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Matter-wave phase measurement: A noninterferometric approach
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We show that noninterferometric techniques can produce quantitative phase measurements of quantum-
mechanical wave fields with coherence requirements that are considerably reduced over those for
interferometry.

PACS numbd(s): 03.75.Be, 03.75.Dg, 03.65.Bz

I. INTRODUCTION II. DEFINITIONS OF PHASE

Consider a wave field with an associated probability flow

The measurement of phase has been a key part of t"\?ector. In a region of space that is free of sources and sinks,

development of physics. Optical phase measurement Nafe rincinle of energy conservation implies that the

opened up precision measurement in a number of fields,,semple-averaged flow vector must obey the continuity
X-ray phase measurement techniques are being rapidly d%‘quation

veloped as third-generation synchrotrons become more

widely utilized[1,2]. Moreover, measurement of the phase of S o

matter-wave fields, including both neutrons and atoms, is V-{i(r)=0, (1)
opening up further areas of precision measureni8m. .

Historically, phase measurement has relied on interferomwherej(r) is the flow vector of the wavé.e., the probabil-
etry, which typically requires a high degree of coherence. Irity current, or its appropriate analpgand we use angular
this paper we exp]ore the measurement of phase using nohfaCketS to denote an ensemble average so as to permit the
interferometric propagation-based approaches which ha\,i@clusign 01_‘ partially cpherent fi_elds in the discu;sion. If the
considerably reduced coherence requirements over those W@Vve field is coherertin the optical senseor, equivalently,
interferometry[5]. Although previously published work has the wave field is in a stationary statén the quantum-
concentrated on the measurement of the phase of opticgiéchanical sensethen its spatial part may be written as
[6-11], x-ray[1,2], and electro12—14 wave fields, in this (1) = Vp(r)exdiS(r)/%], wherep(r) is the probability den-
paper we express these ideas in the language of quantursity, S(r) is the phase, anfl is the reduced Planck constant
mechanical waves. We also explore whether these phage=h/2. In this case the probability current is time invari-

measurement ideas can be usefully adapted to quanturant and assumes the forjiir) = p(r)VS(r)/m, wherem is
mechanical matter-wave fields. the mass of the obje¢tl5]. Evidently, the phase and prob-

We introduce a generalized notion of phase for a wideability density determine the probability current. Since both
class of quantum-mechanical and classical fields and then gbe current and probability distribution are observalpled,
on to show that this generalized phase interacts with a powe conclude that the phase may be defined in terms of ob-
tential distribution in a manner identical to that of the con-servables, without any reference to interferometry. In this
ventional phasgwhen it exists. Phase-sensitive measure- paper we explore the observation that a meaningful and very
ments are therefore possible with far less stringengeneral definition of phase may be based on the current vec-
requirements than those for interferometry. In particular, thdor- While the current vector is considered to be an observ-
approach to phase measurement considered here allo@ble [16], our approach differs from other optical frame-
phase measurements to be performed without the need forVgorks based on observables in that other approaches use
high degree of coherence. correlation functions as their starting po[rt7,1§.

We begin in Sec. Il with a review of the definitions of !N general, the probability current associated with a given
phase based on the probabmty flow vector. This definitionradiaﬁon field will be a function of time. If we assume the
leads to the generalized concept of a scalar phase and a vdigld to be statistically stationary19], then we may mean-
tor phase, which are somewhat analogous to the scalar af@gfully introduce the ensemble average of the probability
vector potentials of classical electrodynamics. In Sec. Il wecurrent for a partially coherent fieldj(r)). This is a well-
consider the uniqueness of the solutions for phase based alefined vector field and will be used as the basis for our
the observation of the probability distribution. In Sec. IV we formulation. This notion remains well defined for partially
briefly consider higher-order contributions to the flow of the coherent fields and reduces to the conventional definition of
wave. In Sec. V we consider the interaction of the generalphase in the coherent limit of vortex-free wavés the case
ized phase with a potential and show that it behaves in preaf a scalar field It will prove useful in the noninterferomet-
cisely the same manner as does the phase of a coherent warvie. measurement of phase using matter waves with low co-
We then go on to make some experimental considerations iherence.

