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Entanglement and generation of superpositions of atomic coherent states
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After making a general description of the properties of macroscopic superpositions of collective atomic
states, we present a detailed analysis of a method for their experimental realization recently proposed by C.C.
Gerry and R. Grobe@Phys. Rev. A56, 2390~1997!# which is based on cavity QED techniques involving the
manipulation of electromagnetic and matter fields. Specific conditions and limitations of the procedure are
discussed.

PACS number~s!: 42.50.Dv, 32.80.2t, 03.65.2w
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I. INTRODUCTION

A realization of a Schro¨dinger cat@1# is considered to be
a quantum superposition of two coherent states which in
vidually would evolve in different regions of the phase spa
associated to the physical problem under consideration@2#.
These states have their historical origin in the Schro¨dinger
cat paradox formulated in 1935, whose main motivation w
to illustrate the bewildering paradoxes arising from t
seemingly incomplete character of quantum theory@1#. They
are considered to be essential for the analysis of the bor
line region between the classical and quantum worlds.
cording to Zureket al., superpositions of states are not o
served in classical physics because the density ma
associated to macroscopic objects becomes diagonal, th
the off diagonal terms tend to zero almost instantaneou
i.e., decoherence time is extremely short@3#. Recently, how-
ever, methods have been proposed to diminish the dissipa
effects of the environment by imposing couplings with
certain symmetry condition@4#.

Lately new experiments have lead to the generation
mesoscopic Schro¨dinger cats for the quantized electroma
netic field@5# and for the quantized vibrational motion of th
center of mass of a trapped ion@6#. An alternative and quite
attractive realization would correspond to superpositions
the coherent states of a system of spins or equivalen
within the Dicke model@7#, a system ofN two-level atoms
@8–10#. In the latter case, experimentalists are interested
studying the practical limits of quantum control methods
trapped atoms for several reasons besides the generatio
analysis of nonclassical states, attempting to implem
quantum logic and quantum computation@11# and trying to
improve the signal-to-noise ratio in spectroscopy using ma
mally entangled states@12# which turn out to be examples o
atomic Schro¨dinger cats.

In the last years several proposals have been made fo
realization of atomic Schro¨dinger cat states. One of them
introduced by Agarwal, Puri, and Singh, considers an eff
tive Hamiltonian quadratic in the population inversion ope
tor which is analogous to the Hamiltonian of a radiation fie
in a Kerr medium@8#. In addition, a spin model was studie
in @13# that leads to the generation of atomic Schro¨dinger cat
1050-2947/2000/61~6!/063808~10!/$15.00 61 0638
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states on the sphere. Under certain conditions and in the l
when the number of atoms tends to infinity it reduces exa
to the Kerr Hamiltonian. On the other hand, Gerry and Gro
have recently proposed two alternative methods for the g
eration of these states, where the essential ingredients ar
use of state reduction techniques and of dispersive inte
tions between the atoms and the field@9,10#. Other proposals
to yield special cases of macroscopic atomic states are
lated to methods that produce maximally entangled state
a system ofN trapped ions. The construction of such e
tangled states have been also important for the elucidatio
fundamental questions in the interpretation of quantum m
chanics @14,15#. So-called ‘‘crystallized’’ Schro¨dinger cat
states, related to point group representations, were in
duced as an extension of the symmetry construction for
even and odd coherent states of the electromagnetic
oscillator @16#.

In this work, we analyze in detail one of these propos
@9# which is particularly illustrative of quantum engineerin
techniques. Our objective is twofold. On the one hand
reconstruct and extend the steps of Ref.@9# in a simple and
transparent fashion which can be followed by nonspeciali
On the other, we contribute to the analysis of feasibility
the proposed experiment by exploiting the analytic expr
sions we find at each step. The procedure of Gerry and Gr
involves a sequence of interactions which suitably mod
the state of theN two-level atoms confined in a cavity an
the quantum electromagnetic field within it. The dimensio
of the cavity are chosen to be much smaller than the wa
length associated to the atomic transition in order to h
control of the interaction of the atoms with the cavity ele
tromagnetic field. This interaction becomes relevant o
when an external driving field produces a Stark shift of t
atomic levels. At some stages of the procedure, the ca
electromagnetic field is entangled with an additional at
passing through the cavity. For each step in the procedur
is possible to obtain analytic expressions for the states of
system making the subsequent physical analysis more tr
parent. TheQ function of the system ofN atoms is explicitly
presented. Partial characterizations of the atoms-light sys
illustrate clearly the consequences of quantum entanglem
and nonlocality. Some restrictions on the transit times a
interactions are pointed out.

