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Matter-wave phase measurement: A noninterferometric approach

K. A. Nugent and D. Paganin
School of Physics, The University of Melbourne, Victoria 3010, Australia

~Received 25 October 1999; published 17 May 2000!

We show that noninterferometric techniques can produce quantitative phase measurements of quantum-
mechanical wave fields with coherence requirements that are considerably reduced over those for
interferometry.

PACS number~s!: 03.75.Be, 03.75.Dg, 03.65.Bz
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I. INTRODUCTION

The measurement of phase has been a key part of
development of physics. Optical phase measurement
opened up precision measurement in a number of fie
X-ray phase measurement techniques are being rapidly
veloped as third-generation synchrotrons become m
widely utilized@1,2#. Moreover, measurement of the phase
matter-wave fields, including both neutrons and atoms
opening up further areas of precision measurement@3,4#.
Historically, phase measurement has relied on interfero
etry, which typically requires a high degree of coherence
this paper we explore the measurement of phase using
interferometric propagation-based approaches which h
considerably reduced coherence requirements over thos
interferometry@5#. Although previously published work ha
concentrated on the measurement of the phase of op
@6–11#, x-ray @1,2#, and electron@12–14# wave fields, in this
paper we express these ideas in the language of quan
mechanical waves. We also explore whether these ph
measurement ideas can be usefully adapted to quan
mechanical matter-wave fields.

We introduce a generalized notion of phase for a w
class of quantum-mechanical and classical fields and the
on to show that this generalized phase interacts with a
tential distribution in a manner identical to that of the co
ventional phase~when it exists!. Phase-sensitive measur
ments are therefore possible with far less string
requirements than those for interferometry. In particular,
approach to phase measurement considered here a
phase measurements to be performed without the need
high degree of coherence.

We begin in Sec. II with a review of the definitions o
phase based on the probability flow vector. This definit
leads to the generalized concept of a scalar phase and a
tor phase, which are somewhat analogous to the scalar
vector potentials of classical electrodynamics. In Sec. III
consider the uniqueness of the solutions for phase base
the observation of the probability distribution. In Sec. IV w
briefly consider higher-order contributions to the flow of t
wave. In Sec. V we consider the interaction of the gene
ized phase with a potential and show that it behaves in
cisely the same manner as does the phase of a coherent w
We then go on to make some experimental consideration
Sec. VI. In Sec. VII we give three examples of our conce
of phase and we conclude the paper in Sec. VIII.
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II. DEFINITIONS OF PHASE

Consider a wave field with an associated probability flo
vector. In a region of space that is free of sources and si
the principle of energy conservation implies that t
ensemble-averaged flow vector must obey the contin
equation

¹W •^ jW~rW !&50, ~1!

where jW(rW) is the flow vector of the wave~i.e., the probabil-
ity current, or its appropriate analog!, and we use angula
brackets to denote an ensemble average so as to perm
inclusion of partially coherent fields in the discussion. If t
wave field is coherent~in the optical sense! or, equivalently,
the wave field is in a stationary state~in the quantum-
mechanical sense! then its spatial part may be written a

c(rW)5Ar(rW)exp@iS(rW)/\#, wherer(rW) is the probability den-
sity, S(rW) is the phase, and\ is the reduced Planck consta
\[h/2p. In this case the probability current is time invar
ant and assumes the formjW(rW)5r(rW)¹W S(rW)/m, wherem is
the mass of the object@15#. Evidently, the phase and prob
ability density determine the probability current. Since bo
the current and probability distribution are observables@16#,
we conclude that the phase may be defined in terms of
servables, without any reference to interferometry. In t
paper we explore the observation that a meaningful and v
general definition of phase may be based on the current
tor. While the current vector is considered to be an obse
able @16#, our approach differs from other optical frame
works based on observables in that other approaches
correlation functions as their starting point@17,18#.

In general, the probability current associated with a giv
radiation field will be a function of time. If we assume th
field to be statistically stationary@19#, then we may mean-
ingfully introduce the ensemble average of the probabi
current for a partially coherent field,^ jW(rW)&. This is a well-
defined vector field and will be used as the basis for
formulation. This notion remains well defined for partial
coherent fields and reduces to the conventional definition
phase in the coherent limit of vortex-free waves~for the case
of a scalar field!. It will prove useful in the noninterferomet
ric measurement of phase using matter waves with low
herence.

