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Method of small rotations and effective Hamiltonians in nonlinear quantum optics
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We propose a general method for diagonalizing a wide class of nonlinear Hamiltonians describing different
guantum optical models. This method makes use of a nonlinear deformation of the uUQ)algebra and
when some physical parameter, dictated by the particular model under consideration, becomes small, it gives
a diagonal effective Hamiltonian that describes correctly the dynamics for arbitrary states and long times. We
apply as well the technique to three-level systems interacting with quantum fields, showing that it is possible
to engineer resonant interactions through nonresonant processes.

PACS numbds): 42.50.Ct, 42.50.Hz, 42.50.Fx

[. INTRODUCTION su2) Hamiltonian, which can be exactly solved by perform-
ing an appropriate rotation.

The amount of quantum optical models where the We generalize this idea to the polynomial deforme®su
angular-momentum theor,2], which is generated by the @lgebra. In such a case, the action of this rotation is, in gen-
well-known algebra s@), plays a crucial role is immense. €@l rather involved, but when a physical paramédertated
Just to quote a few relevant problems we recall the time? (€ particular model under :c:fons_ldeﬁt)ldnqicomes rs1ma_ll,d_

: . . it generates an approximate effective Hamiltonian that is di-
evolution of two coupled harmonic oscillatof8], a two- : . .
level atom interactingpwith a classical extern[al] figdd, or agonal agd desfc rlbles correctly the e}/olﬁtlon f?]r g rbitrary
L . ’ states and even for long times. We a the method to some
the nonrelativistic analysis of the free electron Ig&dr Due 9 PPy

. ) relevant nonlinear problems in quantum optics; namely,
to this symmetry, all these models reduce to linear problemg, .o _\wave mixing,kth harmonic generation, and Dicke
that can be efficiently solved in an analytical form. ; ’

' . model, discussing some interesting dynamical features aris-
On the other hand, the quantum dynamics of nonlineafnq from the description in terms of the corresponding effec-
optical processes can be described by simple Hamiltoniang,e Hamiltonians.
with cubic or higher terms in creation and annihilation op- |, this context, it is worth noting that the @) algebra is
erators. Among others, typical examples &t harmonic  the natural extension of &) to study the dynamical evolu-
generation k-wave mixing, and generalized Dicke models tjon of three-level atomgL0]. Far from being a mathematical
[6]. In all thgse cases, a nonlinear or deforme@palgebra curiosity, this evolution is central to the discussion of many
naturally arise$7]. physically fascinating problems, such as two-photon coher-
The importance of this deformed structure is that it allowsgpce [11], resonant Raman scatterif@2], superradiance
us to handle the problem in close analogy with the usuaf13] and three-level echogs4]. As one could expect, when
treatment for an angular momentum. In particular, we get ghese three-level systems interact with quantum fields, a non-
decomposition of the Hilbert space into direct sums of in-jinear or deformed structure of @) naturally emerges. In
variant subspaces, and the dynamical problem generated ks case, the advantages of our method are remarkable, as
the corresponding Hamiltonian can be reduced to the diagqiemonstrated in Sec. Ill: the obtaining of dynamical effec-
nalization of a finite-dimensional matrix. _ tive Hamiltonians appears a natural and systematic task, in
In spite of this considerable achievement, convenient an&ontrast with the standard approach of adiabatic elimination
lytic expressions for the eigenvalues and eigenstates are up¢ variables, which is cumbersome and not one-to-tine
known. Exact solutions can be written in the framework offact, depending on the term eliminated, the final Hamiltonian
the algebraic BethansatZ8], but the resulting formulas are quid be different, as shown in RdfL5]). Moreover, and
too unwieldy for practical calculations, and several approxi—perhapS more important, we show how one can manage to
mations have been devised relying on specific features pgineerresonant interactions in this framework. The con-
each particular problem under stu}. Apart from numeri-  cjysions of this work are summarized in Sec. IV, while the

cal approaches, these approximations assume quasiclassiggpendix discusses at length the range of validity of this
limits for one or more modes, make use of perturbative techypproximation.

niques, or employ short-time expansions, and therefore their

validity is limited to some special regimes. II. NONLINEAR SU (2) DYNAMICS AND EFFECTIVE
The aim of this work is to propose a new approach to the HAMILTONIANS

problem based on obtaining approximate effective Hamilto-

nians that can be diagonalized in an exact form. In Sec. Il we

explain the motivation of the method, whose origins lie in  In order to introduce the physical ideas underlying the

the physics of a particle of spinin a magnetic fieldi.e., a method, let us start with the very simple example of a par-

A. Motivation for the method
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ticle of spinj in a magnetic fieldnote that a collection of solved. The key observation for our purpose is that when
A=2]j identical two-level atoms pumped by a classical field>g we can approximate E@2.8) by a=g/w, and(2.5 can
is described by the same mogeThe Hamiltonian for this be substituted by

system has the following forrtin unitsz =1, which will be
used throughout all this paper

. (2.10

g
Uapp=exr{z(s+—8)
H=wS;+9(S,+S.), (2.9
This small rotationapproximately(i.e., up to second-order

whereg is the coupling constant and the operatB§s S, terms ing/w) diagonalizes the original Hamiltoniaf2.1),
and S_ constitute a (2+1)-dimensional representation of qriginating the effective Hamiltonian

the sy2) algebra, obeying the usual commutation relations

gz
[S3,S.]==*S., HEf'f:UaDFHU;pp:(wJFZZ

S; (2.1

[S:.S-]=2Ss. (22 \hich obviously coincides with the exact solution after ex-
panding(2.9) in a series ofy%/ w?.

