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Propagation of squeezed radiation through amplifying or absorbing random media

M. Patra and C. W. J. Beenakker
Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 25 October 1999; revised manuscript received 12 January 2000; published 10 May 2000!

We analyze how nonclassical features of squeezed radiation~in particular, the sub-Poissonian noise! are
degraded when it is transmitted through an amplifying or absorbing medium with randomly located scattering
centra. Both the cases of direct photodetection and of homodyne detection are considered. Explicit results are
obtained for the dependence of the Fano factor~the ratio of the noise power and the mean current! on the
degree of squeezing of the incident state, on the length and the mean free path of the medium, the temperature,
and on the absorption or amplification rate.

PACS number~s!: 42.50.Dv, 42.25.Bs, 42.25.Dd, 42.50.Ar
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I. INTRODUCTION

Squeezed radiation is in a state in which one of
quadratures of the electric field fluctuates less than the o
@1,2#. Such a nonclassical state is useful, because the fluc
tions in the photon flux can be reduced below that of a P
son process — at the expense of enhanced fluctuations i
phase. Sub-Poissonian noise is a delicate feature of the
diation; it is easily destroyed by the interaction with an a
sorbing or amplifying medium @3#. The noise from
spontaneous-emission events is responsible for the deg
tion of the squeezing.

Because of the fundamental and practical importan
there exists a considerable literature on the propagatio
squeezed and other nonclassical states of light through
sorbing or amplifying media. We cite some of the most
cent papers on this topic@4–10#. The main simplification of
these investigations is the restriction to systems in which
scattering is one-dimensional, such as parallel dielectric
ers. Each propagating mode can then be treated separ
from any other mode. It is the purpose of the present pape
remove this restriction by presenting a general theory
three-dimensional scattering, and to apply it to a medi
with randomly located scattering centra.

Our work builds on a previous paper@11#, in which we
considered the propagation of a coherent state through su
random medium. Physically, the problem considered her
different because a coherent state has Poisson noise, so
the specific nonclassical features of squeezed radiation
not arise in Ref.@11#. Technically, the difference is that
squeezed state, as most other nonclassical states, lacks
agonal representation in terms of coherent states@1,2#. We
cannot therefore directly extend the theory of Ref.@11# to the
propagation of squeezed states. The basic idea of our
proach remains the same: The photodetection statistics o
transmitted radiation is related to that of the incident rad
tion by means of the scattering matrix of the medium. T
method of random-matrix theory@12# is then used to evalu
ate the noise properties of the transmitted radiation, avera
over an ensemble of random media with different positio
of the scatterers.

The outline of this paper is as follows. In Sec. II we fir
summarize the scattering formalism and then show how
characteristic function of the state of the transmitted rad
1050-2947/2000/61~6!/063805~8!/$15.00 61 0638
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tion can be obtained from that of the incident state. T
allows us to compute the photocount statistics as measure
direct detection~Sec. III! and in homodyne photodetectio
measurements~Sec. IV!. The expressions in Secs. II–IV ar
generally valid for any incident state. In Sec. V we special
to the case that the incident radiation is in an ideal squee
state~also known as a squeezed state of minimal uncertai
or as a two-photon coherent state@1,2#!. The statistics of
direct and homodyne measurements are expressed in t
of the degree of squeezing of the incident state. The F
factor, introduced in Sec. VI, quantifies the degree to wh
the squeezing has been destroyed by the propagation thr
an amplifying or absorbing medium. The ensemble aver
of the Fano factor is then computed using random-ma
theory in Sec. VII. We conclude in Sec. VIII.

II. SCATTERING FORMULATION

We consider an amplifying or absorbing disordered m
dium embedded in a waveguide that supportsN(v) propa-
gating modes at frequencyv. The conceptual advantage o
embedding the medium in a waveguide is that we can giv
scattering formulation in terms of a finite-dimensional m
trix. The outgoing radiation in moden is described by an
annihilation operatoran

out(v), using the convention tha
modes 1,2, . . . ,N are on the left-hand side of the mediu
and modesN11, . . . ,2N are on the right-hand side. Th
vector aout consists of the operatorsa1

out,a2
out, . . . ,a2N

out .
Similarly, we define a vectorain for incoming radiation.

These two sets of operators each satisfy the bosonic c
mutation relations

@an~v!,am
† ~v8!#5dnmd~v2v8!, @an~v!,am~v8!#50.

