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Dynamic structure factor and momentum distribution of a trapped Bose gas
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The dynamic structure factor of a trapped Bose-Einstein condensed gas is investigated at zero temperature in
the framework of Bogoliubov theory. Different values of momentum transfer are considered, ranging from the
phonon to the single-particle regime. Various approximate schemes are discussed, including the local density
approximation, where the system is locally described as a uniform gas, and the impulse approximation, in
which the response is fixed by the momentum distribution of the condensate. A comprehensive approach,
based on the eikonal expansion, is presented. The predictions of theory are successfully compared with the
results of recent two-photon Bragg scattering experiments, at both low and high momentum transfer. Relevant
features of the dynamic structure factor are also discussed using the formalism of sum rules and the concept of
scaling. Particular emphasis is given to the regime of high momentum transfer, in which the dynamic structure
factor is sensitive to the behavior of the order parameter in momentum space, and some instructive examples
showing the consequence of long-range coherence are presented.

PACS numbgs): 03.75~b, 03.65-w, 05.30.Jp, 32.86:t

[. INTRODUCTION and is strongly affected by the presence of two-body inter-
actions.

The dynamic structure factor provides an important char- The purpose of this paper is to provide a systematic the-
acterization of the dynamic behavior of quantum many-bodyoretical discussion of the behavior of the dynamic structure
systems. In particular, its exploration has played a cruciafactor of inhomogeneous Bose-Einstein condensates at zero
role in understanding the physics of superfldide, starting temperature and to make quantitative comparisons with the
from the measurement of the roton spectr[th until the  recent data obtained with two-photon Bragg scattering ex-
more recent determinations of the condensate fraction avaiPeriments[4,5], pointing out the role of two-body interac-
able from neutron Scattering experimem_ The dynamic tions at both low and hlgh momentum transfer. The applica—
structure factor is measurable through inelastic scattering, iRility of both the local densityLDA) and of the impulse
which the probe particle is weakly coupled to the many-bodyapproximation(IA) will be discussed in detail. The LDA
system so that the scattering may be described within thassumes that the system can be locally described as a uni-
Born approximatiori3]. In the case of dilute gases it can be form gas, and is adequate at moderately low values of mo-
measured via inelastic light scattering as recently shown bynentum transfer. Conversely, in the IA the dynamic struc-
the experiments of Ref$4,5] carried out on a trapped Bose ture factor is sensitive to the momentum distribution, which,
gas of sodium atoms. The dynamic structure factor providefr Bose-Einstein condensed systems, is determined not lo-
information on both the spectrum of collective excitations,cally but globally, according to the size and shape of the
which can be investigated at low momentum transfer, ang¢ondensate wave function. A comprehensive description of
the momentum distribution, which characterizes the behaviopoth the LDA and IA regimes will be presented using the
of the system at high momentum transfer, where the reeikonal expansion, which holds in the single-particle regime
sponse is dominated by single-particle effects. at high momentum transfer. Special emphasis will be given

In superfluid helium the typical momentum giving the to sum rules as well as to the scaling behavior exhibited by
transition between the collective and the single-particle bethe dynamic structure factor in the IA regime. Finally we
havior is fixed by the inverse of the range of two-body Will point out the occurrence of interesting features exhibited
forces, a value close to the average interatomic distance. Ay the dynamic structure factor in the presence of vortices
larger momenta one explores microscopic features of the sy@nd of interference effects in momentum space.
tem that are sensitive to short-range correlations and to the
details of the two-body interaction. The situation is very dif-
ferent in a dilute gas where the transition takes place at moH. DYNAMIC STRUCTURE FACTOR AND BOGOLIUBOV
menta much smaller than the inverse of the scattering length, THEORY

which fixes the range of interactions. As a consequence, in a The dvnamic structure factor of a manv-body svstem is
Bose gas one can explore a domain of relatively high mo- y y y sy

menta, where the response of the system is not affected b?/efmed by the expression

collective features, nor by short-range correlations, but is de-

termined by the momentum distribution of the condensate. 1

While in a uniform system this distribution is a simpé S(Q.E)= — e BEnl(ml ol 2S8(E—E.. + E 1
function, in a trapped gas it exhibits a nontrivial behavior (@B)=3 % [(mlpglmI®et m*En) (D)
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whereq andE are the momentum and energy transferred by At small momentum transfer the ideal gas predict{@n

the probe to the sample. In E@) |n) andE, are the eigen- is inadequate, especially in the case of Bose gases, in which
states and eigenvalues of the Hamiltonian of the systemmean field interactions drastically modify the structure of
e #En is the usual Boltzmann factop,==;€'%"i’" is the  S(q,E), giving rise to the propagation of phonons.

Fourier transform of the one-body density operator, and The calculation 0ofS(q,E) in interacting many-body sys-
the canonical partition function. tems requires in general a major theoretical effort. In the
In Refs.[4,5], the dynamic structure factor of a trapped following we will limit ourselves to thel =0 case and to the
Bose-Einstein condensate is measured using two-photon optudy of dilute Bose gases where Bogoliubov theory is ap-

tical Bragg spectroscopy. Two laser beams are impingerplicable. This restricts the range of momenqtto the “mac-
upon the condensate. The difference in the wave vectors abscopic” regimega<<s wherea is the sswave scattering

the beams defines the momentum transferand the fre- length. For larger values af short-range correlations be-
quency difference between the beams defines the energyme important and Bogoliubov theory is no longer ad-
transferE. The atoms exposed to these beams can undergoemjuate. In the conditions of the experimen{4, carried out
stimulated light scattering event by absorbing a photon fronon a gas of sodium atoms, the Bogoliubov approach is well
one of the beams and emitting into the other. After exposurapplicable sincey/#~20 um™! andga~0.06:. The mac-

to these laser beams, the response of the condensate is meascopic condition is even better satisfied in the experiment
sured by a time-of-flight technique by which the number ofof [5] where smaller values af have been used.

optically excited atoms or, similarly, the net momentum According to Bogoliubov theory the excited states of the
transfer to the gas, can be determined. The momentum transystem are given by the solution of the coupled equafi8hs

fer in each of these experiments was fixed by the particular
optical setup, while the energy transfer was scanned by vary-
ing the frequency difference between the beams. Because
atoms could be scattered by absorbing a photon from either 5
of the laser beams, the response of the system actually mea- +g¢ip(ru(r), )
sures the combinatiors(q,E)—S(—q,—E), thus signifi-

