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Propagation of squeezed radiation through amplifying or absorbing random media
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We analyze how nonclassical features of squeezed radiétioparticular, the sub-Poissonian noisee
degraded when it is transmitted through an amplifying or absorbing medium with randomly located scattering
centra. Both the cases of direct photodetection and of homodyne detection are considered. Explicit results are
obtained for the dependence of the Fano factoe ratio of the noise power and the mean cupremt the
degree of squeezing of the incident state, on the length and the mean free path of the medium, the temperature,
and on the absorption or amplification rate.

PACS numbse(s): 42.50.Dv, 42.25.Bs, 42.25.Dd, 42.50.Ar

[. INTRODUCTION tion can be obtained from that of the incident state. This
allows us to compute the photocount statistics as measured in

Squeezed radiation is in a state in which one of thedirect detection(Sec. Il) and in homodyne photodetection
quadratures of the electric field fluctuates less than the othéneasurementsSec. 1V). The expressions in Secs. |-V are
[1,2]. Such a nonclassical state is useful, because the fluctugenerally valid for any incident state. In Sec. V we specialize
tions in the photon flux can be reduced below that of a PoistO the case that the incident radiation is in an ideal squeezed
son process — at the expense of enhanced fluctuations in tféate(also known as a squeezed state of minimal uncertainty,
phase. Sub-Poissonian noise is a delicate feature of the rf as a two-photon coherent stdte2]). The statistics of
diation; it is easily destroyed by the interaction with an ab-direct and homodyne measurements are expressed in terms
sorbing or amplifying medium[3]. The noise from Of the degree of squeezing of the incident state. The Fano
spontaneous-emission events is responsible for the degradactor, introduced in Sec. VI, quantifies the degree to which
tion of the squeezing. the squeezing has been destroyed by the propagation through

Because of the fundamental and practical importance2n amplifying or absorbing medium. The ensemble average
there exists a considerable literature on the propagation d¢¥f the Fano factor is then computed using random-matrix
squeezed and other nonclassical states of light through af€ory in Sec. VII. We conclude in Sec. VIII.
sorbing or amplifying media. We cite some of the most re-
cent papers on this top[@—10. The main simplification of Il. SCATTERING FORMULATION

these investigations is the restriction to systems in which the ] o ) )
scattering is one-dimensional, such as parallel dielectric lay- W€ consider an amplifying or absorbing disordered me-

ers. Each propagating mode can then be treated separatéliym embedded in a waveguide that suppdifs.) propa-
from any other mode. It is the purpose of the present paper t§ating modes at frequenay. The conceptual advantage of
remove this restriction by presenting a general theory fo€mbedding the medium in a waveguide is that we can give a

three-dimensional scattering, and to apply it to a mediun$cattering formulation in terms of a finite-dimensional ma-

with randomly located scattering centra. trix. The outgoing radiation in moda is described by an
out

Our work builds on a previous papgtl], in which we  annihilation operatora, (), using the_ convention that
considered the propagation of a coherent state through suchzodes 1,2... N are on the left-hand side of the medium

random medium. Physically, the problem considered here ignd modesN+1,... 2N are on the rightt-hargd side. tThe
different because a coherent state has Poisson noise, so thgctor a®"* consists of the operatoraf",a3", ... a5y.

the specific nonclassical features of squeezed radiation ddimilarly, we define a vectoa™ for incoming radiation.

not arise in Ref[11]. Technically, the difference is that a  These two sets of operators each satisfy the bosonic com-
squeezed state, as most other nonclassical states, lacks a miidtation relations

agonal representation in terms of coherent sthte?. We

cannot therefore directly extend the theory of Réfl] to the [an(w) ,aTm(w’)] =0mi(w—w'), [ay(w),an(w’)]=0.
propagation of squeezed states. The basic idea of our ap- (2.1
proach remains the same: The photodetection statistics of the

transmitted radiation is related to that of the incident radia-They are related by the input-output relatiqds$—-19

tion by means of the scattering matrix of the medium. The

method of random-matrix theoff12] is then used to evalu- a®{(w)=S(w)a"(»)+Q(w)b(w), (2.29
ate the noise properties of the transmitted radiation, averaged _
over an ensemble of random media with different positions a®“{w)=S(w)a"(w)+V(w)cl(w), (2.2b

of the scatterers.

