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Dynamic structure factor and momentum distribution of a trapped Bose gas
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The dynamic structure factor of a trapped Bose-Einstein condensed gas is investigated at zero temperature in
the framework of Bogoliubov theory. Different values of momentum transfer are considered, ranging from the
phonon to the single-particle regime. Various approximate schemes are discussed, including the local density
approximation, where the system is locally described as a uniform gas, and the impulse approximation, in
which the response is fixed by the momentum distribution of the condensate. A comprehensive approach,
based on the eikonal expansion, is presented. The predictions of theory are successfully compared with the
results of recent two-photon Bragg scattering experiments, at both low and high momentum transfer. Relevant
features of the dynamic structure factor are also discussed using the formalism of sum rules and the concept of
scaling. Particular emphasis is given to the regime of high momentum transfer, in which the dynamic structure
factor is sensitive to the behavior of the order parameter in momentum space, and some instructive examples
showing the consequence of long-range coherence are presented.

PACS number~s!: 03.75.2b, 03.65.2w, 05.30.Jp, 32.80.2t
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I. INTRODUCTION

The dynamic structure factor provides an important ch
acterization of the dynamic behavior of quantum many-bo
systems. In particular, its exploration has played a cru
role in understanding the physics of superfluid4He, starting
from the measurement of the roton spectrum@1# until the
more recent determinations of the condensate fraction a
able from neutron scattering experiments@2#. The dynamic
structure factor is measurable through inelastic scattering
which the probe particle is weakly coupled to the many-bo
system so that the scattering may be described within
Born approximation@3#. In the case of dilute gases it can b
measured via inelastic light scattering as recently shown
the experiments of Refs.@4,5# carried out on a trapped Bos
gas of sodium atoms. The dynamic structure factor provi
information on both the spectrum of collective excitation
which can be investigated at low momentum transfer, a
the momentum distribution, which characterizes the beha
of the system at high momentum transfer, where the
sponse is dominated by single-particle effects.

In superfluid helium the typical momentum giving th
transition between the collective and the single-particle
havior is fixed by the inverse of the range of two-bo
forces, a value close to the average interatomic distance
larger momenta one explores microscopic features of the
tem that are sensitive to short-range correlations and to
details of the two-body interaction. The situation is very d
ferent in a dilute gas where the transition takes place at
menta much smaller than the inverse of the scattering len
which fixes the range of interactions. As a consequence,
Bose gas one can explore a domain of relatively high m
menta, where the response of the system is not affecte
collective features, nor by short-range correlations, but is
termined by the momentum distribution of the condensa
While in a uniform system this distribution is a simpled
function, in a trapped gas it exhibits a nontrivial behav
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and is strongly affected by the presence of two-body int
actions.

The purpose of this paper is to provide a systematic t
oretical discussion of the behavior of the dynamic struct
factor of inhomogeneous Bose-Einstein condensates at
temperature and to make quantitative comparisons with
recent data obtained with two-photon Bragg scattering
periments@4,5#, pointing out the role of two-body interac
tions at both low and high momentum transfer. The appli
bility of both the local density~LDA ! and of the impulse
approximation~IA ! will be discussed in detail. The LDA
assumes that the system can be locally described as a
form gas, and is adequate at moderately low values of m
mentum transfer. Conversely, in the IA the dynamic stru
ture factor is sensitive to the momentum distribution, whic
for Bose-Einstein condensed systems, is determined no
cally but globally, according to the size and shape of
condensate wave function. A comprehensive description
both the LDA and IA regimes will be presented using t
eikonal expansion, which holds in the single-particle regi
at high momentum transfer. Special emphasis will be giv
to sum rules as well as to the scaling behavior exhibited
the dynamic structure factor in the IA regime. Finally w
will point out the occurrence of interesting features exhibit
by the dynamic structure factor in the presence of vorti
and of interference effects in momentum space.

II. DYNAMIC STRUCTURE FACTOR AND BOGOLIUBOV
THEORY

The dynamic structure factor of a many-body system
defined by the expression

S~q,E!5
1

Z (
mn

e2bEmu^murqun&u2d~E2Em1En!, ~1!
©2000 The American Physical Society08-1
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whereq andE are the momentum and energy transferred
the probe to the sample. In Eq.~1! un& andEn are the eigen-
states and eigenvalues of the Hamiltonian of the syst
e2bEn is the usual Boltzmann factor,rq5( je

iq•r j /\ is the
Fourier transform of the one-body density operator, andZ is
the canonical partition function.

In Refs. @4,5#, the dynamic structure factor of a trappe
Bose-Einstein condensate is measured using two-photon
tical Bragg spectroscopy. Two laser beams are imping
upon the condensate. The difference in the wave vector
the beams defines the momentum transferq, and the fre-
quency difference between the beams defines the en
transferE. The atoms exposed to these beams can under
stimulated light scattering event by absorbing a photon fr
one of the beams and emitting into the other. After expos
to these laser beams, the response of the condensate is
sured by a time-of-flight technique by which the number
optically excited atoms or, similarly, the net momentu
transfer to the gas, can be determined. The momentum tr
fer in each of these experiments was fixed by the partic
optical setup, while the energy transfer was scanned by v
ing the frequency difference between the beams. Beca
atoms could be scattered by absorbing a photon from ei
of the laser beams, the response of the system actually m
sures the combinationS(q,E)2S(2q,2E), thus signifi-
cantly suppressing the effects of temperature in the meas
signal.

Let us start our discussion by recalling that in an id
uniform gas Eq.~1! takes the simple form@6#

S~q,E!5(
p

np@16np1q#dS E2
~p1q!2

2m
1

p2

2mD , ~2!

wherenp5^ap
†ap& is the statistical average of the operat

ap
†ap , and the sign1 (2) holds for Bose~Fermi! statistics.

The scattering process is hence enhanced and suppress
Bose and Fermi gases, respectively. In the fermionic c
this reflects the Pauli exclusion principle. For large mom
tum transferq the exchange term of Eq.~2! is negligible
because the momentum distribution decreases rapidly at
momenta and, making the usual replacement(p→V/h3*dp,
one finds the expression

SIA~q,E!5E dpdS E2
~p1q!2

2m
1

p2

2mDn~p!, ~3!

known as the impulse approximation~IA ! @7#. In Eq. ~3!

n~p!5^ĉ~p!†ĉ~p!& ~4!

is the momentum distribution of the system,ĉ(p)
5(2p\)23/2*dr ĉ(r )eip•r /\ being the Fourier transform o
the field operator. For uniform systems occupying a volu
V the momentum distribution is related to the occupat
number entering Eq.~2! by n(p)5Vnp /h3. It is important to
stress that the validity of Eq.~3! is not restricted to the idea
gas, but holds in general at high momentum transfer also
interacting and nonuniform systems, independent of quan
statistics. Of course in this case the momentum distribu
n(p) will differ significantly from that of the ideal gas.
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At small momentum transfer the ideal gas prediction~2!
is inadequate, especially in the case of Bose gases, in w
mean field interactions drastically modify the structure
S(q,E), giving rise to the propagation of phonons.

