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Creation of a persistent current and vortex in a Bose-Einstein condensate of alkali-metal atoms
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It is shown theoretically that a persistent current can be continuously created in a Bose-Einstein condensate
~BEC! of alkali-metal atoms confined in a multiply connected region by making use of a spin degree of
freedom of the order parameter of a BEC. We demonstrate that this persistent current is easily transformed into
a vortex. Relaxation processes of these BEC after the confining field is turned off are also studied, so that our
analyses are compared with time-of-flight experiments. The results are shown to clearly reflect the existence of
a persistent current.

PACS number~s!: 03.75.Fi, 67.40.Vs, 05.30.Jp
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I. INTRODUCTION

Since the discovery of Bose-Einstein condensation
alkali-metal atoms@1#, numerous attempts are made to sh
that the system exhibits superfluidity. One of these attem
is to create and observe quantized vortices. Recently the
tex is indeed created@2# using a two-component Bose
Einstein condensate~BEC!.

In the present paper, we propose a method to create a
with a persistent current or a vortex, where the hyperfine s
F of alkali-metal atoms is fully utilized. This method wa
briefly reported on in Ref.@3#, and more detailed theoretica
and numerical analyses are made in the present paper
though we restrict ourselves mainly to the caseF51 to sim-
plify our discussions, our method is also applicable to ca
with an arbitraryF.

A BEC with F51 may be expressed in terms of a thre
component order parameter, similarly to the spin or the
bital part of superfluid3He. In particular, a spin-polarize
BEC has the same order parameter as that of3He-A @4#. In
the case where the spin-exchange interaction is ferrom
netic, the BEC is spin polarized even in the absence of
external magnetic field. Even when the spin-exchange in
action is antiferromagnetic, it may also be spin polariz
provided that the Zeeman energy is larger than the s
exchange energy. Accordingly, each of the weak-fie
seeking states and strong-field-seeking states has the
order parameter as in3He-A.

In contrast with 3He-A, the local order parameter con
figuration, known as atexturein 3He @4#, of a spin-polarized
BEC may be easily controllable by a magnetic field. Maki
use of this property, a BEC in a vortex state or with a p
sistent current can be continuously created from a BEC w
out circulation by adiabatically changing an external ma
netic field, as shown below. Quite recently topologic
manipulation of a BEC with internal degrees of freedom w
realized experimentally by utilizing that freedom@5#.

The general theoretical framework for describing a spi
BEC @6# was given by Ohmi and Machida@7#, and indepen-

*Electronic address: tomoya@mp.okayama-u.ac.jp
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dently by Ho@8#, whose calculations turned out to be equiv
lent. This framework is based on the Bogoliubov theory e
tended to a vectorial order parameter with three compone
corresponding tomF51, 0, and21 of theF51 atomic hy-
perfine state. As a result, the generalized Gross-Pitaev
equation was constructed. They calculated low-lying coll
tive modes such as sound waves, spin waves, and
coupled modes, and predicted various topological defect
spin textures.

This paper is organized as follows. In Sec. I, the ord
parameter of a BEC withF51 is discussed. We employ tw
sets of basis vectors, and their transformations are also
sidered. Then the generalized Gross-Pitaevskii equatio
introduced. In Sec. III, we consider the cross disgyrat
texture which is expected to appear in an Ioffe-Pritchard tr
Section IV is the main part of the present paper. We fi
consider an axially symmetric BEC without a current co
fined in an Ioffe-Pritchard trap with an optical plug. A stron
magnetic field is applied along the axis of the BEC. Then
sign of this axial magnetic field is adiabatically changed
that the local magnetization vector flips in the end of th
process. Then it is shown that a persistent current with
units of circulation is created. If the optical plug may b
turned off at this stage, we are left with a vortex line. T
topological justification for this behavior is also given. O
servational consequences of the existence of a quantized
tex or a persistent current are discussed in Sec. V, where
relaxation of the order parameter after the confining fie
are turned off is studied. Section VI is devoted to a summ
and discussions.