A direct application of the standard time-independent per-
turbation theony 16] to the original Hamiltoniar(2.1) leads
2.3 immediately to the same results that the effective Hamil-

' tonian(2.11) for the eigenvalues and eigenstates in the same
order of approximation. However, we stress that our method
is settled in a fully operatorial form, which avoids the tedious
work of computing the successive corrections as sums over

Stlj,m>:[(j1m)(jim+ 1)]1/2|j,mi 1> (24) all the accessible states.

In the traditional angular momentum basgjsm)(m= —j,
—j+1,...j—1)) the operatoiS; is diagonal

Ssli,my=mlj,m),

while the action of the ladder operatos is nondiagonal
and is given by

The Hamiltonian(2.1) belongs to the class of the so-called B. Small rotations and effective Hamiltonians
linear Hamiltonians and admits an exact solution. For our
purposes, a very convenient way of finding this solution is t
apply the unitary transformation

Having in mind the previous example, we shall proceed
oby considering more involved nonlinear Hamiltonians. Let

us start with the general case in which the system admits

_ _ some integrals of motiolN; and the interaction part of the
U=exda(S,—S)]. @9 Hamiltonian can be written in the form

and by recalling that Hi= AX5+g(X, +X_), (2.12

eABe—A:BHA'BHi[A’[A’B]]Jr ., (2. where g is a coupling constantA is a parameter usually
2! representing the detuning between frequencies of different
o o o ] subsystemsalthough it is not necessaryand the operators
the tra!nfsformed Hamiltonian, which is unitarily equivalenttox . and X, maintain the first commutation relation of (g
the original one, becomes in (2.2

F=UHUT=[w cog2a)+2gsin(2a)]S; [Xg,X.]= =X, , (2.13

+ 5[29 coq2a)— wsin2a)](S, +S.). (2.7) but the second one is modified in the following way:
[X+ 1X—]: P(X31NJ)1 (214)
Now, the idea is to choose the parameteso as to cancel

plished by taking of the diagonal operatoK; with coefficients perhaps de-

pending on the integrals of motidW; . This is the origin of
29 the name of polynomial deformations of the(Zualgebra.
tan2a)=—=, (2.9 Let us suppose that for some physical reagdepending
on the particular model under considerajidime condition

and, in consequence, the transformed Hamiltonian reduces to

A>g (2.1
Her=w \/ 1+ ﬂsg (2.9 is fulfllle_d. Then,_ it is clgar thaf2.12) is almostdiagonal in
w? the basis that diagonalizes;. In fact, a standard perturba-

tion analysis immediately shows that the first-order correc-
Since this effective Hamiltonian is diagonal in the angular-tions introduced by the nondiagonal pg(tX, +X_) to the
momentum basis, the dynamical problem is completelyeigenvalues oK; vanish and those of second order are pro-
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portional tog/A<1. According to our discussion for the  P(X5,N;,N,)=(X3+1)(X3+1—N,)—(2X3—N,+1)
linear sy2) model, we apply the following unitary transfor-
mation to(2.12 (which, in fact, is amallnonlinear rotatioh X[(N{+Ny)/2—X3+1]. (2.23

Let us consider the limit in which the fields interact in a
: (2.16  dispersive cavity, which corresponds to the cEisg

u:ex;{%x;x_)

so that AlgV(n+ D(n+1)(ng+1), (224
Hex=UH, U (2.17  wheren;(i=1,2,3) are the average number of photons in the
corresponding modes. We emphasize that this is a limit
Keeping terms up to ordeig(A)? we get physically realizablein practice. Then, the effective Hamil-
tonian associated witli2.19 can be conveniently repre-
g? sented as
Heﬁ:AX3+ XP(XS,NJ)’ (218) 5

oaata t ot
and we have an effective Hamiltonian that is diagonal in the Her=Aai2 A [2;21(a323~ a2a2) + ;258580
basis of eigenstates of the operakoy. With this approach, (2.29
the evolution(as well as the spectigbroblem is completely |, 10ce spectrum is directly known.
solved. Besides the advantage of having the effective Hamil- ¢ 4 special case d2.19, let us examine the situation
tonian expressed in an operatorial form, the method has thg, . 0,= — 3= wo/2. By using the Schwinger representa-

virtue of generality, since it is valid for any model whose tion, we can introduce the following operators satisfying the
Hamiltonian could be written down in terms of the genera-g (o) commutation relations

tors of an arbitrary polynomial deformation of(&u In order
to gain more physical insight into the method, we shall apply S,=aya}, S_=alas,
it to some relevant models in nonlinear quantum optics.
1
S$;=5 (alas—ajay). (2.26
The nonlinear dynamics of the process of three-wave mix-l.h 21 ¢
ing can be described by the Hamiltonian en,(2.19 reduces to