~2.1!

They are related by the input-output relations@13–15#

aout~v!5S~v!ain~v!1Q~v!b~v!, ~2.2a!

aout~v!5S~v!ain~v!1V~v!c†~v!, ~2.2b!

where the first equation is for an absorbing medium and
second for an amplifying medium. We have introduced
2N32N scattering matrixS, the 2N32N matricesQ andV,
©2000 The American Physical Society05-1
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and the vectorsb andc of 2N bosonic operators. The sca
tering matrix can be decomposed into fourN3N reflection
and transmission matrices,

S5S r 8 t8

t r D . ~2.3!

Reciprocity imposes the conditionst85tT, r 5r T, and r 8
5r 8T.

The operatorsb and c account for spontaneous emissio
in the medium. They satisfy the bosonic commutation re
tions ~2.1!, hence

QQ†512SS†, VV†5SS†21. ~2.4!

Their expectation values are

^bn
†~v!bm~v8!&5dnmd~v2v8! f ~v,T!, ~2.5a!

^cn~v!cm
† ~v8!&52dnmd~v2v8! f ~v,T!. ~2.5b!

The Bose-Einstein function

f ~v,T!5@exp~\v/kT!21#21 ~2.6!

is evaluated at positive temperatureT for an absorbing me-
dium and at negative temperature for an amplifying mediu

It is convenient to discretize the frequency in infinite
mally small steps ofD, so thatvp5pD, and treat the fre-
quency indexp as a separate vector index~in addition to the
mode indexn). For example,anp

out5an
out(vp) and Snp,n8p8

5Snn8(vp)dpp8 .
The state of the outgoing radiation is described by

characteristic function

xout~h!5K :expS D1/2(
n,p

@an
out†~vp!hn~vp!

2hn* ~vp!an
out~vp!# D :L

5^:exp@D1/2~aout†h2h†aout!#:&, ~2.7!

where^:•••:& indicates the expectation value of a norma
ordered product of operatorsaout and aout† ~creation opera-
tors to the left of the annihilation operators!. The vectorh
has elementshnp5hn(vp). The density operator of the ou
going radiation is uniquely defined by the characteris
function xout @1#. Similarly, the incoming state has a chara
teristic function,

x in~h!5^:exp@D1/2~ain†h2h†ain!#:&. ~2.8!

The characteristic function of the thermal radiation inside
absorbing medium is given by

xabs~h!5^:exp@D1/2~b†h2h†b!#:&

5expS 2(
n,p

hnp* f ~vp ,T!hnpD
[exp~2h†f h!. ~2.9!
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In the final equality f denotes the matrix with element
f np,n8p85dnn8dpp8 f (vp ,T). For an amplifying medium, re-
placingb by c† and normal ordering by antinormal orderin
one finds instead

xamp~h!5exp~h†f h!. ~2.10!

A combination of Eqs.~2.2! and ~2.4! with Eqs. ~2.7!–
~2.10! yields a relationship between the characteristic fu
tions of the incoming and outgoing states,

xout~h!5exp„2h†~12SS†! f h…x in~S†h!. ~2.11!

This relation holds both for absorbing and amplifying med
because the difference in sign in the exponent of Eqs.~2.9!
and ~2.10! is canceled by the difference in sign betwe
QQ†512SS† andVV†52(12SS†).

III. PHOTOCOUNT DISTRIBUTION

The photocount distribution is the probabilityP(n) thatn
photons are absorbed by a photodetector within a cer
time t ~see Fig. 1!. The factorial cumulantsk j of P(n) @the
first two beingk15n̄ andk25n(n21)2n̄2] are most easily
obtained from the generating function@2#

F~j!5(
j 51

`
k jj

j

j !
5 lnS (

n50

`

~11j!nP~n!D . ~3.1!

The generating function is determined by a normally
dered expectation value@16,17#,

eF(j)5^:ejW:&, W5E
0

t

dt(
n51

2N

dnan
out†~ t !an

out~ t !.

~3.2!

Here dnP@0,1# is the detection efficiency of thenth mode
and the time-dependent operators are defined as

an
out~ t !5~2p!21/2E

0

`

dv e2 ivtan
out~v!. ~3.3!