II. SPINOR BOSE-EINSTEIN CONDENSATE

A. Spinor order parameter

Let Fa (a5x,y,z) be the angular momentum operato
with F51. The eigenvalues ofFz are 1, 0, and21, and their
corresponding eigenvectors, that satisfyFzu i &5 i u i &, are

u1&5S 1

0

0
D , u0&5S 0

1

0
D , u21&5S 0

0

1
D . ~1!
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In this basis, called thez-quantized basis,Fa is represented
as

Fx5
1

A2 S 0 1 0

1 0 1

0 1 0
D ,

Fy5
i

A2 S 0 21 0

1 0 21

0 1 0
D , ~2!

Fz5S 1 0 0

0 0 0

0 0 21
D ,

which satisfy the commutation relation@Fa ,Fb#
5 iF g«abg . The order parameteruC& is expanded in terms
of u i & as

uC&5 (
i 50,61

C i u i &. ~3!

It is convenient for our purposes to introduce another
of basis vectorsua& (a5x,y,z) called theXYZbasis which
satisfyFaua&50. Note thatuz&5u0& by definition. The vec-
tors ux& anduy& are obtained by rotatinguz& around they axis
and thex axis by6p/2:

ux&5expS 2 i
p

2
FyD uz&5

1

A2
~2u1&1u21&), ~4!

uy&5expS i
p

2
FxD uz&5

i

A2
~ u1&1u21&). ~5!

Then the order parameteruC& may be decomposed in term
of ua& as

uC&5 (
a5x,y,z

Caua&. ~6!

The componentsC i andCa are related to each other as

S C1

C0

C21

D 5S 21

A2

i

A2
0

0 0 1

1

A2

i

A2
0
D S Cx

Cy

Cz

D . ~7!

In a spin-polarized BEC, the weak- or strong-fiel
seeking state is represented by an order parameter

C5
c

A2
eia~m̂1 i n̂! ~8!
06361
t

in theXYZ basis, wherec5A(kuCku2 andm̂ andn̂ are real
unit vectors. We also define

l̂5m̂3n̂, ~9!

which represents the direction of the atomic hyperspin. T
three real vectors (m̂,n̂, l̂) form a triad.

In the above explanation the direction of the axis of qua
tization is namedz. We may take this direction to be arb
trary. When the axis is parallel to the direction of the ma
netic field (B in this paper!, the Zeeman energy term i
written most simply. We call thisB-quantized~BQ! notation.
When the direction of the axis does not vary spatially a
parallel to thez axis, we call thisz-quantized~ZQ! notation.
The kinetic-energy term is written simply in this way. Th
numerical details are given in the Appendix.

B. Gross-Pitaevskii equations

The time-dependent form of the Gross-Pitaevskii~GP!
equation with a spin-degree of freedom obtained by Oh
and Machida@7#, originally in theXYZ basis, can be rewrit-
ten in ZQ notation as

i
]

]t
C j5H hjk1gnd jk(

l
uC l u2

1gs(
a

(
lp

„C l~Fa! lpCp…~Fa! jkJ Ck , ~10!

where

hjk~r !5S 2
\2¹2

2m
2m1V~r ! D d jk2Bjk , ~11!

B5S Bz
Bx2 iBy

A2
0

Bx1 iBy

A2
0

Bx2 iBy

A2

0
Bx1 iBy

A2
2Bz

D . ~12!

m is the mass of an atom, andB5(Bx ,By ,Bz) is a magnetic
field scaled so that the amplitude is the Zeeman energy of
atom. The potentialV(r ) is spin independent, andi , j 50,
61 are the spin indices in the ZQ basis. The parametersgn
andgs denote the strength of the interactions. The relatio
ship between (Bx ,By ,Bz) andB is explained in the Appen-
dix. Time-independent solutions of GP equation are obtai
by solving

05H hjk1gnd jk(
l

uC l u2

1gs(
a

(
lp

„C l~Fa! lpCp…~Fa! jkJ Ck . ~13!
0-2
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The above equations are derived from the Hamiltonian

H5E dr(
jk

C j
†~r!hjk~r!Ck~r!