The calculation ofS(q,E) in interacting many-body sys
tems requires in general a major theoretical effort. In
following we will limit ourselves to theT50 case and to the
study of dilute Bose gases where Bogoliubov theory is
plicable. This restricts the range of momentaq to the ‘‘mac-
roscopic’’ regimeqa!\ where a is the s-wave scattering
length. For larger values ofq short-range correlations be
come important and Bogoliubov theory is no longer a
equate. In the conditions of the experiment of@4#, carried out
on a gas of sodium atoms, the Bogoliubov approach is w
applicable sinceq/\;20 mm21 andqa;0.06\. The mac-
roscopic condition is even better satisfied in the experim
of @5# where smaller values ofq have been used.

According to Bogoliubov theory the excited states of t
system are given by the solution of the coupled equations@8#

eu~r !5F2
\2

2m
¹21Vext~r !2m12gc0

2~r !Gu~r !

1gc0
2~r !v~r !, ~5!

2ev~r !5F2
\2

2m
¹21Vext~r !2m12gc0

2~r !Gv~r !

1gc0
2~r !u~r ! ~6!

for the ‘‘particle’’ and ‘‘hole’’ components of the elementar
modes. In Eqs.~5! and ~6! e is the energy of the excitation
andVext(r ) is the external potential for which, unless diffe
ently specified, we make the axially symmetric harmon
choice:

Vext~r !5
1

2
mv'

2 ~x21y2!1
1

2
mvz

2z2. ~7!

Furthermorem is the chemical potential,g54p\2a/m is the
coupling constant, which will be assumed to be positive, a
finally c0(r ) is the order parameter characterizing t
ground state of the system.

In terms of the functionsun(r ) and vn(r ), which satisfy
the orthonormalization condition@9#

E dr @un* ~r !um~r !2vn* ~r !vm~r !#5dnm , ~8!

the relevant matrix element of the density operator takes
form

^nurqu0&5E dr @un* ~r !1vn* ~r !#eiq•r /\c0~r ! ~9!

and the dynamic structure factor then becomes, atT50, @10#

S~q,E!5(
n

U E dr @un* ~r !1vn* ~r !#eiq•r /\c0~r !U2

d~E2en!.

~10!
8-2
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In the case of a uniform gas the ‘‘particle’’ and ‘‘hole
components are plane waves:u(r )5U exp(ip•r /\) and
v(r )5V exp(ip•r /\) and the coupled equations~5!–~6! give
rise to the Bogoliubov excitation spectrum@11#:

e~p!5A p2

2m S p2

2m
12gnD , ~11!

wheren is the density of the gas. This spectrum exhibits
phonon dispersione5cp at low momenta, with the velocity
of sound given byc5Agn/m, while in the opposite limit of
high momenta it approaches the free particle energye
5p2/2m. The transition between the collective and t
single-particle behavior occurs at momenta of the order
\/j, where

j5
1

A8pna
~12!

is the so-called healing length.
Using the normalization condition~8!, one finds the resul

SB~q,E!5N
q2

2me~q!
d„E2e~q!… ~13!

for the dynamic structure factor, which consists of ad func-
tion centered at the Bogoliubov frequency~11!. Equation
~13! yields the Feynman-like result

SB~q!5
1

NE dES~q,E!5
q2

2me~q!
~14!

for the static structure factor, which tends linearly to zero
low momenta, and saturates to 1 in the opposite, higq
limit.

Results~13! and~14! hold for uniform Bose gases. In th
presence of nonuniform trapping a natural generalizatio
provided by the local density approximation~LDA !. For
large condensates, where the density profile varies i
smooth way, the system behaves locally as a piece of
form gas whose dynamic structure factor is given by
expression~13!, evaluated at the corresponding density@12#:

SLDA~q,E!5E dr n~r !d„E2e~r ,q!…
q2

2me~r ,q!
. ~15!

In Eq. ~15! n(r ) is the ground state density of the syste
and e(r ,q)5e„n(r ),q… is the local Bogoliubov dispersion
~11!. Equation ~15! is expected to describe accurately t
dynamic structure factor for momenta larger than\/R where
R is the radius of the condensate, since the effects of disc
zation in the excitation spectrum can be safely ignored
the case of deformed traps we will always consider situati
whereq is larger than both\/R' and\/Rz , whereR' and
Rz are the radial and axial sizes. Actually in the experime
of Ref. @5# these conditions are well satisfied. At the sam
time the momentum transferq should not be too large sinc
the local density approximation ignores the Doppler eff
associated with the spreading of the momentum distribu
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of the condensate, which is expected to become the lea
effect in the dynamic structure factor at very large values
q. The Doppler broadening is accounted for by the impu
approximation~3!, which, however, ignores the mean fie
effects of Bogoliubov theory. The conditions of applicabili
for both LDA and IA will be established in the next sectio

III. LOCAL DENSITY, IMPULSE, AND EIKONAL
APPROXIMATIONS

In Sec. II we introduced two useful approximations to t
dynamic structure factor of an interacting Bose gas: the
pulse~3! and local density~15! approximations. These two
descriptions hold in different regimes of momentum transf
The purpose of this section is to discuss the correspond
predictions and conditions of applicability. We will als
present a comprehensive description of the high-q response
of the system, based on eikonal expansion, which inclu
the LDA and the IA as special cases.

A. Local density approximation

Let us first discuss the local density approximation~15!.
An explicit expression forS(q,E) can be obtained working
in the Thomas-Fermi limitNa/aho@1, where the ground
state density is given by~see, for example,@13#!

n~r !5
1

g
@m2Vext~r !#, ~16!

and the chemical potential takes the form

m5
1

2 S 15
Na

aho
D 2/5

\vho. ~17!