Discretizing the frequencies as described in Sec. II, one
write

W5
D2

2pE0

t

dt(
n

dn(
p,p8

eiD(p2p8)tan
out†~vp!an

out~vp8!.

~3.4!

This expression can be simplified in the limitt→` of long
counting times, when one can setD52p/t and use

FIG. 1. Schematic illustration of direct detection: Radiation
incident on a random medium~shaded!. The transmitted radiation is
absorbed by a photodetector.
5-2
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E
0

t

eiD(p2p8)tdt5tdpp8 . ~3.5!

Hence, in the long-time limit the generating function is giv
by

eF(j)5K :expS jD(
n,p

dnan
out†~vp!an

out~vp! D :L
[^:exp~jDaout†Daout!:&, ~3.6!

where we have defined the matrix of detector efficienc
Dnp,n8p85dndnn8dpp8 .

Comparing Eqs.~2.7! and ~3.6!, we see that the genera
ing function F(j) can be obtained from the characteris
function xout by convolution with a Gaussian,

eF(j)5
1

det~2jpD!
E dh xout~h!expS 1

j
h†D 21h D ,

~3.7!

where *dh is an integration over the real and imagina
parts of h. We now substitute the relation~2.11! between
xout andx in , to arrive at a relation betweenF(j) andx in :

eF(j)5
1

det~2jpD!
E dh x in~S†h!

3expS 1

j
h†D 21h2h†~12SS†! f h D . ~3.8!

The fluctuations in the photocount are partly due to th
mal fluctuations, which would exist even without any inc
dent radiation. If we denote byF th(j) the generating func-
tion of these thermal fluctuations, then Eq.~3.8! can be
written in the form

F~j!5F th~j!1 lnF 1

det~pM !
E dh x in~h!exp~2h†M 21h!G ,

~3.9!

F th~j!52 ln det@12jD~12SS†! f #. ~3.10!

We have defined the Hermitian matrix

M52jS†@12jD~12SS†! f #21DS, ~3.11!

and we have performed a change of integration variab
from h to S†h @with Jacobian det(SS†)].

The expression~3.10! generalizes the result of Ref.@15#
to arbitrary detection-efficiency matrixD. Returning to a
continuous frequency, it can be written as~recall that D
52p/t)

F th~j!52
t

2pE0

`

dv ln det„12jD@12S~v!S†~v!#

3 f ~v,T!…, ~3.12!
06380
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whereD is a 2N32N diagonal matrix containing the detec
tion efficienciesdn on the diagonal (Dnm5dndnm). The first
two factorial cumulants are

k1
th5tE

0

`dv

2p
f ~v,T!tr D@12S~v!S†~v!#, ~3.13!

k2
th5tE

0

`dv

2p
f 2~v,T!tr„D@12S~v!S†~v!#…2. ~3.14!

Note that all factorial cumulants depend linearly on the d
tection timet in the long-time limit.

If only the N modes at one side of the waveguide a
detected~with equal efficiencyd), thendn50 for 1<n<N
anddn5d for N11<n<2N, hence

F th~j!52
t

2pE0

`

dv ln det„12jd@12r ~v!r †~v!

2t~v!t†~v!# f ~v,T!…, ~3.15!

in agreement with Ref.@18#.
The differenceF(j)2F th(j) contains the noise from the

incident radiation by itself as well as the excess noise du
beating of the incident radiation with the vacuum fluctu
tions. If the incident radiation is in a coherent state, th
x in(h)5exp(a†h2h†a) for some vectora ~called the dis-
placement vector! with elementsanp5an(vp). Substitution
into Eq. ~3.9! gives the generating function

F~j!5F th~j!2a†Ma

5F th~j!1
tj

2pE0

`

dv a†~v!S†~v!

3$12jD@12S~v!S†~v!# f ~v,T!%21

3DS~v!a~v!. ~3.16!

The first two factorial cumulants are

k15tE
0

`dv

2p
a†~v!S†~v!DS~v!a~v!1k1

th, ~3.17!

k252tE
0

`dv

2p
f ~v,T!a†~v!S†~v!D@12S~v!S†~v!#

3DS~v!a~v!1k2
th. ~3.18!