We define the normalized probability current in terms
the ensemble-average current using
©2000 The American Physical Society14-1
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^ ĵ ~rW !&[m lim
«→01

^ jW~rW !&

r~rW !1«
. ~2!

Over regions of nonzero time-averaged probability dens
Eq. ~2! describes a well-defined vector field, which m
therefore be Helmholtz decomposed into a potential an
rotational component in the usual way@20#. Performing this
decomposition, we are able to rewrite the probability curr
in the following form, which is analogous to the expressi
for the current vector in the presence of both scalar and v
tor electromagnetic potentials@21#:

^ jW(rW)&5
1

m
r~rW !@¹W fS~rW !1¹W 3fW V~rW !#. ~3!

We regard Eq.~3! as defining the scalar phasefS , which is
single valued, and the vector phasefW V , which is divergence-
free, in terms of the ensemble-averaged probability curr

^ jW(rW)& and the ensemble-averaged probability densityr(rW).
Equation~3! may be inverted to express the phase com
nents in terms of the probability current^ jW(rW)& @5#. This
decomposition is unique up to a vectorial constant that m
float between the two components; we place this vecto
constant in the gradient term. The phase so defined obey
following Poisson-type differential equations:

¹2fS~rW !5¹W •^ ĵ ~rW !&, ~4a!

¹2fW V~rW !52¹W 3^ ĵ ~rW !&. ~4b!

Thus these two functions are related to the current vector
thereby to the phase of the wave via the following integr
@20#:

fS~rW !52
1

4pE ¹W •^ ĵ ~rW8!&

urW2rW8u
d3r 8, ~5a!

fW V~rW !5
1

4pE ¹W 3^ ĵ ~rW8!&

urW2rW8u
d3r 8. ~5b!

These are the fundamental quantities discussed in this pa
We conclude this section by showing that the definition

phase given in Eqs.~5! reduces to the usual definition o
phase in the coherent limit, provided of course that one
dealing with a scalar wave field. In the coherent limit, whe
jW(rW)5r(rW)¹W S(rW)/m @15#, Eqs.~5! reduce to

fS~rW !52
1

4pE ¹2S~rW8!

urW2rW8u
d3r 8, ~5c!

fS~rW !52
1

4pE ¹W 3¹W S~rW8!

urW2rW8u
d3r 8. ~5d!

Note that the vector phasefW V(rW) will vanish if ¹W 3¹W (rW)
50W . Thus, in the coherent limit, the vector phase will vani
if the conventional phase of the wave is single valued a
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continuous. In the case of a coherent field, then, the ve
phase is nonzero only if the phase of the wave field is d
continuous, or multiply valued, and so corresponds to a
pological phase@5,22#. It is also apparent from Eq.~5c! that
the scalar phase reduces to the conventional phase whe
field is coherent and the phase is continuous@5#.

III. PHASE RECOVERY AND ITS UNIQUENESS

We begin by considering the case of a coherent wa
examples of which might include a monoenergetic beam
electrons or an atom laser@23#. Energy conservation implies
the following well-known equation from the hydrodynam
formulation of quantum mechanics@15,24#:

¹W •@r~rW !¹W S~rW !#50. ~6!

This equation can be shown to have a unique solution for
phaseS provided that the probability distribution is know
and is always greater than zero@25#. Thus, given these con
ditions, the phase of a wave is uniquely determined by
distribution of probability density in three dimensions.

The measurement procedure involves a three-dimensi
measurement of the probability distribution. The phase
deduced from the probability measurements. Thus at no t
do we attempt to measure both the phase and position
single electron. That this approach is possible implies t
we must require the statistical properties of the electron w
field to be time invariant. It also means that this work is qu
distinct from the efforts to find a quantum-mechanical ope
tor for phase@26#.

In our previous work we have used the paraxial version
Eq. ~6! to achieve quantitative noninterferometric pha
measurements of paraxial fields using visible light, x ra
and electrons@1,6–11,14#. Paraxiality is a well-defined con
cept in physical optics and requires that the wave field tra
predominantly along thez axis and so obeys the approxim
tion c(rW',z)'cz(rW')ei (p/\)z, wherecz(rW') is slowly vary-
ing compared withei (p/\)z, and rW' is the position vector in
the plane perpendicular to thez axis. Under the paraxial ap
proximation, Eq.~6! becomes the following transport equ
tion, which for the case of optical fields has been termed
‘‘transport-of-intensity equation’’@26,27#:

]r~rW'!