In Eq. ~17! aho5A\/mvho is the oscillator length calculate
using the geometrical averagevho5(v'

2 vz)
1/3 of the oscil-

lator frequencies. Using this density profile and the resul
Eq. ~11! for the excitation spectrum, one obtainsS(q,E) for
a trapped Bose condensate as@12,5#:

SLDA~q,E!5
15

8

~E22Er
2!

Erm
2
A12

~E22Er
2!

2Erm
, ~18!

where

Er5
q2

2m
~19!

is the recoil energy. Different from the case of a uniform g
@see Eq.~13!#, the dynamic structure factor is no longer ad
function, its value being different from zero in the interv
Er,E,ErA112m/Er. The valueE5Er corresponds to the
excitation energy in the region near the border where the
is extremely dilute and hence noninteracting. The valueE
5ErA112m/Er is the excitation energy of a Bogoliubov ga
evaluated at the central density. Notice that the LDA expr
sion ~18! for S(q,E) does not depend on the direction of th
vectorq even in the presence of a deformed trap.
8-3
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As pointed out in the previous section, the local dens
approximation requires that the momentum transfer be la
than\/R. For smaller values ofq the response of the syste
is sensitive to the discretized modes of the system and
LDA cannot be longer employed. The theoretical analysis
the dynamic structure factor in this regime of low mome
tum transfer has been carried out in@10#. In the following we
will always assume that the conditionq@\/R is satisfied.

Starting from ~18! one can evaluate the inelastic sta
structure factorS(q)5N21*S(q,E)dE, which takes the ana
lytic form @5#:

S~q!5
15

4 H 31a

4a2
2

~312a2a2!

16a5/2 Fp12 arctanS a21

2Aa
D G J ,

~20!

with a52m/Er . Whenqj!\, Eq. ~20! behaves likeS(q)
;q/(2mc̄), reflecting the role played by dynamic correl
tions, which strongly suppress light scattering in the phon
regime~see Fig. 1!. Herec̄532Am/m/15p corresponds to an
average sound velocity, which, as expected, is smaller t
the valueAm/m calculated in the center of the trap.

Useful information about the dynamic structure factor c
be obtained by evaluating its energy momentsmk(q)
5*01

` EkS(q,E)dE. For example, the average excitation e

ergy Ē and the rms widthD rms can be defined as

Ē5
m1

m0
, ~21!

and

D rms5Am2

m0
2S m1

m0
D 2

, ~22!

respectively.
Let us first discuss the phonon regime in whichEr!m, or,

equivalently,qj!\, wherej is the healing length~12! cal-
culated at the central density. Typical values ofj in sodium
samples, wherea52.75 nm, are of 0.1–1mm depending

FIG. 1. Static structure factorS(q) at T50 as a function of
qj/\. The prediction~20! of the local density approximation~solid
line! is compared with the experimental points taken from@5#. The
result of the noninteracting model~dashed line! is also indicated.
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on the density of the gas. Using the LDA expression~18! for
S(q,E) one finds, in the phonon regime, the resultsĒ5 c̄q

andD rms.0.3c̄q, showing that the width of the signal is no
much smaller than the average energy. The shape ofS(q,E)
turns out to be asymmetric as a function ofE ~see Fig. 2!,
and the peak response occurs at an energy that is highe~by
about 15%! than Ē.

The dynamic structure factorS(q,E) has been recently
measured in the phonon regime@5#. A typical experimental
curve is reported in Fig. 2 together with the prediction~18!.
These measurements also show~see Fig. 1! the static struc-
ture factorS(q) in the phonon regime to be smaller than t
noninteracting gas valueS(q)51, in agreement with the pre
dictions of Eq.~20! @14#.

In the opposite limit of large momentum transfer, whe
qj@\, the excitation energy~21! predicted by the LDA is
given by the expression

Ē5Er1
4

7
m. ~23!

This result corresponds to the average of the Bogoliub
energy e(q,r )5q2/2m1gn(r ) holding at high q. Notice
that, due to the asymmetric shape of the dynamic struc
factor ~18!, the average energy~23! turns out to be smaller
than the peak energy

Epeak5Er1
2

3
m. ~24!

This asymmetry should be, in principle, taken into accoun
the fit of experimental data. However, the shift of the li
center was effectively determined from experiments in@4#
using symmetric Gaussian fits and was in good agreem
with Eq. ~23! ~see Fig. 3!. In the same regime of largeq the
rms width predicted by the LDA is given by

DLDA5A 8

147
m ~25!

FIG. 2. Dynamic structure factor calculated using the local d
sity approximation~18!. Experimental points are taken from Re
@5#. The trapping frequencies arev'52p150 Hz and vz

52p18 Hz.
8-4
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DYNAMIC STRUCTURE FACTOR AND MOMENTUM . . . PHYSICAL REVIEW A61 063608
and is independent ofq. In relating these theoretical resul
to experimental data, it is worth noting that the experimen
data are further broadened by the finite duration of the la
pulses, which would tend to make the spectra less asym
ric ~see also Fig. 5!.

Thus, for momentum transfersq which are sufficiently
small to allow the use of the local density approximation,
structure factor of an inhomogeneous Bose-Einstein cond
sate can be derived from the Bogoliubov spectrum for a u
form condensed gas. Studies in this regime therefore serv
a probe of the spectrum of both collective (qj!\) and free-
particle (qj@\) excitations.

B. Impulse approximation

Let us now discuss the response of a trapped conden
to very large momentum transfers at which the form of
dynamic structure factor is dominated by Doppler broad
ing. In this regime, the dynamic structure factor is correc
described by the impulse approximation~3!. Inelastic scat-
tering at such high momentum transfers allows one to
rectly measure the momentum distribution of a trapped B
gas. The possibility of such measurements is highly app
ing since most of experimental investigations in these s
tems have been so far limited to the study of density profi
In current experiments on harmonically confined Bose ga
the sizes of the condensateR and of the thermal cloudRT are
typically comparable. In the Thomas-Fermi regime, the ra
between the two radii is given as

R

RT
;A m

kBT
5A\vho

kBT S 15
N0a

aho
D 1/5

, ~26!

whereN0 is the number of atoms in the condensate. Due
the large value of the Thomas-Fermi parameterN0a/aho,
this ratio is typically close to unity. Expression~26! also
provides an estimate for the ratio of sizes of the two com
nents measured in time-of-flight experiments, in which
trap is suddenly switched off and the gas allowed to fre
expand. While the expansion of the thermal cloud is indi
tive of the noncondensate momentum distribution before
lease from the trap, the expansion of the condensate in

FIG. 3. Line shift as a function of the central density of t
cloud. The straight line is the theoretical prediction~23!, and the
circles are the experimental points of Ref.@4#.
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Thomas-Fermi regime is dominated by the release of in
action energy and does not reveal its initial momentum d
tribution.