Sec. VL. In Sec. VIl we give three examples of our concept We define the normalized probability current in terms of
of phase and we conclude the paper in Sec. VIII. the ensemble-average current using
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~ > (f(ﬂ) continuous. In the case of a coherent field, then, the vector
(J@r))y=m lim — ) (2)  phase is nonzero only if the phase of the wave field is dis-
s_otP(N)te continuous, or multiply valued, and so corresponds to a to-

pological phasé5,22]. It is also apparent from Edq5c) that

Over regions of nonzero time-averaged probability densityyne scajar phase reduces to the conventional phase when the
Eq. (2) describes a well-defined vector field, which may fia|q is coherent and the phase is continuffis
therefore be Helmholtz decomposed into a potential and a

rotational component in the usual wg30]. Performing this lll. PHASE RECOVERY AND ITS UNIQUENESS
decomposition, we are able to rewrite the probability current
in the following form, which is analogous to the expression We begin by considering the case of a coherent wave,
for the current vector in the presence of both scalar and ve@xamples of which might include a monoenergetic beam of
tor electromagnetic potential21]: electrons or an atom lasg23]. Energy conservation implies
the following well-known equation from the hydrodynamic
e 1 . - . s s formulation of quantum mechani¢$5,24):
G)=—pMTssN+Tx (D] @ ‘ 445,24
V-[p(r)VS(r)]=0. (6)

We regard Eq(3) as defining the scalar phagg,, which is ) ) ) )
sinale valued. and the vector ha§ which is diveraence- This equation can be shown to have a unique solution for the
9 ' phase., 9 haseS provided that the probability distribution is known

fr?ee%, in terms of the ensemble-averaged prlobability ﬁcurrengnd is always greater than zd25]. Thus, given these con-
(i(r)) and the ensemble-averaged probability densy). gitions, the phase of a wave is uniquely determined by its
Equation(3) may be inverted to express the phase compogistribution of probability density in three dimensions.

nents in terms of the probability curreqf(r)) [5]. This The measurement procedure involves a three-dimensional
decomposition is unique up to a vectorial constant that mayneasurement of the probability distribution. The phase is
float between the two components; we place this vectoriatleduced from the probability measurements. Thus at no time
constant in the gradient term. The phase so defined obeys tli® we attempt to measure both the phase and position of a

following Poisson-type differential equations: single electron. That this approach is possible implies that
. we must require the statistical properties of the electron wave
V2¢s(r)=V-(j(r)), (48  field to be time invariant. It also means that this work is quite
o o distinct from the efforts to find a quantum-mechanical opera-
V2hy(r)=—VX{j(r)). (4b)  tor for phase26].

In our previous work we have used the paraxial version of
Thus these two functions are related to the current vector anEq_ (6) to achieve quantitative noninterferometric phase
thereby to the phase of the wave via the following integralsmeasurements of paraxial fields using visible light, x rays,
[20]: and electron$1,6—11,14. Paraxiality is a well-defined con-
e cept in physical optics and requires that the wave field travel
be(7)= — i V-(J(r')) @ predominantly along the axis and so obeys the approxima-
° am)  |r—r'| tion ¥(r,,z)~ y,(r,)e'PM2 wherey,(r,) is slowly vary-
o ing compared withe'(P™)?, andr, is the position vector in
N 1 [ VX(3(r")) 3, the plane perpendicular to threaxis. Under the paraxial ap-
Py(r)= Ef Wd : (Sb) proximation, Eq.(6) becomes the following transport equa-
tion, which for the case of optical fields has been termed the
These are the fundamental quantities discussed in this papefransport-of-intensity equation’(26,27:
We conclude this section by showing that the definition of -
phase given in Eqs(5) reduces to the usual definition of ap(r.) z_ﬁv* .[p(; )WV, S(r )] 7)
phase in the coherent limit, provided of course that one is Jz * AT

‘_E'e:"‘"”g Vl”tb afcalar wave field. In the coherent limit, WhereThe derivative of the probability along theaxis and the
j(r)=p(r)vVS(r)/m [15], Egs.(5) reduce to

probability distribution in that plane are both observable
quantities, and so Eq7) offers a direct approach to the

: (5a)

d)s(F)Z _ if st([,) d3r (50) gquantitative measurement of phase from noninterferometric
4 Ir—r’| measurements of probability density. This approach will re-

quire two consecutive measurements of the probability dis-

R 1 [ VXVS(r) tribution and so we require that the wave field be statistically
P(r)=— P W S, (5d) stationary. We also point out that we do not measure the

amplitude and phase of a single particle and so the approach
. e T does not violate the uncertainty principle.