This work is organized as follows. In the next section, t
©2000 The American Physical Society08-1
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basic properties of coherent atomic states are described.
sequent steps of the procedure are then treated in indivi
sections. Finally, a brief discussion is given at the end of
article.

II. ATOMIC COHERENT AND
SCHRÖDINGER CAT STATES

Atomic coherent states have properties which can be
sociated to the angular momentum algebra@17,18#. Given an
assembly ofN two-level atoms, the corresponding Hilbe
space is spanned by the set of 2N product states,

uf i 1 ,i 2 ,•••,i N
&5)

k51

N

uz i k
&k ~ i k51,2!. ~2.1!

Defining collective operators in terms of the Pauli mat
ces which connect the two internal states of each atom,

Jm5
1

2 (
n

sm
n ~m5x,y,z!

J65
1

2 (
n

s6
n , ~2.2!

J25Jx
21Jy

21Jz
2 ,

one arrives to the su~2! or angular momentum algebra

@J1 ,J2#52Jz , @Jz ,J6#56J6 . ~2.3!

A natural alternative basis set to that defined by~2.1! would
be the set of eigenstates of the operatorJz which is propor-
tional to the energy operator for a free evolution of the s
tem

Ha5\vaJz , ~2.4!

where\va is the energy difference between the two atom
levels. The elements of this basis are usually written in
form uJ M&, 2J5N, and are called Dicke states@7#.

Similarly to harmonic oscillator coherent states, t
atomic coherent states are obtained by applying a uni
transformation exp(aJ12a* J2) to the collective ground
stateuJ2J& for which theN atoms are in the ground state

ua;J&[eaJ12a* J2uJ,2J&. ~2.5!

By using a matrix representation ofJ1 and J2 it can be
shown that

eaJ12a* J25etJ1eln(11utu2)Jzet* J2, ~2.6!

with a[u/2 e2 if, and t5tan(u/2) e2 if. The latter repre-
sentation leads directly to the result
06380
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ua;J&5~11utu2!2J (
M52J

J A 2J!

~J2M !! ~J1M !!
tJ1MuJ,M & ,

5 (
M52J

J

DM2J
J ~f,2u,2f!uJ,M & ~2.7!

where D MJ
J is the Wigner rotation matrix. That is, as ex

pected from the nature of theJ operators, this transformatio
is equivalent to performing a rotation through an angleu

about an axisn̂5(sinf,2cosf,0) in the Bloch sphere:

Ru,f5eaJ12a* J2. ~2.8!

Thus the Bloch states~2.7! can be labeled by eithera or by
(u, f)

ua;J&[uu,f&5Ru,fuJ,2J&. ~2.9!

Notice that, by construction, two-level atoms in a coh
ent state are not entangled since~2.7! can be written as a
product state for individual atoms. In fact, each atom is r
resented by aJ51/2 coherent state

ua;J&5)
k51

N

ua;1/2&k . ~2.10!

Atomic coherent states have many properties analogou
those of harmonic coherent states. They span an overc
plete set

~2J11!E dV

4p
uu,f&^u,fu51, ~2.11!

and they are not orthogonal

^u,fuu8,f8&5S ~11t* t8!2

~11utu2!~11ut8u2!
D J

,

5eiJ(f2f8)@cos1
2 ~u2u8!cos1

2 ~f2f8!

2 i cos1
2 ~u1u8!sin 1

2 ~f2f8!#2J.

~2.12!

They are also minimum uncertainty states for the set of
tated operators (Jh ,Jy ,Jn)5Ruf(Jx ,Jy ,Jz)Ruf

21 ,

^Jh
2&^Jy

2&5 1
4 ^Jn&

2, ~2.13!

where it was used that^Jh&5^Jy&50.
The atomic coherent states can be produced by clas

driving fields of constant amplitude~Sec. IV! and behave
almost as classical dipoles. As shown by Arecchiet al., the
similarities are not fortuitous, but are related to the gro
contraction method of the angular momentum generator
the harmonic oscillator operators@18#.

Also in analogy with vibrational cat states@2,16#, atomic
cat states can be defined as a superposition of a finite num
of atomic coherent states. For instance, even and odd
states correspond to
8-2
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ENTANGLEMENT AND GENERATION OF . . . PHYSICAL REVIEW A 61 063808
uC6~g,d!&5N6@ ug,d&6ug,@d1p#mod 2p&], ~2.14!

where (g,d) correspond to the angles in~2.9! and the nor-
malization factor is given by

N65
1

A2
F16S 12utu2

11utu2D 2JG21/2

5
1

A262 cos2Jg
. ~2.15!