C. Three-wave mixing

H=Hg+ i, H=w;ala;+w,S;+g(aS, +a’s.),  (2.27
and the integrals of motiof2.20 imposes thaa£a2+ a§a3
=A is a constant. In other words, the trilinear Hamiltonian
(219  (2.19 is equivalent to the Dicke model, describing the inter-
, . ) action of a single-mode field of frequenay with a collec-
whereg is a coupling constant proportional to the second-tion of A identical two-level atoms with transition frequency

order susceptibility and; (aJT) are the annihilation(cre-
ation) bosonic operators for thﬂh mode. It can be directly Therefore, as a consequence of the genera| réa1ao),
checked that this Hamiltonian admits two integrals of motionwe can conclude that the Dicke model in the dispersive limit

|wi— w0|>gA\/(Fl+ 1) can be represented by the effective
Hamiltonian

=wjala; + wyaja,+ wzalas+g(a,aal+alajas),

N,=ala;+ala,+2alas,
N,=ala;—aja,. 2.2 2
2T (220 Heﬁ:Aa{alJrgK[sg—(za{aﬁ 1)S;— A/2(Al2+1)],
The interaction Hamiltonian can be represented in the gen- (2.289
eral form (2.12 if, for example, we choose the operators
X+, andX; as which coincides with the result obtained previously in Ref.
[18] by a quite different method.
X,=alalas, X_=aja,al,
D. kth harmonic generation

—af
Xs=a1ay, (221 Let us consider now the following Hamiltonian
and nowA is the detuning H=Ho+ Him=w1a1a1+wza}az+g(a§a;”+a1kag ’
2.2
A:(l)l+ Wy~ W3. (222 ( 9)

which describes the conversion kfphotons of the funda-
After some simple calculations, the corresponding functiormental mode 1 intcn photons of the signal mode 2, and
in Eq. (2.19 is the second-order polynomial admits the integral of motion
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kala;+nala, 2.30 Hi=9(aS,+a's.), (2.39
n+k and admits the integral of motion

The interaction Hamiltonian can be represented in the form _ At
(2.12 if we introduce N=a'a+$s. (2.39
X.=akal"  X_=alkan It was shown in Ref[22] that When\/ﬁ>A, (2.395 can be
TRz AT diagonalized in the field space and expanded in a series of
1 the small operator
X3=m(a;a2—a1a1), (2.31) .
6= ——— (2.39
and nowA =nw,—Kkw;. This generates also a nonlinear de- 2yn—A/2+1/2
formation of sy2) where the polynomial functio®(X3,N) )
takes the form wheren=a'a, in the form
3
P(X3,N) = ¢i(N—kXg) gfp_1(N+nXg) _is o _& 5
H=—S—¢{S5, S~ 5 {Ss.{S5. S4}+ O(s),
— dn(N+NnX3) g 1(N—KkX3), (2.32 (2.39
where ¢y (m)=m¥=m(m—1). .- (m—k+1) and  where{,} stands for the anticommutator agd =S, +iS, .
—1(m)= ¢ (m+k)— ¢ (m) are polynomials of ordek |t is obvious that the second term (8.38 does not contrib-
andk—1, respectively. ute, in first order, to the eigenvalues of the above Hamil-

According to our general resul2.18, the effective tonian and, therefore, can be eliminated by some small rota-
Hamiltonian for this model in the dispersive limit, when  tion. To make the direct reduction of the Hamiltoni&h38
>g(n;+1)¥(n,+1)"2 (n; andn, denote the average pho- to the form(2.12 we first apply the rotation
ton numbers in modes 1 and 2, respectiyeéhkes the form

T
Heﬁ:W(azaZ_alal)"' N
) ) ) ) and then the transformed Hamiltoniéh=U,HU! takes the
X[ ¢n(@zaz) Py—1(a1a1) — d(ajag) ¥n_1(azaz)|. form
(2.33 3

~ 1 e
. . . . . =—X3+ +X_)——= +X_ .
Except for the case=k=1, this effective Hamiltonian is H sX3 s(Xp+X) 2 {SoXe+ X} (240

still nonlinear on operatorexf{a1 andagaz. Perhaps, the most )

important example of this kind of processes would be thevhere we have introduced the operators
second-harmonic generation, that correspondk=+@ and 1 1

n=1. In such a case, the nonlinear part of the Hamiltonian X, =2{S;,S,}, X_=2{S;,S_},
(2.33 takes the form 2 2

X3=S;, (2.41

and the associated polynomial is

and we think this is an important result, since it shows that in 1

the dispersive limit, the second-harmonic generation behaves P(X3, ) =4X3--X3(487-1), (2.42
just as a Kerr medigl9] in the presence of a dynamical 2
Stark shift[20], explaining some interesting physical effects
previously discovered for this model, such as the generatio
of Schralinger’s cat stateg21].