]z
52

\

p
¹W '•@r~rW'!¹W 'S~rW'!#. ~7!

The derivative of the probability along thez axis and the
probability distribution in that plane are both observab
quantities, and so Eq.~7! offers a direct approach to th
quantitative measurement of phase from noninterferome
measurements of probability density. This approach will
quire two consecutive measurements of the probability d
tribution and so we require that the wave field be statistica
stationary. We also point out that we do not measure
amplitude and phase of a single particle and so the appro
does not violate the uncertainty principle.

We now explore the conditions on the uniqueness of
solution of Eq.~7!. We do this by considering four separa
subcases in turn.
4-2
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MATTER-WAVE PHASE MEASUREMENT: A . . . PHYSICAL REVIEW A61 063614
A. No intensity zeros present

In this case, Eq.~7! has elsewhere been proven@7# to have
a unique solution for the phase, up to a physically meani
less additive constant. This additive constant is meaning
as the wave equation is invariant under a shift in the origin
time. Thus, for this case, we have a well-defined nonin
ferometric phase measurement scheme based on Eq.~7!.

B. Intensity zeros in the field

1. Intensity zeros present but phase known to be continuous

We assert that if we knowa priori that the phase is con
tinuous we may uniquely recover the phase even in the p
ence of intensity zeros, provided the region of posit
ensemble-averaged probability density is connected~but not
necessarily simple connected!. The proof of this claim is as
follows.

We assume that we measure the ensemble-average
ability density r(rW') and its longitudinal derivative
]r(rW')/]z, with r(rW') being greater than zero over a co
nected two-dimensional region, and zero outside this reg
The probability density and phase satisfy the transport eq
tion as written in Eq.~7!.

Over the two-dimensional connected surface over wh
the phase is being measured, we now consider adding
infinitesimal perturbation« to the probability density so tha
the perturbed quantum-mechanical field may be written

c«~rW'!5 lim
«→0

$Ar~rW'!1«exp@ iS~rW'!/\#%. ~8!

Note that if the phase is continuous lim«→0c«(rW')5c(rW').
The corresponding transport-of-intensity equation becom

p

\

]r~rW'!

]z
52¹W '•@r~rW'!¹W 'S~rW'!#2«¹'

2 S~rW'!. ~9!

This equation has a unique solution@7#, and the phase ma
be recovered by taking the limit as«→0. Thus the phase
may be uniquely determined for the case where inten
zeros are present but the phase is knowna priori to be con-
tinuous.

2. Hidden screw dislocations (phase vortices) in the field

In this case the paraxial transport equation may be wri

p

\

]r~rW'!

]z
52¹W '•@r~rW'!¹W 'fS~rW'!#

2¹W 'r~rW'!•¹W 3fW V~rW'!. ~10!

If the vector phasefW V(rW') is such that¹W 'r(rW) and ¹W

3fW V(rW) are everywhere perpendicular, this component
the phase will be invisible. In other words, topological pha
components may be hidden by symmetries in the probab
density distribution. In this case, the hidden phases are
recoverable but, since the scalar phase is continuous, it
be uniquely recoverable. Thus, in the case of phases hid
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by symmetry, the scalar phase may be recovered but
vector phases remain completely undetermined.

3. Edge dislocations

Edge dislocations in a wave are characterized by a disc
tinuous jump in the phase of the wave as one crosses a g
line that extends across the direction of propagation@28#. In
free space, the edge dislocation forms either an infinit
long line that extends to infinity in both directions, or
closed loop. In either case, two or more regions of the pr
ability distribution are completely disconnected and it fo
lows that their relative phase cannot be determined. In g
eral, the relative phase of two physically separate region
probability cannot be determined by noninterferomet
means. To prove this, we need only note that the ensem
averaged probability density is unchanged upon the introd
tion of an absolute phase shift in one of the physically se
rated beams.

4. Arbitrary case

We now consider the case of a field containing a disc
tinuous phase distribution. It has been established that p
dislocations may, in general, be considered as a sum of sc
and edge dislocations@28#. The edge dislocation has bee
discussed above and we henceforth disregard these.