In contrast, the distinction between the condensate and
thermal cloud in momentum space is stark. A confined c
densate of finite size has a momentum distribution of wi
Dpc;\/R fixed by the inverse of the sizeR of the conden-
sate. The momentum width of the thermal cloud is inste
given by the temperature of the gas asDpT;AmkBT. For
harmonic confinement in the Thomas-Fermi regime, o
then finds

Dpc

DpT
;A\vho

kBT S 15
N0a

aho
D 21/5

. ~27!

In contrast with the comparison of the condensate and
thermal cloud in coordinate space~26!, the distinction be-
tween the two components in momentum space is stron
enhancedby two body interactions as the Thomas-Fermi p
rameterN0a/aho increases. The investigation of the mome
tum distribution consequently provides a deeper understa
ing of the phenomenon of BEC. In particular the smallne
of the widthDpc reflects the presence of long-range coh
ence. Measuring the momentum distribution at zero temp
ture would, in principle, give access also to the quant
depletion of the condensate. In practice, however, the qu
tum depletion is too small and broadened over too larg
momentum range@15# to be observable in present expe
ments.

The expression~3! for the impulse approximation can b
also written in the form

SIA~q,E!5
m

q E dpydpzn~px ,py ,pz!, ~28!

where we have assumed that the vectorq is oriented along
the x axis, and px5m(E2Er)/q. The integral
*dpydpzn(px ,py ,pz) is also called the longitudinal momen
tum distribution. Equations~3! and ~28! show that in the
regime of applicability of the IA one can extract useful i
formation on the momentum distribution starting from t
experimental measurement of the dynamic structure fact

In a dilute Bose gas at zero temperature the momen
distribution is given byn(p)5uf(p)u2, where

f~p!5~2p\!23/2E drc~r !eip•r /\ ~29!

is the Fourier transform of the order parameter. The form
n(p) for a trapped condensate has been discussed previo
@16,17#. In the Thomas-Fermi limitNa/aho@1 one finds the
simple analytic result

nTF~p!5N
15

16l S R'

\ D 3FJ2~ p̃!

p̃2 G 2

, ~30!

whereJ2(z) is the usual Bessel function of order 2,

R'5S 15
Na

aho
D 1/5

l1/3aho ~31!
8-5
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is the Thomas-Fermi radius of the condensate in thex-y
plane, andp̃5Apx

21py
21(pz /l)2R' /\ is a dimensionless

variable, with the parameterl5vz /v' fixing the anisotropy
of the external potential.

Equation~30! explicitly shows that the momentum distr
bution scales as 1/R' and is consequently much narrow
than that of the noninteracting gas

nIBG~p!5NS aho

\Ap
D 3

expF2
aho

2

\2
l1/3S px

21py
21

pz
2

l D G ,

~32!

sinceR'@aho.
In the impulse approximation~28! the peak ofS(q,E)

coincides with the recoil energyEr , while the curve is
broadened due to the Doppler effect in the momentum
tribution. A useful estimate of the broadening can be o
tained carrying out a Gaussian expansion in the dyna
structure factor~28! near the peak valueE5Er . One finds

SIA~q,E!.SIA~q,Er!expF2
~E2Er!

2

2D IA
2 G , ~33!

with D IA
2 52@SIA(q,E)/]E

2SIA(q,E)#uE5Er
. By calculating

the second derivative of~28! with the Thomas-Fermi profile
~30! for the momentum distribution, we obtain, after som
straightforward algebra, the result

D IA5A8

3

q\

mR'

. ~34!

The Gaussian profile~33! reproduces very well the exac
curve ~see Fig. 6!, so that the Doppler width~34! can be
usefully compared with experiments, where the widths
usually extracted through Gaussian fits to the measured
nal. The Doppler width~34! is linear in q, and for large
momentum transfer it can become comparable to or e
larger than the mean field width~25!. In Fig. 4 we show the
theoretical prediction~34! together with the experimenta
values obtained at several densities. This figure confirms
the IA accounts for the observed widths in the low dens
regime. At higher density the mean field effect~25! can no
longer be neglected.

It is worth noticing that the width~34! should not be
confused with the rms width~22!, which requires the evalu
ation of them2 moment and, using the IA expression~3! or
~28!, takes the form

D rms5qA2

m
Ekin

x , ~35!

instead of~34!. HereEkin
x 5*dppx

2n(p)/2m is the x compo-
nent of the kinetic energy of the condensate. The evalua
of the kinetic energy requires a careful analysis@18,19# of
the region near the boundary of the condensate, and ca
be evaluated using the Thomas-Fermi expression~30! for
n(p), which incorrectly yields a divergent result. For largeN
samples one finds@18#, assuming isotropic trapping,
06360
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not

Ekin
x

N
.

5\2

6mR2
lnS R

1.3aho
D . ~36!

The logarithmic term reflects the fact that them2 moment,
and hence the rms width, is sensitive to the high energy t
of the dynamic structure factor, a region which is difficult
measure since the intensity of the signal in the tails is v
small. Because of this, estimate~34! is much more signifi-
cant from the experimental point of view than express
~35!.

The investigation of the dynamic structure factor also p
vides information on the coherence effects exhibited by
system and in particular on the behavior of the off-diago
one-body density

r (1)~s!5NE dRdr2•••drNc* S R1
s

2
,r2 , . . . ,rND

3cS R2
s

2
,r2 , . . . ,rND

5E dpn~p!expF2 i
p•s

\ G , ~37!

wherec(r1 , . . . ,rN) is the many-body wave function of th
system, andn(p) is the momentum distribution. By taking
the Fourier transform of Eq.~28! with respect topx , one
finds the result

r (1)~sx,0,0!5E dESIA~q,E!expF2 i
msx

\q
~E2Er!G ,

~38!

which shows that the one-body density is a measurable q
tity if one works at highq whereS(q,E);SIA(q,E). In a
uniform Bose-Einstein gasr (1)(sx,0,0) tends to a constan

FIG. 4. Line width as a function of the central density of th
sample. The solid line is the prediction of the eikonal approxim
tion ~43!. The dashed and dotted lines correspond to the IA a
LDA predictions~34! and~25!, respectively. The theoretical resul
are compared with the experimental data of@4#. Both the eikonal
and the experimental values are obtained through the Gaussia

S(q,Ē)exp@(E2Ē)2/2D2# to the signal. The momentum transfer
taken along the x axis. The trapping frequencies arev'

52p195 Hz andvz52p17 Hz.
8-6
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whensx is large. In a finite systemr (1)(sx,0,0) always tends
to zero whensx→`. The typical length over whichr (1)

decreases can be of the order of the size of the samp
smaller depending on the degree of coherence. Using,
example, the Gaussian profile~33! for S(q,E) one finds

r (1)~sx,0,0!;N expF2
sx

2

2xx
2G , ~39!

with xx5R'A3/8. One can see from Eq.~39! that xx plays
the role of a coherence length@20#, which turns out to be of
the order of the size of the system. This result reflects
fact that in a Bose-Einstein condensate the Heisenberg
equalityDRDpc>\/2 is close to an identity.

