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Bose condensates in a harmonic trap near the critical temperature
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The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric har-
monic traps are surveyed numerically. The solutions of the Gross-Pitae{@R)i and Hartree-Fock-
Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-
consistently using the discrete variable representation, while the most high-lying states are obtained with a
local-density approximation. Consistency of the theory for temperatures through the Bose condensation point
T, requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the
appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB
equations are made gapless either by invoking the Popov approximation or by renormalizing the particle
interactions. The latter approach effectively reduces the strength of the effective scatteringalgngth
creases the number of condensate atoms at each temperature, and raises theTyalakatdfe to the Popov
approximation. The renormalization effect increases approximately with the log of the atom number, and is
most pronounced at temperatures near Comparisons with the results of quantum Monte Carlo calculations
and various local-density approximations are presented, and experimental consequences are discussed.

PACS numbse(s): 03.75.Fi, 05.30.Jp, 05.10a

I. INTRODUCTION Bogoliubov (HFB) equations, which yield the quasiparticle
energies and amplitudes. These in turn determine the number
Since the first observations of Bose-Einstein condensationf noncondensed atomd; as well as various coherence
(BEQ) in dilute alkali-metal atom gasé4—3], experimental terms(thermodynamic averages over two or more Bose field
developments have posed many new tests for many-bodyperators The GP and HFB equations are iterated to self-
theory, even though weakly interacting Bose gases have longpnsistency at a given temperatdresubject to a fixed total
been used as a textbook paradipfyb]. Numerous theoreti- number of atoms in the systeN=N.+ N;. As emphasized
cal approaches have been employed in order to obtain accby Griffin [15], the coherence terms yield an excitation spec-
rate results for both the ground-state and nonequilibriuntrum that is not gapless: the lowest-energy mode of the HFB
properties of the trapped Bose systefis-8]. However, equations has finite energy and does not coincide with the
there have been notable differences between theoretical reelution of the GP equation. The HFB-Pop&dFBP) ap-
sults and experimental data on the excitation frequencieproximation, which neglects these terms, has been quite suc-
near the transition temperatufe [9—12). This problem has cessful in describing the properties of the trapped Bose
inspired the introduction of a renormalized effective atom-gases, but is not well-grounded theoretically, and fails to
atom interaction[11]. Recently developed theoretical ap- yield accurate predictions for the low-lying excitations at
proacheqd13,14] that incorporate the dynamics of the non- high temperaturef9,12]. In this work, we explore a recently
condensate density but without a renormalized interactioproposed extension of the HFBP theory that incorporates the
have resulted in excitation frequencies in closer agreememoherence terms in a gapless mari&,11]; in addition, we
with experiment. Nevertheless, the unresolved issues famodify the commonly used identification of the chemical
Bose systems nedr, have provided a motivation for us to potential with the eigenvalue of the GP equation.
examine further the theoretical and numerical methods for The identification of the chemical potential with the ei-
modeling confined Bose gases ndar. We have numeri- genvalue of the GP equation is incorrect in general. In the
cally implemented the most plausible and tractable equilibgrand-canonical ensemble, the chemical potential is defined
rium mean-field theories in order to systematically surveyasu=dJE/JN, corresponding to the energy cdsbof adding
various properties of these systems. a particle to the entire system, not only to the condensate.
In this work, we follow the standard mean-field theory For a dilute, weakly interacting Bose gasTat 0, for which
[15], with certain modifications described in detail below. the population of noncondensed statib® depletiopis neg-
The nonlinear Gross-PitaevskiGP) equation, which in- |igible, the identification. = u is justified. At finite tempera-
cludes interactions between the condensate and the therﬁ‘t@ es, however, the assumption y|e|ds results that are discon_
atoms, is solved for a static condensate contailNgtoms.  tinuous as a function of thewave scattering lengtag. To
The eigenvalue of the GP equatign, is usually identified a better approximation, we find that the chemical potential at
with the thermodynamic chemical potential. The linear finite temperatures is given by the eigenvalue of the GP
response of the system is represented by the Hartree-Foc&guation plus a term that varies inversely with the number of
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condensate atoms. The resulting equations provide an ineds both as alternative approaches for comparison purposes
proved description of these finite systems, yielding observand the complementary use for the most energetic atoms. In
ables that are both continuous witly, and similar to those Sec. lll, we discuss our numerical methods and iteration pro-
obtained using path-integral Monte Carlo technigqLES. cedures. Section IV presents results for Bose atoms in a
It is presently unclear to what extent many-body effectsSpherically symmetric harmonic trap as a function of the
beyond the mean-field approximation modify the effectiveScaleds-wave scattering length, total number of atoms, and
interactions among Bose-condensed atoms in harmonic tra@mperature.
[11,16,18,1% For the homogeneous Bose gas, it is now es-
tablished both from renormalization-grofip0] and pertur-
bation[21] theories that the many-bodly matrix, or effec-
tive s\wave scattering length, goes to zero at.. The low- A. Thermal sums over quasiparticle states

energy, long-wavelength limit of the many-bodymatrix The derivation of mean-field equations for a weakly inter-
has been shown to be closely related to the coherence terfiing dilute Bose gas has been described in detail elsewhere
mr [16,19; this “anomalous average” represents two- g 3018 The question of the chemical potential for
particle correlations and is the Bose analog of the supercons 0 for thermal sums of quasiparticle states deserves more
d“CF"?g order_param(_ater in_interacting Fermi systems. Renorthorough discussion, however, and we modify the standard
malizing _the Interaction using the; yields a gapless_HFB procedure. In addition, following discussions by Burnett
theory without having to invoke the Popov approximation g o [16,11,19, we treat the anomalougsoherenceterms

[11], but it remains uncertain whether the prescription is i in a manner that produces a “gapless” theory.

propriate for nonuniform systems. The implications of this_ Following the standard approach, we decompose the Bose
theory for trapped Bose condensates are explored numefiy y onerator into ac number for the condensate, plus an

cally below, and the results are compared to those obtaineghe a0y representing its fluctuations. The full many-body
with the Popov approximation and path-integral Monte Carlo,, iitonian is approximated using mean-field theory, be-

methods. f th h flict | q coming explicitly number-nonconserving. The grand-
In view of these somewhat conflicting results and unre-c,qnical ensemble is used, and thus the chemical potential,

solved issues, there is strong motivation for the continued, 4 temperaturd, are the sole fixed quantities. The gen-
development of numerical methods in order to |mplemen€ra|ized Gross-PitaevskiGP) equation for the condensate
various models and obtain quantitative predictions for com