The outline of this paper is as follows. In Sec. Il we first where the first equation is for an absorbing medium and the
summarize the scattering formalism and then show how theecond for an amplifying medium. We have introduced the
characteristic function of the state of the transmitted radia2N X 2N scattering matrixS, the 2N X 2N matricesQ andV,
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and the vector® andc of 2N bosonic operators. The scat- >
tering matrix can be decomposed into fdWK N reflection === - D/\/\
and transmission matrices, —
Pt FIG. 1. Schematic illustration of direct detection: Radiation is
= ( ) (2.3 incident on a random mediufshadegi The transmitted radiation is
tor absorbed by a photodetector.
. . . . _ T _ T . . ) )
Re(,:|TprOC|ty imposes the conditiots=t", r=r’, andr’ |5 the final equalityf denotes the matrix with elements
=r . frpn'pr = Onnr Spp f(wp, T). For an amplifying medium, re-

. The ope_ratorsb andc gccount for quntaneOUS €MISSION hiacingb by ¢’ and normal ordering by antinormal ordering,
in the medium. They satisfy the bosonic commutation relagne finds instead

tions (2.1), hence
QQT:l_Ss'*, VvT:Sg*_L (24) Xam;{”])zexqﬁ’ﬁf”)- (21@

A combination of Egs(2.2) and (2.4) with Egs. (2.7)—
(2.10 yields a relationship between the characteristic func-

(bg(w)bm(w’)):5nm5(w—w’)f(w,T), (2.5a tions of the incoming and outgoing states,

Their expectation values are

(ca(@)ChH (@)= = amd(w—0")f(w,T). (2.5 Xoul M) =exXp(— 7" (1-SS)fp)xin(S'n).  (2.1D)

The Bose-Einstein function This relation holds both for absorbing and amplifying media,
. because the difference in sign in the exponent of Eg¥)

f(w,T)=[expiw/kT)—1] (260 and (2.10 is canceled by the difference in sign between

T T (—
is evaluated at positive temperature€or an absorbing me- QQ'=1-S¢ andvv (1-SS).

dium and at negative temperature for an amplifying medium.
It is convenient to discretize the frequency in infinitesi-

mally small steps ofd, so thatw,=pA, and treat the fre-  The photocount distribution is the probabili(n) thatn
quency indexp as a separate vector '?udém addition to the  photons are absorbed by a photodetector within a certain
mode indexn). For examplean;=an"(w;) and Sypnipr time 7 (see Fig. 1 The factorial cumulants; of P(n) [the

= Snn (@p) Fppr - first two beingx;=n andx,=n(n—1)—n?] are most easily

The state of the outgoing radiation is described by theobtained from the generating functié]
characteristic function

IIl. PHOTOCOUNT DISTRIBUTION

112 outt F —i ¢ = i 1+ &)"p 3.1
Xoul ) =1 expg A nzp [ay (wp) 7n(@p) (5)—_211-—!—” n:O( +&)"P(n) . (3.9
* ou ) The generating function is determined by a normally or-
— 7 (wp)ag (wp)] |: dered expectation valyd 6,17,
=<:quA1/2(aoutT77_ nTaoul)]:>, (27) , 2N
eF&=(.efW:), sz dt> daalt(t)al!it).

where(:- - -:) indicates the expectation value of a normally 0 n=1

ordered product of operatoes't and a®'" (creation opera- (3.2

tors to the left of the annihilation operatpr§he vectoryn
has elements;,,= n,(wp). The density operator of the out-
going radiation is uniquely defined by the characteristic
function y: [1]. Similarly, the incoming state has a charac-

teristic function, aﬁ“‘(t)=(2w)’1’2fo dwe "“ad(w). (3.3

xin(m)=(exd A A @ y—p'aM]). (2.8
o ) S Discretizing the frequencies as described in Sec. Il, one can
The characteristic function of the thermal radiation inside anyijte

absorbing medium is given by
A% [ . ,
Xand 1) =(:ex AY(bT»—7"b)]:) W= Zfodtg dnzl AP () At (wp).
p.p
(3.9

Hered,[0,1] is the detection efficiency of theth mode
and the time-dependent operators are defined as