C. Eikonal expansion

In order to describe the transition between the LDA a
IA regimes discussed above and to better understand the
responding conditions of applicability, it is useful to evalua
the high energy solutions of the Bogoliubov equations~5!–
~6! using an eikonal expansion@21,22#. In the largeq limit,
where we are interested in the solutions with energye much
larger than the chemical potentialm, one can neglect the
function v(r ) in Eq. ~5! and look for a solution of the form
u(r )5exp@ipf•r /\#ũ(r ), wherepf is the momentum of the
excitation andũ(r ) is a slowly varying function. Keeping
only terms with first spatial derivative ofũ(r ) ~eikonal ap-
proximation!, the solution of~5! with energye5pf

2/2m takes
the form

u~r !.expF i
pf•r

\ GexpF2 i
m

pf\
E

0

x

dx8Veff~x8,y,z!G ,
~40!

where the effective potentialVeff(r ), calculated in the Tho-
mas Fermi limit, is equal togn(r ) inside and toVext(r )2m
outside the condensate. At highq the main contribution to
the dynamic structure factor~10! arises from the excited
states withpf;q. This has been taken into account in t
eikonal correctionũ(r ) @second factor of Eq.~40!#, wherepf
was chosen along thex axis, i.e., the axis fixed by the vecto
q. Notice that in the eikonal approximation the free-partic
solutioneipf•r /\ is modified by the interactions only throug
a change of the phase. The importance of such a correctio
the behavior of the dynamic structure factor depends on
maximum phase deviation ofu(r ) from a pure plane wave
which is determined by the Born parameterb

b5
m

Er

qR'

\
, ~41!

whereEr5q2/2m and R' is the Thomas-Fermi radius~31!.
Different from the ratiom/Er , the Born parameter depend
explicitly on the size of the atomic cloud.

From Eq.~6! one gets, in first approximation,
06360
or
or

e
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v~r !.2
mgn~r !

pf
2

u~r !. ~42!

Notice that inclusion ofv(r ) in Eq. ~5! for u(r ) would result
in a higher order correction. Making the transformationpf
5p1q, the dynamic structure factor~10! takes the form:

S~q,E!5E dpuM u2dS E2
q2

2m
2

qpx

m D , ~43!

with

M5
1

~2p\!3/2E drc0~r !expF i
m

\qE0

x

dx8Veff~x8,y,z!G
3S 12

gn~r !

q2/m
D expF2 i S p•r

\ D G , ~44!

where we have approximatedpf;q in the evaluation ofv(r )
and in the eikonal correction and neglected the kinetic
ergy termp2/2m in the argument of thed function. This is a
very accurate approximation if one works with larg
samples, where the Thomas-Fermi approximationc0(r )
5A@m2Vext(r )#/g applies.

If the Born parameter~41! is small, then the eikonal cor
rection can be neglected and, ignoring the small te
gn(r )m/q2 in Eq. ~44!, one recovers the IA result~3!. Con-
versely, if b is large one finds a different behavior. In th
case the main contribution to the double integraluM u2 arises
from the region whereux12x2u;R' /b!R' and the eikonal
correction to the relative phase (m/\q)*x2

x1dx8Veff(x8,y,z)

can be consequently written as (m/\q)Veff(x,y,z)(x12x2),
with x5(x11x2)/2. In these expressions we have sety1
5y25y and z15z25z as a consequence of the integrati
on py andpz in Eq. ~43!. By integrating with respect to the
relative variablex12x2 and to px one finally recovers the
LDA result ~15! for largeq, wheree(q,r ).q2/2m1gn(r ).
In conclusion the eikonal approximation~43!–~44! provides
the proper description of the dynamic structure factor in
Thomas-Fermi limit in all the regimes of momentum trans
ranging from the LDA to the IA, providedm!Er . It is in-
teresting to notice that the Born parameter~41! fixes also the
ratio between the widths~25! and~34! of the dynamic struc-
ture factor calculated in the IA and LDA limits, respectivel
In fact one has

DLDA

D IA
5

b

14
, ~45!

so that the comparison between the two widths provides
equivalent criterion for the applicability of the two opposi
approximations. The transition between the LDA and the
takes place when the ratio~45! is close to unity. Using the
relationm5\2/2mj2, wherej is the healing length~12! cal-
culated at the center of the trap, this corresponds to the v
q5\R'/14j2 for the momentum transfer. Notice that th
value is much larger than the inverse ofj, since in the
8-7
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Thomas-Fermi regimeR'@j ~see also Fig. 9!. For example,
in the cloud of sodium atoms explored in Ref.@4# with peak
density n(0)53.831014 cm23, corresponding tob.14,
one has 1/R'.0.1 mm21, 1/j.5 mm21, and R'/14j2

.20 mm21.
Equations~43!–~44! can be easily calculated numerical

in all the regimes between the LDA and the IA. The co
parison with the available experimental results~see Fig. 5! is
rather good and explains the deviation of the observed si
from the LDA as well from the IA predictions. The width o
the dynamic structure factor in general is well reproduced
the quadrature expressionADLDA

2 1D IA
2 accounting for both

the LDA and the IA widths~see also@23#!.

IV. SUM RULES

The conditions of applicability of the local density an
impulse approximations presented in the previous sec
can also be discussed using a sum rule approach@24#, which
allows for an exact determination of the width of the d
namic structure factor in some relevant limiting cases.

