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Method of small rotations and effective Hamiltonians in nonlinear quantum optics
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We propose a general method for diagonalizing a wide class of nonlinear Hamiltonians describing different
quantum optical models. This method makes use of a nonlinear deformation of the usual su~2! algebra and
when some physical parameter, dictated by the particular model under consideration, becomes small, it gives
a diagonal effective Hamiltonian that describes correctly the dynamics for arbitrary states and long times. We
apply as well the technique to three-level systems interacting with quantum fields, showing that it is possible
to engineer resonant interactions through nonresonant processes.

PACS number~s!: 42.50.Ct, 42.50.Hz, 42.50.Fx
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I. INTRODUCTION

The amount of quantum optical models where t
angular-momentum theory@1,2#, which is generated by the
well-known algebra su~2!, plays a crucial role is immense
Just to quote a few relevant problems we recall the ti
evolution of two coupled harmonic oscillators@3#, a two-
level atom interacting with a classical external field@4#, or
the nonrelativistic analysis of the free electron laser@5#. Due
to this symmetry, all these models reduce to linear proble
that can be efficiently solved in an analytical form.

On the other hand, the quantum dynamics of nonlin
optical processes can be described by simple Hamilton
with cubic or higher terms in creation and annihilation o
erators. Among others, typical examples arekth harmonic
generation,k-wave mixing, and generalized Dicke mode
@6#. In all these cases, a nonlinear or deformed su~2! algebra
naturally arises@7#.

The importance of this deformed structure is that it allo
us to handle the problem in close analogy with the us
treatment for an angular momentum. In particular, we ge
decomposition of the Hilbert space into direct sums of
variant subspaces, and the dynamical problem generate
the corresponding Hamiltonian can be reduced to the dia
nalization of a finite-dimensional matrix.

In spite of this considerable achievement, convenient a
lytic expressions for the eigenvalues and eigenstates are
known. Exact solutions can be written in the framework
the algebraic Betheansatz@8#, but the resulting formulas ar
too unwieldy for practical calculations, and several appro
mations have been devised relying on specific feature
each particular problem under study@9#. Apart from numeri-
cal approaches, these approximations assume quasicla
limits for one or more modes, make use of perturbative te
niques, or employ short-time expansions, and therefore t
validity is limited to some special regimes.

The aim of this work is to propose a new approach to
problem based on obtaining approximate effective Hami
nians that can be diagonalized in an exact form. In Sec. II
explain the motivation of the method, whose origins lie
the physics of a particle of spinj in a magnetic field@i.e., a
1050-2947/2000/61~6!/063802~11!/$15.00 61 0638
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su~2! Hamiltonian#, which can be exactly solved by perform
ing an appropriate rotation.

We generalize this idea to the polynomial deformed su~2!
algebra. In such a case, the action of this rotation is, in g
eral, rather involved, but when a physical parameter~dictated
by the particular model under consideration! becomes small,
it generates an approximate effective Hamiltonian that is
agonal and describes correctly the evolution for arbitr
states and even for long times. We apply the method to so
relevant nonlinear problems in quantum optics; name
three-wave mixing,kth harmonic generation, and Dick
model, discussing some interesting dynamical features a
ing from the description in terms of the corresponding effe
tive Hamiltonians.

In this context, it is worth noting that the su~3! algebra is
the natural extension of su~2! to study the dynamical evolu
tion of three-level atoms@10#. Far from being a mathematica
curiosity, this evolution is central to the discussion of ma
physically fascinating problems, such as two-photon coh
ence @11#, resonant Raman scattering@12#, superradiance
@13#, and three-level echoes@14#. As one could expect, when
these three-level systems interact with quantum fields, a n
linear or deformed structure of su~3! naturally emerges. In
this case, the advantages of our method are remarkabl
demonstrated in Sec. III: the obtaining of dynamical effe
tive Hamiltonians appears a natural and systematic task
contrast with the standard approach of adiabatic elimina
of variables, which is cumbersome and not one-to-one~in
fact, depending on the term eliminated, the final Hamilton
could be different, as shown in Ref.@15#!. Moreover, and
perhaps more important, we show how one can manag
engineerresonant interactions in this framework. The co
clusions of this work are summarized in Sec. IV, while t
Appendix discusses at length the range of validity of t
approximation.

II. NONLINEAR SU „2… DYNAMICS AND EFFECTIVE
HAMILTONIANS

A. Motivation for the method

In order to introduce the physical ideas underlying t
method, let us start with the very simple example of a p
©2000 The American Physical Society02-1
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ticle of spin j in a magnetic field~note that a collection of
A52 j identical two-level atoms pumped by a classical fie
is described by the same model!. The Hamiltonian for this
system has the following form~in units\51, which will be
used throughout all this paper!

H5vS31g~S11S2!, ~2.1!

whereg is the coupling constant and the operatorsS3 , S1 ,
and S2 constitute a (2j 11)-dimensional representation o
the su~2! algebra, obeying the usual commutation relation

@S3 ,S6#56S6 ,

@S1 ,S2#52S3 . ~2.2!

In the traditional angular momentum basisu j ,m&(m52 j ,
2 j 11, . . . ,j 21,j ) the operatorS3 is diagonal

S3u j ,m&5mu j ,m&, ~2.3!

while the action of the ladder operatorsS6 is nondiagonal
and is given by

S6u j ,m&5@~ j 7m!~ j 6m11!#1/2u j ,m61&. ~2.4!