= eXF{ - n§: U:pf(wp 1) Tnp
P This expression can be simplified in the limit>c of long
=exp— 7'f7). (2.9 counting times, when one can skt 2#/7 and use
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T iA(p—p)t whereD is a 2N X 2N diagonal matrix containing the detec-
Jo e PP dt= 18, . (3.5 tion efficienciesd,, on the diagonal D, ,=d,,d,). The first
two factorial cumulants are

Hence, in the long-time limit the generating function is given odew
by K= Tf —f(w,MtrD[1-(w)S'(w)], (3.13
0 2
Fo_ /. outt ou . =d
e <.ex[< fAnEp dna, (wp)an t(wp))> Kt2h: Tj %fz(a),T)tl’(D[l—S((x))ST(CU)])Z. (3.14
0
=(:exp(£Aa%"TDatM):), (3.6)

Note that all factorial cumulants depend linearly on the de-
§ection timer in the long-time limit.

If only the N modes at one side of the waveguide are
detectedwith equal efficiencyd), thend,,=0 for 1=n<N
andd,=d for N+ 1=n=<2N, hence

where we have defined the matrix of detector efficiencie
an,n’p’:dnénn’ 5ppr .

Comparing Eqgs(2.7) and (3.6), we see that the generat-
ing function F(£) can be obtained from the characteristic

function x,,: by convolution with a Gaussian, r (=
Fin(é)=— Efo dw Indetl— &d[1—r(w)r(w)

1 1
(€ -
et det—pr)fd”xf’“‘(”)e"p(é”p 1’7)' ()t (@)]f(0,T), (3.15

@7 .
in agreement with Ref.18].

where [d7 is an integration over the real and imaginary ~ The differenceF () —F(€) contains the noise from the
parts of . We now substitute the relatiof2.11) between incident radiation by itself as well as the excess noise due to

Your @Nd i, tO arrive at a relation betwed®(£) and y;, : beating of the incident radiation with the vacuum fluctua-
tions. If the incident radiation is in a coherent state, then

1 xin(7)=exp'7—n'a) for some vectora (called the dis-
=mf d7 xin(S'7) placement vectorwith elementsa,,= ay(w,). Substitution
into Eq. (3.9 gives the generating function

eF(®)

1
XeX[{EnTD_ln— 7'1-sSHfy|. (3.9 F(§)=Fu(§)—a'Ma
—F 7¢ “dew a'(w)ST
The fluctuations in the photocount are partly due to ther- =Fun(d)+ 2a), 40« (0)S'(w)
mal fluctuations, which would exist even without any inci-
dent radiation. If we denote bly,(£) the generating func- ><{1—§D[1—S(w)ST(w)]f(w,T)}‘1
tion of these thermal fluctuations, then E@.8) can be
written in the form XDS(w)a(w). (3.1

The first two factorial cumulants are
F(&)=Fu(&)+In

1
WJ d7 xin( 7)eXp(— nTM_lv)}.

vd
a9 Klszo %aT(w)ST(w)DS(w)a(w)-i—Ktlh, (3.17

Fu(§)=—Inde{1-£D(1-SSHT]. (310 K2=27fmg—:f(w,T)aT(w)ST(w)D[Jl—S(w)ST(w)]
0

We have defined the Hermitian matrix N
XDS(w)a(w)-l-Ktz . (3.18

— _ ol — 1— -1
M=—¢ST[1-¢D(1-SSHf] DS, (319 If the incident coherent radiation is in a single madg

and monochromatic with frequenay,, then Eqgs.(3.16—

and we have performed a change of integration variablef3 18 simplify for detection in transmission to

from 7 to ST# [with Jacobian de®S)].