We have already introduced in the previous section
moments of the dynamic structure factor relative to the
eratorrq . In terms of the matrix elementŝnurqu0& of the
density operator one can write

mk~q!5 (
nÞ0

u^nurqu0&u2~En2E0!k5E
01

`

dES~q,E!Ek,

~46!

and, using the closure relationship(nun&^nu51, one can eas-
ily express the momentsmk(q) in terms of the mean value
of commutators between the Hamiltonian and the oper
rq on the ground stateu0&. Using the propertyS(q,E)
5S(2q,E), holding in the presence of parity or time
reversal invariance, we find the following results for the lo
est moments:

m0~q!5^rq
†rq&2u^rq&u25NS~q!, ~47!

FIG. 5. Dynamic structure factor of a trapped Bose conden
at T50. The numerical predictions of the eikonal approximati
~solid curve!, IA ~dashed curve!, and LDA ~dotted curve! are com-
pared with the experimental data of Ref.@4#, normalized to repro-
duceS(q)51. The momentum transfer is taken along thex axis.
The trap parameters are the same as in Fig. 4.
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m1~q!5
1

2
^†rq

† ,@H,rq#‡&5N
q2

2m
, ~48!

m2~q!5^@rq
† ,H#@H,rq#&5NF @22S~q!#F q2

2mG2

1
\2q2

m2
Dx~q!G , ~49!

m3~q!5
1

2
^$@rq

† ,H#,†H,@H,rq#‡%&

5NF F q2

2mG3

14F q2

2mG2S 3
Ekin

x

N
1

Eint

N D
1

q2

2m

\2

m
^]x

2Vext&G , ~50!

where we took the vectorq along thex axis. Notice that in
Eq. ~47! we have subtracted the elastic contributionu^rq&u2.
The kinetic structure functionDx(q) is defined by

Dx~q!5
1

NE dr1dr2 cos@q~x12x2!#

3“1
x
“2

xr (2)~r1 ,r2 ;r18 ,r28!ur15r
18 ,r25r

28
, ~51!

where

r (2)~r1 ,r2 ;r18 ,r28!

5N~N21!E dr3dr4•••drNc*~r1 ,r2 , . . . ,rN!

3c~r18 ,r28 ,r3 ,r4 , . . . ,rN! ~52!

is the two-body density matrix. In the asymptotic limitq
→` this function is related to the kinetic energy of the sy
tem @25#:

lim
q→`

Dx~q!5
2m

\2

Ekin
x

N
. ~53!

The m3 sum rule~50! has been obtained evaluating th
commutators with the effective Hamiltonian

H5(
i

F pi
2

2m
1Vext~r i !G1g(

i , j
d~r i2r j !, ~54!

and using the corresponding ground state of Gross-Pitaev
theory. In particularEint5g*drn(r )2/2 corresponds to the
expectation value of the two-body interaction energy.

The f-sum rule~48! is model independent@26# and is sat-
isfied by both the LDA and IA as can be explicitly shown b
integrating the corresponding dynamic structure factors. T
other sum rules are instead correctly reproduced only in s
able ranges of momenta, which thereby provide the co
sponding regimes of applicability of the two approximation

te
8-8
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The non-energy-weighted sum rule~47! coincides with
the inelastic static structure factorS(q), a quantity of high
interest, directly related to the Fourier transform of the dia
onal two-body density matrix:

S~q!511
1

NE dr1dr2eiq•(r12r2)@r (2)~r1 ,r2 ;r1 ,r2!

2n~r1!n~r2!#. ~55!

The LDA prediction forS(q) has been already discusse
in the previous section@see Eq.~20!#. This prediction is
expected to hold in all regimes of small and highq except,
of course, whenqR,\. In fact the static structure facto
S(q) is not sensitive to the Doppler broadening, which
stead affects other moments of the dynamic structure fac
An interesting property of the static structure factor is t
occurrence of a 1/q2 correction to the largeq asymptotic
value:

S~q!512
8

7

mm

q2
. ~56!

Such a law holds forqj@\, but still in the Bogoliubov
regimeqa!\, and is a peculiarity of dilute Bose gases@15#,
related to the shift of the average excitation energy given
the Feynman ratiom1 /m05Er14m/7. This behavior is not
exhibited by dense liquids, like4He, wherea and j are of
the same order. The IA does not instead predict anyq depen-
dence for the static form factor and consequently fails
reproducing the shift of the peak.

The m2 sum rule is also interesting for understanding t
difference between the LDA and the IA. For largeq this sum
rule contains two corrections to the leading asympto
value:

lim
q→`

m2~q!5F q2

2mG2

1
q2

2m F4

7
m14

Ekin
x

N G . ~57!

The first correction, fixed by the chemical potential, aris
again from the largeq behavior~56! of S(q) which, enters
the expression~49! for m2. The second contribution, propo
tional to the kinetic energy, arises form the kinetic structu
factor Dx(q). The first correction is correctly given by th
LDA, the latter by the IA. It is worth noticing that if one
calculates the rms width~22! only the kinetic energy term
survives in the largeq limit. This confirms the correctness o
the impulse approximation in reproducing the width of t
dynamic structure factor at highq.

Finally the m3 sum rule is interesting because it can
explicitly evaluated for any value ofq. For a uniform gas
(Vext50 andEkin50) the ratioAm3 /m1 coincides with the
Bogoliubov excitation spectrum~11!. In the presence of har
monic trapping it is instructive to calculate Eq.~50! in the
small momentum transfer limit, where only the last ter
containing the external potential, survives and the ra
Am3 /m1 coincides with the frequencyv' of the dipole
mode. Indeed, the dipole mode is the only mode excited
the density operatorrq5( je

iq•r j /\ in the q→0 limit.
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Before concluding this section we stress that the res
discussed above hold in the Bogoliubov regimeqa!\. For
larger momenta, relevant, for example, in the case of su
fluid helium, a different behavior takes place. For examp
result ~56! for the static structure factorS(q) is no longer
valid. Particular attention should be also paid to the kine
energy, which characterizes the largeq behavior ofm2 and
hence of the rms width. One should in fact distinguish b
tween the kinetic energy of the condensate and the full
netic energy of the system, which, even in dilute Bose ga
is dominated atT50 by the high momentum components
n(p). The former is given by~36! and becomes smaller an
smaller asR increases. The latter is instead of the order
the interaction energy and would determine the rms width
the dynamic structure factor for momentum transfer lar
than\/a.