ﬁZ
= 5 V2 V(1) = o+ 2995(r)

u(r)

eu(r)=

. . hZ
g%r:z.suppressmg the effects of temperature in the measured ew(r)=| - %V2+Vext(r)_ﬂ+29'r/fg(r) o (1)
Let us start our discussion by recalling that in an ideal )
uniform gas Eq(1) takes the simple forrf6] +g¢g(ru(r) (6)

(p+q)? p? for the “particle” and “hole” components of the elementary

S(a,E)=2 np[1=n,.q]8| E- >m T oml (2 modes. In Eqs(5) and(6) € is the energy of the excitation,

P andV.,(r) is the external potential for which, unless differ-
wheren,=(ala,) is the statistical average of the operatorently specified, we make the axially symmetric harmonic
ala,, and the sign+ (—) holds for Bose(Ferm) statistics. ~ choice:

The scattering process is hence .enhanced and su_ppressed in 1 1

Bose and Fermi gases, respectively. In the fermionic case Ve 1) == Ma? (x2+y2) + = mw?z2. @
this reflects the Pauli exclusion principle. For large momen- 2 2

tum transferq the exchange term of Ed2) is negligible . , ) ) )
because the momentum distribution decreases rapidly at higFHrthermoreu is the chemical potentiag =47 “a/m is the

momenta and, making the usual replacenﬁpfewh?’fdp coupling constant, which will be assumed to be positive, and
one finds the éxpression " finally (r) is the order parameter characterizing the

ground state of the system.
(p+a)> p In terms of the functionsi,(r) andv,(r), which satisfy
2m + 2m n(p), (3 the orthonormalization conditiof®]

2

SIA(qrE):fdpé E-

known as the impulse approximatidt®) [7]. In Eqg. (3)

n(p)=(%(p)"d(p)) 4

R the relevant matrix element of the density operator takes the
is the momentum distribution of the systemj(p) form
=(27h) ¥ dr (r)e’P " being the Fourier transform of
the field operator. For uniform systems occupying a volume
V the momentum distribution is related to the occupation
number entering Eq2) by n(p)anp/h3. It is important to _
stress that the validity of Eq3) is not restricted to the ideal and the dynamic structure factor then becomes,=a0, [10]
gas, but holds in general at high momentum transfer also for )
interacting and nonuniform systems, independent of quantu _ * * iq-r/t _
statistics.gOf course in this cyase the morﬁlentum dis?ributiorr?(q'E) ; J driun (1) +on (1) Je (1) A(E—ep).
n(p) will differ significantly from that of the ideal gas. (10

f drug (NUm(r) =v3 (NUM(N 1= Snm, ®

<n|Pq|0>:J drfuy (r)+oh (e yo(r)  (9)
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In the case of a uniform gas the “particle” and “hole” of the condensate, which is expected to become the leading
components are plane waves(r)=U exp(p-r/A) and effect in the dynamic structure factor at very large values of
v(r)=Vexp(p-r/f) and the coupled equatios)—(6) give  g. The Doppler broadening is accounted for by the impulse
rise to the Bogoliubov excitation spectrrhil]: approximation(3), which, however, ignores the mean field

effects of Bogoliubov theory. The conditions of applicability

p? [ p? for both LDA and IA will be established in the next section.
e(p)=\/5=|==+2gn/, (17
2m\2m
) ) ) . Ill. LOCAL DENSITY, IMPULSE, AND EIKONAL
wheren is the density of the gas. This spectrum exhibits a APPROXIMATIONS
phonon dispersioe=cp at low momenta, with the velocity ) o
of sound given byc=\gn/m, while in the opposite limit of In Sec. Il we introduced two useful approximations to the

high momenta it approaches the free particle eneegy dynamic structure factor_ of an interac'ting.Bose gas: the im-
—p2/2m. The transition between the collective and thePulse(3) and local density(15) approximations. These two

single-particle behavior occurs at momenta of the order oflescriptions hold in different regimes of momentum transfer.

%1€, where The purpose of this section is to discuss the corresponding
predictions and conditions of applicability. We will also
1 present a comprehensive description of the hggtesponse
&= (12 of the system, based on eikonal expansion, which includes
8mna the LDA and the IA as special cases.

is the so-called healing length. ) o
Using the normalization conditiof8), one finds the result A. Local density approximation
Let us first discuss the local density approximatids).
An explicit expression foS(q,E) can be obtained working
in the Thomas-Fermi limitNa/a,,>1, where the ground

state density is given bgsee, for exampld,13])

2

Sg(9,E)=N S(E—€(q)) 13

2me(q)

for the dynamic structure factor, which consists of &unc-

tion centered at the Bogoliubov frequen¢yl). Equation 1
(13) yields the Feynman-like result n(r)= a["‘_vext(r)]' (16)

1 q? and the chemical potential takes the form

Ss(0)- ;| dESaE)- 14 P
N 2me(Q) o5
1 Na

for the static structure factor, which tends linearly to zero at H=5 15a_m hwno. (17)
low momenta, and saturates to 1 in the opposite, kigh-
limit. In Eq. (17) an,= VA/Mmwy, is the oscillator length calculated

Results(13) and(14) hold for uniform Bose gases. In the sing the geometrical average,,= (v’ w,)Y? of the oscil-
presence of nonuniform trapping a natural generalization igytor frequencies. Using this density profile and the result of

provided by the local density approximatidDA). For  gq (11) for the excitation spectrum, one obtaiggy,E) for
large condensates, where the density profile varies in 8 trapped Bose condensate[48,5]:

smooth way, the system behaves locally as a piece of uni-

form gas whose dynamic structure factor is given by the 15 (E2— E2) (E2—E?)
expression(13), evaluated at the corresponding denéitg]: S pa(0,E)= 5 —2' - Tr (18
i i
q2
SLDA(an):J dr n(r)5(E—e(r,q))m. (15  where
2
In Eqg. (15 n(r) is the ground state density of the system, E _a (19)
and e(r,q)=e€(n(r),q) is the local Bogoliubov dispersion " 2m

(11). Equation(15) is expected to describe accurately the

dynamic structure factor for momenta larger thaiR where is the recoil energy. Different from the case of a uniform gas
Ris the radius of the condensate, since the effects of discretisee Eq(13)], the dynamic structure factor is no longesa
zation in the excitation spectrum can be safely ignored. Irffunction, its value being different from zero in the interval
the case of deformed traps we will always consider situation&,<E<E,\y1+2u/E,. The valueE=E, corresponds to the
whereq is larger than bott/R, and#/R,, whereR, and  excitation energy in the region near the border where the gas
R, are the radial and axial sizes. Actually in the experimentds extremely dilute and hence noninteracting. The vdiue
of Ref. [5] these conditions are well satisfied. At the same=E,J1+2u/E, is the excitation energy of a Bogoliubov gas
time the momentum transfershould not be too large since evaluated at the central density. Notice that the LDA expres-
the local density approximation ignores the Doppler effectsion (18) for S(q,E) does not depend on the direction of the
associated with the spreading of the momentum distributiowectorq even in the presence of a deformed trap.
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FIG. 1. Static structure factdB(q) at T=0 as a function of FIG. 2. Dynamic structure factor calculated using the local den-

qé/fi. The prediction(20) of the local density approximatiofsolid  sity approximation(18). Experimental points are taken from Ref.
line) is compared with the experimental points taken fidh The  [5]. The trapping frequencies are, =27150 Hz and w,
result of the noninteracting modéashed lingis also indicated. =218 Hz.