The expressiori3.10 generalizes the result of Ref15] F(&)=Fp(&)+ rédlot™1—&d[1—rrT—1tt"]
to arbitrary detection-efficiency matri®. Returning to a 1
continuous frequency, it can be written &®call that A XF(wo,T)} t)momo’ 319
=27l7) . h
Kk1=lord[t t]mom0+ K7, (3.20
T 0
F =——f do Indet(1— ¢D[1—S(w)S' =d
w(&)="52 0 ¢ (1= ¢D[1-S(w)S (w)] k= Tdf %f(w,T)tr[l—r(w)rT(w)—t(w)tT(w)],
0
Xf(w,T)), (3.12 (3.21
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/7_. D’\f Fromd €)= &(1— k) B"DB+In xou\ k(1= k) D)

=¢((1-k)B"DB+ k(1— k) E2B"D(1-SS) DB
1 +1In xin(V&(1— k) ES'DP). (4.9

FIG. 2. Schematic illustration of homodyne detection: At the In the second equation we have substituted the relation
left, radiation is incident on a random mediufshadedl At the  (2.11) betweeny, and iy, .
right, a strong coherent beam is superimposed onto the transmitted
radiation, and the combined radiation is absorbed by a photodetec- V. SQUEEZED RADIATION
tor.

We consider the case that the incident radiation is in the
ideal squeezed state,a)=CS|0) [1,2], obtained from the
vacuum staté0) by subsequent action of the squeezing op-
erator

1= 21 o7d?f (wo, D[t (A—rr =ttty o + 45, (3.22

K= szf:g—:fz(w,T)tr[l—r(w)rT(w)—t(w)tT(w)]Z-

3.23 and the displacement operator
Herelo=(2m) !f;dw|a|? is the incident photon flux and C=ex{ AYA @™ a— a'a)] 5.2
the matricesr andt without frequency argument are to be ' '
evaluated at frequenay,. These are the results of REL1].  As in the preceding sections, we have discretized the fre-
quency, w,=pA, and used the vector of operato:a&;”p
IV. HOMODYNE DETECTION =a',§‘(wp)_. The complex squeezing parametees ()
y= Po(@)€ ¢n(®) gre contained in the diagonal matréxwith

(known as direct detectiorcannot distinguish between the &/EMENtSenpnpr = €nlwp) ny Sppr - Similarly, the vector
mlth elementsa,,= an(wp) contains the displacement pa-

two quadratures of the electric field. Such phase-dependerameters

information can be retrieved by homodyne detection, i.e., by ' . . - .
superimposing a strong probe beddescribed by operators . The characteristic function of the incident radiation is
aP™9 onto the signal beartsee Fig. 2 The total radiation given by[1,19

incident on the detector is described by the operator yin(m)=exda'n—nTa—1nT(e "¢sinh2p) 7

S=exg tA(a"e*a"—a"Tea)] (5.2

The photocount measurement described in Sec.

a'*®= kM%%+ (1— k) V7P, (4. —i7'(e'?sinh 2p) »* — ' (sintf p)5]. (5.3

where the factok/x accounts for the attenuation of the signal According to Eq.(2.11), we thus find for the characteristic
beam by the beam splitter that superimposes it onto théinction of the outgoing radiation

probe beam(For simplicity we assume a real scalgrmore —ext(a’ ST r— nTSa— 1 nTS* (e~ i¢sinh 20)ST
generallyx would be a complex coupling matrjx. Xout 7) Ma'Stn=n'Sa=3n S 20)S'n

The characteristic function ai®® is the product of the —15'S(e'? sinh 2p)ST*
characteristic functions a®"'andaf"® We assume that the + i o)t
probe beam is in the coherent state with displacement vector =7 [f=S(f=sintr p)S']7). (5.4

B, having element@,,= Sn(wy). From Eq.(2.11) one gets The generating functiof (&) of the photocount distribu-

_ i U2t ot tion is obtained fromy;, by convolution with a Gaussian, cf.
Xoal ) =exil =k (1=SS) 0+ (1= (Bn=n"A] £, 37 e find

X xin(S'M?7). (4.2) "
M* o*

a* T
F(§)=Fm(§)—%|ndetx—%( a) Xl( ) (5.9

The generating functioR ., &) of the photocount distribu-

tion in homodyne detection is given bgf. Eq.(3.6)] o . ] ]
where the matrixX is defined in terms of the matrid by

expl Fomd €)]= (:exp(éAa" ™ "Da"*"):) (4.3

. M sinhp —Me'® coshp
X: + . i
~exfd £(1— k) BTDB](:exp(AY2\k(1— k)€ —M*e""?coshp  M* sinhp
X [a%""DB+ gTDa’M™)):). (4.4) sinhp 0
! (5.6
0 sinhp