The statesuC1& anduC2& are orthogonal since they carr
the symmetric and antisymmetric irreducible representati
of the point groupC2, respectively@16#. Contrary to coher-
ent states, atoms in a Schro¨dinger cat state are in gener
entangled as their wavefunctions cannot be written as a p
uct of individual functions.

The maximally entangled state

uCmax&51/A2@ uJ,2J&6uJ,J&] ~2.16!

is a particularly relevant example of a Schro¨dinger cat. It
cannot be written as a direct product of functions compris
any subset of theN two-level atoms. This state maximize
the signal-to-noise ratio in spectroscopic measurements@12#.

As usual, the phase space description for a collection
atoms involves the introduction of ac-number function with
a one-to-one correspondence to the quantum mecha
state of the system. Similarly to the harmonic oscillator ca
coherent states provide a natural scheme for the definitio
quasiprobability distribution functions. Given a density m
trix r its expression in a diagonal Bloch representation@18#

r5E P~u,f!uu,f&^u,fudV ~2.17!

defines theP function. Another useful function is theQ func-
tion defined by@8#

Q~u,f!5
2J11

4p
^u,furuu,f&. ~2.18!

The QJ;M function of a Dicke stateuJM& is proportional to
the probability Fu;f of finding @J5N/2;M5(Ne2Ng)/2#
the distribution ofN atoms in the groundNg or excitedNe
states of a system described by a Bloch functionuu,f&,

4p

2J11
QJ;M~u,f!5uDM2J

J ~f,2u,2f!u2

[Fu;f~J,M !. ~2.19!

The Qg;d function of a coherent stateug;d& can be directly
obtained from Eq.~2.12! yielding

Qg;d~u,f!5
2J11

4p S 11cosz

2 D 2J

, ~2.20!

with z the angle between (u,f) and (g,d) given by
06380
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cosz5cosu cosg1sinu sing cos~f2d!. ~2.21!

Notice that theQ function takes the maximum value in th
direction (g,d), whereas it is a minimum in the directio
(p2g,p1d), as can be seen in Figs. 1. In addition, it
symmetric around the (g,d) axis.

Finally, theQgd
6 function of the even and odd cat stat

can be written in the form

Qg;d
6 ~u,f!5N6

2 S Qg;d~u,f!1Qg;d1p~u,f!

6
2J11

4p

~21!J

22J
$@sinu sing sin~f2d!

1 i ~cosu1cosg!#2J1@sinu sing sin~f2d!

FIG. 1. ~a! Plot of the Qg,d(u,f) function for five two-level
atoms in aug5p/4,d5p/4& Bloch state.~b! The (g,d) values of
the Bloch state are shown. This and the followingQ plots are made
in spherical coordinates@Q(u,f),u,f#.
8-3
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2 i ~cosu1cosg!#2J% D . ~2.22!

In particular,

Qp/2;0
6 ~u,f!5

2J11

4p

1

22J11
$~11sinu cosf!2J

1~12sinu cosf!2J

6~21!J@~sinu sinf1 i cosu!2J

1~sinu sinf2 i cosu!2J#%. ~2.23!

We observe that the interference terms are zero when
direct terms are maximal, that is, foru5p/2,f50 or p,
while in the orthogonal planef5p/2, the direct terms take
their minimum value and the interference terms reach th
maximum absolute value (2J11/4p)222J at u50 or p
which, however, diminish exponentially withJ.

The simplest Schro¨dinger cat atomic states are superpo
tions of two distinguishable coherent atomic states wh
have a clear classical counterpart~dead and alive cat in the
language of Schro¨dinger!. To have a complete analogy to th
well-known paradox, these superpositions must be entan
with another quantum system~the analog of the radioactiv
atom!. In the procedure for constructing a realization of
Schrödinger cat analyzed here, theN-atom system is en
tangled to the quantum electromagnetic field. In the n
section, a technique for the manipulation of the quant
state of a cavity quantum electromagnetic field is describ
A similar procedure was used by Bruneet al. @5,19# to create
electromagnetic cat states and it also constitutes the first
in Gerry and Grobe’s proposal.