2
g
HE =" [4ala,aja; — (ajay)’], (2.34

With
A

2 1
S 2

A
~+1

5 . (2.43

E. Strong-field Dicke model

Until now we have analyzed only Hamiltonians describ-Now, we can apply to this form the general reg@itl8 and
ing dispersive interactions. Nevertheless, the above approaciptain the effective Hamiltoniatwe write it down directly
can be applied to the resonant case too. As a relevant exa terms of atomic operators
ample, we consider the Dicke modelescribed by(2.27)] L 5
for the case of exact resonance between the field and the ~ 3 o o &
atoms and in the strong-field limit. The interaction Hamil- Herr=5 St &"P(Xs=55,5) 5 diagiS.{Sc. Salh:
tonian can be written as (2.44
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where we have taken the diagonal part of the last term ilNevertheless, because the transitiors2 and 2—3 are not
(2.40 [which does not transform undé2.16), but contrib-  physically independent, one needs to add to the above rela-
utes to corrections of order to the eigenvalues of the initial tions the following ones:

Hamiltonian. Finally, we perform the inverse transformation

of (2.39 and we get [S12,82%=—-SB3, [s!2,s%¥=8B3, [s!?2s%-0,
3.3
1
Hert=—Sc+ %55} (38"~ 1)S,]. (2.49  where the operatorS’® have the meaning of transition op-

erators between levels 1 and[Bote that these transitions

This effective Hamiltonian describes the dynamics for timescannot appear in the HamiltonidB.1) simultaneously with

gt=<n®2and is nonlinear on the atomic operators. It follows 1<>2 and 2-3, due to the existence of dipole selection

: i ; ors. LIt Kk Qi (i
that the atomic collective effects in the strong-field limit play fulesl- The operator$*™,S1,(i,j=1,2,3) form a A+1)(A
a relevant role for times of ordeg‘t~?3’2 (we recall that up +2)/2-dimensional representation of theSualgebra.

. — _ _ : The sumS™+ S22+ S*3=A is an integral of motion and
to times gt<n, which include various revivals of alomiC yetermines the total number of atoms, which allows us to
population, the collective effects are not very important inrewrite the free Hamiltoniam .~ as '
such a limit, since they induce only a rescaling of the aver- 0
age value$23]). This leads, for example, to the modulations Ho=— A .S+ A SB3+ ELA, (3.4)
of the collapse-revival structure appearing in the initial
strong coherent field and also to the modulation of the Rabwith

oscillations for a field initially in a number state.
Ap=E;—E;, Axp=E3—E,. (3.5

lIl. NONLINEAR S%SZIEJSNAK:\?; AND EFFECTIVE We note here that the Hamiltoniz([_i.l) can_be rewritten in
terms of the usual £8) algebra by introducing traceless op-
A. The description of three-level atoms in terms of s(B) eratorsS%zz (S??-sth2 andS§3= (S¥3-5%)/2.
dynamics It is clear that if |g;2/A15/<<1, the nondiagonal term
The method of approximate diagonalization embodied g1 S+ %1—2) in (3.1) can be eliminate@up to terms of order
Egs. (2.12, (2.16), and (2.18 can be applied not only to (912/A12)°] by a transformation analogous t2.16 devised
Hamiltonians having a nonlinear @) structure, but also to  for su2), with

guantum systems with a more complicated algebraic struc- g
ture. . . Ugp= exr{ﬁ(slf— SOl (3.6
In what follows we consider Hamiltonians that can be Ay

represented in terms of the (8u algebra. This algebraic
structure naturally arises when describing atomic system
with three relevant energy levels. It is well known that in this
case three possible configuratio@mmonly called=,V,
and A) are admissiblé¢10]. The Hamiltonian governing the e
evolution of a collection oA identical three-level atomgor ~ Hamiltonian. - -
definiteness, we consider the case of a cascad@ anfigu- If the physical conditions enables also the condition

ration) pumped by a classical field has the form 923/A,3d<1 to be satisfied, the terg,y(S:>+S*%) can be
removed by the transformation

glevertheless, in contrast to the(8ucase, this transforma-
tion necessarily generatdshrough the commutator with
(S?*+S%)] a term proportional to $:3+S%) (i.e., transi-
tions between levels 1 and 3, which were absent in the initial

H=Ho+Hin, = E; S E,S%4 E3 S+ 1S+ SP) .
23

+ 0 ST+ SY), (3.1) Ugs= exL{A—23 (SB-s%)|. 3.7)

whereS'(i=1,2,3) are the population operators of e | what follows, we extend these ideas to the case of poly-
energy level, an®! (i <j) describe transitions between lev- nomial deformed s(@) algebra.