Note that the vector phasg,(r) will vanish if VxV(r) We now explore the conditions on the uniqueness of the
=0. Thus, in the coherent limit, the vector phase will vanishsolution of Eq.(7). We do this by considering four separate

if the conventional phase of the wave is single valued andubcases in turn.
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A. No intensity zeros present by symmetry, the scalar phase may be recovered but the

In this case, Eq(7) has elsewhere been provigh to have vector phases remain completely undetermined.
a unigue solution for the phase, up to a physically meaning-
less additive constant. This additive constant is meaningless
as the wave equation is invariant under a shift in the origin of Edge dislocations in a wave are characterized by a discon-
time. Thus, for this case, we have a well-defined nonintertinuous jump in the phase of the wave as one crosses a given

3. Edge dislocations

ferometric phase measurement scheme based ofVEq. line that extends across the direction of propagafs]. In
free space, the edge dislocation forms either an infinitely
B. Intensity zeros in the field long line that extends to infinity in both directions, or a

closed loop. In either case, two or more regions of the prob-
ability distribution are completely disconnected and it fol-
We assert that if we know priori that the phase is con- lows that their relative phase cannot be determined. In gen-
tinuous we may uniquely recover the phase even in the presral, the relative phase of two physically separate regions of
ence of intensity zeros, provided the region of positiveprobability cannot be determined by noninterferometric
ensemble-averaged probability density is conne¢beti not  means. To prove this, we need only note that the ensemble-
necessarily simple connecjed’he proof of this claim is as averaged probability density is unchanged upon the introduc-
follows. tion of an absolute phase shift in one of the physically sepa-
We assume that we measure the ensemble-average praiated beams.

ability density p(rl) and its longitudinal derivative

ap(r,)1dz, with p(r,) being greater than zero over a con-
nected two-dimensional region, and zero outside this region. We now consider the case of a field containing a discon-
The probability density and phase satisfy the transport equdinuous phase distribution. It has been established that phase
tion as written in Eq(7). dislocations may, in general, be considered as a sum of screw
Over the two-dimensional connected surface over whictand edge dislocationg28]. The edge dislocation has been
the phase is being measured, we now consider adding atiscussed above and we henceforth disregard these.
infinitesimal perturbatiorz to the probability density so that It can be further shown that the multivalued phase asso-
the perturbed quantum-mechanical field may be written  ciated with multiple screw dislocations may be added di-
rectly [29]. It follows that the transport equatidi@) may be
P (r ) =lim{Np(r, ) +eexdiS(r, )/A]}. (8)  written in the form

e—0

1. Intensity zeros present but phase known to be continuous

4. Arbitrary case

P(rL):_g 9z
(12)

. : . . - - - . m d\ . ap(r
Note that if the phase is continuous limo, (r,)=¥(r.).  V,-[p(r )V, dsr )]+ | — _) P Ip(r.)
The corresponding transport-of-intensity equation becomes T \Tj 96

ap(r - I - .
g p{g;) ==V, - [p(r)V,S(r)]-eVis(r,). (9) Here,m; is the topological charge of th¢h dislocationy | is
the distance between tljth dislocation andl, andg; is the
This equation has a unique solutipn], and the phase may polar angle measured about tfth dislocation. The physical
be recovered by taking the limit as—0. Thus the phase picture implied by this equation is that the effect of the scalar
may be uniquely determined for the case where intensitphase is a laterdranslationas we move along the axis
zeros are present but the phase is kn@npriori to be con-  The effect of the screw dislocation isratation as we move
tinuous. alongz. It follows, therefore, that the presence of screw dis-

locations has a characteristic signature in the propagation of
2. Hidden screw dislocations (phase vortices) in the field the probability distribution.