. th . M Carl h d'and coupled Bogoliubov equations for the excited quasipar-
parison with experiment. Quantum Monte Carlo methods;q|e giates are then solved. For a finite number of atoms in a

[17,22,23 are able to provide accurate results for certain, monic potential, however, the standard approach yields

observable quantities.. The computational procedure i?/alues for the mean condensate numRerthat are discon-
lengthy, however, and is not demonstrably able to yield €X1inuous as a function of interaction strength.. In our ap-

citation frequencies since it typically applies only to equilib- . ~ _
rium configurations. Local-density approximatiofisDA)  Proach, the eigenvalue of the GP equationis determined
y the mean number of atoms in the condendgte In con-

are much simpler to apply, but the standard forms fail neaP ) S X
T, and are questionable when the density is so small that thiE2St: the chemical potentigk, is adjusted so that the mean

local collision rate is insufficient to establish local thermo- {0t&l number of atoms is the desired value. A simple rela-
dynamic equilibrium. On the other hand, widely used basistionship is found connecting, «, andN., which is adapted
set techniques are generally unable to represent the lardeom the ideal Bose gas case.

numbers of atoms in excited states at high temperatures. Re- The Hamiltonian for an interacting Bose gas in a trap in
cently, Reidlet al.[24] have usedfor 2000 Rb atoms af  the grand-canonical ensemble is

=0.5T.) a hybrid method in which a sum over discrete qua-

siparticle states at low energies is supplemented by an intej _MNZJ dr{ ot b+ Q&T&T{p;ﬂ},

gral over an energy-dependent LDA above some cutoff en- 2

ergy. The interactions of these two subensembles with each (1)
other are expressed by mean-field potentials that represent

the effect of backgrounq atoms. In .the present work,' th‘:w'/vhere the field operatorfi(r) satisfies [J(ry), s (ry)]
Iov_v-lymg states are ob';amed by solving _the HFB equations_ &(r1—r,). The pseudopotential atom-atom interaction has
using the discrete varlable_ repres_entat(@VR) [25-27] been chosen to b¥(r,—r,)=ga8(r;—r,), where the cou-
and the cutoff energy is raised until the results converge t ling constanty=4mh2a../M is written in terms of the scat-

within a stated tolerance. The techniques employed have e Gring lengthag, and massM. The harmonic potential is
abled the investigation of trapped Bose gases at finite tem- 1M w22 sc'th ¢ ; f dtob
peratures containing a larger number of atoms than in previ- & 2. @o = WITh trapping lrequencyoo assumed 1o be
ous calculations that we are aware of. As a result, théSOtrOp'C' I .

approach of these systems to the local thermodynamic equi- The Hamiltonian may be rewritten as

librium and to the hydrodynamic limit can be explored.

Il. THEORETICAL FRAMEWORK

ﬁZ
- mvz""vext_:“

In Sec. Il A, we outline the GP and HFB equations. We H—uN=H-2uN+(u—u)N
discuss the chemical potential and gapless theories in Secs. o .
I B and Il C, respectively. Section Il D reviews LDA meth- =K+ (u—u)N, 2
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where, as mentioned above, the Lagrange muItipTie'rs whereZ=K+Vext—ﬁ+Zgn(r), Q=g[n¢(r)+my(r)], and
related to the number of atoms in the condensate. In théhe total density im(r)=n.(r) +n+(r). For gapless theories,
following, we choose to diagonalize the operatér=H  discussed further below, the=0 “Goldstone mode” has

— %N rather than the originaF — «N: both choices must 1€ Propertyeo=0, so thatug(r) = —ve(r) =®(r). Thus on

lead to the same excitation spectrum, though with gN€€j €nergy scale, the condensate has zero energy and de-
temperature-dependent shift of the vacuum for quasiparticldnes the vacuum'for.qu?smartuzle excitations. .
excitations. In order to make further progress, the Bose field After the substitutiony=®+ ¢, the number operatd«
operatory=® + & is now decomposed int®, ac number  =Jdri'(r)¢(r) contains terms, such dsir® ¢, that do not

for the condensate, and(r), which annihilates a thermal CONServe particle number. The Bogoliubov transformation
atom atr. The condensate density is defined my=|®|2, (6) and coupled equation(®) introduce a quasiparticle basis

and the number of condensate atomsNig=/dr|d(r)|2. B/

such that termst & and e;a; are eliminated, so thquasi-
The noncondensat¢herma) densityn; and anomalougco-  particle number is conservef®8]. The diagonalized Hamil-
herence termsmy andm; are[15]

tonian explicitly does not conserve particle number, how-
ever; the operatok in the quasiparticle basis does not
nr=(¢" ), mr=(a), mr=(gp'¢"), commute with the excited particle number operaire,
which has contributions fromx'a' and aa terms. In the
where the angular brackets indicate a thermal average in thgand-canonical ensemble, onfyand x are precisely de-
grand-canonical ensemble, discussed in more detail belowined, and all observables must be defined in terms of ther-
The mean-field apprOXimation is used to reduce the thlrdma| averages. Each Occupation number, inc|uding the con-
and fourth-order terms to, respectively, first and second ordefensate number, fluctuates about its mean value
in ¢,¢" so that the Hamiltoniai can be diagonalized, fol-
lowing the procedure normally used foF— N [28,15.
Excluding the possibility of aggregate motion and vorti- R
ces[29], ® may be taken to be real. The first-order termswhere the explicit definition of the averag®) is yet unde-

)

(Npy=(a'a), j=01,..., 8)

(plus third-order terms in the mean-field approximationk

fined. Similarly, both the eigenvalue of the GP equation

vanish if the equation for the condensate is taken to be théd) and the total energyE) fluctuate about their mean val-

generalized GP equation:

2

h -
_WV2+Vext+g[nc+2nT+mT] (4)

O=pnd.

Note thaty is the eigenvalue of the GP equation. The part of

K that is zeroth order in the excited orbitals i€ aumber

2

_ h” oo ~. 9 2
Ko= | drd(r) —WV +Vext—,u+§|d>(r)| D(r).

(5)

The terms inK that are second order k}j are(in the mean-

field approximation diagonalized by the canonical transfor-

mation

2/)(r>=$ [uj(na;+vF(nafl,
(6)
<%T<r>=2j [uF (D] +vj(Na;],
such tha e; ,a]]= 6, ;. The operatoK is diagonal to sec-

ond order in¢ if the quasiparticle amplitudes;(r) and
v;(r) are solutions of the Bogoliubov coupled equations

Luj(r)+Q(rv;(r)=€u;(r),
) (7)
Loj(r)+Q(r)u;(r)=—e€jv;(r),

ues.