V. SCALING AND IMPULSE APPROXIMATION

In the previous sections we have often referred to
impulse approximation as the proper theory to describe
high-q response of the system. At the same time we h
pointed out that the IA does not account for the mean fi
shift ~23! of the peak energy occurring at highq, which
is instead correctly predicted by the LDA. In this sectio
we discuss in what sense the IA provides the ex
asymptotic description of the dynamic structure factor. T
discussion is simplified by using scaling, a concept alrea
employed in other many-body systems, including atomic
clei @27#, liquids, and solids@28,2#. Let us introduce the scal
ing variable

Y5
m

q S E2
q2

2mD , ~58!

which is the relevant variable to describe the asymptotic
havior of the dynamic structure factor. We define the scal
function F0(Y) according to the asymptotic behavior

F0~Y!5 lim
q→`

q

m

S~q,E!

N
, ~59!

where, in the limit, the excitation energyE varies withq in
order to keep the value ofY fixed. Comparison with Eq.~28!
shows thatF0(Y) coincides with the longitudinal momentum
distribution

F0~Y!5
1

NE dpydpzn~Y,py ,pz!. ~60!

In terms of the scaling functionF0(Y) the rms width takes
the form

D rms5
q

mAE
2`

`

dYF0~Y!Y2. ~61!

Furthermore one has*2`
` dYF0(Y)51, and*2`

` dYYF0(Y)
50.
8-9
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The scaling result~59!–~60! holds for a wide class o
many-body systems interacting with realistic two-body p
tentials, and is not restricted to dilute gases~see, for example
@29#, and references therein!. This means that corrections t
the IA, due to final state interactions, give a vanishing c
tribution to the limit~59!. In general the following expansio
holds:

q

m

S~q,E!

N
5F0~Y!1

m

q
F1~Y!1S m

q D 2

F2~Y!1•••.

~62!

In the presence of parity or time-reversal symmetry the s
ing function F0(Y) is symmetric:F0(Y)5F0(2Y). Con-
versely one hasF1(Y)52F1(2Y). This suggests that th
proper symmetrization@S(q,E)1S(q,2E2Er)#/2 of the
measured signal with respect to the recoil energyEr
5q2/2m would ensure a faster convergence to the sca
limit @28#. From an experimental point of view the dire
verification of scaling, by changingq andE keepingY fixed,
is likely the safest criterion for checking the achievement
the IA regime. A peculiarity of dilute gases is that it is po
sible to reach the scaling regime for values of mome
where the Bogoliubov theory is still applicable.

For a trapped Bose gas, the eikonal Eqs.~43!–~44! can be
easily expanded for small values of the Born parameter~41!,
corresponding to high values ofq(b52mmR' /\q). One
finds

q

m

S~q,E!

N
5

R'

\
@ f 0~y!1b f1~y!1•••#, ~63!

where f 0(y) and f 1(y) are dimensionless functions of th
variable y5(R' /\)Y, directly related to the scaling func
tions of Eq. ~62!: F0(Y)5R' f 0(y)/\ and F1(Y)
5qR'b f1(y)/m\. The functionf 0(y) is given by

f 0~y!5
15

16E dp̃ydp̃zF J2~Ay21 p̃y
21 p̃z

2!

y21 p̃y
21 p̃z

2 G 2

, ~64!

and is shown in Fig. 6 together with the Gaussian expans

f 0~y!.
15p

192
expF2

3

16
y2G , ~65!

yielding the results~33!–~34! for the dynamic structure fac
tor. The functionf 1(y) is given by

f 1~y!5
15

2 E
0

`

dp'p'

J2~Ay21p'
2 !

y21p'
2 E

0

1

dr'r'J0~r'p'!

3E
0

A12r'
2

dxA12x22r'
2 sin~yx!xS 12

x2

3
2r'

2 D ,

~66!

and is also shown in Fig. 6.
Starting from Eq.~63! one can evaluate the shift of th

peak with respect to the recoil energyEr due to the first
06360
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correction to the IA. Imposing the condition]ES(q,E)50
one finds, after some straightforward algebra,Epeak5Er

12m/3, showing that result~24! for the line shift holds not
only in the high-q LDA regime whereb is large, but also for
small values ofb. This behavior is not obvious and seems
suggest that the same result holds also for intermediate
ues ofb.

VI. DYNAMIC STRUCTURE FACTOR AND VORTICES

The study of vortices in trapped Bose gases is present
challenging topic of both theoretical and experimental inv
tigation. First experimental evidence of vortices has be
recently reported@30,31#. On the theoretical side the struc
ture of vortices, the corresponding stability conditions,
well as their consequences on the dynamic behavior of
condensate have already attracted the attention of m
physicists. The identification of suitable methods of det
tion has also been the object of theoretical investigati
These include the expansion of the condensate@32#, the shift
of the collective excitation frequencies@33#, and the occur-
rence of dislocations in the interference patterns@34#.

In this section we show that the measurement of the
namic structure factor in the IA regime would represen
powerful tool to reveal vortices in a trapped Bose gas. In f
a vortex strongly affects the momentum distribution of t
system. This can be easily understood by noting that
kinetic energy of a trapped condensate is roughly doubled
the addition of a vortex@19#.

In the presence of a quantized vortex aligned along thz
axis the wave function of the condensate takes the form

c~r !5eiwc0~r' ,z!, ~67!

wherec0(r' ,z) is the solution of the Gross-Pitaevskii equ
tion @8,35#

FIG. 6. Dimensionless scaling functions in the Thomas-Fe
regime: thef 0(y) function @Eq. ~64!# ~solid line! is compared with
its Gaussian expansion~65! ~dotted line!. The functionf 1(y) @Eq.
~66!# is also shown~dashed line!.
8-10
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F2
\2¹2

2m
1

\2

2mr'
2

1
m

2
~v'

2 r'
2 1vz

2z2!