elsi andj. The operators §%,5?%S'%) and (5%2,5%,S%)
form two u2) subalgebrageach one of them describes tran- B. Effective Hamiltonians for three-level systems

sitions 12 and 2— 3, independentlyand accordingly they o ) _ ) )
satisfy the commutation relations Having in mind the previous analysis, and in analogy with

the developments for 62) in Sec. I, we shall proceed by
[SH,s?|=58!2 [s2s!Y=+512 considering more involved nonlinear models if3ulet us
- N N B start with the typical Hamiltonian
sl2 gl2—g2_ gl
15587 H=E X "+ X%+ EgX 33+ g X124+ X1

23 _ <23 231 _ , <23
[§%287]=5S, [S¥S7]==S7, +god XB+ X2, 3.9
[SP,87]=5%-57 (32 where the operator¥'l satisfy the commutation relations
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[XT xK=0, [xU XKk=0, [X!I Xx¥=0,

(X1 XK=-v* [XxI xK=Yk >k, (3.9
[XKE XU ] == XU (8= Si),
XK Y=+ YL( 8= 8u),

which are the same as those of the usi(@) algebra in(3.2),
but the rest of them are modified in the following way:

[Xli ,Xll]: P(Xii,ka),

(YL YT ]=Q(x", X!, (3.10
whereP(X'", X% and Q(X"",X*¥) are arbitrary polynomials
function of the diagonal operato¥¢' (i=1,2,3) and define a
polynomial deformation of (8). The Hamiltonian(3.8) ad-
mits the following integral of motion:

N= X114+ X224 X33, (3.11)
It proves convenient to rewrit€8.8) as
H=E,N+H,,, (3.12

with

Hint= = A 12X A poX 334 g X33 XE) + gy X2+ 5(2;3)3)
3.1

and the detuninga ;, and A ,; are defined in Eq(3.5).
Now, let us suppose théd 1,|>g;,. It is clear from our

PHYSICAL REVIEW A 61 063802

The transformed Hamiltonian becomes then

H : - A12X11+ Az X33+

922923(Y13+ Y13

12

912923

<[x1f,x23]+[x X))

+ glzP(x11 XZN)+
Az

923 (X22,X33,N).

(3.17

We could further proceed by eliminating the third and/or
fourth terms in this equation in an analogous way. But, as we
shall see in a moment, this possibility strongly depends on
the resonance conditions satisfieddy andA,;. As we did

in Sec. Il, we shall apply these general considerations to
some relevant models of broad interest in quantum optics.

C. Three-level atoms interacting with quantum fields

Let us consider the interaction of a collection Afiden-
tical three-level atoms in a cascade configuration with a
single-mode quantum field of frequeney;. The Hamil-
tonian of this model is

H=wa’a+E, S+ E,S2+ E;S¥+g,(aSt2+a’s!?)
(3.189

Apart from S+ S?2+ S33=A| this Hamiltonian admits now
the integral of motion

+g,aSP+a’s®).

previous analysis that by applying the small nonlinear rota-

tion

u12=exp[ Gi2 w12 xlz)} (3.14
we can eliminate, up to ordemy{,/A;,)?, the interaction
term g1(X1*+ X9, representing transitions<22, and ob-
tain the effective Hamiltonian

HE) == A1 X1+ 859X P+ g X3+ XZ)
2

- DB 13, 1) i iz P(xll X2 N)

A12

912923([)(12 X23]+[X23 XlZ])

(3.195
It is worth noting that by eliminating the transitions—12,
we have generated an effective transition 3 (represented
by the operatorsY?_f), which was absent in the starting
Hamiltonian.

It is obvious that if, in additio\ ,3>g,3, the nondiagonal
term g,3( X2+ X?% can be also eliminated it8.15 by ap-
plying a second small rotation

J23

Upe= exp[—(xzf— x2_3)} : (3.16

N=a'a+S*-s!, (3.19
and thus, it can be recast as

H=wiN+E,A+H;y, (3.20
whereH;,; has exactly the same form ¢3.13 with
X3=g3

XB=a S,

x11=glt
2 2
X*2=ag!?,

App=Eyr—E;— Ap=E3—Ey—ows. (3.2D

If we assume the dispersive regime in whidk |

>912A\/ﬁ, wheren is the average number of photons in the
field, we can apply the general transformati14), and
obtain the effective Hamiltonian just as in E@®.15, pro-
vided we make the identifications

(OF 3

YP-a28l,  yPoal?gd,

P(XM X2 =s’s+a’a(s?-s"). (322

In this particular case we can still try to eliminate the tran-
sitions 13 [represented by the ternYt>+Y*%)]in (3.19

by applying a further rotation
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Us=exd e(YE-Y5)], 3.2

13 H:(P( + )] ( 3) H(e?f): _Alz(X11+X33)_glAzgz3(Y]jr3+ Y];3)
where the parameter in the above equation must be chosen ) 212
as