Inserting the transformatio(6) into Egs.(3) and intro-
ducing the identification given by Ed8), the normal and
anomalous densities become

(0= 2 ANYLu O+ o2+ o012 ©)

mﬂr%zé%uﬁﬂv?ﬂﬂ](ﬂﬁ+l} (10)

The standard normalizationfdr[|u;(r)|?—[v;(r)|?]=1
yields

f dr|u;(n]?+v;(n]2]=1+2v;, (11)
whereV;=[dr|v;(r)|?. The quantities; are related to the
T=0 depletion, which i£;_,V;. The relation between the
total atom number and the quasiparticle occupation numbers
is therefore

<N>ENC+NT=<NO>+J dr n(r)
=NC+;;[(NQ(1+2VQ+W4L (12)

where the average number of atoms is written in terms of a
contribution from the condensate and nonconden&adgita-
tions).
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The thermal average of the diagonalized Hamiltonian then -
becomes 2 N exp— Ble+ (i — ) (1+2V) IN;}
(Nj)=— -
> exp{—Blej+ (n—w)(1+2V)IN}

N;

<I:|—,LLI§I):K0+]§=:1 & (N =V + (= u)(N)

~ _ 1 Y. (16

~Eem Nt 3 (N6 (=) (1+2))] SRl T ()L 2Vp =1
In order to obtain the result on the second line of Ed),
+Vi(u—p—e)} (13)  the population dependences of the GP eigenvalwnd the

quasiparticle energies; are ignored. At sufficiently low
temperatures, the; for trapped Bose condensates are rela-
WhereEC=Ko+ﬁNc is the total ground state, or condensate,tively insensitive to the value oN. and the temperature;
energy. indeed, in the Thomas-FerrifF) limit, valid for large con-
densates, the excitation frequencies at zero temperature are
independent ofN..
B. Occupation factors and the chemical potential Neglecting the factor¥;, and shifting the energy scale so

In the Bogoliubov approach, the ensemble is consideref1atEj= €+ u, one recovers the more conventional expres-
to be the sum of a condensate plus noninteracting quasipa$lon
ticles. The mean occupation numbers of the quasiparticle

states are to be determined from the grand partition function, 1

N )= . 1
o N = ex g, w11 7
Q=Tr{exd - B(H—uN)]}, (14) _
From this expressiofil7) for j=0, with Eq=u, one finds
that the chemical potentiagt and the eigenvalue of the GP
through the standard identiti¢4,5] equationu are related by the expression
~ 1 1
1((9an> (&InQ) 19 p=p=gin| 1+ 5] Ne>0. (18
N)=— , (E)y=— . (5 ¢
N=g | E=T5] |

For T=0 this gives the usual definitiop=, but for T

>0 there is a correction tgp that increases ad. decreases.
Unfortunately, while the diagonalized Hamiltonian is written While this additional term will not be correct at high tem-
in terms of noninteracting single-quasiparticle energies, th@eratures where the condensate is strongly depleted, it will
expressiong12) and (13) involve the thermal averages of be shown below that results obtained with this procedure are
particle occupation that we are now seeking to determine¢ontinuous functions oé at all temperatures, while with
Furthermore, the factorization that one makes for an ideal.=u they are not.
Bose gas is invalid for a gas of interacting Bose atoms be- |t is difficult to go beyond the above approximations, but
cause the quasiparticle energies depend on the occupatiove will suggest possible avenues to proceed in future work.
numbers, as well as the reverse. Thus, rigorously, these oThe major effect omitted is the dependence of the quasipar-
cupation factors should be calculated self-consistently, along|e energiesE; (including Eo=x) on N.. One can first
with Egs.(4) and(7), since they depend on as welldster-  consider the condensate term itself. We assume, for the mo-

minethe quasiparticle eigenvalug3l]. To do so analytically ment, that factorization of! (14) is valid, and write
would be a truly daunting task. We make several simplying

assumptions in order to obtain results, but we emphasize that N E
these questions merit further study. 0=007, Qf% efluNe=Eo), (19
In reality, the probabilitiegN) will be peaked at the most ¢

probable values, as dis_cussed below for _the condensatg, the Thomas-Fermi approximatiogkinetic energy in the
Therefore, when evaluating the sum owdy in Eq. (14),  GP equation neglectidone obtains for a spherical conden-
deviations of N;, from (N;,) for j'#]j will not greatly sate[6]

modify the spectrum of the quasiparticle states. If this is so,

a reasonable approximation is to repla(d?dq) by N; when ~ :}
estimating the mean occupation numbers from the grand par- KTF=3
tition function. If the dependence of; and N; on N;(j

#]') is also neglected, thef) can be factored, and we ob- where the harmonic-oscillator length &= \JA/Mw. The
tain following relations follow in the same approximation:

15N ag.| 2°

_ N2
™ =yNZ”>, (20)
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5 5 JIE,

5 5~ ~
Ec=77NZ 5:7MTFNC1 N, M (21)

and similarly,Z and Q appearing in Eqs(7) become

L=K+Vey—pu+2gcnc+2geny, Q=gcn.. (23
Then from Eq(19), neglecting(), one can obtain the mean
value of the condensate occupation fron{N.) In the proposed gapless theories, labe®t, andG2, the
=3n NcP(Ne)/Zy P(Ne),  where  P(N¢)=exd B(uN. coupling constants are chosen to be

—29N7®)]. We have verified numerically for typical values

of B and u that the mean value is extremely close to the o {91;9}, G1

most probable valugC for which P(N;) is maximum. Fur- L ’ge}_[{gl;gl}, G2, @49
thermore, an expansion of the exponent in the above expres-

sion for P(N.) yields a value for the variance ®f;, inter-  \where

preted as the value af such thatP(N.* o) = (1/e)P(N,).

