the cavity voluménecessary to achieve reso-
while for the odd cat state it is illustrated {h). nance is of the order of 0.7 &nyielding a very strong atom

, L coupling Q) /277~50 kHz.

The Q functions for even and odd atomic Sctieger cat Using circular Rydberg states and high Q cavities, the
states are displayed in Figs(ab and 8b), respectively, resonant atom-cavity entanglement has been experimentally
which emphasize the influence of the interference terms. demostrated23]. In these type of experiments, we find that

the atoms are sent through the cavity with velocities around
VII. DISCUSSION 300 m/s. Differe_nt interaction times _betwgen the passing
atom and the cavity mode can be obtained either by changing

In this paper we have made a detailed mathematicathe velocity of the atoms or by Stark tuning the atomic tran-
analysis of a recent proposal to generate atomic Siihger  sition in resonance during a fraction of the atom-cavity
cats. The relevance of some suggested characteristics of teeossing time[24]. Finally the dispersive atom-cavity cou-
atoms and light used for this purpose has been made evidemling arising from the nonresonant interaction has also been
Thus it is crucial to detect the state of the first passing atompbserved for lowQ cavities through the measurement of the
because unless it corresponds to the ground state no supebrresponding light shiff25]. The dispersive atom-cavity
position of coherent atomic states will be obtained. Simi-entanglement mentioned in Sec. V for which higlcavities
larly, the time of flight of both atoms should be accuratelyare necessary is under experimental sti2B;26|
selected to guarantee the success of the experiment. We may Thus most of the steps discussed in this work to obtain
also emphasize some limitations of the procedure. For inatomic Schrdinger cats have already been experimentally
stance, maximally entangled stat€16 cannot be pro- explored for circular Rydberg atoms passing through cavi-
duced by this mechanism because the Sdinger cats gen- ties. There is, however, an important point that requires fur-
erated here are superpositions of coherent states witlher study: theN two-level atoms are assumed to be confined
different phasesp, while the entangled stat@.16 corre-  within the cavity. As a consequence, additional electromag-
sponds to superpositions with differefit However, the ac- netic fields for trapping the atoms could be necessary and
cessible cat statém/2,0)=|w/2,m) exhibits aQ function  their effects on atomic levels should be carefully explored.
similar to that of the staté2.16 and their spectroscopic As an example, we consider Rydberg atoms like Rb. We
characteristics should be studied. find the following requirements(i) The time of flight of

The experimental feasibility of the proposal can be anaatom 1 and atom 2 should be of the same order of magnitude,
lyzed in terms of the parameters involved in current cavityranging from 5-35us. (ii) The additional electric field to
quantum electrodynamics experiments that have been sugield the detuning of theéN atoms of the cavity has to be
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applied during an interval of the order of;—7, the cavity in which the experiment should be performed must
~20-60us, for a detuning of 25 kHdiii) The single mode have a damping time longer than this. In order to guarantee
laser applied to the cavity to generate the Bloch states mu#fe cat state’s formation, extreme care should be taken in the
be acting during an interval of the order,—r,~1  Precision of the application times.

— 70 ws, which fixes a condition for the sum of the number ~We conclude that the exp.erimental realization of this pro-
of atoms inside the cavity and the intedey; that is (X, posal to construct atomic Scliinger cat states seems to be
+J)>3x1(P. The specific values for the application times near from present capabilities.

depend on the integeks, k,, andks appearing in the ex-

pressiong6.12). In Table I, we show some possible sets of

conditions on the application times to successfully construct ACKNOWLEDGMENT
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