In the second approximate equality we have linearized the
exponent with respect ta®", which is justified if the probe If squeezing is absenp=0, henceX=1 and Eq.(5.5) re-
beam is much stronger than the signal beam. The remaininguces to the resul{3.16) for coherent radiation. For a
expectation value has the form of a characteristic function ikqueezed vacuuma(=0) one has simplyF(&)=F(&)
we take¢ purely imaginary, so tha§* = — ¢. The result is — 2 IndetX.
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If the radiation is incident only in mode,, then we may All factorial cumulants except for the first two vanish in the
compute the matrix inverse and the determinant in (Bdp) strong-probe approximation. We may simplify the generating
explicitly. The matrixM(w) defined in Eq.(3.11) may be function by assuming that the signal beam is incident in a
replaced by itang,my element, single modem, and that the probe beam is also in a single

B modeng. For detection in transmission one then has the fac-
M mgmg(@)=m=—&(S'(1=£D[ 1= SSTf) "D S)mym,- torial cumulants

(5.7)
Note thatm is real, since it is the diagonal element of a ede
Hermitian matrix. The resulting generating function is — 11— 2 _
gg g9 Kl—’TdJ'O 277{(1 )| B2+ 2\ k(1= k)R af* ty m 1},
=g
F(§)=Fth(§)—%7J £|n(1+ 2msint? p— m2 sink? p) (5.12
0
dw =d
_ - 2 ) . )
TJO o mlal Ky=—TK(1— K)dzj0 pye Re[ﬂ*ze"f’tﬁomo]smh 20

><1+msinhp[sinhp+coshp cog2 arga—¢)] , [“do, 2 i
) ; . +2 1-x)d J — t sin
1+2msint? p—m?sint? p Tr(1= %) 0 27-r|'6| [ltngm| P
(5.9 +FA=rr =t o] (5.13
The first two factorial cumulants, for detection in transmis-
sion, are
VI. FANO FACTOR
th o o t

K1=k7+7d 2—(|a| +sintf p)[t mgmg» (5.9 o

0™ For the application of these general formulas we focus
our attention on the Fano factdfF, defined as the ratio

=d ) —
K2=K‘2h+27d2J §(|a|2+sinf? p) of the noise poweP=7"tvarn and the mean currerit
0

=7 n:

*dw
t—pr Tttt 2 [ 789 tq2
XE[tT(1—rrT—tt )t]mom0+ 7d fo 277[t t]

MoMo o
) ]::P“:l"‘Kz/Kl. (61)
X [| @ coshp— a* €' sinhp|?— | a|?

*sinff p(cosff p+sintf p)], (5.10 (We have assumed the limit—o.) For coherent radiation
where ! and «' are given by Eqs(3.21) and(3.23. F=1, corresponding to Poisson statistics. Thermal radiation
The generating function for homodyne detection followshas 7>1 (super-Poissonian Nonclassical states, such as

from Egs.(4.5 and(5.4), squeezed states, can hate 1.
We assume that the radiation is incident in a single mode
Fhomd &) = &(1— k) BTDB+ e\ Kk(1— k) m, and is detected in transmissiofequal efficiencyd

per transmitted mode We consider a frequency-resolved

tat t 12,01 _ .
X(a'S'DB+L'"DSa)—3§k(1— k) measurement, covering a narrow frequency interval around

X[ BDS* (e sinh 20)S'DB the central_ fre_quenct%bo of thethincident radiation. The ther-
_ mal contributions ;' and «, may then be neglected,
+B'DS(e'? sinh 20)STDB* ] since they are spread out over a wide frequency range. The

2 oty o e t incident radiation has Fano factdf,, measured in direct
+&%(1= k) BTD[F ~ S(f —sini? p) S| DB detection with unit efficiency. For squeezed radiation, one
(5.11 has

- 1+|oz coshp— a* €'¢ sinhp|?—| |2+ sint? p(costt p+sint? p)
" |a|?+sini? p

. (6.2
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We seek the Fano factor of the transmitted radiation, both F hm%oz 1—-2d«lt, . |%e " sinhp
for direct detection £ge) and for homodyne detection 0o
(Fromo - Combining Eqs(5.9) and(5.10, we find for direct +2dxk f(wo,T)(Jl—rrT—ttT)nono. (6.6)
detection
Squeezing in the outgoing radiation for an amplifying me-
_1=dtt _
Fairect— 1= d(t) momy(Fin—1) dium is only possible when|t, n [><2=2(rrT) o
[ =t . = Zy2mg|tnl > The single-mode limift,, , |*=2 is thus de-
+2d f(wq,T) creased by both reflection and intermode scattering.