1
gn

2 (
jk

C j
†~r!Ck

†~r!Ck~r!C j~r!

1
gs

2 (
a

S (
jk

C j
†~r!~Fa! jkCk~r! D 2

. ~14!

III. STRONG- AND WEAK-FIELD-SEEKING STATES
IN AN IOFFE-PRITCHARD TRAP

We consider a system of BEC which is uniform along t
z axis. The cylindrical coordinatesr5(r ,f,z) are intro-
duced. Suppose that an Ioffe-Pritchard field

B5„B'~r !cosf,2B'~r !sinf,Bz… ~15!

is applied to the system. We consider a two dimensio
system of a BEC, uniform along thez axis, in the following
calculations. SoBz is treated as a constant, which diffe
from the usual Ioffe-Pritchard field. There should be a blu
detuned laser beam penetrating along thez axis to prevent
the atoms from escaping from the trap by spin flipping. Oh
and Machida@7# showed that there appears the cross dis
ration whenBz50.

Let us derive the configuration of the condensate in t
system. TheB matrix @Eq. ~12!# becomes

B5 S Bz B'

eif

A2
0

B'

e2 if

A2
0 B'

eif

A2

0 B'

e2 if

A2
2Bz

D . ~16!

The eigenvalues ofB are 6B and 0, whereB5AB'
2 1Bz

2,
and the corresponding eigenvectors, denoted byu i &BQ, are

u61&BQ5
1

2B S ~B6Bz!e
if

6A2B'

~B7Bz!e
2 if

D , ~17!

u0&BQ5
1

A2B S 2B'eif

A2Bz

B'e2 if
D . ~18!

The vectorsu1&BQ andu21&BQ are identified with the strong
field-seeking state and the weak-field-seeking state res
tively. Accordingly when the whole system is in the stron
or the weak-field-seeking state, the order parameter is wri
in terms of these vectors asuC&5C(r)u61&BQ. The BC
term in Eqs.~10! and~11! is then simplified to6B(r )C, so
that the GP equation takes the form
06361
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]C

]t
5H 2

\2¹2

2m
2m1V~r !7B~r !1~gn1gs!uCu2J C.

~19!

We have ignored the small corrections, which come from
spatial dependence of the quantization axis, to the kine
energy term. This is the usual GP equation without the s
degrees of freedom.

WhenBz50, the order parameter with the highest eige
value, corresponding to the strong-field-seeking state, is

S C1

C0

C21

D 5cS 1

2
eif

1

A2

1

2
e2 if

D eiwf, ~20!

wherew is an integer andc is the amplitude ofC. In the
XYZ basis, this is rewritten as

S Cx

Cy

Cz

D 5cS 2 i
1

A2
sinf

2 i
1

A2
cosf

1

A2

D eiwf. ~21!

The correspondingm̂, n̂, and l̂ vectors are

m̂5„sinf sin~wf!,cosf sin~wf!,cos~wf!…,

n̂5„2sinf cos~wf!,2cosf cos~wf!,sin~wf!…,
~22!

l̂5~cosf,2sinf,0!.

In the weak-field-seeking state, the order paramete
written as

S C1

C0

C21

D 5cS 1

2
eif

2
1

A2

1

2
e2 if

D eiwf ~23!

or
0-3
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S Cx

Cy

Cz

D 5cS 2 i
1

A2
sinf

2 i
1

A2
cosf

2
1

A2

D eiwf. ~24!

The corresponding triad is

m̂5„sinf sin~wf!,cosf sin~wf!,2cos~wf!…,

n̂5„2sinf cos~wf!,2cosf cos~wf!,2sin~wf!…,
~25!

l̂5~2cosf,sinf,0!.

This l̂ vector field in both Eqs.~22! and ~25! clearly repre-
sents the cross disgyration.