In this case the paraxial transport equation may be written AN algorithm therefore suggests itself for the complete
recovery of phase. For ergodic fields, the measurement of the

P 07P(f1) R o R time-averaged probability density over multiple measure-
oz =V, - [p(r)V, ogr)] ment planes will in principle allow translation and rotation

z effects to be identified and decoupled. As they must be in the

_V*Lp(rl)ﬁx(zv(rl)_ (10) form of screw dislocations or edges, then the charge of the

screw dislocations may be found and the vortex cores of the

R = - = screw dislocations located. In this case, the appropriate terms
If the vector ph r)) i h that r \Y . . SN )
the vector p asepy(r,) is sug a V%p( ) and describing the effect of the dislocations may be written down
X py(r) are everyw_hgre perpendicular, this component of, permit the rearrangement of E@.1) into the form
the phase will be invisible. In other words, topological phase

components may be hidden by symmetries in the probability -
density distribution. In this case, the hidden phases are no¢ -[p(F ) b (F )]2_2 (ﬂ i)p P )_kﬂp(u)
recoverable but, since the scalar phase is continuous, it will * LITLTSUL rj a6;)"t 9z

be uniquely recoverable. Thus, in the case of phases hidden (12
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As the scalar phase appearing on the left-hand side of this . 1( . .. .

equation is continuous by construction, and the right-hand <J'(F)>=Ef pW(r,p)dp. 17
side is known, Eq(12) may be uniquely solved for the scalar

phase using existing methods. For example, the phaserhe time-averaged probability current is therefore an appro-
retrieval algorithm developed i5] may be applied to solve priately normalized average of the momentum vector over
Eq. (12) for the scalar phase, given the right-hand side. Thusihe Wigner distribution[32]. In the particular case of a

as all of the vector phase components have been identifiegtationary-state state scalar wave function described by
via the screw dislocations, we can see that the entire obser\l/p—(r»): (N eSO the probability current is easily shown

able phase structure will have been determined. . e - -
In the case that some phase components are invisible asf%sr]educe to the familiar expressigiir) = (1/m)p(r)VS(r)

result of a symmetry in the probability distribution, it will be ) . i i

possible to break the symmetry and thereby reveal the pres- '" the paraxial approximation, the Wigner function obeys
ence of the phase component. The observation that all tH&'€ Propagation expression

hidden phases must be able to be expressed as a sum of - - - - -

screw and edge dislocations places severe restrictions on the W(r, ,Az,p, )=W(r, —(p, /p)Az,0,p,), (18
class of symmetries that are of significance. In particular, we
note that the screw dislocation is represented as an eige
function of angular momentum where the direction of the
rotation (the sign of the topological chargés not visible
(see Secs. llIB2 and VIIC However, the topological R ) 1
charge may be rendered visible by, for example, passing thep(r, ,Az)=p(r, ,0)— K
vortex through a cylindrical len§30], which destroys the
azimuthal symmetry of the distribution and thereby renders R . .
rotation visible. + %AZZJ (P V)?W(r,,0,p,)dp, +- .

_heref)L is the transverse momentum componk38]. The
resulting probability density distribution can therefore be
Taylor expanded into the form

AZVSL‘G)(FL ,0)>

IV. HIGHER-ORDER CONTRIBUTIONS AND PARTIAL (19

COHERENCE In the paraxial approximation it can be seen that the first-

Consider the probability current for a random statistically©rder term gives the flow vector for the field, which yields a

stationary ergodic quantum-mechanical wave field given bylua@ntity identical in properties to the phase of a coherent
[31] y erg q 9 )ﬂeld. The second-order term relates to the diffusion of the

probability density on propagation and yields information on
. Z o the coherence properties of the field. The precise nature of
(j(r))=—=IlimV3p(r+x/2,r —x/2), (13  this information will be the subject of further work. How-
L ever, Eq.(19) will be used in the experimental considerations
presented in Sec. VI.
where With our definitions we are able to meaningfully discuss
phase for noncoherent fields for which phase has not hitherto
p(F1,F)=(h(r) g (1)), (14)  been defined. In the next section we will demonstrate that the
phase as defined by us behaves, in many circumstances, in
Here, p(r)=p(r,r) is the ensemble-averaged probability Precisely the same manner as it does for coherent fields.