The Hamiltonian~2.1! belongs to the class of the so-calle
linear Hamiltonians and admits an exact solution. For
purposes, a very convenient way of finding this solution is
apply the unitary transformation

U5exp@a~S12S2!#, ~2.5!

and by recalling that

eABe2A5B1@A,B#1
1

2!
†A,@A,B#‡1•••, ~2.6!

the transformed Hamiltonian, which is unitarily equivalent
the original one, becomes

H̃5UHU†5@v cos~2a!12g sin~2a!#S3

1
1

2
@2g cos~2a!2v sin~2a!#~S11S2!. ~2.7!

Now, the idea is to choose the parametera so as to cance
the nondiagonal terms appearing in~2.7!. This can be accom
plished by taking

tan~2a!5
2g

v
, ~2.8!

and, in consequence, the transformed Hamiltonian reduce

Heff5vA11
4g2

v2
S3 . ~2.9!

Since this effective Hamiltonian is diagonal in the angul
momentum basis, the dynamical problem is complet
06380
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solved. The key observation for our purpose is that whenv
@g we can approximate Eq.~2.8! by a.g/v, and~2.5! can
be substituted by

Uapp5expF g

v
~S12S2!G . ~2.10!

This small rotationapproximately~i.e., up to second-orde
terms in g/v) diagonalizes the original Hamiltonian~2.1!,
originating the effective Hamiltonian

Heff5UappHUapp
† 5S v12

g2

v DS3 ~2.11!

which obviously coincides with the exact solution after e
panding~2.9! in a series ofg2/v2.

A direct application of the standard time-independent p
turbation theory@16# to the original Hamiltonian~2.1! leads
immediately to the same results that the effective Ham
tonian~2.11! for the eigenvalues and eigenstates in the sa
order of approximation. However, we stress that our meth
is settled in a fully operatorial form, which avoids the tedio
work of computing the successive corrections as sums o
all the accessible states.

B. Small rotations and effective Hamiltonians

Having in mind the previous example, we shall proce
by considering more involved nonlinear Hamiltonians. L
us start with the general case in which the system adm
some integrals of motionNj and the interaction part of the
Hamiltonian can be written in the form

H int5DX31g~X11X2!, ~2.12!

where g is a coupling constant,D is a parameter usually
representing the detuning between frequencies of diffe
subsystems~although it is not necessary!, and the operators
X6 andX3 maintain the first commutation relation of su~2!
in ~2.2!

@X3 ,X6#56X6 , ~2.13!

but the second one is modified in the following way:

@X1 ,X2#5P~X3 ,Nj !, ~2.14!

whereP(X3 ,Nj ) refers to an arbitrary polynomial functio
of the diagonal operatorX3 with coefficients perhaps de
pending on the integrals of motionNj . This is the origin of
the name of polynomial deformations of the su~2! algebra.

Let us suppose that for some physical reasons~depending
on the particular model under consideration! the condition

D@g ~2.15!

is fulfilled. Then, it is clear that~2.12! is almostdiagonal in
the basis that diagonalizesX3. In fact, a standard perturba
tion analysis immediately shows that the first-order corr
tions introduced by the nondiagonal partg(X11X2) to the
eigenvalues ofX3 vanish and those of second order are p
2-2
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portional to g/D!1. According to our discussion for th
linear su~2! model, we apply the following unitary transfor
mation to~2.12! ~which, in fact, is asmallnonlinear rotation!

U5expF g

D
~X12X2!G , ~2.16!

so that

Heff5UH intU
†. ~2.17!

Keeping terms up to order (g/D)2 we get

Heff5DX31
g2

D
P~X3 ,Nj !, ~2.18!

and we have an effective Hamiltonian that is diagonal in
basis of eigenstates of the operatorX3. With this approach,
the evolution~as well as the spectral! problem is completely
solved. Besides the advantage of having the effective Ha
tonian expressed in an operatorial form, the method has
virtue of generality, since it is valid for any model whos
Hamiltonian could be written down in terms of the gene
tors of an arbitrary polynomial deformation of su~2!. In order
to gain more physical insight into the method, we shall ap
it to some relevant models in nonlinear quantum optics.

C. Three-wave mixing

The nonlinear dynamics of the process of three-wave m
ing can be described by the Hamiltonian

H5H01H int

5v1a1
†a11v2a2

†a21v3a3
†a31g~a1a2a3

†1a1
†a2

†a3!,

~2.19!

whereg is a coupling constant proportional to the secon
order susceptibility andaj (aj

†) are the annihilation~cre-
ation! bosonic operators for thej th mode. It can be directly
checked that this Hamiltonian admits two integrals of mot

N15a1
†a11a2

†a212a3
†a3 ,

N25a1
†a12a2

†a2 . ~2.20!

The interaction Hamiltonian can be represented in the g
eral form ~2.12! if, for example, we choose the operato
X6 , andX3 as

X15a1
†a2

†a3 , X25a1a2a3
† ,

X35a1
†a1 , ~2.21!

and nowD is the detuning

D5v11v22v3 . ~2.22!

After some simple calculations, the corresponding funct
in Eq. ~2.14! is the second-order polynomial
06380
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P~X3 ,N1 ,N2!5~X311!~X3112N2!2~2X32N211!

3@~N11N2!/22X311#. ~2.23!