IV. CREATION OF VORTEX

In the present section, we propose a simple method
create a persistent current~and also a vortex state! in a torus-
shaped BEC from a state with no persistent current. The
will be shown that this persistent current is easily tra
formed to a vortex.

In the following we consider two cases separately. In c
I, the condensate is confined optically and the spin of e
atom points the direction of the magnetic field. That is,
atoms are strong-field seekers. In case II, the magnetic
is also used to confine the condensate. The spin of at
points are antiparallel to the magnetic field, and the ato
are weak-field seekers. The former case has an advanta
its theoretical simplicity. On the other hand, the latter ca
does not require an apparatus for optical confinement ex
for the repulsive plug aroundr 50, and can be realizabl
more easily.

In the following discussions we consider a BEC of N
atoms with F51. The mass of the atomm53.81
310226 kg, the interaction parameter isgn54p\2a/m, and
a scattering lengtha52.7531029 m is employed. We ig-
nore the other interaction parametergs . This is possible
since the whole condensate is assumed to be in eith
strong- or weak-field-seeking state as a whole in the follo
ing. In those states the interaction terms in the GP equa
are reduced as shown in Eq.~19!.

The particle density is taken to be around 1019 m23, and
the detailed density profile is given in each figure. The ti
span of the persistent current creation processT530 ms is
chosen, since this is between~the Larmor frequency! 21

;1 m sec and the lifetime of the condensate;1 sec.

A. Case I: optical confinement

The external magnetic fieldB(r ,f,z) takes the form

~Bx ,By!5B'~cosf,2sinf!,
06361
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Bz5Bz0cos@p~12t/T!#, ~26!

B'5B'8 r sin@p~12t/T!#,

where t is the time. The factors of the field are taken to
B'8 /h5200 J/(h mm) and Bz0 /h523103 J/h ~note that
the scaled magnetic field represents the Zeeman energy ah
is the Planck constant!. One finds from Eq.~26! thatBz flips
from 2Bz0 to Bz0, so that l̂ also flips in the end of the
evolution. The Larmor frequency isvL;0.63103 Hz for
B/h;23103 J/h. Thus vLT;18. The spin-independen
potential is

V~r !5
m~2pn!2

2
r 21U expS 2

r 2

2r 0
2D , ~27!

with n5200 Hz, U/h513104 J/h and r 055 mm. The
first term of Eq.~27! is the confining potential, while the
second term is the potential produced by the optical plug

We obtained the order parameter profile by numerical
tegration of the time-dependent GP equation~10!. The initial
state is taken to be the ground state with no circulation. T
magnetic field changes the direction slowly from upward
downward according to Eq.~26!, as shown in Fig. 1~a!, so
that the atoms remain in the strong-field-seeking state.
change in the number of thekth component,

Nk~ t !5E uCk~r ,t !u2d2r ~k521,0,1! ~28!

is shown in Fig. 1~b!. The total particle density

n~r ,t !5(
k

uCk~r ,t !u2 ~29!

changes with the magnetic field, as shown in Fig. 1~c!.
The resulting triad configurations are shown in Fig. 2 f

t50, 15, and 30 ms. Figure 2~a! shows the initial vector
configurations. Figure 2~b! shows the vector configuration
when t515 ms. Thel̂ texture is nothing but the cross dis
gyration explained in Sec. III sinceBz now vanishes. We see
that the vectorsm̂ and n̂ rotate aroundl̂ by 2p as we go
around thez axis once. Finally whent530 ms, we obtain a
texture with l̂ almost points up everywhere. The vectorsm̂
and n̂ rotate aroundl̂ by 4p as one goes around thez axis
once in this case, and one finally obtains a uniforml̂ texture
with a circulation with a winding number 2.