density andp(F ;) is the time-averaged density matrix of |NUS noncoherent fields may be used to make phase-
the wave field 31]; the arguments of will always be used sensitive measurements. However, fields for which the pre-
so there should be no danger of ambiguity. We examine thi ious concept of phase breaks down may be described

probability current in terms of the Wigner distribution func- rough correlations using the theory_of partlal _coherence. i
tion defined by knowledge of the correlation properties is desired, then the

more complex noninterferometric technique of phase-space
1 o tomography may be used. In this case very latfmur-
W(F,5)= Wf <¢,(F+ )2/2) (/,*(F_ )2/2)>efip-></hd;( dimensional data sets are requiré80,34,335.

1 e s s s e V. MEASURING THE PHASE OF A MATTER-WAVE
:Wf p(r+x/2,r —x/2)e P ¥tdx. (15 FIELD

In a previous publication, it was shown that noninterfero-
Inverting Eq.(15), we obtain metric measurement of the generalized phase associated with
a partially coherent scalar electromagnetic wave could be
used as a means of quantitatively probing the refractive-
index distribution of an object through which the radiation
field had passedl10]. In this section, we show how these
which may then be substituted into E4.3) to obtain results can be extended to the case of partially coherent

o(F4512.F—512)= J WG B)ePidp,  (16)
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guantum-mechanical wave fields. Specifically, we shall use —— Distorted wave
the paraxial transport equation associated with our general- |0 _\ =:/ mom
ized notion of phase to explore a technique that permits us to Detector to measure
determine the projected potential of a region through which —> / probability and its
partially coherent quantum-mechanical wave fields have / derivative
passed. R
Consider a general partially coherent scalar wave function — "
of the form
Z o\ 2\ 27 vt £
v(r.y= 2,, a,y(r)e ' (20 Two-Dimensional e
Potential
distribution Az

where a, denote the amplitudes of the component wave
functions andv denotes the corresponding frequencies. The g 1. A schematic of a phase measurement experiment. The

time-averaged density matrix for this wave function is longitudinal derivative in the probability density may be measured

1 (1 by acquiring the density over two closely spaced planes, as indi-

r ,F = lim — aa* F * r cated here. The effects of the incident wave field may be removed
p(rer2) TH%ZTJTEV: ;‘ v, (1)1, (r2) by obtaining data with the object removed.

x @2mi(v=v")t. (21)  change induced by the potential in the plane of the potential.

The resulting Wigner function is therefore given by

1
w® ",” _ @1 +x/2
p(1112) =2 (2, U (F) YL (), 22 v (0P = 5E) Ve (r+x02)

« ei[SV(F+>Z/2)+s(vz)(F+>Z/2,u)]/ﬁ /p(vz)(F— x/2)

@ i18,(r=x12)+ S\ (r =120/ gip - X/h g 5 (26)

If we take this limit, the density matrix reduces to

so that the Wigner function of this wave function is

- oy 2
W(r,p)—EV |2, ]"W,(r.p). 23 We now wish to find the probability current in the plane of

the potential and we do this by substituting E26) into Eq.
where (25) and using the values of the probability density and the
phase in this plane. We find

- 1 . X X| -
WV<r.p>E—3f b\ r+s w’:(r——)e"p'X”"dx- oy o 1 e
(2mh) ? ? (24 (TOM)= 3 [, pu NS0+ ST w)]. (27)
Thus, making use of Eq17), we arrive at By examining Eq(27), we can see that this may be rewritten
as
.1 I,
(= > |av|2f PW,(r,p)dp. (25)