It can be further shown that the multivalued phase as
ciated with multiple screw dislocations may be added
rectly @29#. It follows that the transport equation~7! may be
written in the form

¹W '•@r~rW'!¹W 'fS~rW'!#1(
j

S mj

r j

]

]u j
D r~rW'!52

p

\

]r~rW'!

]z
.

~11!

Here,mj is the topological charge of thej th dislocation,r j is
the distance between thej th dislocation andrW', andu j is the
polar angle measured about thej th dislocation. The physica
picture implied by this equation is that the effect of the sca
phase is a lateraltranslation as we move along the axisz.
The effect of the screw dislocation is arotation as we move
alongz. It follows, therefore, that the presence of screw d
locations has a characteristic signature in the propagatio
the probability distribution.

An algorithm therefore suggests itself for the comple
recovery of phase. For ergodic fields, the measurement o
time-averaged probability density over multiple measu
ment planes will in principle allow translation and rotatio
effects to be identified and decoupled. As they must be in
form of screw dislocations or edges, then the charge of
screw dislocations may be found and the vortex cores of
screw dislocations located. In this case, the appropriate te
describing the effect of the dislocations may be written do
to permit the rearrangement of Eq.~11! into the form

¹W '•@r~rW'!¹W 'fS~rW'!#52(
j

S mj

r j

]

]u j
D r~rW'!2k

]r~rW'!

]z
.

~12!
4-3
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K. A. NUGENT AND D. PAGANIN PHYSICAL REVIEW A 61 063614
As the scalar phase appearing on the left-hand side of
equation is continuous by construction, and the right-ha
side is known, Eq.~12! may be uniquely solved for the scala
phase using existing methods. For example, the ph
retrieval algorithm developed in@5# may be applied to solve
Eq. ~12! for the scalar phase, given the right-hand side. Th
as all of the vector phase components have been ident
via the screw dislocations, we can see that the entire obs
able phase structure will have been determined.

In the case that some phase components are invisible
result of a symmetry in the probability distribution, it will b
possible to break the symmetry and thereby reveal the p
ence of the phase component. The observation that all
hidden phases must be able to be expressed as a su
screw and edge dislocations places severe restrictions o
class of symmetries that are of significance. In particular,
note that the screw dislocation is represented as an ei
function of angular momentum where the direction of t
rotation ~the sign of the topological charge! is not visible
~see Secs. III B 2 and VII C!. However, the topologica
charge may be rendered visible by, for example, passing
vortex through a cylindrical lens@30#, which destroys the
azimuthal symmetry of the distribution and thereby rend
rotation visible.

IV. HIGHER-ORDER CONTRIBUTIONS AND PARTIAL
COHERENCE

Consider the probability current for a random statistica
stationary ergodic quantum-mechanical wave field given
@31#

^ jW~rW !&5
\

im
lim
xW→0

¹W xWr~rW1xW /2,rW2xW /2!, ~13!

where

r~rW1 ,rW2![^c~rW1!c* ~rW2!&. ~14!

Here, r(rW)[r(rW,rW) is the ensemble-averaged probabil
density andr(rW1 ,rW2) is the time-averaged density matrix o
the wave field@31#; the arguments ofr will always be used
so there should be no danger of ambiguity. We examine
probability current in terms of the Wigner distribution fun
tion defined by

W~rW,pW !5
1

~2p\!3E ^c~rW1xW /2!c* ~rW2xW /2!&e2 ipW •xW /\dxW

5
1

~2p\!3E r~rW1xW /2,rW2xW /2!e2 ipW •xW /\dxW . ~15!

Inverting Eq.~15!, we obtain

r~rW1xW /2,rW2xW /2!5E W~rW,pW !eipW •xW /\dpW , ~16!

which may then be substituted into Eq.~13! to obtain
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^ jW~rW !&5
1

mE pW W~rW,pW !dpW . ~17!

The time-averaged probability current is therefore an app
priately normalized average of the momentum vector o
the Wigner distribution@32#. In the particular case of a
stationary-state state scalar wave function described

c(rW)5Ar(rW)eiS(rW)/\, the probability current is easily show
to reduce to the familiar expressionjW(rW)5(1/m)r(rW)¹S(rW)
@15#.