III. FIRST ATOM PASSING THROUGH THE CAVITY

We considerN identical two-level atoms of frequencyva
inside a cavity whose characteristic frequency nearest tova
is vc .The dimensions of the cavity should be much sma
than the wavelengthla52pc/va corresponding to the
atomic transition. Then the Hamiltonian of the system is
proximately given by two terms, the first determining t
free behavior of the N two-level atoms and the second r
resenting the free electromagnetic field

H05\vaJz1\vca
†a. ~3.1!

A different type of two-level atom~from here on called
atom 1! is prepared with classical microwave fields in t
superposition of states@5#

ux&1[
1

A2
~ ug1&1ue1&), ~3.2!

with ug1& and ue1& indicating its ground and excited state
respectively. This atom is sent through the cavity where
initial state of the system is a combination of the vacu
06380
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state of the electromagnetic field and theN atoms in their
ground state. That is, the initial state of the system is,

uc~0!&5u0&emuJ2J&ux&1 . ~3.3!

The atom 1 transition frequency is chosen so thatv1.vc .
Thus, there is an interaction between the atom and the ca
field that, in the rotating wave approximation, valid for we
coupling, can be described by the Hamiltonian

H5H01H \v1

2
sz

(1)1\V~s1
(1)a1s2

(1)a†!J
3$u~ t !2u~ t2t1!%, ~3.4!

where u(t2t1) is the step function andt1 is the time of
flight of the atom passing through the cavity. The coupli
frequencyV is determined by the magnitude of the dipo
moment of the atomic transition̂e1uxW ug1& and is a measure
of the strength of the coupling of the atom with the elect
magnetic field@20#.

In our case the problem reduces to finding the action
the evolution operator on the state~3.3!, or equivalently to
solving the corresponding time-dependent Schro¨dinger equa-
tion. We follow the procedure used by Jaynes and Cu
mings@20,21#, in which the Hamiltonian is rewritten in term
of a pair of commuting operators. The evolution operator
the system then takes the form

U05exp$2 ivaĴzt1%exp$2 i ~Ĉ11Ĉ2!t1%, ~3.5!

where the first exponential corresponds to theN two-level
atoms, while the second characterizes the interaction
tween the passing atom and the cavity field, that is

Ĉ15vcS a†a1
sz

(1)

2 D ,

Ĉ25V~s1
(1)a1s2

(1)a†!2
Dv

2
sz

(1) , ~3.6!

with the definitionDv[vc2v1.
These operators commute, implying that from the set

Fock states for the radiation field and spin eigenstates for
two-level atoms we can construct a representation in wh
they are both diagonal@20#. The states that diagonalize th
two-level atom interacting with a single mode of the rad
tion field are known as dressed states. In general, their st
ture can be considered a clear manifestation of the entan
ment between the atom and the electromagnetic field.

Here we only need to find the expansion of the sta
u0,g1& and u0,e1&, defining the states of the field and th
atom, in terms of the eigenstates of the operators~3.6!,
uf(n,k)&, with k51,2, i.e.,

Ĉ1uf~0,k!&5
vc

2
uf~0,k!&,

Ĉ2uf~0,k!&5~21!k11l0uf~0,k!&, ~3.7!

with l05A(Dv/2)21V2.
8-4
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It is then easy to show that

Ĉ1u0,g1&52
vc

2
u0,g1&, ~3.8!

Ĉ2u0,g1&5
Dv

2
u0,g1&, ~3.9!

and as a consequence the evolution of the stateu0,g1& is
determined by the expression

exp$2 i ~Ĉ11Ĉ2!t1%u0,g1&5expH 2 i S Dv

2
2

vc

2 D t1J u0,g1&.

~3.10!

The stateu0,e1& can be expanded in terms of the ke
uf(n,k)& as

u0,e1&5sinu0uf~0,1!&1cosu0uf~0,2!&, ~3.11!

where tan 2u052V/Dv. By means of~3.7! and ~3.8! we
also obtain the result

exp$2 i ~Ĉ11Ĉ2!t1%u0,e1&

5e$2 i vc/2 t1%$~cosl0t11 i cos 2u0 sinl0t1!u0,e1&

2 i sin 2u0 sinl0t1u1,g1&%. ~3.12!

Therefore, evaluatinguc(t1)&5U0uc(0)&, we get

uc~t1!&5eivaJt1uJ,2J&uQ~V,vc ,u0 ,t1!&, ~3.13!

where

uQ~V,vc ,u0 ,t1!&

5
1

A2
$ei (vc2Dv)t1 /2u0,g1&

2 ie2 ivct1 /2 sin 2u0 sinl0t1u1,g1&

1e2 ivct1 /2~cosl0t11 i sinl0t1 cos 2u0!u0,e1&%.