(O =(To(r)+ % 2 laPpunVsur.y), (28
We now use this result to determine the effect of a potential ’
On,Z\Tgnﬁ)ri%?:r?le“rtgnsgtrrr;rgfobes the effect of a potential Onwfere(jo(r» Is equal to the inc_ident probability current at
the phase of a wave function. We consider the analogou =0. The second term in E(28) is a sum over f(equenmes.
situation where a wave function encounters a slice of poten- ssume theﬁphase term may be_ factorized into the form
tial perpendicular to the axis that induces a phase shift Sv(r,»)=®(r)f(»), where we defind(v) to be such that
given by S(r,»), as shown in Fig. 1. We assume that thef(V)fl’ v bei_ng the average fr(_equency of the incident wave
potential is located in the plane 2¢ 0 and that the potential function. In this case, the sum in E(8) can be written as
does not affect the probability density in that plane. We writeV® ()2, |a,|?f,p,(r), where f, are the values off(v)

the component wave functions in Eq23) as y,(r) €valuated at the frequencies in the sum. Now assume that
f,~1 over the spread of frequencies in the wave function;

= \/pV(F)eisv(F)’h. The phase change produced by the poten-,”_ .~ ; o >
tial will influence the probability density distribution else- that is, we assume dispersion is negligible over the frequency

where in space and we write the modified distribution in aWldth of the wave function. In this case, using the properties

(2), = (0) = N ) of the Wigner function, we obtain
planez asp;”(r), wherep}”’(r)=p,(r). We may also write

the phase everywhere in space in the foBA(r)=S,(r) 26 (0) 2 (O) -
- - - f = = , 29
+S2(r,v), whereS(r,v)=Sy(r,v), which is the phase Ey ", () Ey %y (1) =p(r) @9
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so that Eq(28) may be written The blurring will have two component§) that due to the
distribution in transverse momentum in the incident beam,

SO) P T 1 .. . and (ii) that due to the additional transverse momentum dis-
() =(jo(r)+ HP(NVE(r). (30 tribution produced by dispersidfrequency-dependent phase
shift) in the potential. We consider each of these.
This allows us to write First assume, for simplicity, that the transverse momen-

tum distribution follows the appropriately normalized Gauss-

ian form exp-p?/2Ap?), wherep, is the transverse mo-

mentum. In the case of a displacement of measurement

planes of==Az/2 the probability density will be spread by a

The probability current leaving the potential has a form iden-distance

tical to that of the coherent probability current where the

generalized phase, defined in E¢Sa and (5b), acts pre- Ax,~AzAp,/2p. (34)

cisely as would the conventionally defined phase. Thus, o

propagation-based phase determination techniques can 4% use Eq(16) to relate the momentum distribution to the

applied even though the incident wave does not have a cor@teral coherence length, . Ignoring any spatial dependence

ventionally defined phase. in the Wigner fu_ncnon of _the Wave_functlon, and 2taklng the
In an interferometric experiment, the phase and amplitud&€oherence function as being described by exf(2l,), we

properties of the illuminating wave may be measured andind that

removed from the data in order to recover the effects of the

object on the wave field. We assume that the properties of 'Iat:h\/E/ApL : (35

the incident probability currentjo(r)) can be similarly re- g i simply a form of the uncertainty principle. The con-

moved. Given this, Eq(30) obeys V-[p(r)V®(r)]=0, dition that there be no significant blurring of the probability

which is precisely the equation that we have established magensity measurement i8x,<Aq, whereAq is the spatial

be uniquely solved for the phase, given a knowledge of theesolution of the detector. We thus require that the coherence

probability density. A determination of the probability cur- |ength satisfy the condition

rent will therefore allow the accurate probing of the phase

modification of the wave function by the medium. 1
The formalism just described permits an experiment of I —

the form sketched in Fig. 1 to be used to measure the effect 2m\2

of a potential on a quantum-mechanical wave function. We

now explore the practical imitations on such a measuremen\’yht.are ymiUEAq/A?.'S the minimum angle to W.h.'Ch the ex-
periment is sensitive. For the sake of a specific case, if we

assume thay,,,~1 mrad(e.g.,Aq=20 pum, Az=20 mm
VI. EXPERIMENTAL CONSIDERATIONS then we require ,>100n.