In the paraxial approximation, the Wigner function obe
the propagation expression

W~rW' ,Dz,pW'!5W„rW'2~pW' /p!Dz,0,pW'…, ~18!

wherepW' is the transverse momentum component@33#. The
resulting probability density distribution can therefore
Taylor expanded into the form

r~rW' ,Dz!5r~rW' ,0!2
1

k
Dz¹W '•^ jW~rW' ,0!&

1 1
2 Dz2E ~pW'•¹W '!2W~rW' ,0,pW'!dpW'1•••.

~19!

In the paraxial approximation it can be seen that the fi
order term gives the flow vector for the field, which yields
quantity identical in properties to the phase of a coher
field. The second-order term relates to the diffusion of
probability density on propagation and yields information
the coherence properties of the field. The precise natur
this information will be the subject of further work. How
ever, Eq.~19! will be used in the experimental consideratio
presented in Sec. VI.

With our definitions we are able to meaningfully discu
phase for noncoherent fields for which phase has not hith
been defined. In the next section we will demonstrate that
phase as defined by us behaves, in many circumstance
precisely the same manner as it does for coherent fie
Thus noncoherent fields may be used to make pha
sensitive measurements. However, fields for which the p
vious concept of phase breaks down may be descri
through correlations using the theory of partial coherence
knowledge of the correlation properties is desired, then
more complex noninterferometric technique of phase-sp
tomography may be used. In this case very large~four-
dimensional! data sets are required@30,34,35#.

V. MEASURING THE PHASE OF A MATTER-WAVE
FIELD

In a previous publication, it was shown that noninterfer
metric measurement of the generalized phase associated
a partially coherent scalar electromagnetic wave could
used as a means of quantitatively probing the refracti
index distribution of an object through which the radiatio
field had passed@10#. In this section, we show how thes
results can be extended to the case of partially cohe
4-4
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MATTER-WAVE PHASE MEASUREMENT: A . . . PHYSICAL REVIEW A61 063614
quantum-mechanical wave fields. Specifically, we shall
the paraxial transport equation associated with our gene
ized notion of phase to explore a technique that permits u
determine the projected potential of a region through wh
partially coherent quantum-mechanical wave fields h
passed.

Consider a general partially coherent scalar wave func
of the form

C~rW,t !5(
n

ancn~rW !e2p int, ~20!

where an denote the amplitudes of the component wa
functions andn denotes the corresponding frequencies. T
time-averaged density matrix for this wave function is

r~rW1 ,rW2!5 lim
T→`

1

2TE2T

T

(
n

(
n8

anan8
* cn~rW1!cn8

* ~rW2!

3e2p i (n2n8)t. ~21!

If we take this limit, the density matrix reduces to

r~rW1 ,rW2!5(
n

uanu2cn~rW1!cn* ~rW2!, ~22!

so that the Wigner function of this wave function is

W~rW,pW !5(
n

uanu2Wn~rW,pW !, ~23!

where

Wn~rW,pW ![
1

~2p\!3E cnS rW1
xW

2
Dcn* S rW2

xW

2
D e2 ipW •xW /\dxW .

~24!

Thus, making use of Eq.~17!, we arrive at

^ jW~rW !&5
1

m (
n

uanu2E pW Wn~rW,pW !dpW . ~25!

We now use this result to determine the effect of a poten
on the probability current.

Atom interferometry probes the effect of a potential
the phase of a wave function. We consider the analog
situation where a wave function encounters a slice of po
tial perpendicular to thez axis that induces a phase sh
given by SV(rW,n), as shown in Fig. 1. We assume that t
potential is located in the plane atz50 and that the potentia
does not affect the probability density in that plane. We wr
the component wave functions in Eq.~23! as cn(rW)

5Arn(rW)eiSn(rW)/\. The phase change produced by the pot
tial will influence the probability density distribution else
where in space and we write the modified distribution in
planez asrn

(z)(rW), wherern
(0)(rW)5rn(rW). We may also write

the phase everywhere in space in the formSn
(z)(rW)5Sn(rW)

1SV
(z)(rW,n), whereSV

(0)(rW,n)5SV(rW,n), which is the phase
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change induced by the potential in the plane of the poten
The resulting Wigner function is therefore given by

Wn
(z)~rW,pW !5

1

~2p\!3E Arn
(z)~rW1xW /2!

3ei [Sn(rW1xW /2)1SV
(z)(rW1xW /2,n)]/\Arn

(z)~rW2xW /2!

3e2 i [Sn(rW2xW /2)1SV
(z)(rW2xW /2,n)]/\eipW •xW /\dxW . ~26!