In the grand-canonical ensemble at zero temperature, there- mq(r)

fore, one obtaing 6N)=(5/87)N°, so that the frac- gl(f)=9[1+ 0 |’ (25)

tional width of the occupation number distribution decreases

asN; "*°. This may be compared with the result of Giorgini The renormalized coupling; replaces the two-body ma-
et al, derived from excited-state occupation numbers for therix associated with binary atomic collisions, which is the
canonical ensemble,dN¢)~ (T/T,)NZ® [32]. Either result  scattering lengtrag, in vacuq by the zero momentum and
confirms that the fluctuations iN. are relatively small for energy limit of the homogeneous many-body matrix
large N, . One should next consider how the dependence 0f16,11,19. In the G1 approximation, only the condensate-
Q1 would effect(N.) and (6N.). This is left for future condensate and condensate-excited are dressed, @iie
work. motivated by the expectation that all particle interactions
The dependence of the quasiparticle states on the occupshould be similar. Renormalization of the coupling has the
tion factors reflects the extensive nature of this finite inter-additional advantage of removing the ultraviolet divergence
acting system; that is, adding a particle to the many-bodyn m; resulting from high-energy quasiparticle contributions
system alters both the number and character of the accessilidé Eq. (10) in the T-matrix approximation. In nonuniform
states. This behavior is simil§83,34 to that of a finite gas systems such as the trapped Bose gases, however, the value
of noninteracting particles obeyirfgactional exclusion sta- of g,(r) can diverge in regions near the condensate surface
tistics[35], which obey a statistics intermediate between thatvhere the condensate density vanishes more rapidly than the
of bosons and fermions. The parameter representing the stanomalous average. In practice, this divergence may be
tistics has been identified with the strength of théunction  eliminated by setting g,(r) =g{1+ m(r)/[n(r)+ &1},
potential for an interacting trapped Bose gas in two dimenwhere §~ 10 2. While the results, described in detail below,
sions[34]. Indeed, our expressiofi8) for the thermody- are found not to depend strongly on the choice &fits
namic chemical potential is similar to that found for a non-existence underlines a deficiency in the theory in its present
interacting fractional-statistics gas at finite temperaturgorm. The consequences of i@l approximation are not
[33,34. We hope to pursue these issues more fully in futureexplored in this work. In the following, the notatiog(r)
work. will be used in place ofg,(r) and in distinction fromg,
which is unrenormalized.

C. Gapless approximations

We return to the conditions for gaplessness. The(®P D. Local-density approximation

and Bogoliubov (7) equations together comprise the In local-density-approximatiofLDA) schemes, the con-
“Hartree-Fock-Bogoliubov” (HFB) approximation for a di- densate density is assumed to be varying sufficiently slowly
lute interacting Bose gas. In this case, one does not obtaithat the population of excited states is determined entirely by
€0=0, and the theory is said to not be gaplébe term has the local potential and temperature. The thermal density may
been taken from the homogeneous situgtidn the Popov  then be treated locally as if the interacting Bose gas were
approximation, gaplessness is ensured by neglecting the chemogeneous. We will discuss three basic LDA schemes and
herence termsn; and my, but the justification for such an several variants.
approximation is questionabl&5]. In the semiclassical approximation to the GP and HFB
In order to convert HFB into a gapless theory and stillequationg24,36], the thermal atom quasiparticle amplitudes
retain the anomalous averages, Burretal. [16,11) have in the Bogoliubov equationg7) become local functions
recently proposed an alternative treatment in which the coud(p.r) andv(p,r). With the Popov approximation, one ob-
pling functions for the condensatg(r) and excited states tains the coupled algebraic equations
0e(r) absorb the pairing correlations, and thereby take on a
spatial dependence. Equatiof) becomes L(p.1) gne(r) ) u(p,r)) _ r (u(p,r))
- —gne(r)  —L(p.r)/\v(p.r) “lopn))’
{K+Veyt geNe+2genT @ = u @, (22 (26)
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where£(p,r) =p?/2m+ Vext(r)—ﬁ+29 n(r). With the con- B *

dition u(p,r)2—v(p,r)>=1, the local excitation energies nT(r)—; ni(r®(e.—€)+ EcdenT(e,r), (31)
may be immediately obtained, e(p,r)=[L(p,r)?

—g%n2(r)?1*2, and have the well known linear dispersion. yhere ny(r) is the jth term of Eq.(9), € is a low-energy
;I'he cr;?nc]ondensate density from E@) may then be easily  cytoff, and, in the above notationy(e,r) has the form
ound[24]:

3/2

3 _ € ~ 12
nT(f)=f d ps[ﬁ((p,rr))(m(p'r»_’_%)_% nr(er)= . 2(n(p,r))+1 E}[ﬁ Vet 2 —2gn]*2,
(27)°L €(p, (32
X O(L(p,r)?=g*ni(r)), (27 - . .
A similar equation applies to the anomalous average
where This latter hybrid procedure is referred to below as the dis-
crete quasiparticle sutDQS approximation, an abbrevia-
1 tion for “discrete Hartree-Fock-Bogoliubov quasiparticle
(n(p,r))= — , (28)  sum.” Either a Popov 0iG2 approximation may be made
exd B(e(p,r)+u—u)]—1 within the DQS, and these are referred to below as DQSP

and DQSG, respectively.
such that theéd function is unity when the argument is posi- A simpler LDA may be formulated by treating the local
tive, and zero otherwise. These equations define the Hartreexcitations within the Hartree-Fock approximation, which ig-
Fock Bogoliubov Popov LDA, which we will refer to as the nores the linear dispersion at low energies. The condensate
“BPLDA.” For G2 calculations, one obtains the BGLDA density may again be obtained within the TF approximation
by the substituiorg—g(r) everywhere. Then one needs  using Eq. (30). The thermal density is given by(r)
=[[d3p/(27)3](n(p,r)), where(n(p,r)) is defined in Eq.

d? (28) but with e(p,r)= L(p,r). Integration over the momenta
mT(r)=J (27:;3U(p,r)v(p,r)[2<n(p,r)>+1] readily yields
d®p 1 1
=—g(r)nc(r)f(ZTp)sZ[Zm(p,r)Hl] nT(r)=Egs/z(e‘ﬁ”en")*29”")‘“]), (33
XO(L(p,r)*=g°ng(n)). (29

where the thermal de Broglie wavelength iy
. . . =(27h%mkT¥ and g,(2)=2]_,2/j* As usual, the
The integral is not formally convergent, however. Since theChemical potential is determined by the condition that the
anomalous averages appear only in the context oGthend

G2 approximations, where the formal ultraviolet divergencetOtal atomic numbeiN = Jdr[ne(r)+n(r)]. With the TF

o o . expression(30) for the condensate, the argument of the
Itishzz]r:?stf)? we may safely neglect thel term following function in Eq.(33) is always less than unity. If an “exact”
The semiclassical HFBP approximation exhibits a gaplesi_‘oéug%n gg;;?%;‘t’;‘g‘jggﬁfg 'ggff; 'er"a?fj'{:ﬁgrggesdf'g'gtgas
oted below and in Refl17], there is then a range of tem-
peraturesT < T, for which thegs, function given in Eq(33)
~ diverges, since its argument can become greater than unity.
nu(r)= P~ Ved") —2gnr(r) O[ 7= Vo (r) - 2gnr(1)]. An even simpler form of the LDA has been formulated
¢ g X T [36,37] in which the effect of interactions on the excited
(30)  states is completely ignored. Assuming a TF form for the
ground state, this LDA consists of the parametrically coupled
The TF approximation is valid in the limit of larghl.,  equationgin view of the other approximations here, in these
where_the energy contribution _f“’”? the mean-fiéith_rtree) equations we ignore the distinction betweerand u.):
potential exceeds that of the kinetic energy. For this reason,