Consider the experiment in Fig. 1, where a phase change '€ seécond source of degradation arises through the fre-
is imprinted on an incident wave field and we make a meaduency d_ependence in the phase shift. The resulting blurring
surement over a surface. The paraxial form of Ej.may IS approximated by
then be written

ISR R R
(7OU))= —p(NVIS(r) + D(r)]. (31)

A

Yemin’

(36)

1 9VS(r,v)
N Ax,~——— " ApAz. (37)
o) 1 YAV, ® 32 P
IR L [p(N(AV, D), ], (32

For simplicity, again assumS(F,v)zdb(F)f(v). In this

where herd ), denotes an average over wavelength. In pracc@se, we obtain
tice, a measurement of the spatial derivative of the probabil- 1 o (v)
ity density will entail a measurement via the approximation AX,~ =V®(r) a:

Az (38

op(r.) = p(r, +AZI2) = p(r,, ~A2/2) . (33 If we introduce a dimensionless variable to describe the dis-

9z Az persion,
This requires a measurement of the probability over two —9f(v)
closely spaced planes separatedA®. However, the mo- B=v v |~ (39
mentum distribution in the probability current will blur the v

measurement of these distributions even though the curre%en

at a point defines the phase precisgdge Eq.(19)]. This

blurring will limit the precision of the measurement. We 1 A

therefore wish to estimate the coherence requirements on the Ax~ —V(I)(F),B:VAZ. (40)
wave field for this effect to be experimentally negligible. p v
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As an example, consider a frequency-independent poterwhere we assume that the source is sufficiently removed that
tial. The resulting phase shift is frequency dependent anthe binomial approximation is valid over the range of heights
may be writtenS(r, ) =®(r)(v/v)"2 so thatd=—3. The  of interest. Athin slice of a gravitational potential with thick-

sign of 3 is irrelevant to the argument, and so we assumé€ssAz therefore produces a phase shift
that it is characteristically a number of order unity. The typi-
cal phase gradient measured will presumably need to be 27 mg(y—VYo)

much greater than the system angular resolution; that is, Ad)(z):—)\—o 2E Az (46)

V@(F)/p>Aq/Az. We requireAx,~Aq which therefore

implies thatAv/v<1. In terms of coherence length, using @nd the continuity equation gives
liong~ (v/Av)\, this translates to - . .
V-A{p(r)VIS(r)+A¢(r)]}=0. (47)
liong> .- (41)

Using the earlier results of this paper, it is clearly possible to
It can be seen, therefore, that the lateral and longitudinalecover the gravitational phase shift using this noninterfero-
coherence requirements for this approach to phase determisetric approach. It is easy to show that the resulting phase is
nation are substantially less demanding than those for comentirely consistent with earlier investigations of this gravita-

parable interference experiments. tional phase shift of quantum-mechanical partigig8].
VIl. EXAMPLES OF PHASE B. A vector phase: Angular momentum
We now present three examples of phase from the view- As an example, let us calculate the vector phase associ-
point developed in this paper. ated with Gauss-Laguerre beams. These are defind@¥ja
Crm2m'2 2r?
A. A scalar phase: The gravitational phase shift lﬂpm(r 0,2)= Lm( , )
L . . T m2) ./ 27 Plwe(z
In this first example, we show how noninterferometric wT(z)V1+(2/zg) (2)

induced phase shifts. The gravitational potential at heyght wi2) 2(22+z§)

guantum phase imaging may be used to detect gravitationally r2 ikr2z
X exp( - ) exr{
about the surface of the earth is given by

V(y)=magy, (42) —imé+i(2p+m+1)tant , (48

whereg is the acceleration due to gravity at the surface of the

earth andn is the mass of the particle. Suppose that nonrelwhere ¢, 6,z) are cylindrical polar coordinatep,andm are
ativistic collimated monoenergetic matter waves of endtgy integers,zi is the Rayleigh rangewy(z) is the radius of the

are incident from a point source located at heightabove beam,Lg1 is the associated Laguerre polynomial, @ik a