As pointed out in the previous section, the local densityon the density of the gas. Using the LDA expressib8) for
approximation requires that the momentum transfer be Iargeé(q E) one finds, in the phonon regime, the restits cq
thanz/R. For smaller values dfj the response of the system ' — . . : . .

Hand A ms=0.3cq, showing that the width of the signal is not

is sensitive to the discretized modes of the system and t h ller than th he <h p
LDA cannot be longer employed. The theoretical analysis of"uch smaller than the average energy. The shaj@E)

the dynamic structure factor in this regime of low momen-{Urns out to be asymmetric as a functionBfsee .Fig. 2
tum transfer has been carried ou{it@]. In the following we ~ 2nd the peak response occurs at an energy that is higher
will always assume that the conditia®#/R is satisfied. about 15% thanE.

Starting from (18) one can evaluate the inelastic static ~ The dynamic structure factds(q,E) has been recently

structure factoS(q) = N1/ S(q,E)dE, which takes the ana- measured in the phonon regirfi]. A typical experimental
lytic form [5]: curve is reported in Fig. 2 together with the predictid®).

These measurements also sh@&e Fig. 1 the static struc-
a—1
7+ 2 arcta

153+« (3+2a—a?) ture factorS(q) in the phonon regime to be smaller than the
2Va) |’

V7T %2 T 160

noninteracting gas valug(q) =1, in agreement with the pre-
dictions of Eq.(20) [14].

(20 In the opposite limit of large momentum transfer, where
with a=2u/E,. Whenqgé<#, Eq. (20) behaves likeS(q) gé>h, the excitation energy2l) predicted by the LDA is

~q/(2m€), reflecting the role played by dynamic correla- given by the expression
tions, which strongly suppress light scattering in the phonon 4
regime(see Fig. L Herec= 32\ u/m/157 corresponds to an E=E,+ 7 M (23
average sound velocity, which, as expected, is smaller than
the valueyu/m calculated in the center of the trap. , i
K P This result corresponds to the average of the Bogoliubov

Useful information about the dynamic structure factor can S _ ) .
be obtained by evaluating its energy momenmtg(q) c"€rgy €(d.r)=qg7/2m+gn(r) holding at highq. Notice

_ (% gk oo _that, due to the asymmetric shape of the dynamic structure
Jo+E*S(q,E)dE. For example, the average excitation en factor (18), the average energ{23) turns out to be smaller

ergy E and the rms width\ ,s can be defined as than the peak energy
=M 2
B mp’ (21) Epeak: E+ 51“ (24)
and

This asymmetry should be, in principle, taken into account in
2 the fit of experimental data. However, the shift of the line
) , (22 center was effectively determined from experimentd4h
using symmetric Gaussian fits and was in good agreement
with Eq. (23) (see Fig. 3. In the same regime of larggthe
rms width predicted by the LDA is given by

Ams= m_o - (

Mo
respectively.

Let us first discuss the phonon regime in whiek< ., or,
equivalently,qgé<#n, where¢ is the healing lengttil2) cal-
culated at the central density. Typical valuestdh sodium - /i (25)
samples, wher@=2.75 nm, are of 0.1-1um depending LDA 147"
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5 T T T T Thomas-Fermi regime is dominated by the release of inter-
action energy and does not reveal its initial momentum dis-
4l ¥Na e tribution.
= * In contrast, the distinction between the condensate and the
£ 3t * . . thermal cloud in momentum space is stark. A confined con-
:E . densate of finite size has a momentum distribution of width
29 s . Ap.~#/R fixed by the inverse of the size of the conden-
£ bl sate. The momentum width of the thermal cloud is instead
1k ¢ - given by the temperature of the gas &pt~VmkgT. For
harmonic confinement in the Thomas-Fermi regime, one
0 I L ! L then finds
0 1 2 3 ; 4 5 A - Mgl ~15
eak density {10 cm™
’ ! A—p°~ Vi 152 (27)
FIG. 3. Line shift as a function of the central density of the Pr BT @ho

cloud. The straight line is the theoretical predicti8), and the

. ! . In contrast with the comparison of the condensate and the
circles are the experimental points of Ref].

thermal cloud in coordinate spa¢g6), the distinction be-

o . . tween the two components in momentum space is strongly

1o epernt ol 1 i lhes Lhearle resls pnhancecy tuo body nteracions s he Thomas.Feri
P ' Y P ameterNga/a,, increases. The investigation of the momen-

dﬁge&slrevjrlnjigﬂ?/(/(E)chaa;jeennde?obr%atts I;]rgti i%i?g?gsgfgze%ﬁzgm distribution consequently provides a deeper understand-
P ' P y ihg of the phenomenon of BEC. In particular the smallness

ric (see also Fig. b of the width Ap, reflects the presence of long-range coher-

Thus, for momentum transfer Wh'?h are su.ff|C|e.ntIy ence. Measuring the momentum distribution at zero tempera-
small to allow the use of the local density approximation, the,

. . . ture would, in principle, give access also to the quantum
structure factor of an inhomogeneous Bose-Einstein Conde.r&'epletion of the condensate. In practice, however, the quan-
sate can be derived from the Bogoliubov spectrum for a unig depletion is too small and broadened over too large a
form condensed gas. Studies in this regime therefore serve as : :
a probe of the spectrum of both collectivgé<#) and free- fomentum rang¢15] to be observable in present experi

) o ments.
particle (£>#) excitations. The expressiori3) for the impulse approximation can be

also written in the form
B. Impulse approximation

Let us now discuss the response of a trapped condensate SA(Q,E)= Tj dp,dpn(py.Py,Py), (28)
to very large momentum transfers at which the form of the q