We now wish to find the probability current in the plane
the potential and we do this by substituting Eq.~26! into Eq.
~25! and using the values of the probability density and
phase in this plane. We find

^ jW (0)~rW !&5
1

m(
n

uanu2rn~rW !¹W @Sn~rW !1SV~rW,n!#. ~27!

By examining Eq.~27!, we can see that this may be rewritte
as

^ jW (0)~rW !&5^ jW0~rW !&1
1

m (
n

uanu2rn~rW !¹W SV~rW,n!, ~28!

where^ jW0(rW)& is equal to the incident probability current a
z50. The second term in Eq.~28! is a sum over frequencies
Assume the phase term may be factorized into the fo
SV(rW,n)5F(rW) f (n), where we definef (n) to be such that
f ( n̄)51, n̄ being the average frequency of the incident wa
function. In this case, the sum in Eq.~28! can be written as
¹F(rW)(nuanu2f nrn(rW), where f n are the values off (n)
evaluated at the frequencies in the sum. Now assume
f n'1 over the spread of frequencies in the wave functi
that is, we assume dispersion is negligible over the freque
width of the wave function. In this case, using the propert
of the Wigner function, we obtain

(
n

uanu2f nrn
(0)~rW !.(

n
uanu2rn

(0)~rW !5r~rW !, ~29!

FIG. 1. A schematic of a phase measurement experiment.
longitudinal derivative in the probability density may be measu
by acquiring the density over two closely spaced planes, as i
cated here. The effects of the incident wave field may be remo
by obtaining data with the object removed.
4-5



n
he

u
n
co

ud
n
th
s

m
th
r-
s

o
fe
W
en

n
ea

ac
b

on

w

e
re

e
t

m,
is-
e

en-
s-

-
ent

a

e
e
e

n-
ty

nce

-
we

fre-
ring

dis-

K. A. NUGENT AND D. PAGANIN PHYSICAL REVIEW A 61 063614
so that Eq.~28! may be written

^ jW (0)~rW !&.^ jW0~rW !&1
1

m
r~rW !¹W F~rW !. ~30!

This allows us to write

^ jW (0)~rW !&.
1

m
r~rW !¹W @S~rW !1F~rW !#. ~31!

The probability current leaving the potential has a form ide
tical to that of the coherent probability current where t
generalized phase, defined in Eqs.~5a! and ~5b!, acts pre-
cisely as would the conventionally defined phase. Th
propagation-based phase determination techniques ca
applied even though the incident wave does not have a
ventionally defined phase.

In an interferometric experiment, the phase and amplit
properties of the illuminating wave may be measured a
removed from the data in order to recover the effects of
object on the wave field. We assume that the propertie
the incident probability current̂jW0(rW)& can be similarly re-
moved. Given this, Eq.~30! obeys ¹W •@r(rW)¹W F(rW)#50,
which is precisely the equation that we have established
be uniquely solved for the phase, given a knowledge of
probability density. A determination of the probability cu
rent will therefore allow the accurate probing of the pha
modification of the wave function by the medium.

The formalism just described permits an experiment
the form sketched in Fig. 1 to be used to measure the ef
of a potential on a quantum-mechanical wave function.
now explore the practical imitations on such a measurem

VI. EXPERIMENTAL CONSIDERATIONS

Consider the experiment in Fig. 1, where a phase cha
is imprinted on an incident wave field and we make a m
surement over a surface. The paraxial form of Eq.~1! may
then be written

]r~rW'!

]z
52

1

2p\
¹W '•@r~rW !^l¹W 'F&l#, ~32!

where herê &l denotes an average over wavelength. In pr
tice, a measurement of the spatial derivative of the proba
ity density will entail a measurement via the approximati

]r~rW'!

]z
.

r~rW',1Dz/2!2r~rW',2Dz/2!

Dz
. ~33!

This requires a measurement of the probability over t
closely spaced planes separated byDz. However, the mo-
mentum distribution in the probability current will blur th
measurement of these distributions even though the cur
at a point defines the phase precisely@see Eq.~19!#. This
blurring will limit the precision of the measurement. W
therefore wish to estimate the coherence requirements on
wave field for this effect to be experimentally negligible.
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The blurring will have two components:~i! that due to the
distribution in transverse momentum in the incident bea
and~ii ! that due to the additional transverse momentum d
tribution produced by dispersion~frequency-dependent phas
shift! in the potential. We consider each of these.