~3.14!

In resonance, we haveDv50, l05V, andu05p/4, which
simplifies the expression~3.14! for the state of the system t

uQ1&[uQ~V,vc ,p/4,t1!&

5
eivc t1/2

A2
$u0,g1&2 ie2 ivct1 sinVt1u1,g1&

1e2 ivct1 cosVt1u0,e1&%. ~3.15!

The superposition character of the original atom1 st
has been now transferred to the cavity’s electromagn
field. Notice that the presence of a photon within the cav
yields an interaction with theN atoms in the cavity which,
however, changes the energy spacing between the levels
negligible way because of the large detuning with the cav
mode.
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TheQ function for theN two-level atoms during this step
of the procedure

QJ2J~u,f!5
2J11

4p
cos4Ju/2, ~3.16!

is illustrated in Fig. 2.

IV. GENERATION OF BLOCH STATES

Consider now a classical driving field of constant amp
tudee, produced by a single mode laser, applied to the ato
inside the cavity for an interval (t22t1). This driving field
is described, in the rotating wave approximation, by the
teraction Hamiltonian

HI5
ike

2
~J12J2!, ~4.1!

wherek is the dipole moment coupling theN atoms to the
driving field. The state of the system~3.15! will evolve ac-
cording to the expression

uc~t1 ,t2!&

5e2 ivaJz(t22t1)1ke/2\(J12J2)(t22t1)eivaJt1uJ,2J&

3e2 ivca†a(t22t1)uQ1&, ~4.2!

where the evolution operator has been separated into
pieces. The first part has effect only on the stateuJ,2J&. It is
clearly related to the rotation~2.8! and will generate an
SU~2! coherent or Bloch state. The second part of the e
lution operator yields the free evolution of the state~3.14!.

We now use a faithful representation for the SU~2! gen-
erators ~spin operators! to evaluate the Baker-Campbel
Hausdorff formula

FIG. 2. Q(u,f) function for five two-level atoms in their
ground state. As the number of atoms is increased the sphe
becomes longer and narrower.
8-5
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expH 2 ivaĴz~t22t1!1
ke

2\
~ Ĵ12 Ĵ2!~t22t1!J

5ea1Ĵ1ea2Ĵ2ea0Ĵz, ~4.3!

finding that the parameters are related by the expression

a05 lnS cosw0~t22t1!1 i
va

2v0
sinv0~t22t1! D 22

,

~4.4!

a25
ke

2\v0
sinv0~t22t1!S cosv0~t22t1!

1 i
va

2v0
sinv0~t22t1! D , ~4.5!

a15
ke

2\v0

sinv0~t22t1!

Fcosv0~t22t1!1 i
va

2v0
sinv0~t22t1!G ,

~4.6!

with

v05Ak2e2

4\2 1
va

2

4
.

The second exponential operator appearing in~4.2! can be
evaluated directly.

The state of the system is then given by

uc~t1 ,t2!&5ei2z1Jua1 ;J&uQ12&, ~4.7!

where

uQ12&5
1

A2
$eivct1/2u0,g1&1e2 ivc t12cosVt1u0,e1&

2 ieivc t1/2e2 ivct2 sinVt1u1,g1&, ~4.8!

and the phase takes the value

z15arctanH va

2v0
tanv0~t22t1!J . ~4.9!

By introducing the strength parameterx5(ke/\va), the pa-
rametersu1 and f1 (a15u1/2e2 if1) of the Bloch state
can be written in the form

u15
2x

A~11x2!ctan2v0~t22t1!11
,

f15arctanS 1

A11x2
tanv0~t22t1!D . ~4.10!

For a given value ofx, u1 andf1 are periodic functions of
time with frequencyv0. The maximum valueumax52x cor-
responds to (t22t1)5(2n11)(p/2v0), with n
50,1,2, . . . . In Fig. 3, the direction (u1 ,f1) as a function
06380
of time is shown for interactions with 0<x<1. It can be
observed that the precession of the (u1 ,f1) axis on the
Bloch sphere depends strongly on the application time of
classical fields, particularly forv0(t22t1);np.

Once the atomic Bloch state has been generated, the
step has the purpose of entangling theN-atom system with
the cavity electromagnetic field.

V. STARK EFFECT

If an additional electric field is properly applied, theN
atoms experience a modification on their energy levels le
ing to a new transition frequencyva8 which is again as-
sumed to be different from the characteristic frequencyvc of
the cavity, but near enough to induce a dispersive interac
@9#

H5\va8Jz1\vca
†a1\xa†aJz . ~5.1!