Let us consider the limit in which the fields interact in
dispersive cavity, which corresponds to the case@17#

uDu@gA~ n̄111!~ n̄211!~ n̄311!, ~2.24!

wheren̄i( i 51,2,3) are the average number of photons in
corresponding modes. We emphasize that this is a li
physically realizable in practice. Then, the effective Hamil
tonian associated with~2.19! can be conveniently repre
sented as

Heff5Da1
†a12

g2

D
@a1

†a1~a3
†a32a2

†a2!1a2a2
†a3

†a3#,

~2.25!

whose spectrum is directly known.
As a special case of~2.19!, let us examine the situation

whenv252v35v0/2. By using the Schwinger represent
tion, we can introduce the following operators satisfying t
su~2! commutation relations

S15a2a3
† , S25a2

†a3 ,

S35
1

2
~a3

†a32a2
†a2!. ~2.26!

Then,~2.19! reduces to

H5v1a1
†a11v0S31g~aS11a†S2!, ~2.27!

and the integrals of motion~2.20! imposes thata2
†a21a3

†a3

5A is a constant. In other words, the trilinear Hamiltoni
~2.19! is equivalent to the Dicke model, describing the inte
action of a single-mode field of frequencyv1 with a collec-
tion of A identical two-level atoms with transition frequenc
v0.

Therefore, as a consequence of the general result~2.25!,
we can conclude that the Dicke model in the dispersive li

uv12v0u@gAA(n̄111) can be represented by the effecti
Hamiltonian

Heff5Da1
†a11

g2

D
@S3

22~2a1
†a111!S32A/2~A/211!#,

~2.28!

which coincides with the result obtained previously in R
@18# by a quite different method.

D. kth harmonic generation

Let us consider now the following Hamiltonian

H5H01H int5v1a1
†a11v2a2

†a21g~a1
ka2

†n1a1
†ka2

n!,
~2.29!

which describes the conversion ofk photons of the funda-
mental mode 1 inton photons of the signal mode 2, an
admits the integral of motion
2-3
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N5
ka1

†a11na2
†a2

n1k
. ~2.30!

The interaction Hamiltonian can be represented in the fo
~2.12! if we introduce

X15a1
ka2

†n , X25a1
†ka2

n ,

X35
1

n1k
~a2

†a22a1
†a1!, ~2.31!

and nowD5nv22kv1. This generates also a nonlinear d
formation of su~2! where the polynomial functionP(X3 ,N)
takes the form

P~X3 ,N!5fk~N2kX3!cn21~N1nX3!

2fn~N1nX3!ck21~N2kX3!, ~2.32!

where fk(m)5m(k)5m(m21)•••(m2k11) and
ck21(m)5fk(m1k)2fk(m) are polynomials of orderk
andk21, respectively.

According to our general result~2.18!, the effective
Hamiltonian for this model in the dispersive limit, whenD

@g(n̄111)k/2(n̄211)n/2 (n̄1 andn̄2 denote the average pho
ton numbers in modes 1 and 2, respectively! takes the form

Heff5
nv22kv1

n1k
~a2

†a22a1
†a1!1

g2

D

3@fn~a2
†a2!ck21~a1

†a1!2fk~a1
†a1!cn21~a2

†a2!#.

~2.33!

Except for the casen5k51, this effective Hamiltonian is
still nonlinear on operatorsa1

†a1 anda2
†a2. Perhaps, the mos

important example of this kind of processes would be
second-harmonic generation, that corresponds tok52 and
n51. In such a case, the nonlinear part of the Hamilton
~2.33! takes the form

Heff
(2)5

g2

D
@4a2

†a2a1
†a12~a1

†a1!2#, ~2.34!

and we think this is an important result, since it shows tha
the dispersive limit, the second-harmonic generation beha
just as a Kerr media@19# in the presence of a dynamica
Stark shift@20#, explaining some interesting physical effec
previously discovered for this model, such as the genera
of Schrödinger’s cat states@21#.

E. Strong-field Dicke model

Until now we have analyzed only Hamiltonians descr
ing dispersive interactions. Nevertheless, the above appr
can be applied to the resonant case too. As a relevant
ample, we consider the Dicke model@described by~2.27!#
for the case of exact resonance between the field and
atoms and in the strong-field limit. The interaction Ham
tonian can be written as
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H int5g~aS11a†S2!, ~2.35!

and admits the integral of motion

N5a†a1S3 . ~2.36!

It was shown in Ref.@22# that whenAn̄@A, ~2.35! can be
diagonalized in the field space and expanded in a serie
the small operator

«5
1

2An2A/211/2
, ~2.37!

wheren5a†a, in the form

H5
1

«
Sx2«$S3 ,Sx%2

«3

2
ˆS3 ,$S3 ,Sx%‰1O~«5!,

~2.38!

where$,% stands for the anticommutator andS65Sx6 iSy .
It is obvious that the second term in~2.38! does not contrib-
ute, in first order, to the eigenvalues of the above Ham
tonian and, therefore, can be eliminated by some small r
tion. To make the direct reduction of the Hamiltonian~2.38!
to the form~2.12! we first apply the rotation

Uy5expS i
p

2
SyD , ~2.39!

and then the transformed HamiltonianH̃5UyHUy
† takes the

form

H̃5
1

«
X31«~X11X2!2

«3

2
$Sx ,X11X2%, ~2.40!

where we have introduced the operators

X15
1

2
$S3 ,S1%, X25

1

2
$S3 ,S2%,

X35S3 , ~2.41!

and the associated polynomial is

P~X3 ,S2!54X3
32

1

2
X3~4S221!, ~2.42!

with

S25
A

2 S A

2
11D . ~2.43!