Eq. (30) is not expected to be a good representation of the

excitation spectrum only if the condensate is also treate
within the LDA, which implies the TF density:

condensate density close to the transition temperature. ne(r)= K~ Vexdr) O[7—Veu(D)] (39)
In the regime of small condensate numbers, therefore, it ¢ xR

becomes more important to solve the equations for the con-

densate and excitations exactly in order to obtain the low- 1 _

lying discrete states, as described in the preceding section. In n(r)= —393/2(e7'3|vex1(r)7/’“‘)_ (35)

this work, we use the exact GP and HFB equations, but the AT

sum over discrete states is combined with an energy integral
over high-lying states using LDA functions in the mannerin this approximation, the interaction enters only via the
described by Reidét al. [24]: chemical potential in the TF equation, which is a function of
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as. and condensate number. For a spherical condensatégpresented by Laguerre polynomials up to the order defining

Tere= 3 (15N as/a0) 2 wo, Whereay= Vi/M wy is the bare the Gauss quadratuid, , which in_ the present calculati_ons_
oscillator length. range from 1000 to 2800; matrix elements of the kinetic

It is shown in Ref[37] that a low-order expansion of Eq. €N€rgy are computed from expressions given in [R27].

(35) yields the following expression fd¥/N: Increasing the value ofl| increases the accuracy of high-
lying states, allowing for a larger cutoff energy at which

3 2 N |25 the discrete sums are terminated, and a smaller number of
W=1—(—0) - 7}@ (W) , (36 atoms in the LDA integrals. Since high-order polynomials
Te extend far beyond values &,,,,=50a, relevant to trapped
_ _ ) ~ o condensates, the number of spatial grid points required can
where {(n) is the Riemann zeta functiony=pure/KeTc  pe limited to justN,~200 for all values oN, .
~3{(3)"%(15N " a :/a0)?", and the critical temperature for —|mplementation of the above mean-field theory requires a
N ideal Bose atoms in a harmonic trap is given[B$,39 stable and efficient iteration procedure to solve the GP and
0 _ 3 _13 Bogoliubov equations for a given total number of atohhs
KeTc/fhwo=0.940N""-0.6842- 0.50N""=  (37) and temperaturél. In our approach, the functions,(r)
=®d?(r), n(r), andmy(r) are calculated self-consistently
using Egs.(4) and (7)—(10), supplemented by the LDA ex-
pressions for states above the cuteff for fixed N, andT;
the chemical potentigk is determined by Eq18). Because
Some of the plots given below contain results for idealthis iteration procedure is especially delicate rigay yet is
noninteracting Bose atom&{.=0) in a harmonic trap. The crucial for the results presented, we give a few more details.
results given foN. were obtained from sums over the occu-  We emphasize that the convergence criterion must con-
pation numbers as given in E), with d;=2/;+1, E;  sider the spatial distribution functiomg(r) andn+(r) rather
=hw(/+2n;+3/2). The chemical potential was adjusted than simply the aggregate valubls and N;. The iterative
to satisfy the conditiotN=2;_o(N;). An alternative expres- procedure can be decomposed into three separate levels of
sion can be obtained from the density distribution given byself-consistency, subject to the minimization of the “Error”:
Chouet al. [40]:

T
Te

T {(2)

Equation(36) is solved iteratively fomlN./N.

E. Ideal Bose gas

m Error= | dr[[n¢"(r) =ng(r)| +[n§*(r) ~nf(r)] ]
N= 1?2 +> 2 {(1-e 2A)[tank BI/2) ]} 3%~ 1), f g I -
1 =1

(38)

The “in” and “out” functions are the input and output of
where z;=ef(»~32) This expression requires fewer terms the combined GP and HFB equations plus the high-energy
than the aforementioned procedure, and gives identical rd-DA integral. Normally, the Error diminisheg&hough not

sults for temperatures up to about 0.9 necessarily monotonicallythrough level 1 iterations, in
which the output functions are fed back into the GP, HFB,
IIl. COMPUTATIONAL TECHNIQUES and high energy LDA equations. In this level, the condensate

number N, is held constant while the condensate density

With a spherically symmetric trapping potential, all ob- (normalized to unity is allowed to vary. When the Error
servables may be decomposed into functions of radaisd  reaches some predetermined tolerance, level 2 iterations be-
spherical harmonics)["(6,4). The GP and Bogoliubov gin andN, is adjusted to approach the condition thég
equations then become one-dimensionalrinthe ground  +N;=N. The first level 2 adjustment from the converged
state is assumed to havé,(n) = (0,0), while the excitations |evel 1 iterations is based on a simple proportionality be-
obtained using the Bogoliubov equations aré21 degen- tweenN andN.. Subsequent level 2 adjustments are based
erate. Both equations are solved using the discrete variablgh a linear relation betwee, andN, where the parameters
representatiofDVR), a computationally efficient approach are obtained from the last two level 2 iterations. Aftér
for the trapped interacting Bose gases that has been recentlyn, has converged tdN to the desired tolerance, level 3
described in detail25]. iterations proceed, in which iteration levels 1 and 2 are re-

We have used two variants of the DVR approach: an equipeated with successively larger number of Laguerre func-
distant mesh array derived from sine functions as discussegbns N, and mesh point8l, . These three levels of iteration
by Colbert and Miller[26], and a mesh based on Gaussiantypically achieve accuracies for the condensate nurhierf
quadrature, using the zeros of associated Laguerre polynomg few atoms. While this accuracy is beyond what is acces-
als Ly, (r), whereN_ is the order of the quadrature amd  sible to current experiments, it permits the comparison of
=2 for a spherical condensat27]. The latter DVR has the different theoretical models.
advantage of having a fine mesh for snralWhere the con- The iteration procedure is illustrated in Fig. 1, which
densate density is nonzero, and a more coarse mesh at lardeacks a calculation for 2 10° atoms and scaled temperature
distances where the thermal distribution varies slowly. Al-t=kgT/%Zw=53 [from Eq. (37), t2~54.3], using the La-
though the condensate and excited orbitals are computed @uerre DVR basis. After more than 50 iteratiom, con-
the physical grid, the matrix elements of the operators ar@erged from the initial estimate of 109 to the final value of
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2000 ~
= FIG. 2. If u=pu, from the HFBP discrete quasiparticle sum
1700 (d) (DQS) nearT, there is a discontinuity in thBl, vs T function with