If the incident coherent radiation is in a single modem0
and monochromatic with frequencyv0, then Eqs.~3.16!–
~3.18! simplify for detection in transmission to

F~j!5F th~j!1tjdI0„t
†$12jd@12rr †2tt†#

3 f ~v0 ,T!%21t…m0m0
, ~3.19!

k15I 0td@ t†t#m0m0
1k1

th, ~3.20!

k1
th5tdE

0

`dv

2p
f ~v,T!tr@12r ~v!r †~v!2t~v!t†~v!#,

~3.21!
5-3
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k252I 0td2f ~v0 ,T!@ t†~12rr †2tt†!t#m0m0
1k2

th, ~3.22!

k2
th5td2E

0

`dv

2p
f 2~v,T!tr@12r ~v!r †~v!2t~v!t†~v!#2.

~3.23!

Here I 05(2p)21*0
`dvuau2 is the incident photon flux and

the matricesr and t without frequency argument are to b
evaluated at frequencyv0. These are the results of Ref.@11#.

IV. HOMODYNE DETECTION

The photocount measurement described in Sec.
~known as direct detection! cannot distinguish between th
two quadratures of the electric field. Such phase-depen
information can be retrieved by homodyne detection, i.e.,
superimposing a strong probe beam~described by operator
aprobe) onto the signal beam~see Fig. 2!. The total radiation
incident on the detector is described by the operator

atotal5k1/2aout1~12k!1/2aprobe, ~4.1!

where the factorAk accounts for the attenuation of the sign
beam by the beam splitter that superimposes it onto
probe beam.~For simplicity we assume a real scalark; more
generallyk would be a complex coupling matrix.!

The characteristic function ofatotal is the product of the
characteristic functions ofaout andaprobe. We assume that the
probe beam is in the coherent state with displacement ve
b, having elementsbnp5bn(vp). From Eq.~2.11! one gets

x total~h!5exp@2kh†~12SS†! f h1~12k!1/2~b†h2h†b!#

3x in~S†k1/2h!. ~4.2!

The generating functionFhomo(j) of the photocount distribu-
tion in homodyne detection is given by@cf. Eq. ~3.6!#

exp@Fhomo~j!#5^:exp~jDatotal†Datotal!:& ~4.3!

'exp@j~12k!b†Db#^:exp„D1/2Ak~12k!j

3@aout†Db1b†Daout#…:&. ~4.4!

In the second approximate equality we have linearized
exponent with respect toaout, which is justified if the probe
beam is much stronger than the signal beam. The remai
expectation value has the form of a characteristic functio
we takej purely imaginary, so thatj* 52j. The result is

FIG. 2. Schematic illustration of homodyne detection: At t
left, radiation is incident on a random medium~shaded!. At the
right, a strong coherent beam is superimposed onto the transm
radiation, and the combined radiation is absorbed by a photode
tor.
06380
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Fhomo~j!5j~12k!b†Db1 ln xout„Ak~12k!jDb…

5j~12k!b†Db1k~12k!j2b†D~12SS†! fDb

1 ln x in„Ak~12k!jS†Db…. ~4.5!

In the second equation we have substituted the rela
~2.11! betweenxout andx in .

V. SQUEEZED RADIATION

We consider the case that the incident radiation is in
ideal squeezed stateue,a&5CSu0& @1,2#, obtained from the
vacuum stateu0& by subsequent action of the squeezing o
erator

S5exp@ 1
2 D~aine* ain2ain†eain†!# ~5.1!

and the displacement operator

C5exp@D1/2~ain†a2a†ain!#. ~5.2!

As in the preceding sections, we have discretized the
quency, vp5pD, and used the vector of operatorsanp

in

5an
in(vp). The complex squeezing parametersen(v)

5rn(v)eifn(v) are contained in the diagonal matrixe with
elementsenp,n8p85en(vp)dnn8dpp8 . Similarly, the vectora
with elementsanp5an(vp) contains the displacement pa
rameters.

The characteristic function of the incident radiation
given by @1,19#

x in~h!5exp@a†h2h†a2 1
4 hT~e2 if sinh 2r!h

2 1
4 h†~eif sinh 2r!h* 2h†~sinh2 r!h#. ~5.3!

According to Eq.~2.11!, we thus find for the characteristi
function of the outgoing radiation

xout~h!5exp„a†S†h2h†Sa2 1
4 hTS* ~e2 ifsinh 2r!S†h

2 1
4 h†S~eif sinh 2r!STh*

2h†@ f 2S~ f 2sinh2 r!S†#h…. ~5.4!