The parameterx is proportional to the square of the dipo
atomic moment and inversely proportional to the detuni
Notice that the interaction Hamiltonian does not change
ther the population of the Dicke atomic system or the nu
ber of photons within the cavity.

This Hamiltonian yields an evolution operator which c
be factorized as a product of three terms, that is

U5e2 ixa†aJz(t32t2)e2 iva8Jz(t32t2)e2 ivca†a(t32t2).
~5.2!

The action of the last exponential on the stateuQ12& can
be easily calculated and yields

FIG. 3. Precession of the (u1 ,f1) axis on the Bloch sphere
characterizing the atomic coherent state generated by the clas
fields, as a function ofv0(t22t1) and the strength parameterx. For
a given value ofx, the (u1 ,f1) axis starts in thez direction for
v0(t22t1)50 and evolves counterclockwise inp/10 steps. Thex
parameter is varied from zero to one in steps of 0.05 along
meridians.
8-6
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uQ123&5
1

A2
$eivct1/2u0,g1&1e2 ivct1 /2 cosVt1u0,e1&

2 ieivct1/2e2 ivct3 sinVt1u1,g1&%. ~5.3!

The second exponential operator of expression~5.2! can
now be applied to the stateua1 ;J&. If the result

exp$2 iva8Jzt%exp$a1J1%exp$ iva8Jzt%

5exp$a1e2 iva8tJ1% ~5.4!

is used, one obtains

exp$2 iva8Jz~t32t2!%ua1 ;J&5eiva8J(t32t2)ua18;J& ,

~5.5!

wherea185a1e2 iva8(t32t2). This expression implies that

u18 5u1 , ~5.6!

f18 5f11va8~t32t2!. ~5.7!

Finally, by means of expressions~5.2! to ~5.5! the evolu-
tion of the state~4.7! is found to be

uc~t1 ,t2 ,t3!&

5Uuc~t1 ,t2!&

5ei2z1Jeiva8J(t32t2)e2 ixa†aJz(t32t2)ua18;J&uQ123&

5ei2z1Jeiva8J(t32t2)
1

A2
@eivct1/2u0,g1&ua18;J&

1e2 ivct1/2 cosVt1u0,e1&ua18;J&

2 ieivct1/2e2 ivct3eixJ(t32t2) sinVt1u1,g1&

3ua19;J&], ~5.8!

with a195a18e2 ix(t32t2). We thus find that

u19 5u1 , ~5.9!

f19 5f11~va81x!~t32t2!. ~5.10!

The main consequence of this step is that the cavity elec
magnetic field and theN two-level atoms are now entangle
that is, the collective atomic state will be affected by t
presence or absence of a photon within the cavity. No
that at this stage the two-level atoms’Q function can be
obtained from the reduced density matrix

r red5^0g1uru0g1&1^1g1uru1g1&1^0e1uru0e1&,
~5.11!

resulting in

Qred~u,f!5 1
2 @~11cos2Vt1!Qu

18 f
18
~u,f!

1sin2Vt1Qu
19 f

19
~u,f!#. ~5.12!
06380
o-

e

In this caseQred corresponds to theQ function of a mixture
of coherent atomic states not exhibiting the characteristic
terference terms of an atomic Schro¨dinger cat state. The be
havior of Qred as a function ofx(t32t2) is illustrated in
Figs. 4. The purpose of the next step is to create Schro¨dinger
cat states of the system.

VI. SECOND ATOM PASSING THROUGH THE CAVITY

A detector can be connected to measure the state of
first atom when it leaves the cavity. Then, depending
wether the atom 1 is in its ground or excited state, the sys
can be either

ufg1
&5Ng1

^g1uc~t1 ,t2 ,t3!& ~6.1!

or

ufe1
&5Ne1

^e1uc~t1 ,t2 ,t3!&. ~6.2!

The parametersNe1
and Ng1

denote the corresponding no
malization factors.