Now that a persistent current is created, it is easy to tra
form this into a vortex. The BEC has ak51 component only
at t530 ms. Then there are no atoms near the axisr 50
since the centrifugal force prevents the atoms from com
close to the axis. Thus one may simply turn off the optic
plug to obtain a vortex. The details are analyzed in S
IV B.
0-4
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CREATION OF A PERSISTENT CURRENT AND VORTEX . . . PHYSICAL REVIEW A61 063610
FIG. 1. The process of the persistent current creation in cas
~a! Magnetic field atr 510 mm as a function of time. Becaus
B'}r , the total magnetic field varies slightly atrÞ10 mm. ~b!
Particle numbersNk as a function of time. The condensate has
C21 component only att50, and aC1 component only att5T.
~c! Total number density distribution. The condensate is alm
fixed at aroundr 59 mm by the optical potentialV(r ). However,
the change of the total magnetic field@see caption~a!# causes the
change in the radial distribution, as shown here.
06361
B. Case II: magnetic confinement

In case I, the condensate is confined with a sp
independent optical trap. Here in case II, we consider a s
ation where the quadrapole magnetic field@Eq. ~15!# always
exists, and the additional fieldBz changes from a large pos
tive value to a large negative value as shown in Fig. 3~a!:

~Bx ,By!5B'~cosf,2sinf!,

Bz5Bz0~122t/T!, ~30!

B'5B'8 r .

I.

t

FIG. 2. The triad configurations fort50, 15, and 30 ms. The

arrows denotel̂ , while m̂ andn̂ are on the disk. The line on the dis

is m̂. Note that there is no need to drawn̂ since it is uniquely given

by l̂3m̂. When t50 and 30 ms, l̂ points down and up, respec

tively. Whent515 ms, l̂ lies almost on thexy plane.
0-5
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Here we takeB'8 /h5400 J/(h mm), Bz0 /h523104 J/h,
andT530 ms. Contrary to case I, the atoms are in a we
field-seeking state, and the gradient ofBr is responsible for
the confinement of the condensate. The optical plug produ
a spin-independent potential

FIG. 3. The process of persistent current creation in case II~a!
Magnetic field atr 510 mm as a function of time. InitiallyBz is
positive, in contrast with case I.~b! Particle numbersNk as func-
tions of time. The condensate is mostly composed of aC21 com-
ponent att50, while and mostly of aC1 component att5T. ~c!
Total density distribution. Contrary to case I, the condensate is c
fined by theB' part of the magnetic field at largerr. Then the radial
change is more eminent than that of case I.
06361
-

es

V~r !5U expS 2
r 2

2r 0
2D , ~31!

where we takeU/h513104 J/h and r 055 mm.
The evolution of the order parameter field was analyz

numerically, and it was found that the order parameter c
figurations in this case are essentially the same as in ca
Figure 3~b! shows the temporal evolution of the componen
Nk(t), and Fig. 3~c! shows the total density profile at variou
times.

The persistent current created here may also be tr
formed into a vortex. The BEC is mostly composed of ak
51 component att530 ms, and there is only a small num
ber of atoms nearr 50. Suppose the optical plug is turne
off. Then atoms will escape but this process should be v
slow. Thus one expects that the vortex is stable for a con
erable period of time.

C. Mathematical analysis of continuous creation of circulation

It may be surprising that we havecontinuouslycreated a
persistent current~a vortex! from a system without circula-
tion. Mathematically this is justified by invoking homotop
theory@9,10#. Let us denote a rotation around directionn̂ by
an anglea by a ‘‘vector’’ aê. This rotation is expressed as
rotation matrix

R~ ê,a!5~12cosa!n̂i n̂ j1cosad i j 2sina« i jk n̂k . ~32!

Sincea may be restricted within the region 0<a<p, the set
of all the rotations is represented by a ballB3 with the radius
p. Note however that the pointspê and2pê corresponds to
equivalent rotations. Thus all the antipodal points on the s
face of the ball must be identified. This spaceB3/Z2 is called
the three-dimensional real projective space, denoted byP 3.

Let us take a ‘‘standard’’ triad (m̂0 ,n̂0 , l̂0) shown in Fig.
4. Then an arbitrary triad is obtained by applying a cert
rotationaê to the standard triad. Thus the local vector co
figuration is in one-to-one correspondence with a point
P 3.