Now, we can apply to this form the general result~2.18! and
obtain the effective Hamiltonian~we write it down directly
in terms of atomic operators!

H̃eff5
1

«
S31«3P~X35S3 ,S2!2

«3

2
diagˆSx ,$Sx ,S3%‰,

~2.44!
2-4
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where we have taken the diagonal part of the last term
~2.40! @which does not transform under~2.16!, but contrib-
utes to corrections of order«3 to the eigenvalues of the initia
Hamiltonian#. Finally, we perform the inverse transformatio
of ~2.39! and we get

Heff5
1

«
Sx1«3@5Sx

32~3S221!Sx#. ~2.45!

This effective Hamiltonian describes the dynamics for tim
gt<n̄5/2 and is nonlinear on the atomic operators. It follow
that the atomic collective effects in the strong-field limit pl
a relevant role for times of ordergt;n̄3/2 ~we recall that up
to times gt<n̄, which include various revivals of atomi
population, the collective effects are not very important
such a limit, since they induce only a rescaling of the av
age values@23#!. This leads, for example, to the modulatio
of the collapse-revival structure appearing in the init
strong coherent field and also to the modulation of the R
oscillations for a field initially in a number state.

III. NONLINEAR SU „3… DYNAMICS AND EFFECTIVE
HAMILTONIANS

A. The description of three-level atoms in terms of su„3…
dynamics

The method of approximate diagonalization embodied
Eqs. ~2.12!, ~2.16!, and ~2.18! can be applied not only to
Hamiltonians having a nonlinear su~2! structure, but also to
quantum systems with a more complicated algebraic st
ture.

In what follows we consider Hamiltonians that can
represented in terms of the su~3! algebra. This algebraic
structure naturally arises when describing atomic syste
with three relevant energy levels. It is well known that in th
case three possible configurations~commonly calledJ,V,
andL) are admissible@10#. The Hamiltonian governing the
evolution of a collection ofA identical three-level atoms~for
definiteness, we consider the case of a cascade orJ configu-
ration! pumped by a classical field has the form

H5H01H int ,5E1S111E2S221E3S331g12~S1
121S2

12!

1g23~S1
231S2

23!, ~3.1!

whereSii ( i 51,2,3) are the population operators of thei th
energy level, andS6

i j ( i , j ) describe transitions between le
els i and j. The operators (S11,S22,S6

12) and (S22,S33,S6
23)

form two u~2! subalgebras~each one of them describes tra
sitions 1↔2 and 2↔3, independently! and accordingly they
satisfy the commutation relations

@S11,S6
12#57S6

12, @S22,S6
12#56S6

12,

@S1
12,S2

12#5S222S11,

@S22,S6
23#57S6

23, @S33,S6
23#56S6

23,

@S1
23,S2

23#5S332S22. ~3.2!
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Nevertheless, because the transitions 1↔2 and 2↔3 are not
physically independent, one needs to add to the above r
tions the following ones:

@S1
12,S1

23#52S1
13, @S2

12,S2
23#5S2

13, @S1
12,S2

23#50,
~3.3!

where the operatorsS6
13 have the meaning of transition op

erators between levels 1 and 3@note that these transition
cannot appear in the Hamiltonian~3.1! simultaneously with
1↔2 and 2↔3, due to the existence of dipole selectio
rules#. The operatorsSkk,S6

i j ,(i , j 51,2,3) form a (A11)(A
12)/2-dimensional representation of the u~3! algebra.

The sumS111S221S335A is an integral of motion and
determines the total number of atoms, which allows us
rewrite the free HamiltonianH0 as

H052D12S
111D23S

331E2A, ~3.4!

with

D125E22E1 , D235E32E2 . ~3.5!

We note here that the Hamiltonian~3.1! can be rewritten in
terms of the usual su~3! algebra by introducing traceless op
eratorsS3

125(S222S11)/2 andS3
235(S332S22)/2.

It is clear that if ug12/D12u!1, the nondiagonal term
g12(S1

121S2
12) in ~3.1! can be eliminated@up to terms of order

(g12/D12)
2# by a transformation analogous to~2.16! devised

for su~2!, with

U125expF g12

D12
~S1

122S2
12!G . ~3.6!

Nevertheless, in contrast to the su~2! case, this transforma
tion necessarily generates@through the commutator with
(S1

231S2
23)# a term proportional to (S1

131S2
13) ~i.e., transi-

tions between levels 1 and 3, which were absent in the in
Hamiltonian!.

If the physical conditions enables also the conditi
ug23/D23u!1 to be satisfied, the termg23(S1

231S2
23) can be

removed by the transformation

U235expF g23

D23
~S1

232S2
23!G . ~3.7!

In what follows, we extend these ideas to the case of po
nomial deformed su~3! algebra.

B. Effective Hamiltonians for three-level systems

Having in mind the previous analysis, and in analogy w
the developments for su~2! in Sec. II, we shall proceed by
considering more involved nonlinear models in su~3!. Let us
start with the typical Hamiltonian

H5E1X111E2X221E3X331g12~X1
121X2

12!