FIG. 4. The evolution of theQred(u,f) function, Eq.~5.12!, for
five two level atoms is displayed, as a function of the valuesx(t3

2t2)5kp/4 with k51,2, . . . ,6. Thefunction is considered to be
in a frame rotating aroundz axis with frequencyva and with the
parametersu18 5p/4, f18 50 andVt15p/4.
8-7
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A second two-level atom, prepared to be in its grou
stateug2&, is sent through the cavity. Similarly to the fir
atom, this atom has a transition frequencyv25v1 close to
the one of the cavity and thus the interaction can be mode
within the same rotating wave approximation, by a Ham
tonian analogous to that given by Eq.~3.4!. By a similar
procedure to that outlined in the third section one can fi
the evolution of these states, leading to the following re
nance results

ufg1
~t1 ,t2 ,t3 ,t4!&

5
1

A11sin2Vt1

$eivc(t42t3)/2u0,g2&uā18 ;J&

2 ie2 ivc(t41t3)/2eixJ(t32t2)sinVt1$cosV~t42t3!

3u1,g2&2 isinV~t42t3!u0,e2&%uā19 ;J&%, ~6.3!

whereā18 5a18e2 iva(t42t3) andā19 5a19e2 iva(t42t3), and

ufe1
~t1 ,t2 ,t3 ,t4!&5u0,g2&uā18 ;J&%. ~6.4!

We observe that the structure of the wave function ha
mixture of Bloch states if, after leaving the cavity, atom 1
determined to be in the ground state. From now on, we
strict the discussion to this case.

When the second atom is outside the cavity, it can still
manipulated by means of ap/2 pulse with a resonant field
that yields the transformation@9#

ue2&°
1

A2
$ug2&1ue2&%, ~6.5!

ug2&°
1

A2
$ug2&2ue2&%. ~6.6!

We denote byuf̃g1
& the state function resulting from apply

ing this transformation toufg1
& Finally, a selective device

discriminating the state of the second atom is activated. A
result the system within the cavity will be described by o
of the normalized wave functions,

uc̃g1 ,g2
&5Ng2

^g2uf̃g1
&5N2$@ uā18 ;J&2l0uā19 ;J&] u0&

1l1uā19 ;J&u1&%, ~6.7!

uc̃g1 ,e2
&5Ne2

^e2uf̃g1
&5N1$@ uā18 ;J&1l0uā19 ;J&] u0&

2l1uā19 ;J&u1&%, ~6.8!

with
06380
d

d,
-

d
-
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-

e

a

N65H 11sin2Vt162 sinVt1 sinV~t42t3!

3RFe2 ivct4S cos
x

2
~t32t2!

1 i cosu1sin
x

2
~t32t2! D 2JG J 1/2

, ~6.9!

l05e2 ivct4eixJ(t32t2) sinVt1 sinV~t42t3!,
~6.10!

l152 ie2 ivct4eixJ(t32t2) sinVt1 cosV~t42t3!.
~6.11!

From expressions~6.7! and ~6.8!, one concludes that the
states of the system will attain the exact form of atom
Schrödinger cat,~2.14!, if the following conditions on the
strength parameters and application times of the differ
interactions are satisfied

Vt15~2k111!
p

2
, k150,1,2, . . . ,

x~t32t2!5~2k211!p, k250,1,2, . . . ,

V~t42t3!5~2k311!
p

2
, k350,1,2, . . . , ~6.12!

where the sumk11k3 must be equal to an even intege
These expressions are related to the time of flight through
cavity of atom 1 and atom 2, and the interval that the elec
field yielding the Stark effect is applied to the system, whi
leads to the resultā19 52ā18 . Once these conditions ar
established we find that

vct45~2k41J!p, k450,1,2, . . . . ~6.13!

By means of~6.12! and ~6.13!, we can determine the time
interval that the classical driving field will act to generate t
Bloch state,

t22t15
p

va
H ~2k41J!

va

vc
2~k11k311!

va

V

2~2k211!
va

x J . ~6.14!

If these conditions are satisfied the statesuc̃g1 ,e2
& and

uc̃g1 ,g2
& exactly correspond to the even and odd atom

Schrödinger cat states, respectively. These cat states de
on the angles

ū18 5u1 ,

f̄18 5f11~2k211!~pva8/x!1~2k311!~pva /2V!.

~6.15!
8-8
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TheQ functions for even and odd atomic Schro¨dinger cat
states are displayed in Figs. 5~a! and 5~b!, respectively,
which emphasize the influence of the interference terms

VII. DISCUSSION

In this paper we have made a detailed mathemat
analysis of a recent proposal to generate atomic Schro¨dinger
cats. The relevance of some suggested characteristics o
atoms and light used for this purpose has been made evid
Thus it is crucial to detect the state of the first passing a
because unless it corresponds to the ground state no s
position of coherent atomic states will be obtained. Sim
larly, the time of flight of both atoms should be accurate
selected to guarantee the success of the experiment. We
also emphasize some limitations of the procedure. For
stance, maximally entangled states~2.16! cannot be pro-
duced by this mechanism because the Schro¨dinger cats gen-
erated here are superpositions of coherent states
different phasesf, while the entangled state~2.16! corre-
sponds to superpositions with differentu. However, the ac-
cessible cat stateup/2,0&6up/2,p& exhibits a Q function
similar to that of the state~2.16! and their spectroscopi
characteristics should be studied.