Qynamm 'struct.ure factor is dom|nated by Dopp"?r l:)ro"’ldeni/vhere we have assumed that the veaids oriented along
ing. In this regime, the dynamic structure factor is correctly

described by the impulse approximati@d). Inelastic scat- }hde dX n?X'S’ ar;dis glxszrzgﬁe_dfr?ﬁ(.)n ;[Sginalli::]%?rrliln—
tering at such high momentum transfers allows one to diiurﬁydigirib%?ifg,% uationg3) and (28) Sﬁow that in the
rectly measure the momentum distribution of a trapped Bose_ . - =0 _
L o egime of applicability of the IA one can extract useful in-
gas. The possibility of such measurements is highly appea{- : N .
h . X . o . ormation on the momentum distribution starting from the
ing since most of experimental investigations in these sys- : .
experimental measurement of the dynamic structure factor.

tems have been so far limited to the study of density profiles. In a dilute Bose 0as at zero temperature the momentum
In current experiments on harmonically confined Bose gases,. . ..~~~ 9 5 P
distribution is given byn(p) =|¢(p)|*, where

the sizes of the condensd®aand of the thermal clouBt are
typically comparable. In the Thomas-Fermi regime, the ratio

1/5

; (26)

between the two radii is given as ¢(p)=(277ﬁ)_3/2f dry(r)eP it (29
is the Fourier transform of the order parameter. The form of
n(p) for a trapped condensate has been discussed previously

R [ _|hop
Ry keT V kgT
[16,17]. In the Thomas-Fermi limiNa/a,,>1 one finds the

whereN, is the number of atoms in the condensate. Due tgimple analytic result
the large value of the Thomas-Fermi parametga/ay,, 3
this ratio is typically close to unity. Expressig@6) also e ):NE R,
provides an estimate for the ratio of sizes of the two compo- TP 16M P2

nents measured in time-of-flight experiments, in which the

trap is suddenly switched off and the gas allowed to freelywhereJ,(z) is the usual Bessel function of order 2,
expand. While the expansion of the thermal cloud is indica-

tive of the noncondensate momentum distribution before re- R, =
lease from the trap, the expansion of the condensate in the

Noa
15—
aho

7 (30

Jz<5>r

Na 1/5
15a—h) A, (31
[0)
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is the Thomas-Fermi radius of the condensate inxhe
plane, andf)=\/pxz+ py2+(pzl)\)2Rl/h is a dimensionless
variable, with the parametar= w,/w, fixing the anisotropy
of the external potential.

Equation(30) explicitly shows that the momentum distri-
bution scales as R/ and is consequently much narrower
than that of the noninteracting gas

3
sinceR, >ay,.

In the impulse approximatioi(28) the peak ofS(q,E)
coincides with the recoil energ¥,, while the curve is

2

2
ahO 1/3 pZ

A

aho

fiJm

Nigc(P)=N petpy+

(32
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I I | I
] -
23Na Er/h — 99.65 kHz
= 2F
| ) ~\~~~“\§_‘:.,._..._.:.:: ......
| A e T _
Ny e ]
o L I | I '

peak density [10** cm™?]

FIG. 4. Line width as a function of the central density of the
sample. The solid line is the prediction of the eikonal approxima-

broadened due to the Dopp|er effect in the momentum distion (43) The dashed and dotted lines correspond to the IA and
tribution. A useful estimate of the broadening can be obLDA predictions(34) and(25), respectively. The theoretical results

tained carrying out a Gaussian expansion in the dynami
structure facto28) near the peak valuE=E,. One finds
(E-Ep?

, (33
2A%,

SlA(qu)zslA(q,Er)eX[{ -

with Afy=—[Sa(0,E)/92Sia(d,E)]|e=¢. By calculating
the second derivative @28) with the Thomas-Fermi profile
(30) for the momentum distribution, we obtain, after some
straightforward algebra, the result

g

11
""" N3mR "

The Gaussian profilé33) reproduces very well the exact
curve (see Fig. 6, so that the Doppler widtfi34) can be

(39

usefully compared with experiments, where the widths are

usually extracted through Gaussian fits to the measured si
nal. The Doppler width(34) is linear inq, and for large

momentum transfer it can become comparable to or eve

larger than the mean field wid{25). In Fig. 4 we show the
theoretical prediction(34) together with the experimental

values obtained at several densities. This figure confirms that
the IA accounts for the observed widths in the low density

regime. At higher density the mean field effé26) can no
longer be neglected.

It is worth noticing that the width(34) should not be
confused with the rms widtk22), which requires the evalu-
ation of them, moment and, using the IA expressi@) or
(28), takes the form

2 X
Ams=4 a kin?

instead of(34). Here Eﬁmzfdpp)z(n(p)/Zm is thex compo-

(39

nent of the kinetic energy of the condensate. The evaluation

of the kinetic energy requires a careful analyisi§,19 of

are compared with the experimental data[4f Both the eikonal
and the experimental values are obtained through the Gaussian fit
S(q,E)exd (E—E)%2A2] to the signal. The momentum transfer is
taken along thex axis. The trapping frequencies are,
=2m195 Hz andw,=2717 Hz.
542 | (

—_— n

N  6mR

The logarithmic term reflects the fact that the moment,
and hence the rms width, is sensitive to the high energy tails
of the dynamic structure factor, a region which is difficult to
measure since the intensity of the signal in the tails is very
small. Because of this, estimat@4) is much more signifi-
cant from the experimental point of view than expression
(35).

The investigation of the dynamic structure factor also pro-
ides information on the coherence effects exhibited by the
ystem and in particular on the behavior of the off-diagonal
Rne—body density

)

R
1.3,

X
kin

(36)

S

p(l)(s)=Nf dRdr,- - ~drN¢*(R+ 520 -

S
R—E,I’z, oN

=f dpn(p)exﬁ{

wherey(rq, ... ry) is the many-body wave function of the
system, anch(p) is the momentum distribution. By taking
the Fourier transform of Eq.28) with respect top,, one
finds the result

X

.p-s
—i—

r 37

s‘(E—Ea},

p(l)(SX!Oro): f dESA(qIE)eXF{ ﬁq

(38

the region near the boundary of the condensate, and cannot

be evaluated using the Thomas-Fermi express&d for
n(p), which incorrectly yields a divergent result. For lafge
samples one findgl8], assuming isotropic trapping,

which shows that the one-body density is a measurable quan-
tity if one works at highg where S(q,E) ~SA(q,E). In a
uniform Bose-Einstein gap')(s,,0,0) tends to a constant
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whens, is large. In a finite system®)(s,,0,0) always tends mgn(r)
to zero whens,—x. The typical length over whickp®) v(N=-—
decreases can be of the order of the size of the sample or Pt

smaller depending on the degree of coherence. Using, for

example, the Gaussian profil@3) for S(q,E) one finds !\Iotice_ that inclusion ob(r_) in Eq. (5) for u(r) would res_ult
in a higher order correction. Making the transformatjon