First assume, for simplicity, that the transverse mom
tum distribution follows the appropriately normalized Gaus
ian form exp(2p'

2/2Dp'
2), where pW' is the transverse mo

mentum. In the case of a displacement of measurem
planes of6Dz/2 the probability density will be spread by
distance

Dxp'DzDp'/2p. ~34!

We use Eq.~16! to relate the momentum distribution to th
lateral coherence lengthl lat . Ignoring any spatial dependenc
in the Wigner function of the wave function, and taking th
coherence function as being described by exp(2x2/2l lat

2 ), we
find that

l lat5\A2/Dp' . ~35!

This is simply a form of the uncertainty principle. The co
dition that there be no significant blurring of the probabili
density measurement isDxp,Dq, whereDq is the spatial
resolution of the detector. We thus require that the cohere
length satisfy the condition

l lat.
1

2pA2

l

gmin
, ~36!

wheregmin[Dq/Dz is the minimum angle to which the ex
periment is sensitive. For the sake of a specific case, if
assume thatgmin'1 mrad~e.g.,Dq520 mm, Dz520 mm!
then we requirel lat.100l.

The second source of degradation arises through the
quency dependence in the phase shift. The resulting blur
is approximated by

Dxn'
1

p

]¹S~rW,n!

]n
Dn Dz. ~37!

For simplicity, again assumeS(rW,n)5F(rW) f (n). In this
case, we obtain

Dxn'
1

p
¹F~rW !

] f ~n!

]n
Dz. ~38!

If we introduce a dimensionless variable to describe the
persion,

b[n̄
] f ~n!

]n U
n̄

, ~39!

then

Dxn̄'
1

p
¹F~rW !b

Dn

n̄
Dz. ~40!
4-6
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As an example, consider a frequency-independent po
tial. The resulting phase shift is frequency dependent
may be writtenS(r ,n).F(rW)( n̄/n)1/2, so thatb52 1

2 . The
sign of b is irrelevant to the argument, and so we assu
that it is characteristically a number of order unity. The ty
cal phase gradient measured will presumably need to
much greater than the system angular resolution; tha
¹F(rW)/p@Dq/Dz. We requireDxn'Dq which therefore
implies thatDn/ n̄!1. In terms of coherence length, usin
l long'(n/Dn)l, this translates to

l long@l. ~41!

It can be seen, therefore, that the lateral and longitud
coherence requirements for this approach to phase dete
nation are substantially less demanding than those for c
parable interference experiments.

VII. EXAMPLES OF PHASE

We now present three examples of phase from the vi
point developed in this paper.

A. A scalar phase: The gravitational phase shift

In this first example, we show how noninterferomet
quantum phase imaging may be used to detect gravitation
induced phase shifts. The gravitational potential at heighy
about the surface of the earth is given by

V~y!5mgy, ~42!

whereg is the acceleration due to gravity at the surface of
earth andm is the mass of the particle. Suppose that non
ativistic collimated monoenergetic matter waves of energE
are incident from a point source located at heightg0 above
the surface of the earth. This point source lies somewh
upstream of a certain plane, which is perpendicular to
surface of the earth. It is easy to show that the de Bro
wavelength of these particles as a function of height over
reference plane is given by

l5
h

A2m@E2mg~y2y0!#
. ~43!

Since the de Broglie wavelengthl0 in a field-free space
would be given by settingg50,

l05
h

A2mE
, ~44!

we conclude that the ‘‘effective’’ refractive indexneff(y)
associated with the gravitational field is given by the ratio
the quantities in Eqs.~43! and ~44!:

neff~y![
l0

l
5A12@mg~y2y0!#/E'12@mg~y2y0!#/2E,

~45!
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where we assume that the source is sufficiently removed
the binomial approximation is valid over the range of heig
of interest. A thin slice of a gravitational potential with thick
nessDz therefore produces a phase shift

Df~z!52
2p

l0

mg~y2y0!

2E
Dz ~46!

and the continuity equation gives

¹W •$r~rW !¹W @S~rW !1Df~rW !#%50. ~47!

Using the earlier results of this paper, it is clearly possible
recover the gravitational phase shift using this noninterfe
metric approach. It is easy to show that the resulting phas
entirely consistent with earlier investigations of this gravi
tional phase shift of quantum-mechanical particles@36#.