The generating functionF(j) of the photocount distribu-
tion is obtained fromx in by convolution with a Gaussian, cf
Eq. ~3.7!. We find

F~j!5F th~j!2 1
2 ln detX2 1

2 S a*

a D T

X21S Ma

M* a* D , ~5.5!

where the matrixX is defined in terms of the matrixM by

X511S M sinhr 2Meif coshr

2M* e2 if coshr M* sinhr
D

3S sinhr 0

0 sinhr
D . ~5.6!

If squeezing is absent,r50, henceX51 and Eq.~5.5! re-
duces to the result~3.16! for coherent radiation. For a
squeezed vacuum (a50) one has simplyF(j)5F th(j)
2 1

2 ln detX.

ed
c-
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If the radiation is incident only in modem0, then we may
compute the matrix inverse and the determinant in Eq.~5.5!
explicitly. The matrixM (v) defined in Eq.~3.11! may be
replaced by itsm0 ,m0 element,

Mm0m0
~v![m52j„S†~12jD@12SS†# f !21DS…m0m0

.
~5.7!

Note thatm is real, since it is the diagonal element of
Hermitian matrix. The resulting generating function is

F~j!5F th~j!2 1
2 tE

0

`dv

2p
ln~112m sinh2 r2m2 sinh2 r!

2tE
0

`dv

2p
muau2

3
11m sinhr@sinhr1coshr cos~2 arga2f!#

112m sinh2 r2m2 sinh2 r
.

~5.8!

The first two factorial cumulants, for detection in transm
sion, are

k15k1
th1tdE

0

`dv

2p
~ uau21sinh2 r!@ t†t#m0m0

, ~5.9!

k25k2
th12td2E

0

`dv

2p
~ uau21sinh2 r!

3 f @ t†~12rr †2tt†!t#m0m0
1td2E

0

`dv

2p
@ t†t#m0m0

2

3@ ua coshr2a* eif sinhru22uau2

1sinh2 r~cosh2 r1sinh2 r!#, ~5.10!

wherek1
th andk2

th are given by Eqs.~3.21! and ~3.23!.
The generating function for homodyne detection follo

from Eqs.~4.5! and ~5.4!,

Fhomo~j!5j~12k!b†Db1jAk~12k!

3~a†S†Db1b†DSa!2 1
4 j2k~12k!

3@bDS* ~e2 if sinh 2r!S†Db

1b†DS~eif sinh 2r!STDb* #

1j2k~12k!b†D@ f 2S~ f 2sinh2 r!S†#Db.

~5.11!
06380
-

All factorial cumulants except for the first two vanish in th
strong-probe approximation. We may simplify the generat
function by assuming that the signal beam is incident in
single modem0 and that the probe beam is also in a sing
moden0. For detection in transmission one then has the f
torial cumulants

k15tdE
0

`dv

2p
$~12k!ubu212Ak~12k!Re@ab* tn0m0

#%,

~5.12!

k252tk~12k!d2E
0

`dv

2p
Re@b* 2eiftn0m0

2 #sinh 2r

12tk~12k!d2E
0

`dv

2p
ubu2@ utn0m0

u2 sinh2 r

1 f ~12rr †2tt†!n0n0
#. ~5.13!

VI. FANO FACTOR

For the application of these general formulas we foc
our attention on the Fano factorF, defined as the ratio

of the noise powerP5t21 varn and the mean currentĪ

5t21n̄:

F5P/ Ī 511k2 /k1 . ~6.1!

~We have assumed the limitt→`.! For coherent radiation
F51, corresponding to Poisson statistics. Thermal radia
has F.1 ~super-Poissonian!. Nonclassical states, such a
squeezed states, can haveF,1.

We assume that the radiation is incident in a single mo
m0 and is detected in transmission~equal efficiency d
per transmitted mode!. We consider a frequency-resolve
measurement, covering a narrow frequency interval aro
the central frequencyv0 of the incident radiation. The ther
mal contributions k1

th and k2
th may then be neglected

since they are spread out over a wide frequency range.
incident radiation has Fano factorFin , measured in direct
detection with unit efficiency. For squeezed radiation, o
has
Fin511
ua coshr2a* eif sinhru22uau21sinh2 r~cosh2 r1sinh2 r!

uau21sinh2 r
. ~6.2!
5-5
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We seek the Fano factor of the transmitted radiation, b
for direct detection (Fdirect) and for homodyne detectio
(Fhomo). Combining Eqs.~5.9! and~5.10!, we find for direct
detection

Fdirect215d~ t†t !m0m0
~Fin21!