1g23~X1
231X2

23!, ~3.8!

where the operatorsXi j satisfy the commutation relations
2-5
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@Xii ,Xkk#50, @X1
i j ,X1

ik#50, @X2
i j ,X2

ik#50,

@X1
i j ,X1

jk#52Y1
ik , @X2

i j ,X2
jk#5Y2

ik , j .k, ~3.9!

@Xkk,X6
i j #56X6

i j ~dk j2d ik!,

@Xkk,Y6
i j #56Y6

i j ~dk j2d ik!,

which are the same as those of the usual u~3! algebra in~3.2!,
but the rest of them are modified in the following way:

@X1
i j ,X2

i j #5P~Xii ,Xkk!,

@Y1
i j ,Y2

i j #5Q~Xii ,Xkk!, ~3.10!

whereP(Xii ,Xkk) andQ(Xii ,Xkk) are arbitrary polynomials
function of the diagonal operatorsXii ( i 51,2,3) and define a
polynomial deformation of u~3!. The Hamiltonian~3.8! ad-
mits the following integral of motion:

N5X111X221X33. ~3.11!

It proves convenient to rewrite~3.8! as

H5E2N1H int , ~3.12!

with

H int52D12X
111D23X

331g12~X1
121X2

12!1g23~X1
231X2

23!
~3.13!

and the detuningsD12 andD23 are defined in Eq.~3.5!.
Now, let us suppose thatuD12u@g12. It is clear from our

previous analysis that by applying the small nonlinear ro
tion

U125expF g12

D12
~X1

122X2
12!G ~3.14!

we can eliminate, up to order (g12/D12)
2, the interaction

term g12(X1
121X2

12), representing transitions 1↔2, and ob-
tain the effective Hamiltonian

Heff
(1)52D12 X111D23X

331g23~X1
231X2

23!

2
g12g23

D12
~Y1

131Y2
13!1

g12
2

D12
P~X11,X22,N!

1
g12g23

D12
~@X1

12,X2
23#1@X1

23,X2
12# !. ~3.15!

It is worth noting that by eliminating the transitions 1↔2,
we have generated an effective transition 1↔3 ~represented
by the operatorsY6

13), which was absent in the startin
Hamiltonian.

It is obvious that if, in additionD23@g23, the nondiagonal
term g23(X1

231X2
23) can be also eliminated in~3.15! by ap-

plying a second small rotation

U235expF g23

D23
~X1

232X2
23!G . ~3.16!
06380
-

The transformed Hamiltonian becomes then

Heff
(2)52D12X

111D23X
331

g12g23

D12
~Y1

131Y2
13!

1
g12g23

D12
~@X1

12,X2
23#1@X1

23,X2
12# !

1
g12

2

D12
P~X11,X22,N!1

g23
2

D23
P~X22,X33,N!.

~3.17!

We could further proceed by eliminating the third and/
fourth terms in this equation in an analogous way. But, as
shall see in a moment, this possibility strongly depends
the resonance conditions satisfied byD12 andD23. As we did
in Sec. II, we shall apply these general considerations
some relevant models of broad interest in quantum optic

C. Three-level atoms interacting with quantum fields

Let us consider the interaction of a collection ofA iden-
tical three-level atoms in a cascade configuration with
single-mode quantum field of frequencyv f . The Hamil-
tonian of this model is

H5v fa
†a1E1S111E2S221E3S331g12~aS1

121a†S2
12!

1g23~aS1
231a†S2

23!. ~3.18!

Apart from S111S221S335A, this Hamiltonian admits now
the integral of motion

N5a†a1S332S11, ~3.19!

and thus, it can be recast as

H5v fN1E2A1H int , ~3.20!

whereH int has exactly the same form of~3.13! with

X115S11, X335S33,

X1
125aS1

12, X1
235aS1

23,

D125E22E12v f , D235E32E22v f . ~3.21!

If we assume the dispersive regime in whichuD12u
@g12AAn̄, wheren̄ is the average number of photons in th
field, we can apply the general transformation~3.14!, and
obtain the effective Hamiltonian just as in Eq.~3.15!, pro-
vided we make the identifications

Y1
135a2S1

13, Y2
135a†2S2

13,

P~X11,X22!5S1
12S2

121a†a~S222S11!. ~3.22!

In this particular case we can still try to eliminate the tra
sitions 1↔3 @represented by the term (Y1

131Y2
13)# in ~3.15!

by applying a further rotation
2-6



en

r
i-

ll

e
ve
un

th

ch
3
r-
e

r

re

ni-
n

il-

of
to
ilor

il-
To
ant
ear
em

ess

m

METHOD OF SMALL ROTATIONS AND EFFECTIVE . . . PHYSICAL REVIEW A 61 063802
U135exp@w~Y1
132Y2

13!#, ~3.23!

where the parameterw in the above equation must be chos
as

w5
g12g23

D12~D121D23!
. ~3.24!

Taking into account thatD121D235E32E122v, we have
that w!1 only if the transition 1↔3 is far from the two-
photon resonance condition. If this is the case, the te
(Y1

131Y2
13) is eliminated by this transformation and no add

tional contributions of orderg/D will appear in~3.15!. Then
the effective Hamiltonian takes the form

Heff
(1)52D12X

111D23X
331g23~X1

231X2
23!1

g12
2

D12
P~X11,X22!