=p-+q, the dynamic structure fact@iO) takes the form:

u(r). (42

2

s
1)(s,,0,00~Nexg — —

: (39

2

q

— 2 _
e R s

B qpx)

— 43

with x,=R, {3/8. One can see from E¢39) that y, plays
the role of a coherence lengt0], which turns out to be of
the order of the size of the system. This result reflects the

fact that in a Bose-Einstein condensate the Heisenberg in- p= ;f dryo(r)ex imfxdx’veff(x’,y,z)
(2mh)¥2 haJo

equality ARAp.=%/2 is close to an identity.
n(r or
1T o2
In order to describe the transition between the LDA and aim
IA regimes discussed above and to better understand the cQfqre we have approximateg~ q in the evaluation of (r)
responding conditions of applicability, it is useful to evaluate 4 in the eikonal correction and neglected the kinetic en-

with

C. Eikonal expansion , (44

the high energy solutions of the Bogoliubov equati¢ss-
(6) using an eikonal expansid21,22. In the largeq limit,
where we are interested in the solutions with energguch
larger than the chemical potential, one can neglect the
functionv (r) in Eqg. (5) and look for a solution of the form
u(r)=exgip;-r/aJu(r), wherep; is the momentum of the
excitation andu(r) is a slowly varying function. Keeping
only terms with first spatial derivative af(r) (eikonal ap-
proximation), the solution of(5) with energye= pf/2m takes
the form

u(r)zexr{i%

(40

m X
exg —i oo dx'Veg(x',y,2)

where the effective potentialx(r), calculated in the Tho-
mas Fermi limit, is equal tgn(r) inside and toVg(r) —

outside the condensate. At highthe main contribution to
the dynamic structure factofl0) arises from the excited

ergy termp?/2m in the argument of thé function. This is a
very accurate approximation if one works with large
samples, where the Thomas-Fermi approximatidg(r)
=V[u—Vexr)l/g applies.

If the Born parametef41) is small, then the eikonal cor-
rection can be neglected and, ignoring the small term
gn(r)m/qg? in Eq. (44), one recovers the IA resu(8). Con-
versely, if b is large one finds a different behavior. In this
case the main contribution to the double integha|? arises
from the region wheréx; —x,|~R, /b<R, and the eikonal

correction to the relative phasen(iiq)fi;dx’veff(x’,y,z)

can be consequently written asfq) Ver(X,Y,2) (X1—X5),
with x=(x;+X5,)/2. In these expressions we have ggt
=y,=y andz;=z,=z as a consequence of the integration
on py andp, in Eq. (43). By integrating with respect to the
relative variablex;—x, and top, one finally recovers the
LDA result (15) for large g, wheree(q,r)=q2/2m+gn(r).

In conclusion the eikonal approximatidd3)—(44) provides
the proper description of the dynamic structure factor in the

states withp;~q. This has been taken into account in the Thomas-Fermi limit in all the regimes of momentum transfer

eikonal correctionu(r) [second factor of Eq40)], wherep; ~ ranging from the LDA to the IA, providegh<E;. It is in-
was chosen along theaxis, i.e., the axis fixed by the vector teresting to notice that the Born paramett) fixes also the
g. Notice that in the eikonal approximation the free-particleratio between the width&5) and(34) of the dynamic struc-
solutione'P " is modified by the interactions only through ture factor calculated in the IA and LDA limits, respectively.
a change of the phase. The importance of such a correction 1 fact one has
the behavior of the dynamic structure factor depends on the

maximum phase deviation af(r) from a pure plane wave,

which is determined by the Born parameker

ALDA _ b

A 14

(45)
so that the comparison between the two widths provides an
equivalent criterion for the applicability of the two opposite
approximations. The transition between the LDA and the IA
takes place when the rati@5) is close to unity. Using the
whereE,=q%2m andR, is the Thomas-Fermi radiu®l1).  relationu=7%2%/2m¢?, whereé is the healing lengtii12) cal-
Different from the ratiou/E,, the Born parameter depends culated at the center of the trap, this corresponds to the value
explicitly on the size of the atomic cloud. q=#AR, /14£? for the momentum transfer. Notice that this
From Eq.(6) one gets, in first approximation, value is much larger than the inverse éf since in the

(41)
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2

0.09 T T T T T 1 N q
u/h = 3.48 kHz 23 my(q)= 5{Lpg:[H,pel)=N7—, (48)
E,/h = 99.65 kHz Na
Z 006 p=67 LDA —= | | s . 92 12
3 o mo(a)=([pf . HI[H.pgl) =N| [2—S(a)]| 5
&l
o
& 0.03f . 72q2
. +—-D%a)|, (49)
IA o (q
0 L 1
—-12 -8 -4 0 4 8 12 m =_ T H1,[H,[H,
(£ - E/h (] 3(@)=5{lpqHL,IH.[H,pql1})
FIG. 5. Dynamic structure factor of a trapped Bose condensate N q2 3 4 qz 2 3E)|§in Eint
at T=0. The numerical predictions of the eikonal approximation “Yi2m + om W”LW
(solid curve, 1A (dashed curve and LDA (dotted curve are com-
pared with the experimental data of Rp4], normalized to repro- q2 2 5
duceS(q)=1. The momentum transfer is taken along thaxis. + ’m H(axvexo , (50)

The trap parameters are the same as in Fig. 4.

o _ where we took the vectay along thex axis. Notice that in
Thomas-Fermi regim&, > ¢ (see also Fig. P For example,  gq. (47) we have subtracted the elastic contributjop,)|2.
in the cloud of sodium atoms explored in RBf] with peak  The kinetic structure functio®*(q) is defined by
density n(0)=3.8x10"* cm™3, corresponding tob=14,

one has B, =0.1 um % 1/=5 um™!, and R, /14 1

~20 um L. ' D(a) = | drudrscogare, —x,)]
Equations(43)—(44) can be easily calculated numerically

in all the regimes between the LDA and the IA. The com- Xv)j(_v)z(P(z)(rlirz;riiré)|r1:ri,r2:réu (51)

parison with the available experimental resu#tse Fig. His
rather good and explains the deviation of the observed signalhere
from the LDA as well from the IA predictions. The width of

the dynamic structure factor in general is well reproduced by p(z)(rl,rz;ri I5)

the quadrature expressiof\Z,,+ A2, accounting for both

the LDA and the IA widthgsee alsd23]). =N(N—1)J dradrg- - - drgg*(ry,ro, ... Iy
V. SUM RULES XP(T L5050 a0 ) (52