The experimental feasibility of the proposal can be a
lyzed in terms of the parameters involved in current cav
quantum electrodynamics experiments that have been

FIG. 5. TheQ6(u,f) functions, associated to collective atom
Schrödinger cat statesC6(p/4,0)&, of five two level atoms are
shown. TheQ function for the even cat state is presented in~a!
while for the odd cat state it is illustrated in~b!.
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cessfully carried out using procedures similar to those st
ied in this work. In this context, circular Rydberg atoms,
already mentioned by Gerry and Grobe@9#, are perhaps the
ideal physical realizations of both the two level atoms ins
the cavity and the atoms that are sent through it. These k
of atoms are characterized by a large principal quant
numbern together with its corresponding maximum orbit
l 5n21 and magneticm5 l quantum numbers. These leve
can be selectively detected by field ionization. In additio
they have an extremely long lifetime, 30 ms forn550, and
their coupling to millimiter wave radiation on a transitio
between neighboring circular states is very large. For
stance, the dipole matrix element takes the valued51250
a.u. for the transition withva/2p551.099 Ghz between the
n551 andn550 circular Rydberg states of Rubidium@22#.
For this case, the cavity volumeV necessary to achieve reso
nance is of the order of 0.7 cm3, yielding a very strong atom
couplingV/2p;50 kHz.

Using circular Rydberg states and high Q cavities,
resonant atom-cavity entanglement has been experimen
demostrated@23#. In these type of experiments, we find th
the atoms are sent through the cavity with velocities arou
300 m/s. Different interaction times between the pass
atom and the cavity mode can be obtained either by chan
the velocity of the atoms or by Stark tuning the atomic tra
sition in resonance during a fraction of the atom-cav
crossing time@24#. Finally the dispersive atom-cavity cou
pling arising from the nonresonant interaction has also b
observed for lowQ cavities through the measurement of t
corresponding light shift@25#. The dispersive atom-cavity
entanglement mentioned in Sec. V for which highQ cavities
are necessary is under experimental study@22,26#

Thus most of the steps discussed in this work to obt
atomic Schro¨dinger cats have already been experimenta
explored for circular Rydberg atoms passing through ca
ties. There is, however, an important point that requires f
ther study: theN two-level atoms are assumed to be confin
within the cavity. As a consequence, additional electrom
netic fields for trapping the atoms could be necessary
their effects on atomic levels should be carefully explore

As an example, we consider Rydberg atoms like Rb.
find the following requirements.~i! The time of flight of
atom 1 and atom 2 should be of the same order of magnitu
ranging from 5–35ms. ~ii ! The additional electric field to
yield the detuning of theN atoms of the cavity has to b

TABLE I. Possible application times of the interactions are
lustrated in units of@ms#. In the first row the results correspond t
(2k41J)53.13106 while all the other cases use (2k41J)5107.

t1 t22t1 t32t2 t42t3

k15k25k350 5 1 20 5
k15k25k350 5 70 20 5
k15k351,k250 15 50 20 15
k15k350,k251 5 30 60 5
k15k25k351 15 10 60 15
k15k352,k250 25 30 20 25
k15k353,k250 35 10 20 35
8-9
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applied during an interval of the order oft32t2
;20–60ms, for a detuning of 25 kHz.~iii ! The single mode
laser applied to the cavity to generate the Bloch states m
be acting during an interval of the ordert22t1;1
270 ms, which fixes a condition for the sum of the numb
of atoms inside the cavity and the integerk4, that is (2k4
1J).33106. The specific values for the application time
depend on the integersk1 , k2, andk3 appearing in the ex-
pressions~6.12!. In Table I, we show some possible sets
conditions on the application times to successfully constr
atomic Schro¨dinger cat states. In these examples the dura
of the experiment is in the range;31–100ms. Therefore,
-

a

et

d,

n

06380
st
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the cavity in which the experiment should be performed m
have a damping time longer than this. In order to guaran
the cat state’s formation, extreme care should be taken in
precision of the application times.

We conclude that the experimental realization of this p
posal to construct atomic Schro¨dinger cat states seems to b
near from present capabilities.
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