1
g12g23

D12
~@X1

12,X2
23#1@X1

23,X2
12# !. ~3.25!

Note that the last term in~3.25! can now by eliminated by
means of the small rotation

U5expF g12g23

D12~D122D23!
~@X1

12,X2
23#1@X1

23,X2
12# !G ,

~3.26!

due to the fact thatuD122D23u5uE11E322E2u5uE32E1
2vu@g12 and no additional terms will appear in~3.25!.

Let us impose the resonance conditionD2350 ~i.e., reso-
nant interaction between levels 2–3 and the field!. Putting
S1150 @absence of initial population in level 1, which wi
be conserved due to the fact thatS11 is an integral of motion
for ~3.25!#, we obtain

P~X11,X22!5S22~a†a11!. ~3.27!

Thus, we conclude that the effective Hamiltonian that d
scribes the resonant interaction of a collection of two-le
atoms with a single-mode quantum field, taking into acco
the existence of an off-resonant level, has the form

Heff
(1)5g23~aS1

231a†S2
23!1

g12
2

D12
S22~a†a11!. ~3.28!

This means that the far-lying level produces a mark in
system in the form of a dynamical Stark-shift term.

Let us now envisage the very different situation in whi
the two-photon resonance condition between levels 1–
fulfilled: E32E152v. This means that the transition gene
ated by the operatorsY6

13 cannot be removed. Now, we hav
D1252D23, and the termg23(X1

231X2
23) in ~3.15!, that gen-

erates transition between levels 2–3, can be eliminated
the transformation ~3.16! with the rotation paramete
ug23/D23u!1. Moreover, the last term in~3.15! can be elimi-
nated once again without any additional contribution. The
fore, we obtain as an effective Hamiltonian for this case
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Heff
(2)52D12~X111X33!2

g12g23

D12
~Y1

131Y2
13!

1
g12

2

D13
P~X11,X22!2

g23
2

D12
P~X22,X33!, ~3.29!

where

P~X22,X33!5S1
23S2

231a†a~S332S22!. ~3.30!

Finally, by imposing the condition of the absence of an i
tial population in level 2, we obtain the effective two-photo
Dicke Hamiltonian including the dynamical Stark shift@15#

Heff
(2)5

g12g23

D12
~a2S1

131a†2S2
13!1S S3

131
A

2 D
3Fa†aS g23

2

D12
2

g12
2

D12
D 1

g23
2

D12
G1A

g12
2

D12
a†a, ~3.31!

where we have inverted the common sign of the Ham
tonian.

IV. ENGINEERING RESONANT INTERACTIONS
THROUGH NONRESONANT PROCESSES

The dynamics generated by su~3! is, obviously, richer
than that of su~2!, given the existence of a greater number
physical degrees of freedom. In this section, we wish
show how the method of small rotations can be used to ta
resonant interactions from nonresonant process.

Instead of discussing an abstract formalism, we shall
lustrate the main idea by resorting to relevant examples.
this end, let us start from the process of the nonreson
three-wave mixing in the presence of nonresonant lin
mode conversion. The Hamiltonian describing this syst
has the form

H5v1a1
†a11v2a2

†a21v3a3
†a31g1~a1a2a3

†1a1
†a2

†a3!

1g2~a1a2
†1a1

†a2!, ~4.1!

and does not admit any integral of motion. When the proc
of three-photon mixing is far-off resonant,uD1u
@g1A(n̄111)(n̄211)(n̄311), the detuning beingD15v3
2v22v1, and we can eliminate the interaction ter
(a1a2a3

†1a1
†a2

†a3) by applying the small rotation

U15expF g1

D1
~a1a2a3

†2a1
†a2

†a3!G . ~4.2!

The transformed HamiltonianHeff
(1)5U1HU1

† takes the form

Heff
(1)5v1a1

†a11v2a2
†a21v3a3

†a31g2~a1a2
†1a1

†a2!

1
g1g2

D1
~a1

2a3
†1a1

†2a3!1
g1g2

D1
~a2

2a3
†1a2

†2a3!

1
g1

2

D1
P~a1

†a1 ,a2
†a2 ,a3

†a3!, ~4.3!
2-7
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where

P~a1
†a1 ,a2

†a2 ,a3
†a3!5a2a2

†~a3
†a32a1

†a1!1a3
†a3a1a1

† .
~4.4!

If we impose the condition that the process of linear mo
conversion is also out of resonance, uD2u
@g2A(n̄111)(n̄211) with D25v22v1, then the term
a1a2

†1a1
†a2 can be also eliminated by the transformation

U25expF g2

D2
~a1a2

†2a1
†a2!G . ~4.5!

Therefore we obtain for the HamiltonianHeff
(2)5U2Heff

(1)U2
†

Heff
(2)5v1a1

†a11v2a2
†a21v3a3

†a31
g1

2

D1
P~a1

†a1 ,a2
†a2 ,a3

†a3!

1
g2

2

D2
Q~a1

†a1 ,a2
†a2!1

g1g2

D1
~a1

2a3
†1a1

†2a3!

1
2g1g2

D1
~a2

2a3
†1a2

†2a3!, ~4.6!

where

Q~a1
†a1 ,a2

†a2!5a2a2
†2a1

†a1 . ~4.7!