+ B2p ity IBpyoryay (309
900 Agg Agp
124923
O Byt Ay (329 where

Taking into account thah 1,4+ A,;=E3;—E;— 2w, we have P(X?2X%) =878+ a'a(s%- 7). (330
that ¢<<1 only if the transition 3 is far from the two-

photon resonance condition. If this is the case, the ter
(Y13+ Y% is eliminated by this transformation and no addi-

tional contributions of ordeg/A will appear in(3.15. Then

nll:inally, by imposing the condition of the absence of an ini-
tial population in level 2, we obtain the effective two-photon
Dicke Hamiltonian including the dynamical Stark sHift5]

the effective Hamiltonian takes the form 015003 A
HE==%  (a’si+a'?s?) +| s3+ 5
2 12
g
HO = — A XU A paX334 9o X234 X2 + 22 (XL, X22) 2> 2 o )
Agp 1. Y923 Y12 923 912 4
Xla'a A__A_ +A_ +AA—a a, (3.3)
+ 91_2923([)(12 X23]+[X23 XlZ]) (3 2@ 2 2 2 ©
Ao e tome A ' where we have inverted the common sign of the Hamil-
tonian.
Note that the last term i8.25 can now by eliminated by
means of the small rotation IV. ENGINEERING RESONANT INTERACTIONS
THROUGH NONRESONANT PROCESSES
912923 12 23 23 12 } . . . .
U=exp————F—([ X35, X+ [ X7, X)) |,
;{Alz(Alz_AZB)([ XTI X XD The dynamics generated by (8u is, obviously, richer

(3.26 than that of s(R), given the existence of a greater number of
physical degrees of freedom. In this section, we wish to
due to the fact thatA,— Ayd =|E;+E3—2E,| =|Es— E; show how the me_thod of small rotations can be used to tailor
— w|>gy, and no additional terms will appear {8.25. resonant mtera_ctlons.from nonresonant process. _
Let us impose the resonance conditibg,=0 (i.e., reso- Instead of discussing an abstract formalism, we shall il-

nant interaction between levels 2—3 and the jieRutting Iu§trate the main idea by resorting to relevant examples. To
St=0 [absence of initial population in level 1, which will this end, let us start from the process of the nonresonant

be conserved due to the fact tig# is an integral of motion ~ thrée-wave mixing in the presence of nonresonant linear
for (3.25], we obtain mode conversion. The Hamiltonian describing this system
has the form
11 22\ _ <22/ A1
P(XZ.XT)=SHaat1). (327 H=w;ala; + w,ala,+ wzajaz+g,(a;a,a5+alalas)

Thus, we conclude that the effective Hamiltonian that de- +g,(a,al+alay), (4.2)
scribes the resonant interaction of a collection of two-level

atoms with a single-mode quantum field, taking into accounaind does not admit any integral of motion. When the process

the existence of an off-resonant level, has the form of three-photon mixing is far-off resonant,|A,|
) >g;V(n;+1)(np+1)(ng+1), the detuning being\; = ws
er%f)=gzs(asi3+ afszis)Jr%Szz(afaJrl)_ (3.29 _wz_ff’l’ Taqd we can .eliminate the intgraction term
A (a,a,a}+alalas) by applying the small rotation

This means that the far-lying level produces a mark in the 01 bt

system in the form of a dynamical Stark-shift term. U;=ex A—l(ala2a3—ala2a3) : (4.2
Let us now envisage the very different situation in which

the two-photon resonance condition between levels 1-3 iFhe transformed HamiltoniaH(e%f)zulHUI takes the form

fulfilled: Ez—E;=2w. This means that the transition gener-

ated by the operatoné'® cannot be removed. Now, we have  H{/=w,ala; + w,aja,+ wsalas+g,(aal+ala,)

A= —Ag, and the termy,g( X2+ X%) in (3.15), that gen-

:[ahrates transition between levels 2—-3, can be eliminated by + %(aiag+a12a3)+ %(aga&agzag)

e transformation(3.16 with the rotation parameter 1 1

|g23/A54<1. Moreover, the last term i(8.15 can be elimi- 2

nated once again without any additional contribution. There- + ﬂp(a‘lralla;az ,alag), (4.3
fore, we obtain as an effective Hamiltonian for this case Ay

063802-7
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where

to ot fo\a atiat + + +
P(aja;,a;a;,,a3a3) = axa,(azaz—a;a;) +azazaya; -
(4.4

If we impose the condition that the process of linear mod

conversion is also out of resonance,|A,|

>g,\(n;+1)(n,+1) with Ay=w,—w,, then the term

ala§+ a{az can be also eliminated by the transformation

U,= exp{%(ala;— ala,)
Ay

. (4.9

; ; : 2)_ Dyt
Therefore we obtain for the Hamiltoniam(2=U,H{UJ

o

HZ)=w,ala; + w,ala,+ wsalas+ —P(ala; ,aja,,alas)

Aq

93 9192
+5-Q(ajas aja,) + ~; - (ajal+aj’a;)

2 1

20192 5 ¢, 2
+ A, (asagtay‘as), (4.6

where
Q(ala;,alay)=a,al—ala;. (4.7

Now it is easy to observe that if we can satisfy the resona
condition 2w;,= w3, then(due to the previous nonresonant
condition the field 2 is far-off resonant with the fields 1 and