1400 respect toag.. The figures showN, vs T for N=5000 atoms, for
several values ddg./ay. Even in the limit of smalbg./ay, N, goes

150 to zero abruptly withT for the self-consistent solution, while for the
2130 (e) ideal Bose gasas=0), N.(T) has a smooth tail.
110 iteration procedure could exhibit instabilities when the tem-

perature approached,. For N>10°, we found that there

x100
&5 6000 (f) often appeared to b@t least two semistable regions when
utJ 3000 N.=5000, between which the calculation tended to fluctuate.
In order to ensure the solution remained in the more stable
10 20 30 40 50

0
0 state, small temperature increments=0.2 were used.

lteration No.
FIG. 1. Convergence of the self-consistency procedureNfor
=2X10, as/ay=0.0072t,=53, and a Laguerre DVR mes(a) IV. THERMAL AVERAGES
Number (_)f points in the DVR mesiNg . (b) Fract_ion_w of atoms in A. Condensate fraction
the LDA integral,F;, . (c) Cutoff energy,e., specifying the upper
limit of the discrete quasiparticle surtd) Order of the Laguerre In several of the plots to follow, results are presented for

polynomial,N, . (e) Condensate numbet.. (f) Error, defined by & Seri_es of values ohs./a,. For Compari.son with current
Eq. (39), showing convergence up to each changdlobr Ny, and ~ €xperiments, we note that the scattering lengts for

ultimately convergence to the condition thég+N;=N. 8Rb, #®Na, and ’Li are approximately given by
110ag, 52a5, and —27.3g, respectively, whereag
_11 . . .
149 atomgFig. 1(e)]. Each adjustment dfi; (level 2 or N, ~9.292X 101/3 m is the Bohr radius. Thus, if one takes
(level 3 results in a jump in the errdFig. 1(f)], which then = (@xwy@;) ™~ then for the recent MIT experimenits2] on

converges again. In this calculatid, increased from 1300 ~Na, »=w/2m=96.4 Hz, the JILA experimentf9] give

to 2100[Fig. 1(d)], corresponding to an increase of mesh?=182.5 Hz, and the Rice experimen{s] give v

points (Up to Rya,=42) from 149 to 190Fig. 1(a)], an in- =144.6 Hz, correspondlng tag./ap=0.001 29, 0.007 29,

crease ine, from 102w, to 144w, [Fig. 1(c)], and a de- a@nd —0.000 46, respectively.

crease in the fraction of the total number of atoms in the Figure 2 illustrates the consequences of setting the eigen-

LDA integral from 57% to 40%Fig. 1(b)]. value of the GP equatiop equal to the chemical potential
The fraction of atoms in the LDA integral is negligible u«, as discussed in Sec. Il A. With this assumptibare used

only for calculations at low temperatures with smdllSince  in conjunction with the Popov approximatiomy=0), N,

T, rises as~0.94NY3, the required number of thermal states goes to zero abruptly witfl when the population in excited

rises with N for calculations nea., and inevitably the states reaches the total number of atdds5000. By con-

LDA integration must include a larger fraction of atoms. Fortrast, results forg.=0, obtained as described in Sec. Il E,

N=2x10% 2x 10°, and 16, at most 9%, 38%, and 74% of have a smooth tail at high temperature. Thus, in the limit

the atoms were in the integral at temperatures in the vicinitya,—0, the results neaf . exhibit a discontinuity with re-

of T.. Correspondingly, the mesh sikg required to ensure spect to the ideal gas results.

convergence increased from 140 to 210 fobetween 18 Figures 3 and 4 show results obtained from calculations in

and 16. The reasoy does not increase more rapidly with which the chemical potential is as given in E{8). The

N is that the LDA approximation improves with the total smooth variation of the chemical potential, Fig. 3, through

number of atoms. T. is reflected in all relevant properties of the system, includ-
It should be pointed out that for large values df the  ing the number of condensate atoms and excitation frequen-
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FIG. 3. The chemical potential in units dfw relative to the
harmonic-oscillator zero-point energy/# w— 3/2, vsT for various
values ofag./ay. (a) shows the full range of temperatures uprig
while (b) shows a limited range nedr, .

cies. Whenay=>0, the chemical potential evolves continu-
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through zero increases witly; even thoughT; decreases. In
addition, Fig. 3 shows that foa,<0, u<3#hw/2 every-
where, with maximum values at temperatufiesT...

Figure 4 shows the number of condensate atoms as a
function of temperature foN=1000 and 20 000 for a range
of interaction strengths./a,, calculated within the DQS
formalism. The condensate population n&aiis evidently a
continuous function of both the scattering length and tem-
perature.

The plots shown in Fig. 4, especially for 20000 atoms,
show that the52 renormalization procedure results in a sig-
nificantly higher value oN., relative to that obtained within
the Popov approximation, for the larger valuesagf. Fur-
thermore, the difference between t82 and Popov results
becomes more pronounced ag increases. This behavior is
consistent with expectation becaus@ produces a weaken-
ing of the atom-atom interaction. The use of the occupation
factors(16) rather than Eq(8) also increases the value Nf
by a few atoms at high temperatures, but the effect is much
smaller than what results from the use@? theory.

For a,<0, the N, values reach a maximum when the

ously from positive to negative values, relative to thecajculation becomes numerically unstapid—44, reflecting

harmonic-oscillator zero-point energy: w, as the tempera-
ture increases. Sinceu increases with the interaction

the physical instability of the cloud towards spatial collapse.
The maximumN, values depend oag., as shown by the

strength, the value at which the chemical potential passegrmination of the curves for these cases. Fer0, the

200
150
[¢]
=
100
50
0
8.0
2000 . .
NN N
1750 |\ .
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1500 N\
\ N o
1250 \7\\2 . \4.8
Z 000} AN
AN o
750 | e
500 | N
250 1 (b) N=20,000
0 Il
22 23
tSC

FIG. 4. Wheny differs from u according to Eq(18), theN, vs

T function from the discrete quasiparticle sum behaves smoothly

with respect toag.. Shown are the results f¢ga) N=1000 and(b)
N=20000 atoms. The critical temperature fay,=0, defined as
the maximum ofd?N./dT?, is indicated with an arrow. Foag,
<0 the maximum value dfl; is limited due to the instability of the

maximum value is given b\N7®=0.573,/ag. [41]. This
critical number is known to decrease whe&r0 due to the
presence of thermal atoni42,43. In these plots, the maxi-
mum N, is 80% to 57% of the value calculated fér=0,
confirming that the thermal cloud significantly decreases the

stability of the condensate fa@,<0.