Consider an order parameter configuration shown in F
2~a!. When one circumnavigates the circle, one finds that
the triads along the circle are obtained from the standard
by applying no rotations, namely,a50. Thus this circle is
mapped to the origin ofP 3. Next consider the triads in Fig
2~b!. As one goes along the circle, one finds that the stand
triad is rotated by an anglep/2 around the axis
ê5(2sinf,2cosf,0) shown in Fig. 4 Thus this circle is
mapped to a circle inP 3 with the radiusp/2; see Fig. 4.
Finally, consider the triads in Fig. 2~c!. All the l̂ vectors
point up, and the standard triad is rotated byp around the
axis ê given above. Thus the the circle in Fig. 2~c! is mapped
to a great circle with the radiusp.

The change of the images inP 3, namely, a point→ a
circle with the radiusp/2→ a circle with the radiusp, is
continuous~or more precisely homotopic!, which shows that
the deformation of the triads is indeed continuous. In co

n-
0-6
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CREATION OF A PERSISTENT CURRENT AND VORTEX . . . PHYSICAL REVIEW A61 063610
figuration ~a!, the vectorm̂ does not rotate aroundl̂ and
therefore there is no current flowing around the circle.
configuration~b!, however,m̂ rotates aroundl̂ while one
goes along the circle once, which implies a vortex of win
ing number 1. Similarly,m̂ winds aroundl̂ twice in configu-
ration ~c!, and the vortex has the winding number 2. W
stress again that the creation of this winding number~or cir-
culation! is continuous and the final configuration is stable
far as the external magnetic field forcesl̂ to point upward.

D. Angular momentum analysis of current creation

The continuous current creation can be explained m
generally using the eigenvectors of theB matrix with the
highest and lowest eigenvalues in the BQ basis. The m
netic field expressed in theB matrix is the dominant facto
that determines the behavior of the order parameterC. We
first discuss a BEC withF51, which we have analyzed in
the present paper.

The magnetic fields@Eq. ~26! in case I and Eq.~30! in
case II# are of the form of Eq.~15!. The correspondingB
matrix is given by Eq.~16!. Because the magnetic fields a
sufficiently strong, we may assume that the order param
C is proportional to the highest~upper sign! or lowest
~lower sign! eigenvector,

u61&BQ5
1

2B S ~B6Bz!e
if

6A2B'

~B7Bz!e
2 if

D , ~33!

of the B matrix. Case I uses the highest~upper sign! eigen-
vector, and case II uses the lowest~lower sign! eigenvector.
The order parameter is

FIG. 4. The real-space configuration ofê, theP 3 space and the

standard triad. The thick arrows areaê vectors.
06361
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S C1

C0

C21

D 5CS ~B6Bz!e
if

6A2B'

~B7Bz!e
2 if

D eiwf, ~34!

whereC is a complex number independent off andw is an
integer.

Let us consider case I~case II can be analyzed similarly!.
When t50, the magnetic field is (B' ,Bz)5(0,7Bz0). As
shown in Eq. ~34!, the condensate behaves asC21
}ei (w21)f and C05C150. Because we start with a sta
with no circulation, the integerw must be 1.

The componentsBz andB' change as shown in, for ex
ample, Fig. 1~a!, from t50 to t5T. Both B' and (B6Bz)
have finite values during the change, and the condensatC
stays in the strong-field-seeking state. The phase factow
will not change during the process for the order paramete
be defined uniquely. Thus we takew[1 throughout the pro-
cess. Whent5T, the magnetic field is (B' ,Bz)5(0,6Bz0).
Sincew51, Eq.~34! leads to the conclusion that we have
condensate withC1}e2if andC05C2150. Accordingly a
vortex with the winding number 2 has been created.

A similar discussion is possible in the system withF52
atoms using the eigenvector given in Eq.~A7!. Starting from
a state with no winding number, we eventually obtain a st
with the winding number 4.