3. Thus we can remove the last term (#6) by a similar

transformation[which does not add any additional term
to (4.6) of the orderg/A], meanwhile the resonant interac-

tion described by?aj+a]a; cannot be eliminated. Impos-
ing the condition that field 2 is initially unexcited,
we get P(aja;,alay alas)=ajasaiaj, Q(ajas,ajay)
=ala;(ala;—1) (becauseaja, is now an integral of mo-
tion) and the effective Hamiltonian takes the form

9192
H®=w,ala; +2w,ala;+ ——— (a%a}+al?ay)

Aq
2 2
°h 9>
+-—(alaza,al)— —ala. 4.9
Aq Aq

The point is that this effective Hamiltonidmwhich is essen-
tially different from the initial one(4.1)] describes the dy-

PHYSICAL REVIEW A 61 063802

and does not admit any integral of motion. By repeating the
same steps as before in the dispersive limit for both pro-
cesses and imposing that the frequencies of fields 1 and 3
satisfy the resonance conditiomw3= w3, which means that
the field 2 is far-off resonant with fields 1 and 3, we obtain

&he final form of the corresponding effective Hamiltonian as

0192
H@=w,ala; +3w,alas+ v (adal+al®a,)
1

2 2

g1 92
+A_1(agasalab +—

A, (4.10

T t
a;a;(aja;—1).

The above effective Hamiltonian describes theas) reso-
nant process of third-harmonic generation. In summary, we
see that by imposing some resonance conditions on the initial
model, we obtain that the resulting dynamics is governed by
an effective Hamiltonian that has a quite different form.

V. CONCLUSIONS

In this paper we have investigated in a systematic way a
nonperturbative method of small rotations that has allowed
us to obtain the description of a quantum model in terms of
effective Hamiltonians that can be diagonalized in an exact
form.

The approach is inspired by simple linear models having a
su2) symmetry. In such a case, the small-rotation method

ives the exact solution in a straightforward way. However,

hen dealing with nonlinear optical processes, a nonlinear
(or polynomial deformationof the sy2) algebra naturally
arises. Unfortunately, the action of the proposed rotation is
now rather involved. But when an approprigt@ntrollable
parameter becomes small, the method provides an easy and
elegant solution, free from the drawbacks of other previous
approximations.

We have applied this technique to some relevant nonlin-
ear problems in quantum optics, discussing some nontrivial
dynamical features derived from the corresponding effective
Hamiltonians.

We have extended also the method to the nonlinear defor-
mation of su3), which emerges when treating the interaction
of three-level systems with quantum fields. In such a case,
the description in terms of effective Hamiltonians has al-
lowed us to show how one can manipulate resonance condi-
tions to tailor resonant interactions from very different and
nonresonant ones.

Finally, it is worth emphasizing that the validity of this
technique is not restricted to the problems examined in this

namics of the(quas) resonant process of second-harmonicpaper. It can be easily generalized to more involved situa-

generation(this process can be easily made resonant byions, such asN-level systems interacting with quantum
changing slightly the initial resonance conditipns fields, whose physical interest seems more than a curiosity.

One can treat in a similar way more and more involved
examples of the initial system. Let us mention the process of
second-harmonic generation and simultaneous three-photon
mixing. The Hamiltonian describing this system has the form  In this appendix we refine the method of small rotations
by taking into account higher-order terms, which will allow

us to explore its range of validity and to compare it with the
results of the standard perturbation theory. To be concrete,
we shall consider only the case of nonlinear deformations of

APPENDIX A

H=w;ala; + w,ala,+ wzajas+g,(a;a,a5+alaltas)
2.1, 12
+0y(aja+a;“ay) (4.9
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the si2) algebra and thus Hamiltonians of the fo@12)
with a small parameter we shall rewrite as g/A.

To proceed further we shall need some algebraic relations

from the polynomial deformation of this &) algebra. First,
we introduce the structural polynomial functipn]

D(Xz) =X X_. (A1)
Then the polynomial2.14) in terms of$(X3) takes the form
P(X3)==Vo(X3) = d(X3) — p(X3+1).

Taking into account2.14), we can easily obtain the follow-
ing commutation relations:

(A2)

[X3. X £(X3)]= =X, VE(X3),
[Xs (X)X ]==V[(X3) f(X3—1)],
[X+f(Xa), f(Xa)X_]= = V[h(Xa) fA(Xs—1)], (A3)

wheref(X3) is an arbitrary function oKs.
Applying the transformatior(2.16) to each term of the
Hamiltonian(2.12) we get

C P

&
UXsUT=X3—eV— 2, ol ad®(V),
p=2 P:

P
uvul=v+ S :—,adg(V), (Ad)
p=1 P
where
V=X, +X_,
T=X,—-X_, (A5)
and ad is the adjoint operator defined as
adr(V)=[T,V]. (A6)
Therefore we obtain
. p
_ T L
Heg=UHjpU —Ax3,+gp21 e T AdHV)-
(A7)

By using the commutation relatiori83) and after some cal-
culations we get

adi(V)=—2V $(X3),
adi(V)=2[X, V2(X) + V2 h(X5)X ],
adi(V) = —2[ X3 V3(X3) + V3(X3) X2 ]

—AV[ p(X3)V2h(X3—1)], ....  (A8)

The effective Hamiltonian takes then the form

PHYSICAL REVIEW A 61 063802

Her= AX3—egV ¢(Xa) + 5 2g[ X, V2 (X3)
+V2h(X3)X_]— 7 £39{X5 V3h(X3) + V3¢(X3) X2

+2V[(X3) V2(X3— 1) ]} + O(s?). (A9)
Besides, one can compute‘T‘a\i) to prove that the term
proportional toe* is completely nondiagonal.