B. Comparison with LDA and QMC

It is interesting to explore how our finite-temperature re-
sults compare with those obtained by other methods. Local-
density approximations are much simpler to implement nu-
merically than the full self-consistent HFB equations and
their variants. The opposite is true of Monte Carlo calcula-
tions, but these do not invoke the mean-field approximation,
and therefore yield results for equilibrium configurations that
are essentially exact.

Figure 5 for N=2x10* comparesN, values from the
Popov andG2 quasiparticle suméDQSP and DQSGwith
several LDA methods. Our Hartree-Fock LD@&IFLDA)
solves the GP equation for the condensalf), iterated to
self-consistency using Eq33) for the thermal distribution
n+(r). We found it most efficient to start at low temperature,
in order to obtain good initial estimates of(r) at succes-
sively higher values ofl. No solution could be found for
N./N<0.035 due to the failure of the HFLDA, as discussed
above and in Refl17].

The “semi-ideal” LDA (SILDA) [37] omits then+(r)
term in the TF expressions for the condens@@ and for
the total densityn{(r) in Eq. (33). This results in the simple
expression$35) which are related solely through the chemi-
cal potential. Iterative solution of these equations yields re-

condensate. Ib), open circles denote results obtained with the G2sults that are close to the other functions plotted in Fig. 5.

approach.

The actualn;(r) distribution calculated with this approach
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20000 TABLE |I. Comparison of condensate numberg, obtained
from quantum Monte Carlo calculations and from this work, with
and without atom-atom interactions, and results obtained here from

15000 discrete Bogoliubov quasiparticle sums and discrete Hartree-Fock

o sums. The error limits for QMC are of course purely positive for

=z no=0.

10000

) - QMC DQSG DQSP HFLDA HFLDAP
. e HFLDA - DQSP
200f, L T SDATRGSE Tho Ne N N Nc Nc
5000 - —=s— BGLDA-DQSG Ty
0 B‘Hﬂ_é,:ﬁi%a/a/* 16.667 226610) 2213 2159 2216 2222
T N 16.949 197110 1936 1883 1945 1935
0 5 0 15 20 17.242 165615) 1654 1599 1630 1638
0 5 10 15 17.544 137410 1367 1309 1323 1333
t=kT/ho 17.857 105710 1072 1016 1008 1022
18.182 74110 782 726 686

FIG. 5. Comparison of values f&t. /N from quasiparticle sums
with the Popov and G2 approximations, as compared with HFLDA18'519 44010 501 448
and SILDA for N=20000 atoms and../a,=0.0072. BLDA re- 18-868 180100 247 205

sults are too close to distinguish on this scale. On an expande%ilg-231 211y 140 S7
scale, the inset gives differences between indicated LDA and DQ$9.608 @20) 71 21
methods. 19.802 020 15

20.0 q10 12

exhibits a sharp peak at the edge of the condensate due to th&202 @4 9
discontinuity at the Thomas-Fermi condensate radius.  ajo|zmannet al. [17,45).

The inset of Fig. 5 shows that the Hartree-Fock Bogoliu-bthis work, using Eq(35).
bov LDA methods, BPLDA and BGLDA, agree most closely _
with the hybrid method, DQSP and DQSG, respectively. Thé’resumably the many-body effects that necessitate the renor-
two BLDA methods employ a TF condensate, and thus thénalization of the atom-atom interaction are already included
nr(r) functions exhibit a small spike at the edge of the con-in the QMC procedure, in which case results wi@ should
densate, which has a cusp. As with the HFLDA, the calcuP€ closer than Popov to the QMC. Indeed, ferkgT/fiw
lations required iteration to self-consistency, which was fa-<17.3, the Popov results lie below QMC, while &2

cilitated when initial values were obtained by extrapolationUmbers are higher and closer to QMC. Above a scaled tem-
from results from lower-temperature values. peraturet=17.8, however, th&2 results rise above QMC

It is remarkable that the values fbl, from BLDA calcu- values.
lations agreed with the corresponding DQS results to better
than 0.4% ofN in every case for which results were ob-
tained. Even for HFLDA and SILDA, the differences with  Figures 4 and 5 show that large valuesagf have the
DQS results are less than the fractional error in current exeffect of flattening the curve of condensate number as a func-
periments. Thus these comparisons show that relativelion of temperature, as is already apparent in the plots of
simple LDA expressions are useful for obtaining the condenGiorgini et al. [36]. If these curves are fit to a function
sate fraction as a function of temperature. It is only in theN./N=1—(T/T.)“, one obtains values far as low as 1.4,
region neaiT, and above, where the condensate number becompared with the ideal-gas value of 3. Another parameter
comes small, that our LDA methods failed. to characterize the effect of atom-atom interactions is the

The quantum Monte CarlQMC) approach uses the ex- shift of the critical temperature from the idgal Bose gas case.
act Hamiltonian with a hard-sphere atom-atom interactionFor the homogeneous Bose gas, where it is uniquely defined
Based on extensive numerical experience withe [22], @S the point at whiciN. goes to zero, this shift has been the
QMC should be most useful for the calculation of equilib- SUPIECt Of intense discussion recen46]. For atoms in a

fium quantities, such as the condensate fraction. Holzmanfi2rmenic potential, as is especially clear in Fig. 4, this point
et al. [17] have provided benchmark QMC calculations for ' "°t sharfindeed, the number of condensate atoms is finite
the case of 1DBose atoms confined in a spherical trap, with at all temperatures in Mesoscopic sys)tem_efmmons_of

as./ap,=0.0043. Table | shows comparisons between our reTC that have been proposed include the point at which the

density at the origin reaches the critical density for a homo-
sults and those of QME17,45 for the condensate number ona00s gal47], the maximum of the specific heat, and the

as a function of temperature. The DQSP, DQSG, and QMGyaximum of the temperature derivative of the specific heat
values differ by up to 1.2% of the total atom numberitis  [39]. Since such energy-weighted properties pose additional
notable that at higher temperaturég, falls off less quickly  problems for numerical calculations of thermal averagdes,
using HFBP and52 than QMC. This may be due in part to js determined here as the maximum of the function
the fact that the relationship betwellg andu in Eq.(18)is  d?N./dT?. The inflection point of thé\, versusT function,

not entirely correct at higher temperatures, as discussed itr zero ofd°N./dT?, deviated from Eq(37) by a signifi-
Sec. Il B, and may resemble ideal-gas statistics too closelyantly larger amount.

C. Critical temperature versus ag.
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perature is determined from the data in a typical case, by
making use of the three functiom$,(T), dN.(T)/dT, and
d?N./dT?. Since both the condensate number and its tem-
perature derivative are nearly straight lines, accurate calcula-
tion of the second derivative requires accurate numeric val-
ues of these functions.