1gc0~r' ,z!2Gc0~r' ,z!5mc0~r' ,z!, ~68!

which contains the additional centrifugal term\2/2mr'
2 . So-

lutions of Eq.~68! have been obtained numerically in@36#.
The density distributionuc0(r' ,z)u2 exhibits a hole whose
size is of the order of the healing length~12! of the gasj,
which, in the Thomas-Fermi limit, is much smaller than t
size of the condensate. Also in momentum space the di
bution exhibits a hole as shown in Fig. 7. This is the con
quence of the phase in Eq.~67!, which gives a vanishing
value to the integral~29! at p'50, wherep' is the radial
component of the momentum vectorp. The size of the hole
is of the order of\/R', and consequently comparable to t
total size of the condensate in momentum space. This ca
easily seen calculating the momentum distribution in
Thomas-Fermi limit. In this limit the main effect of the vo
tex on the momentum distribution arises from the phaseeiw,
and one can safely use forc0 the Thomas-Fermi expressio
A@m2Vext(r )#/g, holding in the absence of the vortex. Th
result forn(p) can then be written in the form

FIG. 7. Density profile~up! and momentum distribution~down!
of a trapped Bose condensate as a function of the radial variabler'

and p' , integrated alongz and pz , respectively, in the absenc
~dashed line! and in the presence of a quantized vortex~full line!.
These profiles correspond, in the absence of the vortex, to a ce
density n(0).131014 cm23. The trap parameters arevz

52p220 Hz, andl5A8.
06360
ri-
-

be
e

nTF~p!5N
R'

3

\

15

16

l

p4 U E0

2p

dweiwE
0

1

dr'r'E
0

A12r'
2

dz

3ei p̃•rA12r'
2 2z2U2

, ~69!

where p̃ is the scaled momentum vector p̃
[(px ,py ,pz /l)R' /\, already introduced in Sec. III B. No
tice that in the Thomas-Fermi limit the effect of the vortex
factorized through a dimensionless integral.

In Fig. 8 we report the dynamic structure factor calculat
in the IA @see Eq.~3!# with and without the vortex. The
calculation was carried out for a gas ofN5104 87Rb atoms
trapped in a disk-type geometry (l5A8). For this low den-
sity sample the IA is very accurate. The double peak str
ture in S(q,E) reflects the occurrence of a peculiar Dopp
effect, and represents a clear signature of the vortex. In
the vortex generates a velocity field in the condensate w
significant components both parallel and antiparallel to
momentum transferq.

Another important example where the investigation of t
dynamic structure factor can provide useful informations
coherence phenomena is the study of interference effec
momentum space. This possibility was recently discusse
Ref. @37#, where two identical spatially separated conde
sates were considered. The momentum distribution of su
configuration exhibits interference patterns and gives rise
characteristic fringes in the shape of the dynamic struct
factor. At highq, where one can use the IA, one finds@37#

S~q,E!52S0~q,E!F11cosS Yd

\
1w D G , ~70!

whereS0(q,E) is the dynamic structure factor of the sing
condensate,Y is the scaling variable~58!, w is the relative
phase between the two condensates, andd is their spatial
separation. The frequency period of the fringes isDn

ral

FIG. 8. Dynamic structure factor of a rubidium-trapped Bo
condensate atT50 in the presence~solid line! and in the absence
~dashed line! of the vortex, calculated using the impulse appro
mation ~3!. The momentum transfer is taken along thex axis. The
trap parameters are the same as in Fig. 7.
8-11
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5DE/h5q/md. By choosing q.20\ mm21 and d
.35 mm the fringes turn out to be;1.5 kHz, for a sodium
sample.

VII. CONCLUSIONS

In this paper we have provided a theoretical discussion
the dynamic structure factorS(q,E) of a trapped Bose-
Einstein condensate at low temperature. A first import
aim was the development of the proper many-body form
ism, based on Bogoliubov theory, to describe in a quant
tive way the several interesting features exhibited byS(q,E).
These mainly concern the role of two-body interactio
which sizably affect the response of the system in all
relevant regimes of momentum transfer. The possibility
providing accurate theoretical predictions for the dynam
structure factor is particularly appealing in view of the rece
experimental data obtained via two-photon Bragg scatter
The available data are in general agreement with theory,
thereby provide a further important proof of the crucial ro
played by two-body interactions in these trapped Bo
Einstein condensed gases. Interactions affect the shap
S(q,E) at both small momentum transfer, where they a
responsible for the propagation of phonons, and at high
mentum where they show up in the shift of the peak w
respect to the free recoil energyq2/2m as well as in the
width, which is sensitive to both mean field and Dopp
effects. Various approximate schemes have been consid
in order to better discuss the main physical features. Th
schemes are summarized in Fig. 9 where the importanc
the characteristic length scales of the problem emer
clearly. At momentum transfer smaller than the inverse
the size of the system, the response is characterized by
discretized normal modes of the system. This regime

FIG. 9. Relevant wave vector regimes characterizing the
namic structure factor atT50. R is the size of the condensate~31!;
j is the healing length~12!. The ranges of applicability of the loca
density approximation~LDA ! and of the impulse approximatio
~IA ! are also schematically indicated. The momentum tran
\R/14j2 corresponds to the conditionDLDA5D IA for the LDA and
IA widths of the dynamic structure factor@see Eq.~45!#.
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been already discussed in other works and has not been
sidered here. At higher momenta the system behaves loc
as a uniform gas. This is the range of applicability of t
local density approximation~LDA !, which successfully de-
scribes the excitation of phonons as well as, at mome
larger than the inverse of the healing length, the correcti
to the free-particle motion due to mean field interactions.
even higher momenta the response of the system can
longer be described locally, because it is sensitive to
momentum distribution of the condensate, a quantity ass
ated with long-range coherence effects. This regime is w
described by the impulse approximation~IA !, a theory cur-
rently employed to investigate the quasifree response of v
ous many-body systems. In our work we have limited the
of the IA to momenta smaller than the inverse of the scat
ing length, i.e., to the range of applicability of Bogoliubo
theory. In this regime only the momentum distribution of t
condensate is relevant and one can safely ignore the hi
momentum components ofn(p), which would be crucial to
describe the response at momentum transfers larger
\/a. An interesting feature emerging from our analysis
that the transition between the LDA and the IA regimes
characterized by an important physical parameter, the
called Born parameter~41!, which depends explicitly on the
size of the system. The corresponding transition takes p
at momenta fixed by the combination\R/j2. We have
shown that the transition can be accounted for by an eiko
treatment of the solutions of the Bogoliubov equations, an
full calculation ofS(q,E) has been presented in this regim
showing good agreement with experiments. Many of the
evant features exhibited by the dynamic structure factor
these trapped Bose gases have been also presented an
cussed using the formalism of sum rules and the concep
scaling.

A second important point emerging from our analysis w
that the dynamic structure factor in the IA regime of hig
momentum transfer offers a new important investigat
tool. Actually Bose-Einstein condensation in momentu
space provides a deeper understanding of long-range co
ence phenomena in comparison with the studies of the d
sity profiles, which have been so far the main object of
vestigation. Quantized vortices provide a significant exam
in which the dynamic structure factor exhibits nontrivial fe
tures, reflecting the peculiar behavior of the phase of
order parameter. In particular the dynamic structure facto
characterized by a hole occurring at the recoil energy
whose size is comparable to the total width of the signal
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