Now it is easy to observe that if we can satisfy the reson
condition 2v15v3, then ~due to the previous nonresona
condition! the field 2 is far-off resonant with the fields 1 an
3. Thus we can remove the last term in~4.6! by a similar
transformation@which does not add any additional ter
to ~4.6! of the orderg/D#, meanwhile the resonant intera
tion described bya1

2a3
†1a1

†2a3 cannot be eliminated. Impos
ing the condition that field 2 is initially unexcited
we get P(a1

†a1 ,a2
†a2 ,a3

†a3)5a3
†a3a1a1

† , Q(a1
†a1 ,a2

†a2)
5a1

†a1(a1
†a121) ~becausea2

†a2 is now an integral of mo-
tion! and the effective Hamiltonian takes the form

Heff
(2)5v1a1

†a112v1a3
†a31

g1g2

D1
~a1

2a3
†1a1

†2a3!

1
g1

2

D1
~a3

†a3a1a1
†!2

g2
2

D1
a1

†a1 . ~4.8!

The point is that this effective Hamiltonian@which is essen-
tially different from the initial one~4.1!# describes the dy-
namics of the~quasi! resonant process of second-harmo
generation~this process can be easily made resonant
changing slightly the initial resonance conditions!.

One can treat in a similar way more and more involv
examples of the initial system. Let us mention the proces
second-harmonic generation and simultaneous three-ph
mixing. The Hamiltonian describing this system has the fo

H5v1a1
†a11v2a2

†a21v3a3
†a31g1~a1a2a3

†1a1
†a2

†a3!

1g2~a1
2a2

†1a1
†2a2! ~4.9!
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and does not admit any integral of motion. By repeating
same steps as before in the dispersive limit for both p
cesses and imposing that the frequencies of fields 1 an
satisfy the resonance condition 3v15v3, which means that
the field 2 is far-off resonant with fields 1 and 3, we obta
the final form of the corresponding effective Hamiltonian

Heff
(2)5v1a1

†a113v1a3
†a31

g1g2

D1
~a1

3a3
†1a1

†3a3!

1
g1

2

D1
~a3

†a3a1a1
†!1

g2
2

D1
a1

†a1~a1
†a121!. ~4.10!

The above effective Hamiltonian describes the~quasi! reso-
nant process of third-harmonic generation. In summary,
see that by imposing some resonance conditions on the in
model, we obtain that the resulting dynamics is governed
an effective Hamiltonian that has a quite different form.

V. CONCLUSIONS

In this paper we have investigated in a systematic wa
nonperturbative method of small rotations that has allow
us to obtain the description of a quantum model in terms
effective Hamiltonians that can be diagonalized in an ex
form.

The approach is inspired by simple linear models havin
su~2! symmetry. In such a case, the small-rotation meth
gives the exact solution in a straightforward way. Howev
when dealing with nonlinear optical processes, a nonlin
~or polynomial deformation! of the su~2! algebra naturally
arises. Unfortunately, the action of the proposed rotation
now rather involved. But when an appropriate~controllable!
parameter becomes small, the method provides an easy
elegant solution, free from the drawbacks of other previo
approximations.

We have applied this technique to some relevant non
ear problems in quantum optics, discussing some nontri
dynamical features derived from the corresponding effec
Hamiltonians.

We have extended also the method to the nonlinear de
mation of su~3!, which emerges when treating the interacti
of three-level systems with quantum fields. In such a ca
the description in terms of effective Hamiltonians has
lowed us to show how one can manipulate resonance co
tions to tailor resonant interactions from very different a
nonresonant ones.

Finally, it is worth emphasizing that the validity of thi
technique is not restricted to the problems examined in
paper. It can be easily generalized to more involved sit
tions, such asN-level systems interacting with quantum
fields, whose physical interest seems more than a curios

APPENDIX A

In this appendix we refine the method of small rotatio
by taking into account higher-order terms, which will allo
us to explore its range of validity and to compare it with t
results of the standard perturbation theory. To be concr
we shall consider only the case of nonlinear deformations
2-8



ion

-

-

ion
or-

u-
e

di-

i-
ays
x-

be
e-

ions
Sec.

an

e
an-

s

ma-

sub-

n
and
s to
or-

METHOD OF SMALL ROTATIONS AND EFFECTIVE . . . PHYSICAL REVIEW A 61 063802
the su~2! algebra and thus Hamiltonians of the form~2.12!
with a small parameter we shall rewrite as«5g/D.

To proceed further we shall need some algebraic relat
from the polynomial deformation of this su~2! algebra. First,
we introduce the structural polynomial function@7#

f~X3!5X1X2 . ~A1!

Then the polynomial~2.14! in terms off(X3) takes the form

P~X3!52¹f~X3!5f~X3!2f~X311!. ~A2!

Taking into account~2.14!, we can easily obtain the follow
ing commutation relations:

@X3 ,X1 f ~X3!#52X1¹ f ~X3!,

@X1 , f ~X3!X2#52¹@f~X3! f ~X321!#,

@X1 f ~X3!, f ~X3!X2#52¹@f~X3! f 2~X321!#, ~A3!

where f (X3) is an arbitrary function ofX3.
Applying the transformation~2.16! to each term of the

Hamiltonian~2.12! we get

UX3U†5X32«V2 (
p52

`
«p

p!
adT

p~V!,

UVU†5V1 (
p51

`
«p

p!
adT

p~V!, ~A4!

where

V5X11X2 ,

T5X12X2 , ~A5!

and adT is the adjoint operator defined as

adT~V!5@T,V#. ~A6!