. The Cond|t|or_1$ OT applicability of _the local d_enS|ty angl is the two-body density matrix. In the asymptotic lingjt
impulse approximations presented in the previous section

can also be discussed using a sum rule appri2h which — oo this function is related to the kinetic energy of the sys-

allows for an exact determination of the width of the dy- tem[25];
namic structure factor in some relevant limiting cases. om EX
We have already introduced in the previous section the lim DX(q)= — kin (53)
moments of the dynamic structure factor relative to the op- g #? N
eratorpq. In terms of the matrix elemeni$|p,|0) of the
density operator one can write The my sum rule(50) has been obtained evaluating the

commutators with the effective Hamiltonian
M= 3 [(nlodo)(E,—Eo¥= | " dESaE)E"
(46)

p2
i
ﬁ"’vext(ri)

H-3

and, using the closure relationship|n)(n|=1, one can eas- and using the corresponding ground state of Gross-Pitaevskii
ily express the moments (q) in terms of the mean values theory. In particularE;,,=g/drn(r)?2 corresponds to the

of commutators between the Hamiltonian and the operatogxpectation value of the two-body interaction energy.

pq on the ground stat¢0). Using the propertyS(q,E) Thef-sum rule(48) is model independeri26] and is sat-
=$S(—q,E), holding in the presence of parity or time- isfied by both the LDA and IA as can be explicitly shown by
reversal invariance, we find the following results for the |OW-integrating the corresponding dynamic structure factors. The

~|—ggj a(ri—rj), (54

est moments: other sum rules are instead correctly reproduced only in suit-
. 5 able ranges of momenta, which thereby provide the corre-
Mo(A) =(pgpq) — [{py)|*=NS(q), (47)  sponding regimes of applicability of the two approximations.
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The non-energy-weighted sum ru{é7) coincides with Before concluding this section we stress that the results
the inelastic static structure fact®q), a quantity of high discussed above hold in the Bogoliubov regiqee<#. For
interest, directly related to the Fourier transform of the diagdarger momenta, relevant, for example, in the case of super-

onal two-body density matrix: fluid helium, a different behavior takes place. For example,
1 result (56) for the static structure factd®(q) is no longer

14+ iQ-(ri=r2)r (2) . valid. Particular attention should be also paid to the kinetic
S(@=1 Nj drydrze [p™(rara;re,r) energy, which characterizes the largdehavior ofm, and

hence of the rms width. One should in fact distinguish be-
—n(ryn(ra)]. (39 tween the kinetic energy of the condensate and the full ki-

The LDA prediction forS(q) has been already discussed _netic energy of the system, which, even in dilute Bose gases,

. . . . L dominated aT =0 by the high momentum components of
in the previous sectioisee EQ.(20)]. This prediction is IS o

expect(—fd to hold in aIIIEegimeg of sanall andp higlexcept n(p). The former is given by36) and becomes smaller and
of course, whergR<7#. In fact the static structure fact,or smaller asR increases. The latter is instead of the order of
S(q) is nc;t sensitive té the Doppler broadening, which in-the interaction energy and would determine the rms width of

stead affects other moments of the dynamic structure factomgn%gam'c structure factor for momentum transfer larger
An interesting property of the static structure factor is the '
occurrence of a #f correction to the largel asymptotic

value: V. SCALING AND IMPULSE APPROXIMATION
8 In the previous sections we have often referred to the
S(q)=1-= % (56) impulse approximation as the proper theory to describe the
7 g high-q response of the system. At the same time we have

pointed out that the IA does not account for the mean field
Such a law holds fogé>#, but still in the Bogoliubov  shift (23) of the peak energy occurring at higp which
regimeqa<f, and is a peculiarity of dilute Bose gadéd$], s instead correctly predicted by the LDA. In this section
related to the shift of the average excitation energy given byve discuss in what sense the IA provides the exact
the Feynman ration; /my=E+4u/7. This behavior is not asymptotic description of the dynamic structure factor. The
exhibited by dense liquids, likéHe, wherea and ¢ are of  discussion is simplified by using scaling, a concept already
the same order. The IA does not instead predictqdgpen-  employed in other many-body systems, including atomic nu-
dence for the static form factor and consequently fails inclei [27], liquids, and solid$28,2]. Let us introduce the scal-

reproducing the shift of the peak. ing variable
The m, sum rule is also interesting for understanding the
difference between the LDA and the IA. For largéhis sum m q?
rule contains two corrections to the leading asymptotic Y= q E- ﬁ) (58)
value:

212 ) « which is the relevant variable to describe the asymptotic be-
lim my(q) = {q_} q_[fﬂ+4Ekin} (57  havior of the dynamic structure factor. We define the scaling
2 2m 7 ' function Fy(Y) according to the asymptotic behavior

qsee 2m
The first correction, fixed by the chemical potential, arises . q S(q,E)
again from the large behavior(56) of S(q) which, enters Fo(Y)= l'”lﬁ N
the expressioid9) for m,. The second contribution, propor- -
tional to the kinetic energy, arises form the kinetic structur
factor D*(q). The first correction is correctly given by the
LDA, the latter by the IA. It is worth noticing that if one
calculates the rms widtk22) only the kinetic energy term
survives in the large limit. This confirms the correctness of
the impulse approximation in reproducing the width of the 1
dynamic structure factor at higi Fo(Y)= NJ' dpydp,n(Y,py.p,). (60
Finally the m; sum rule is interesting because it can be
explicitly evaluated for any value af. For a uniform gas
(Vex=0 andE,;,=0) the ratioyymsz/m; coincides with the
Bogoliubov excitation spectrurtil). In the presence of har-
monic trapping it is instructive to calculate EGO) in the q —
small momentum transfer limit, where only the last term, A= — /f dY Fo(Y)Y2, (61)
containing the external potential, survives and the ratio m —
Jmg/m,; coincides with the frequency, of the dipole
mode. Indeed, the dipole mode is the only mode excited by-urthermore one hag”..dYFy(Y)=1, and[~..dY Y Ry(Y)
the density operatmsquje'q‘fi’ﬁ in theg—0 limit. =0.