12d f~v0 ,T!
@ t†~12rr †2tt†!t#m0m0

~ t†t !m0m0

.

~6.3!

The first term is due entirely to the incident radiation. It
absent for coherent radiation~because thenFin50). The sec-
ond term is due to the beating of the incident radiation w
the vacuum fluctuations. It is independent of the incid
radiation and was studied in detail in Ref.@11#. Sub-
Poissonian counting statistics, i.e.,Fdirect,1, is in an ampli-
fying medium (f <21) only possible when

2~ t†tt†t !m0m0
,~ t†t !m0m0

2 12~ t†t !m0m0
22~ t†rr †t !m0m0

.

~6.4!

In the absence of reflection (r 50) and intermode scatterin
(t diagonal!, this reduces to the well-known conditio
@20–22# (t†t)m0m0

,2. Since (t†tt†t)m0m0
5(ku(t†t)m0ku2

>(t†t)m0m0

2 , the presence of intermode scattering decrea

the maximally allowed amplification factor (t†t)m0m0
.

The Fano factor in the strong-probe approximati
(ubu→`) follows from Eqs. ~5.12! and ~5.13!, with the
result

Fhomo2152 dkutn0m0
u2 sinh2 r12 dk f ~v0 ,T!

3~12rr †2tt†!n0n0
2dk

3Re@ei (f22 argb)tn0m0

2 #sinh 2r. ~6.5!

In the strong-probe approximation, it is independent ofa and
ubu. Similarly to Eq.~6.3!, the first term is entirely due to th
incident radiation, vanishing for coherent radiation (r50),
and the second term is due the beating with vacuum fluc
tions. The additional third term describes the effect of
phase of the probe beam on the measurement. Typically,
measurement one would vary the phase of the probe b
until the Fano factor is minimized, which occurs whe
argb5 1

2 f1argtn0m0
. The resulting Fano factorF homo

min is
given by
06380
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F homo
min 5122 dkutn0m0

u2e2r sinhr

12 dk f ~v0 ,T!~12rr †2tt†!n0n0
. ~6.6!

Squeezing in the outgoing radiation for an amplifying m
dium is only possible when utn0m0

u2,222(rr †)n0n0

2(kÞm0
utn0ku2. The single-mode limitutn0m0

u252 is thus de-
creased by both reflection and intermode scattering.

VII. ENSEMBLE AVERAGES

The expressions for the Fano factor given in the preced
section contain the reflection and transmission matrices
the waveguide. These areN-dimensional matrices that de
pend on the positions of the scatterers inside the wavegu
The distribution of these matrices in an ensemble of dis
dered waveguides is described by random-matrix the
@12#. Ensemble averages of moments ofrr † and tt† for N
@1 have been computed by Brouwer@23#, as a function of
the mean free pathl and the amplification~absorption! length
ja5ADta, where 1/ta is the amplification~absorption! rate
andD5cl/3 is the diffusion constant. It is assumed that bo
ja andL are small compared to the localization lengthNl but
large compared to the mean free pathl. Obviously, this re-
quires a large numberN of propagating modes. The relativ
size ofL andja is arbitrary.

As sample-to-sample fluctuations are small forN@1, we
can take in Eq.~6.3! the averages of numerator and denom
nator separately. The dependence on the indexm0
of the incident mode drops out on averaging,^•••&m0m0

5N21^tr•••&. For an absorbing disordered waveguide,
find

Fdirect511
4ld

3ja sinhs
~Fin21!1

d

2
f ~v0 ,T!

3F32
2s1cotanhs

sinhs
2

s cotanhs21

sinh2 s
1

s

sinh3 s
G .

~7.1!

We have abbreviateds5L/ja . In the limit of strong absorp-
tion, s→`, the Fano factor approaches the universal lim
@24# Fdirect511 3

2 d f . The Fano factorFin is given by Eq.
~6.2! for an incident squeezed state, but Eq.~7.1! is more
generally valid for any state of the incident radiation.