V. DETECTION OF VORTEX: TIME-OF-FLIGHT
IMAGING

The detection of a vortex~or persistent current! has been
a problem as difficult as their creation. We consider the
laxation of the spinor texture after the confining field and t
optical plug are turned off to facilitate the comparison b
tween our theory and experiments, in particular the time-
flight analysis.

The temporal evolution of the BEC is described by t
time-dependent GP equation~10!. We consider case I and
case II separately.

A. Case I

We consider three cases where the confining poten
are turned off separately att50, T/2, andT ms. There is no
vortex att50, while there is a vortex with a winding numbe
2 at t5T. The comparison between these two cases is es
tial to observe our vortex.

~i! t50: The condensate has a componentC21 only. The
density profile att50 is determined by solving the time
independent GP equation. The relaxation process after
potentials are turned off is found by solving the tim
dependent GP equation~10!, whose result is shown in Fig
5~a!. SinceC21 has no singularity at the origin, the conde
sate fills the central region (r;0) in later time. It is interest-
ing to note that the componentsC0 andC1 do not appear at
a later time since the total spin must be conserved.

~ii ! t5T/2: The cross disgyration appears in this sta
The order parameter of this texture is given by Eq.~20! with
w51. Thus all the components are nonvanishing in this ca
0-7
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After the potentials are turned off att50 the order paramete
relaxes, as shown in Fig. 5~b!. The componentC0 has a
winding number 1, whileC1 has a winding number 2, an
hence they cannot fill the central region. The central reg
nearr 50 may be filled only with theC21 component, since
it has vanishing winding number. Note also that theC0 com-
ponent is dominant in the vicinity ofr;1 mm.

~iii ! t5T: The vector l̂ points up now, and henceC21
5C050, whileC1Þ0. Figure 5~c! shows the temporal evo
lution of the order parameter after the potentials are tur
off. Since the order parameter has a nontrivial phase facto
cannot fill the central region at all in later times. Similarly
case~i!, the componentsC0 andC21 do not appear in the

FIG. 5. Temporal evolution of the condensate.~a! The potentials
are turned off att50. The solid line is the total density purely mad
of uC21u2. ~b! The potentials are turned off att5T/2. The solid line
is the total density(kuCku2 while the dashed line, the dotted line
and the dash-dotted line are componentsuC1u2, uC0u2, anduC21u2,
respectively. The corresponding winding numbers are 2, 1, an
~c! The potentials are turned off att5T. The solid line is the total
number density, composed ofuC1u2 only. The condensate has th
winding number 2 and cannot fill the central region. This should
compared with ~a! and ~b!. The three axes are the densi
~1020 m23!, the radial direction~mm!, and time~ms!.
06361
n

d
it

relaxation process. The absence of the condensate atr 50 at
an arbitrary time is a clear distinction between case~iii ! and
the rest, which may be used to show the existence of
vortex or the persistent current experimentally.

Comparing Figs. 5~a!, 5~b!, and 5~c!, we find the follow-
ing: The empty region aroundr 50, which shows the exis-
tence of the vortex, has a length scale an order of 10mm
after 7-ms relaxation, and the length will be sufficient
observe experimentally. Because the length scale of the
tral vacuum region is almost the same as that of the den
waves at largerr ~outer!, the resolution of the imaging will
be checked by the outer density waves.

B. Case II

Figure 6~a! shows the relaxation process when the pot
tials are turned off att50, while they are turned off att
5T in Fig. 6~b!. Because the magnetic field is not exac
parallel or antiparallel to thez axis, the nondominant com
ponent of the condensate appears slightly in both cases.

VI. SUMMARY AND DISCUSSIONS

In summary, we have proposed a method to create a
sistent current and a vortex with the winding number 2 in
Bose-Einstein condensate of alkali-metal atoms. The dyn
ics of vortex creation are simulated by solving the tim
dependent Gross-Pitaevskii~GP! equation. The continuity of
this process is justified by invoking homotopy theory a
also by the angular momentum analysis. The existence of

0.

e

FIG. 6. Temporal evolution of the condensates when the po
tials are turned off at~a! t50 and ~b! t5T. In both cases the
description of the lines are the same as that in Fig. 5. The three
are the density~1020 m23!, the radial direction~mm!, and time~ms!.
0-8
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vortex may be demonstrated by comparing the time-of-fli
data before and after the vortex creation.