(59

Svhere, in the limit, the excitation enerdy varies withq in
order to keep the value of fixed. Comparison with E¢28)
shows that (YY) coincides with the longitudinal momentum
distribution

In terms of the scaling functiofy(Y) the rms width takes
the form
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The scaling resul{59)—(60) holds for a wide class of

many-body systems interacting with realistic two-body po-

tentials, and is not restricted to dilute gasese, for example
[29], and references therginThis means that corrections to

the IA, due to final state interactions, give a vanishing con-

tribution to the limit(59). In general the following expansion
holds:

2
Fo(Y)+ .

(62

S(a,E)
N

9
m

m m
=F0(Y>+EF1(Y)+(5

In the presence of parity or time-reversal symmetry the scal- —10

ing function Fy(Y) is symmetric:Fo(Y)=Fy(—Y). Con-
versely one ha&(Y)=—F(—Y). This suggests that the
proper symmetrization[ S(q,E)+S(q,2E—E,)]/2 of the
measured signal with respect to the recoil enelgy

PHYSICAL REVIEW A 61 063608

T

fo(y)

0.1 Gaussian

expansion

0 el y
| | I
-5 0 5 10
y

FIG. 6. Dimensionless scaling functions in the Thomas-Fermi
regime: thefy(y) function[Eq. (64)] (solid line) is compared with
its Gaussian expansiai65) (dotted ling. The functionf,(y) [EQ.

=(2%/2m would ensure a faster convergence to the scalinge6)] is also showr(dashed ling

limit [28]. From an experimental point of view the direct
verification of scaling, by changing andE keepingy fixed,

is likely the safest criterion for checking the achievement ofcOTection to the IA. Imposing the conditiof:S(q,E) =0
the IA regime. A peculiarity of dilute gases is that it is pos-On€ finds, after some straightforward algebBpea=E,
sible to reach the scaling regime for values of momentat2u/3, showing that resul24) for the line shift holds not

where the Bogoliubov theory is still applicable.

For a trapped Bose gas, the eikonal E48)—(44) can be
easily expanded for small values of the Born parametgy,
corresponding to high values af(b=2muR, /q). One
finds

S(,E) R
33D R oy bty +oo,

(63

where fo(y) and f,(y) are dimensionless functions of the
variabley=(R, /#)Y, directly related to the scaling func-
tions of Eqg. (62): Fo(Y)=R, fo(y)/h and Fq(Y)
=gR bfi(y)/m#A. The functionfy(y) is given by

J(NY2+p2+p2)

y2+p2+p?

2
, (69

150 .
fo(y)=Ef dpydpz[

only in the highg LDA regime whereb is large, but also for
small values ob. This behavior is not obvious and seems to
suggest that the same result holds also for intermediate val-
ues ofh.

VI. DYNAMIC STRUCTURE FACTOR AND VORTICES

The study of vortices in trapped Bose gases is presently a
challenging topic of both theoretical and experimental inves-
tigation. First experimental evidence of vortices has been
recently reported30,31. On the theoretical side the struc-
ture of vortices, the corresponding stability conditions, as
well as their consequences on the dynamic behavior of the
condensate have already attracted the attention of many
physicists. The identification of suitable methods of detec-
tion has also been the object of theoretical investigation.

and is shown in Fig. 6 together with the Gaussian expansiofnese include the expansion of the condenfa the shift

3

)

157
fo(y)= T925%A ~

yielding the result$33)—(34) for the dynamic structure fac-
tor. The functionf,(y) is given by

Jo(\y?+p?) (1
—— % | drir Jo(r.py)
ye+pL 0

2 x?
XJ Y dxy1—x2—r? sin(yx)x(l—g—rf),
0

(66)

15 (=
fl(y)=7f0 dp.p,

and is also shown in Fig. 6.
Starting from Eq.(63) one can evaluate the shift of the
peak with respect to the recoil ener@y due to the first

of the collective excitation frequenci¢83], and the occur-
rence of dislocations in the interference patti3v].

In this section we show that the measurement of the dy-
namic structure factor in the 1A regime would represent a
powerful tool to reveal vortices in a trapped Bose gas. In fact
a vortex strongly affects the momentum distribution of the
system. This can be easily understood by noting that the
kinetic energy of a trapped condensate is roughly doubled by
the addition of a vortex19].

In the presence of a quantized vortex aligned alongzthe
axis the wave function of the condensate takes the form

P(r)=e"e(r, ,2), (67)

wherey(r, ,2) is the solution of the Gross-Pitaevskii equa-
tion [8,35]
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0.04 Fm= T T T T T T 0.05 T T T T T T T
\\‘\\\ 87Rb
.04 -
0.03 - N . 0.0
\\ é
2 ™\ < 0.03F -
2 002+ - §
< RN =
AN < 002 .
\\\ E_:
0.01 - N\ .
0.0l + .
0 | | L 1 I\ 1 0
0 1 2 3 4 5 6 7 _4 4
Ty [pm]
0.6 T T
= S7Rb FIG. 8. Dynamic structure factor of a rubidium-trapped Bose

condensate af=0 in the presencésolid line) and in the absence
(dashed ling of the vortex, calculated using the impulse approxi-
mation (3). The momentum transfer is taken along thaxis. The
trap parameters are the same as in Fig. 7.

2w ) 1 2
d(pe"*’f dririf dz
0 0

0

_ R}15
nTF(p)_NT:L_G;

momentum distribution

2
. 1 1.5 ip- 2
0 0.5 ps (1] xelPrf1— r2— 22 , (69)

FIG. 7. Density profilgup) and momentum distributiodown)
of a trapped Bose condensate as a function of the radial variables

andp, , integrated along and p,, respectively, in the absence _ . .
(dashed lingand in the presence of a quantized vortaxl line). =(px Py ,Pz/MR, /i, already introduced in Sec. I1l B. No-