(") mm,

(6.3 VII. ENSEMBLE AVERAGES

The first term is due entirely to the incident radiation. It is 1€ €xpressions for the Fano factor given in the preceding

absent for coherent radiatidhecause thefF, = 0). The sec- section contain the reflection and transmission matrices of
in . . . . .
ond term is due to the beating of the incident radiation withth® waveguide. These afé-dimensional matrices that de-

the vacuum fluctuations. It is independent of the incidenf?€Nd O the positions of the scatterers inside the waveguide.
radiation and was studied in detail in Refl1]. Sub- The dlstr|but|or_1 of these ma’;rlces in an ensemble.of disor-
dered waveguides is described by random-matrix theory
[12]. Ensemble averages of momentsrof andtt® for N
>1 have been computed by Brouw@3], as a function of
i1t <(tth2  +o(tt _o(ttert _ the mean free pathand the amplificatiofiabsorption length
2 mgmy < () mgmy + 2 mymg — 2(LTT t)momge g Ea= JD7,, where 1t, is the amplification(absorption rate
' andD = cl/3 is the diffusion constant. It is assumed that both
In the absence of reflectiom £ 0) and intermode scattering §a andL are small compared to the localization lenfthbut
(t diagona), this reduces to the well-known condition large compared to the mean free pati©bviously, this re-
[20-23 (tT)m <2. Since tt't)mm=S(tTt)n 2  9uires a large n.umbé?d of propagating modes. The relative
ton2 0o . 0o . 0 size ofL and &, is arbitrary.
=(t t)momo, the presence of intermode scattering decreases As sample-to-sample fluctuations are small Ko 1, we
the maximally allowed amplification factot't) m- can take in Eq(6.3) the averages of numerator and denomi-
The Fano factor in the strong-probe approximationnator separately. The dependence on the inday
(|B|—=) follows from Egs.(5.12 and (5.13, with the of the incident mode drops out on averagirv{g;-)mom0

result =N"Xtr---). For an absorbing disordered waveguide, we
find

Poissonian counting statistics, i.&yiec<1, is in an ampli-
fying medium f<—1) only possible when

Fhoma—1=2dk|ty m|?SINKF p+2 dic (o, T)

I—rrt—tt? d d
X(1=rr'—tt )nOnO_ K Firec= 1+ m(ﬁn_l)—*—zf(wO'T)
X i(p—2argp)+2 i . .
Ree tnomo]S'nh % 6.5 2s+cotanhs  scotanhs—1 S
In the strong-probe approximation, it is independent @nd sinhs sint? s sint’'s|’
| B|. Similarly to Eq.(6.3), the first term is entirely due to the 7.1

incident radiation, vanishing for coherent radiatiqgsn=0),

and the second term is due the beating with vacuum fluctuay/e have abbreviatesi=L/£,. In the limit of strong absorp-
tions. The additional third term describes the effect of thejon s, the Fano factor approaches the universal limit
phase of the probe beam on the measurement. Typically, in@4] 7, . .=1+2df. The Fano factorF, is given by Eg.
measurement one WOU!d vary the phase'of the probe bea(g_z) for an incident squeezed state, but E@.1) is more
until the Fano factor is minimized, which occurs when generally valid for any state of the incident radiation.
argB=3¢+argty . The resulting Fano factof on, is The result for an amplifying disordered waveguide fol-
given by lows by the replacement,— — 7, henceé,—i¢&,:

3.0 T T T

3.0

FIG. 3. Average Fano factaFy;. for direct

25 B 25 1\\ E detection as a function of the length of the wave-
20 , 20 B\ 3 guide. The left panel is for an amplifying medium
N N

F direct
F direct

1.0 -

15 :‘\ Fin =3 1 [Eq.(7.2), f=—1], the right panel for an absorb-
o b ing medium[Eq. (7.1), f=0]. In both cases we
= took1/¢,=0.1, d=1, and values ofF, increas-