We can now devise how to continue the diagonalization
procedure. First, one eliminates the nondiagonal term of or-
der ¢? applying the transformation

2
u1=exp(§sz[x+vz¢<x3)—V2¢(x3>x] . (A10)

This transformation will generate some additional contribu-
tions of ordere* and higher. In much the same way, one
removes the terms of orde? and so on.

It is worth emphasizing that the structure of these addi-
tional contributions[they always have the fornx® f(Xs)
+H.c.+®(X3)] makes the procedure of removing of nondi-
agonal terms trivial at each step, in the sense that it is always
obvious which transformation should be applied. For ex-
ample, to eliminate terms of the form

eI XPf(Xg)+f(X3)XP ], (A11)
we should apply the following transformation
1
exp[aquTp , (A12)
with
Tp=X2f(Xs)— f(Xg)X", (A13)

since the first commutator afX; with T;,, cancels the cor-
responding term in the Hamiltonian. However, one should be
careful when applying this method to more complex de-
formed algebras, due to the additional resonance conditions
that could be imposed in that case, as we have seen in Sec.
Il

Because the transformed Hamiltonian has the form of an
expansion in the small parameterit is clear that eigenval-
ues of the effective Hamiltonian will coincide with those
obtained using the standard perturbation theory. The advan-
tage of our method consists in obtainidgagonal effective
Hamiltoniansfor any systenthat could be described in terms
of the generators of a nonlinear deformation of2uwhich
avoids the necessity of calculating cumbersome series of ma-
trix elements.

Nevertheless, the convergence of our method can be sub-
stantially improved if at each stefpe., before applying the
correspondent small rotatiprwe separate the Hamiltonian
into diagonal and nondiagonal parts, rather than into free and
interaction parts. For example, it could be advantageous to
apply the following rotation instead of the second transfor-
mation (A10)
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U,= 2 3l X
1—eX §8

which follows from the separation dfA9) into a diagonal
partAX;—egV ¢(X3) and the rest of the Hamiltonian. Now,
no additional correctionpwith respect to/A9)] to the terms

VZh(X3)

7 _He.
T1-eV24(Xs)

. (A19)

PHYSICAL REVIEW A 61 063802

whereN is the excitation number operator. It is easy to see
that the corrections to the effective Hamiltonién33 are of

order £3n3, which means that the approximati¢2.33 de-
scribes correctly the dynamics up to timgs~(A/g)°n~>2,

wheren is the average number of excitations in the system.
Finally, let us point out that our technique also provides a

of order&* will appear in the Hamiltonian transformed via vValuable method of obtaining corrections to the eigenstates

(A14), and all the diagonal terms of orde? and higher will

have a different form than in the perturbation theory. Thi
corresponds to a partial resummation of the perturbation s

ries and the final effective diagonal Hamiltonian up¢e®)
reads as

1
Her=AX3—egV ¢(X3) —5839V[¢(X3)V2¢(X3— 1)].
(A15)

of the Hamiltonian(2.12. Effectively, from(2.17) it is easy

sto realize that the eigenstates of the interaction Hamiltonian
d2.12) can be approximated as

|¢m>:UT|m>,

where|m) is an eigenstate of the diagonal operatgrandU
is the corresponding small rotatigor the composition of
several of them Since the rotation operators ajd) do not
depend on time, the operatdrcan be applied tom) in the
form of an expansion in series of For example, the eigen-

(A17)

This allows us to explore the limit of applicability of the state|y,.) up to orders? takes the form

effective Hamiltoniar(2.18). For definiteness, let us consider
the case of the second-harmonic generation as treated in S

IID. Then

1
X3= 3 ( a;az - aIal) )

1 t t
N= §(a2a2+ 2a;a,),

H(X3)=(N+Xz+2)(N+ X3+ 1)(N—2X3),
V (X3)=6X3+3X3(N+1)+3(N+3),

V2¢h(X3)=3(4X3+N+3), (A16)

2

T ={ 1= SLB(X)+ $(Xa+ )] mh— (X = X_)|m)

e o o
+?(X++X,)|m>. (A18)
This representation is especially advantageous if we con-
struct the space of states of the model as a representation
space of the deformed &) algebra using the raising opera-
tor X, [7]:

|m)~XT0), (A19)

where |0) is a lowest weight vector fulfilling the standard
conditionX_|0)=0.
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