These profiles correspond, in the absence of the vortex, to a centr%{Fe th_at in the Thomas_-Ferml limit th_e effect of the vortex is
density n(0)=1x10" cm 3. The trap parameters areo, actorlz_ed through a dlmenS|onI_ess integral.
=27220 Hz, and\ = 8. In Fig. 8 we report the dynamic structure factor calculated

in the IA [see Eq.(3)] with and without the vortex. The
s , calculation was carried out for a gas®f=10* 8'Rb atoms
_ RV " h +T(w2r2+w222) trapped in a disk-type geometry € /8). For this low den-
2m  ome? 2 LT sity sample the IA is very accurate. The double peak struc-
ture in S(q,E) reflects the occurrence of a peculiar Doppler
effect, and represents a clear signature of the vortex. In fact
po(r . 2)=piho(r,,2),  (68)  the vortex generates a velocity field in the condensate with
significant components both parallel and antiparallel to the
momentum transfeq.
which contains the additional centrifugal tefri/2m rf . So- Another important example where the investigation of the
lutions of Eq.(68) have been obtained numerically [86].  dynamic structure factor can provide useful informations on
The density distribution(r, ,z)|? exhibits a hole whose coherence phenomena is the study of interference effects in
size is of the order of the healing length?) of the gasé, = momentum space. This possibility was recently discussed in
which, in the Thomas-Fermi limit, is much smaller than theRef. [37], where two identical spatially separated conden-
size of the condensate. Also in momentum space the distrBates were considered. The momentum distribution of such a
bution exhibits a hole as shown in Fig. 7. This is the conseconfiguration exhibits interference patterns and gives rise to
qguence of the phase in E¢67), which gives a vanishing characteristic fringes in the shape of the dynamic structure
value to the integra(29) at p, =0, wherep, is the radial factor. At highg, where one can use the IA, one find¥]
component of the momentum vector The size of the hole
is of the order ofa/R, , and consequently comparable to the
total size of the condensate in momentum space. This can be S(q,E)=2Sy(q,E)
easily seen calculating the momentum distribution in the
Thomas-Fermi limit. In this limit the main effect of the vor-
tex on the momentum distribution arises from the preiée  whereSy(q,E) is the dynamic structure factor of the single
and one can safely use fgk the Thomas-Fermi expression condensateY is the scaling variabl€s8), ¢ is the relative
VI —Ve(r)1/9, holding in the absence of the vortex. The phase between the two condensates, dnd their spatial
result forn(p) can then be written in the form separation. The frequency period of the fringes Ag

where p is the scaled momentum vectorp

+9¢0(H 12)2

: (70

N S(Yd
+co ?‘FQD
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been already discussed in other works and has not been con-
) TA sidered here. At higher momenta the system behaves locally
as a uniform gas. This is the range of applicability of the
local density approximatiofLDA), which successfully de-
scribes the excitation of phonons as well as, at momenta
larger than the inverse of the healing length, the corrections
to the free-particle motion due to mean field interactions. At
even higher momenta the response of the system can no
longer be described locally, because it is sensitive to the
momentum distribution of the condensate, a quantity associ-
ated with long-range coherence effects. This regime is well
described by the impulse approximati@# ), a theory cur-
rently employed to investigate the quasifree response of vari-
ous many-body systems. In our work we have limited the use
of the 1A to momenta smaller than the inverse of the scatter-
ing length, i.e., to the range of applicability of Bogoliubov
theory. In this regime only the momentum distribution of the
FIG. 9. Relevant wave vector regimes characterizing the dycondensate is relevant and one can safely ignore the higher
namic structure factor & =0. Ris the size of the condensa&l); momentum components of(p), which would be crucial to
£ is the healing lengtii12). The ranges of applicability of the local describe the response at momentum transfers larger than
density approximatio(LDA) and of the impulse approximation #/a. An interesting feature emerging from our analysis is
(IA) are also schematically indicated. The momentum transfethat the transition between the LDA and the IA regimes is
#RI14¢% corresponds to the conditialy pa=A s for the LDA and  characterized by an important physical parameter, the so-
IA widths of the dynamic structure factgsee Eq(45)]. called Born parametg#1), which depends explicitly on the
size of the system. The corresponding transition takes place
=AE/h=g/md By choosing q=204 um ' and d at momenta fixed by the combinatiohR/¢%. We have
=35 um the fringes turn out to be-1.5 kHz, for a sodium shown that the transition can be accounted for by an eikonal
sample. treatment of the solutions of the Bogoliubov equations, and a
full calculation ofS(q,E) has been presented in this regime,
showing good agreement with experiments. Many of the rel-
VII. CONCLUSIONS evant features exhibited by the dynamic structure factor in
these trapped Bose gases have been also presented and dis-

In this paper we have provided a theoretical discussion o b ,
the dynamic structure facto®(q,E) of a trapped Bose- cussed using the formalism of sum rules and the concept of

Einstein condensate at low temperature. A first importantC&/ing: _ _ _ .

aim was the development of the proper many-body formal- A Seécond important point emerging from our analysis was
ism, based on Bogoliubov theory, to describe in a quantitath@t the dynamic structure factor in the IA regime of high
tive way the several interesting features exhibitedsby,E). momentum transfer o.ffers. a new important investigation
These mainly concern the role of two-body interactions,tOOI' Actuajly Bose-Einstein condensatlon In momentum
which sizably affect the response of the system in all theSPac€ Provides a deeper understanding of long-range coher-

relevant regimes of momentum transfer. The possibility ofeNce phenomena in comparison with the studies of the den-

providing accurate theoretical predictions for the dynamicSity profiles, which have been so far the main object of in-

structure factor is particularly appealing in view of the recemyestlgatlon. Quantized vortices provide a significant example

experimental data obtained via two-photon Bragg scattering"” which the dynamic structure factor exhibits nontrivial fea-
yres, reflecting the peculiar behavior of the phase of the

The available data are in general agreement with theory, an X ! .
thereby provide a further important proof of the crucial role order parameter. In particular th_e dynamic structure factor is
played by two-body interactions in these trapped Bose_charactenzed by a hole occurring at the recoil energy and

Einstein condensed gases. Interactions affect the shape Whose size is comparable to the total width of the signal.

S(q,E) at both small momentum transfer, where they are
responsible for the propagation of phonons, and at high mo-
mentum where they show up in the shift of the peak with We are very grateful to W. Ketterle and A. P. Chikkatur
respect to the free recoil energ#/2m as well as in the for many fruitful discussions and for providing experimental
width, which is sensitive to both mean field and Dopplerdata and details. L.P. would like to acknowledge many dis-
effects. Various approximate schemes have been consideredssions during the BEC workshop at The Aspen Center for
in order to better discuss the main physical features. Theskhysics. D.M.S.-K. acknowledges support from Robert A.
schemes are summarized in Fig. 9 where the importance dflillikan. This work has been supported by the Istituto Na-
the characteristic length scales of the problem emergezionale per la Fisica della Materi@NFM) through the Ad-
clearly. At momentum transfer smaller than the inverse ofvanced Research Project on BEC, and by the Ministero
the size of the system, the response is characterized by tlll'Universita e della Ricerca Scientifica e Tecnologica
discretized normal modes of the system. This regime ha8MURST).
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