B. A vector phase: Angular momentum

As an example, let us calculate the vector phase ass
ated with Gauss-Laguerre beams. These are defined via@37#

cpm~r ,u,z!5
Crm2m/2

wm~z!A11~z/zR!2
Lp

mS 2r 2

w2~z! D
3expS 2

r 2

w2~z! DexpF ikr 2z

2~z21zR
2 !

2 imu1 i ~2p1m11!tan21S z

zR
D G , ~48!

where (r ,u,z) are cylindrical polar coordinates,p andm are
integers,zR is the Rayleigh range,w(z) is the radius of the
beam,Lp

m is the associated Laguerre polynomial, andC is a
constant. Note the presence of the nonintegrable vo
phase term exp(2imu), of topological charge2m. Making
use of Eq.~4b!, we obtain the following differential equation
for the vector phase associated with a given Gauss-Lagu
beamcpm(r ,u,z):

¹2fW V~rW !52
4p

v
¹W 3 ĵ ~rW !5m¹W 3¹W u52pmd~r !ẑ,

~49!

whered is the Dirac delta andẑ is the unit vector aligned
with thez axis. Hence we obtain an expression for the vec
phase, which depends solely on the presence of the vo
phase term and contains no contribution from the continu
portion of the phase@38#:

fW V~rW !52m loge~r !ẑ. ~50!

Since the probability density associated with a given Gau
Laguerre beam is rotationally symmetric,¹W r(rW') will have a
nonzero component only in ther̂ direction, and so Eq.~10!

implies that¹W 'r(rW')•¹W 3fW V(rW')50. For this case, there
4-7
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fore, the topological phase component is hidden by the~ro-
tational! symmetry in the probability density distribution.

C. A more complex case: The Aharonov-Bohm phase shift

We now consider a more sophisticated example of
structure of phase in this formalism. We consider the cas
an electron passing through a region of space containin
vector potential. In this case, the probability flow vector h
the form

jW~rW !5
1

me
r~rW !S ¹W S~rW !2

e

c
AW ~rW ! D . ~51!

If the electron is passing around an infinite perfect solen
then the region of space will not contain a field and so
demand that the probability flow vector not be changed
the presence of the vector potential. In order for this to be
case, a phase must be induced that precisely acts to ca
out the effect of the vector potential:

jW~rW !5
1

me
r~rW !S ¹W S~rW !1¹W 3fW V~rW !2

e

c
AW ~rW ! D , ~52!

where we demand

¹W 3fW V~rW !5
e

c
AW ~rW !. ~53!

Thus we find

fW V~rW !52
e

4pcE ¹W 3AW ~rW !

urW2rW8u
d3r 8

52
e

4pcE B~rW8!

urW2rW8u
d3r 8. ~54!

The vector Aharonov-Bohm phase dependsnonlocallyon the
magnetic field. Note that this argument is precisely ana
gous to that used in the discussion of gauge transformat
with the exception that the induced phase is discontinuo

The Aharonov-Bohm phase is typically measured us
an interferometric method in which the wave passes aro
nd

m

m
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both sides of a region of magnetic field without passi
through the region. The phase difference between the
paths is obtained using the expression

Df int5 R @¹W S~rW !1¹W 3fW V~rW !#•d lW. ~55!

Therefore

Df int~rW !52
e

c R A~rW !•d lW. ~56!

Note that the observability of this phase using interfero
etry depends critically on the phase being discontinuo
Equation~56! is identical to earlier results@3,39#.

VIII. CONCLUSIONS

In this paper we have established that, in the absenc
hidden phases, the probability distribution of a quantu
mechanical wave field fully determines the probability cu
rent for the wave function. Phase measurement may th
fore be performed simply via a measurement of t
probability distribution. We have analyzed the form of th
probability current when it encounters a sheet of potential~or
material! that induces a phase change of the wave functi
We established that, with very few limitations, the probab
ity current leaving the sheet of potential responds in p
cisely the manner that it would with coherent illuminatio
We then examined some of the practical requirements
such a phase measurement and concluded that noninter
metric probing of potential distributions may be perform
using wave fields with very limited coherence requiremen
We therefore believe that this noninterferometric approach
phase measurement represents a practical, forgiving,
flexible approach to the probing of wave fields and th
interaction with potentials.
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