It is also possible to create a persistent current or a vo
with the winding number 1. Suppose one prepares
ground state in the Ioffe-Pritchard field. The resulting textu
is the cross disgyration with no winding of them̂ vector
around thel̂ vector as shown in@7#. Then apply a strong
magnetic fieldBz either parallel to or antiparallel to thez
axis. Thel̂ vector in the resulting texture points up or dow
depending on the direction ofBz or whether the state is wea
field seeking or strong field seeking. In any case, them̂ vec-
tor rotates aroundl̂ once as one circumnavigates around thz
axis once. Thus one obtains a persistent current or a vorte
06361
t

x
e
e

of

the winding number 1 by simply preparing a sample in t
Ioffe-Pritchard trap and applying a strong magnetic fie
along thez axis.
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APPENDIX: MAGNETIC-FIELD MATRIX

We consider a system of atoms with spinF5 f . The F
matrices, which are the angular momentum operators,
given by
Fx51
0

A2 f 31

2

A2 f 31

2
0

A~2 f 21!2

2

A~2 f 21!2

2
� �

� 0
A132 f

2

A132 f

2
0

2 ,

Fy51
0

A2 f 31

2i

2
A2 f 31

2i
0

A~2 f 21!2

2i

2
A~2 f 21!2

2i
� �

� 0
A132 f

2i

2
A132 f

2i
0

2 , ~A1!

~Fz! j j 5 f 112 j ~ j 51,2, . . . ,2f 11!.
of
s of
or
i-

ve
They satisfy the commutation relation@Fa ,Fb#5 iF g«abg .
We write the magnetic field with aB vector

S Bx

By

Bz

D 5BS sinuy cosuz

sinuy sinuz

cosuy

D 5S B'cosuz

B'sinuz

Bz

D , ~A2!

where 0<uy<p and 0<uz,2p. The amplitudeuBW u is
scaled so that it represents the Zeeman energy.
The order parameter of a BEC is written with a vector
2 f 11 components, and operators are expressed in term
(2 f 11)3(2 f 11) square matrices. We call the operator f
the Zeeman energy forB matrix. We can choose the quant
zation axis so that theB matrix is proportional to the matrix
Fz . We call this theB-quantized~BQ! notation, becauseB is
proportional to the quantization axis.

TheB matrix in the ZQ notation is obtained by successi
spatial rotationsuy along they axis anduz along thez axis,
as
0-9
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BZQ5U†BBQU, ~A3!

U†5exp~2 iF zuz!exp~2 iF yuy!.

Let us study a few examples. Whenf 51,

BZQ5S Bz
B'

A2
e2 iuz 0

B'

A2
eiuz 0

B'

A2
e2 iuz

0
B'

A2
eiuz 2Bz

D . ~A4!
nd

ll,

T

3

.

06361
The eigenvector with the lowest eigenvalue is

U†S 0

0

1
D 5S B2Bz

2
e2 iuz

2
B'

A2

B1Bz

2
eiuz

D . ~A5!

When f 52,
BZQ51
2Bz B'e2 iuz 0 0 0

B'eiuz Bz A3

2
B'e2 iuz 0 0

0 A3

2
B'eiuz 0 A3

2
B'e2 iuz 0

0 0 A3

2
B'eiuz 2Bz B'e2 iuz

0 0 0 B'eiuz 22Bz

2 . ~A6!

The eigenvector with the lowest eigenvalue is

U†S 0

0

0

0

1

D 5C1
BS 12cosuy

2 D 2

e22iuz

2B
sinuy

2
~12cosuy!e2 iuz

B~sinuy!2A3

8

2B
sinuy

2
~11cosuy!eiuz

BS 11cosuy

2 D 2

e2iuz

2 . ~A7!
ll,
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