Therefore we obtain

Heff5UH intU
†5DX31g(

p51

`

«p
p

~p11!!
adT

p~V!.

~A7!

By using the commutation relations~A3! and after some cal
culations we get

adT~V!522¹f~X3!,

adT
2~V!52@X1¹2f~X3!1¹2f~X3!X2#,

adT
3~V!522@X1

2 ¹3f~X3!1¹3f~X3!X2
2 #

24¹@f~X3!¹2f~X321!#, . . . . ~A8!

The effective Hamiltonian takes then the form
06380
s

Heff5DX32«g¹f~X3!1 2
3 «2g@X1¹2f~X3!

1¹2f~X3!X2#2 1
4 «3g$X1

2 ¹3f~X3!1¹3f~X3!X2
2

12¹@f~X3!¹2f~X321!#%1O~«4!. ~A9!

Besides, one can compute adT
4(V) to prove that the term

proportional to«4 is completely nondiagonal.
We can now devise how to continue the diagonalizat

procedure. First, one eliminates the nondiagonal term of
der «2 applying the transformation

U15expH 2

3
«2@X1¹2f~X3!2¹2f~X3!X2#J . ~A10!

This transformation will generate some additional contrib
tions of order«4 and higher. In much the same way, on
removes the terms of order«3 and so on.

It is worth emphasizing that the structure of these ad
tional contributions@they always have the formX1

p f (X3)
1H.c.1F(X3)# makes the procedure of removing of nond
agonal terms trivial at each step, in the sense that it is alw
obvious which transformation should be applied. For e
ample, to eliminate terms of the form

«q@X1
p f ~X3!1 f ~X3!X2

p #, ~A11!

we should apply the following transformation

expF1

p
«q11TpG , ~A12!

with

Tp5X1
p f ~X3!2 f ~X3!X2

p , ~A13!

since the first commutator ofDX3 with Tp , cancels the cor-
responding term in the Hamiltonian. However, one should
careful when applying this method to more complex d
formed algebras, due to the additional resonance condit
that could be imposed in that case, as we have seen in
III.

Because the transformed Hamiltonian has the form of
expansion in the small parameter«, it is clear that eigenval-
ues of the effective Hamiltonian will coincide with thos
obtained using the standard perturbation theory. The adv
tage of our method consists in obtainingdiagonal effective
Hamiltoniansfor any systemthat could be described in term
of the generators of a nonlinear deformation of su~2!, which
avoids the necessity of calculating cumbersome series of
trix elements.

Nevertheless, the convergence of our method can be
stantially improved if at each step~i.e., before applying the
correspondent small rotation! we separate the Hamiltonia
into diagonal and nondiagonal parts, rather than into free
interaction parts. For example, it could be advantageou
apply the following rotation instead of the second transf
mation ~A10!
2-9
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U15expH 2

3
«3FX1

¹2f~X3!

12«¹2f~X3!
2H.c.G J , ~A14!

which follows from the separation of~A9! into a diagonal
partDX32«g¹f(X3) and the rest of the Hamiltonian. Now
no additional corrections@with respect to~A9!# to the terms
of order «4 will appear in the Hamiltonian transformed v
~A14!, and all the diagonal terms of order«5 and higher will
have a different form than in the perturbation theory. T
corresponds to a partial resummation of the perturbation
ries and the final effective diagonal Hamiltonian up toO(«5)
reads as

Heff5DX32«g¹f~X3!2
1

2
«3g¹@f~X3!¹2f~X321!#.

~A15!

This allows us to explore the limit of applicability of th
effective Hamiltonian~2.18!. For definiteness, let us consid
the case of the second-harmonic generation as treated in
II D. Then

X35
1

3
~a2

†a22a1
†a1!,

N5
1

3
~a2

†a212a1
†a1!,

f~X3!5~N1X312!~N1X311!~N22X3!,

¹f~X3!56X3
213X3~N11!13~N13!,

¹2f~X3!53~4X31N13!, ~A16!
s

el

al
s,

.
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whereN is the excitation number operator. It is easy to s
that the corrections to the effective Hamiltonian~2.33! are of
order «3n̄3, which means that the approximation~2.33! de-
scribes correctly the dynamics up to timesgt;(D/g)3n̄23,
wheren̄ is the average number of excitations in the syste

Finally, let us point out that our technique also provide
valuable method of obtaining corrections to the eigensta
of the Hamiltonian~2.12!. Effectively, from~2.17! it is easy
to realize that the eigenstates of the interaction Hamilton
~2.12! can be approximated as

ucm&5U†um&, ~A17!

whereum& is an eigenstate of the diagonal operatorX3 andU
is the corresponding small rotation~or the composition of
several of them!. Since the rotation operators andum& do not
depend on time, the operatorU can be applied toum& in the
form of an expansion in series of«. For example, the eigen
stateucm& up to order«2 takes the form

ucm&5H 12
«2

2
@f~X3!1f~X311!#J um&2«~X12X2!um&

1
«2

2
~X1

2 1X2
2 !um&. ~A18!

This representation is especially advantageous if we c
struct the space of states of the model as a represent
space of the deformed su~2! algebra using the raising opera
tor X1 @7#:

um&;X1
mu0&, ~A19!

where u0& is a lowest weight vector fulfilling the standar
conditionX2u0&50.
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