the surface of the earth. This point source lies somewhereonstant. Note the presence of the nonintegrable vortex
upstream of a certain plane, which is perpendicular to thg@hase term expfimé), of topological charge- m. Making
surface of the earth. It is easy to show that the de Brogliaise of Eq.(4b), we obtain the following differential equation
wavelength of these particles as a function of height over théor the vector phase associated with a given Gauss-Laguerre

reference plane is given by beamy,m(r,0,2):
A n 43) V2u(F) = — 2% X3 (F) = m¥ x ¥ 6= 2rma(r)3
= . v(n)=——VXj(r)=m =2mmdé(r)z,
V2mE—mg(y—yo)] ®
(49)
Since the de Broglie wavelengtk, in a field-free space .
would be given by setting=0, where § is the Dirac delta and is the unit vector aligned
with the z axis. Hence we obtain an expression for the vector
h phase, which depends solely on the presence of the vortex
No= , (44) phase term and contains no contribution from the continuous
VZmE portion of the phasg38]:
we conclude that the “effective” refractive indemequ(y) ;bv(r»): —mlogy(r)Z. (50)

associated with the gravitational field is given by the ratio of

the quantities in Bqs43) and (44): Since the probability density associated with a given Gauss-

No Laguerre beam is rotationally symmetrﬁ:p(rl) will have a
Ner(Y) === VI-[mg(y—yo) VE~1-[mgy—Yo)lI2E,  ponzero component only in thedirection, and so Eq(10)
(45)  implies thatV, p(r,)-V X éy(r,)=0. For this case, there-
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fore, the topological phase component is hidden by(tbe  both sides of a region of magnetic field without passing
tationa) symmetry in the probability density distribution.  through the region. The phase difference between the two
paths is obtained using the expression

C. A more complex case: The Aharonov-Bohm phase shift
We now consider a more sophisticated example of the Adin= jg [VS(r)+VXgy(r)]-dl. (55)
structure of phase in this formalism. We consider the case of

an electron passing through a region of space containing @herefore
vector potential. In this case, the probability flow vector has

the form A i) =— S fﬁ A(r)-dT. (56)

. .oe. .

VS(r) - EA(V)>- (51) Note that the observability of this phase using interferom-
etry depends critically on the phase being discontinuous.

If the electron is passing around an infinite perfect solenoidequation(56) is identical to earlier results3,39).

then the region of space will not contain a field and so we

demand that the probability flow vector not be changed by VIIl. CONCLUSIONS

the presence of the vector potential. In order for this to be the

. : In this paper we have established that, in the absence of
case, a phase must be induced that precisely acts to cancel o L
out the effect of the vector potential: %ldden phases, the probability distribution of a quantum-

mechanical wave field fully determines the probability cur-
.1 . o .. . e.. rent for the wave function. Phase measurement may there-
j(r)= Hp(l’) VS(r)+ VX e¢y(r)— EA(r) , (52 fore be performed simply via a measurement of the
€ probability distribution. We have analyzed the form of the
where we demand probability current when it encounters a sheet of potedial
materia) that induces a phase change of the wave function.

.1 .
[(N=—p(r)

I - P We established that, with very few limitations, the probabil-
VX y(r)=cA(r). (53 ity current leaving the sheet of potential responds in pre-
cisely the manner that it would with coherent illumination.
Thus we find We then examined some of the practical requirements on
o such a phase measurement and concluded that noninterfero-
I e [ VXA(r) ., metric probing of potential distributions may be performed
pu(r)=— Amc m r using wave fields with very limited coherence requirements.
We therefore believe that this noninterferometric approach to
e B(r") phage measurement represents a practica], forgiving, a}nd
R |F F’| d3r’. (54) flexible approach to the probing of wave fields and their

interaction with potentials.

The vector Aharonov-Bohm phase dependslocallyon the
magnetic field. Note that this argument is precisely analo-
gous to that used in the discussion of gauge transformations The authors wish to acknowledge the support of the Aus-
with the exception that the induced phase is discontinuoustralian Research Council in this work. The authors also ac-

The Aharonov-Bohm phase is typically measured usindknowledge useful discussions with Robert Scholten, Brendan
an interferometric method in which the wave passes aroundliman, Anton Barty, and Lincoln Turner.
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