The result for an amplifying disordered waveguide fo
lows by the replacementta→2ta , henceja→ i ja :
e-

-

ts
FIG. 3. Average Fano factorFdirect for direct
detection as a function of the length of the wav
guide. The left panel is for an amplifying medium
@Eq. ~7.2!, f 521], the right panel for an absorb
ing medium@Eq. ~7.1!, f 50]. In both cases we
took l /ja50.1, d51, and values ofFin increas-
ing from 0 to 3 in steps of 0.5. The dotted par
of the curves are extrapolations in the rangeL
& l that is not covered by Eqs.~7.1! and ~7.2!.
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FIG. 4. Average minimal Fano factor for ho
modyne detection, from Eqs.~7.3! and ~7.4!.
Same parameter values as in Fig. 3, withN
510, k5

1
2 , andr increasing from 0 to 1 in steps

of 0.25. ForL& l the curves extrapolate either t
1 ~if n0Þm0) or to 12e2r sinhr ~if n05m0).
~This extrapolation is not shown in the figure.!
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Fdirect511
4ld

3ja sins
~Fin21!1

d

2
f ~v0 ,T!

3F32
2s2cotans

sins
1

s cotans21

sin2 s
2

s

sin3 s
G .

~7.2!

The Fano factor diverges at the laser thresholds5p. The
function f (v0 ,T) now has to be evaluated at a negative te
perature. For a complete population inversion of the ato
statesf→21.

The minimal Fano factor in homodyne detection is giv
by Eq. ~6.6!. The averagêutn0m0

u2& is again independent o

the mode indices, hence it can be replaced byN22^tr tt†&.
For an absorbing waveguide we find

F homo
min 512

8ldk

3Nja sinhs
e2r sinhr1

8ldk

3ja
f ~v0 ,T!

3Fcotanhs1
1

sinhsG , ~7.3!

and for an amplifying waveguide

F homo
min 512

8ldk

3Nja sins
e2r sinhr

1
8ldk

3ja
f ~v0 ,T!Fcotans2

1

sinsG . ~7.4!

Measurement of the ensemble averageF homo
min requires that

for every sample the phase of the probe beam is readju
so as to minimize the Fano factor. This is common prac
in a homodyne measurement. If the phase of the probe b
is fixed, the random phase oftn0m0

will average to zero the
third term in Eq.~6.5!. In Eqs.~7.3! and~7.4! this amounts to
the substitutione2r→2sinhr.
06380
-
ic

ed
e
m

A graphical presentation of the results~7.1!–~7.4! is given
in Figs. 3–5. For the absorbing case we have takenf 50
~appropriate for optical frequencies at room temperatu!.
For the amplifying case we have takenf 521 ~complete
population inversion!. The formulas above cannot be use
for L& l . The values ofFdirect, Fhomo, andF homo

min for L50
can be read off from Eqs. ~6.3!–~6.6!, Fdirect
→11d(Fin21), Fhomo5112dn0m0

dk sinh2 r, and F homo
min

5122dn0m0
dk e2r sinhr. An extrapolation to L50 is

shown by dashes in Fig. 3.
The common feature of the Fano factors plotted

Figs. 3–5 is a convergence as the length of the wavegu
becomes longer and longer. For an absorbing medium
L→` limit is independent of the state of the incident rad
tion. For an amplifying medium, complete convergence
preempted by the laser threshold atL5pja .

VIII. CONCLUSIONS

In conclusion, we have derived general expressions
the photodetection statistics in terms of the scattering ma
of the medium through which the radiation has propagat
These expressions are particularly well suited for evalua
by means of random-matrix theory, as we have shown by
explicit example, namely the propagation of squeezed ra
tion through an amplifying or absorbing waveguide. T
sub-Poissonian noise that can occur in a squeezed
~characterized by a Fano factor smaller than unity! is de-
stroyed by thermal fluctuations in an absorbing medium
by spontaneous emission in an amplifying medium. T
theory presented here describes this interaction of noncla
cal radiation with matter in a quantitative way, without th
restriction to one-dimensional scattering of earlier investi
tions.
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FIG. 5. Average Fano factor for homodyn
detection, from Eqs.~7.3! and~7.4! after the sub-
stitution e2r→2sinhr, otherwise identical to
Fig. 4. ForL& l the curves extrapolate either to
~if n0Þm0) or to 11sinh2 r ~if n05m0). ~This
extrapolation is not shown in the figure.!
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