05 L’//}-In -0 amplification 1 R T absorption | ing from 0 to 3 in steps of 0.5. The dotted parts

0.0 L » " ” - 2o of the curves are extrapolations in the rarige
0.0 05 L‘,ga 15 20 - : Ut : : =| that is not covered by Eq$7.1) and(7.2).
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1.14

1.01 T T T T T T T

12 FIG. 4. Average minimal Fano factor for ho-

° modyne detection, from Eqg7.3) and (7.4).
E§ ////’ Same parameter values as in Fig. 3, whkh
&, / =10, k= % andp increasing from 0 to 1 in steps
' of 0.25. ForL=I the curves extrapolate either to
1.02 amplification ] absorption 1 (if ng#mg) or to 1—e ?sinhp (if ng=my).

1.10
1.08
1.06
1.04

min
fnomo

o2 0i3 0!4 0:5 0!6 0?7 OiB 0!9 1.0 0.980.2 OiS 0!4 0?5 016 0!7 0i8 019 1.0 (ThiS extrapolation is not shown in the figwre.
g Uta
d A graphical presentation of the result1)—(7.4) is given
Fairee= 1+ 27— (Fin— 1)+ 5 (w0, T) in Figs. 3—5. For the absorbing case we have taket®
3&,sins 2 ] . :

(appropriate for optical frequencies at room temperature

25— cotans s cotans— 1 s For thel am_plifying case we have takdérs —1 (complete
X|3— . + - - — ) population inversion The formulas above cannot be used

sins Sin's sin's for L=<I. The values 0tFgiectr Fhomo, andF o for L=0

(7.2) can be read off from Egs. (6.3-(6.6), Fyect

—1+d(Fin—1), Frome=1+28nm, dxsintfp, and F jor,

The Fano factor diverges at the laser threshetdr. The =1-20ym,dx e "sinhp. An extrapolation toL=0 is

functionf(wo, T) now has to be evaluated at a negative tem-shown by dashes in Fig. 3.

perature. For a complete population inversion of the atomic The common feature of the EFano factors plotted in

statesf — —1. Figs. 3-5 is a convergence as the length of the waveguide
The minimal Fano factor in homodyne detection is givenbecomes longer and longer. For an absorbing medium the

by Eq.(6.6). The averagé|tn0mo|2> is again independent of L—c limit is independent of the state of the incident radia-

the mode indices, hence it can be replaced\oy¥(trtt™y.  tion. For an amplifying medium, complete convergence is

min _ 4 8ldk - 8|dKf . VIIl. CONCLUSIONS
F homo=1~ 3N§asinhse sinfp+ 3&, (00,T) In conclusion, we have derived general expressions for
the photodetection statistics in terms of the scattering matrix
of the medium through which the radiation has propagated.
X | cotanfs+ sinhs!’ (7.3 These expressions are particularly well suited for evaluation
by means of random-matrix theory, as we have shown by an
and for an amplifying waveguide explicit example, namely the propagation of squeezed radia-
tion through an amplifying or absorbing waveguide. The
in 8ldx e sub-Poissonian noise that can occur in a squeezed state
F homa= 1~ 3Nz sins®  SiNNe (characterized by a Fano factor smaller than ynity de-
stroyed by thermal fluctuations in an absorbing medium or
8ld 1 by spontaneous emission in an amplifying medium. The
" 3E flwg, Ty cotans— =—|. (74 tneory presented here describes this interaction of nonclassi-

cal radiation with matter in a quantitative way, without the
Measurement of the ensemble averaf ;pno requires that rgstriction to one-dimensional scattering of earlier investiga-
for every sample the phase of the probe beam is readjustdt®ns.
so as to minimize the Fano factor. This is common practice
in a homodyne measurement. If the phase of the probe beam

is fixed, the random phase of ., will average to zero the This work was supported by the Nederlandse Organisatie

third term in Eq.(6.5). In Egs.(7.3) and(7.4) this amounts to  voor Wetenschappelijk Onderzo€@dWO) and the Stichting
the substitutiore™ ”— — sinhp. voor Fundamenteel Onderzoek der Materi@OM).
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