A semiclassical analysis by Giorgiet al. [48] indicates
that the transition temperature should decrease linearly from
the ideal-gas value with increasing particle interactions. The
results of the DQS-Popov calculations confirm this general
scaling; furthermore, as the number of atoms increases, the
observed shift in the critical temperatusd . matches the
semiclassical expression more closely at larggyay. In
contrast, with the DQ%2 approachdT. shows significant
deviations from linear scaling for small, and these become
more pronounced as the number of atoms increasesNFor
=2x10% the shifts are significantly less than the semiclas-
sical values for the larger values af./a, considered.

D. Renormalization of the atom-atom interaction

As indicated in Fig. 4, th&2 renormalization yields val-
ues forN./N that reflect the weakening of the atom-atom
repulsion; at any given temperature, the number of atoms in
the condensate increases relative to the value obtained using

N=20000 atoms, for the DQSP and DQSG approaches. The solif'®@ POpov approximation. Perhaps more interesting is the

line represents the semiclassical predictior=TS—AT,, where

spatial variation of the effective interaction in the harmonic

TYis the transition temperature in the noninteracting limit. The insettfap. The renormalization is governed by the local value of

in (b) shows theN(T), N¢(T)/dT, andd?N./d T? functions from
which T, is determined for the caseg./ay=0.0048, the last with

a spline fit.

my relative ton. . In general|m;| increases with the number
of noncondensed atonrs; since more terms enter the sum
(10); however,m; vanishes whem.=0, since the “quasi-

hole” amplitudev;=0. In general, therefore, one might ex-

Figure 6 showd ; values extracted from the data used in pect the local renormalized interaction to reach a minimum
Fig. 4. For comparison, the ideal-gas data are analyzed in @ some temperature. For a uniform Bose gas, this minimum
similar manner, yielding values df; that are close to, but occurs at exactly the transition temperature, and corresponds

not identical with, those obtained using E@7). Figures
6(a) and Gb) correspond to 1000 and 20 000 atoms, respec-

to a vanishing of the effective scattering len¢#®,21].
In Fig. 7 we compare the condensate and thermal densi-

tively. The inset in Fig. @) shows how the transition tem- ties with the spatial variations of the anomalous average and

ne(R)

FIG. 7. The functionsn(r),
ne(r), me(r), and g(r)/g are

nT(H)

shown for N=20000 atoms,
as./a9;=0.0072 over a wide range

1 + m(R)/[10"2+n (R)]

of temperaturegmy(r)| is largest
at the edge of the condensate and
increases withT up to T, .
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beginning to emerge. The minimum for ealdhis found to
always occur very close to the calculated transition tempera-
ture, and its value decreases approximately with,J®d
over the range ofN considered. FoN=10°, we obtain
Omin(r)/g=~0.2. It should be noted that although the fraction
of total atoms in the LDA integral increased to approxi-
mately 2 for N=10° nearT,, the high-energy LDA contri-
bution tomy was in every case less than 2%, and typically an
order of magnitude less than this value.

It should be emphasized that tl& renormalization em-
ployed in the present calculations is derived for a uniform
Bose gas, and should best represent large condensate densi-

r=R/ag ties or low temperatures where the LDA is most applicable.

FIG. 8. Variation of the renormalization factog(r)/g, with Wh”e the LDA IS bound to fail f0rT—>TC_, the regime where
temperature ned, for N=200 000 andh../a,=0.0072. The range it loses validity will become smaller with increasifg and

of the minimum decreases as the condensate shrinksTwitthile ,ShOUId approach the critical region where perturbation theory
the minimum value continues to decrease up to a point, and theliS€!f breaks down. It would be preferable to define the renor-
increases. malization of the particle interactions in terms of the full
many-bodyT matrix in a trap, and we hope to pursue this
issue in future work. Th&2 approach as formulated above,
however, should properly describe the effects of two-body
correlations for large trapped condensates at low to interme-
23Na,) For these plotss=0.01 in Eq.(25). There is a slight d_iate_ temperatures. Thus, the strong reduction in the e_ffe_c-
. tive interaction strength over much of the condensate, indi-
dependence of the results @ since much smaller values d by thea? theorv. could have sianificant experimental
5~10* lead to a small bump in thex;(r) function at the cated by Y, cotl 9 Nt exp '
: consequences. The predictions for the excitation frequencies
very edge of the condensate. The dependence on this arbj-
o R ] are discussed further below.
trary parameter indicates an ambiguity in the theory; how-
ever, the integrated numbers are not significantly altered by
the choice of§, since the errors are incurred in regions of
very small condensate density. The quasiparticle eigenvalues correspond to excitation

The manner in whiclg(r)/g attains a minimum irr is  frequencies, but it remains unclear what relationship exists
shown in Fig. 8 for the particular case bf=2x10°. The between these values and experimentally observed reso-
global minimum occurs at a temperature clos@ {o defined nances of the trapped gas at finite temperatures when the
above. Following this procedure, we consider thg,(r)/g  potential of a harmonic trap is perturbed periodically. In all
functions for various values df for ag./ay,=0.0072, which mean-field calculations such as those presented here, the
are displayed in Fig. 9. Though we have increaNesithout  linear-response equations assume that the thermal density is
changinga./a,, the approach to the thermodynamic limit is fixed, while in experiments it would also be perturbed. For
this reason, the dipole excitation frequency obtained within
mean-field theories will generally not satisfy the generalized
Kohn theorem[49], which states that there is a mode in
which the entire ensemble oscillates at the bare trap fre-
quency. Calculations explicitly including the dynamics of
both n, andny [13,14 are found to be consistent with the
Kohn theorem.

Figure 10 shows small but significant deviations in the
Kohn mode from unity forN=2x10* and 2x10°, both
within the DQS-Popov and DQS2 approaches. That the
G2 frequency should be lower than the Popov value cannot
be simply understood in terms of an overall decrease in the
interatomic repulsion, since this would predict a mode closer
to unity. Rather, the spatial variation of the effective interac-
tion leads to a flattening of the effective potential, comprised
of the trap plus the Hartree potential; the looser effective
confinement softens all the modes. We are not aware of other

FIG. 9. The curves shown are the “minimum” functions, computational results in which the Popov value starts from
Imin(r)/g, as a function of temperatufsuch as shown in the previ- below unity and rises above, before falling néar. This
ous figurg for eachN value given. These curves are fag/a, behavior may be a consequence of a more rigorous treatment
=0.0072. of the chemical potential, Eq18). Alternatively, since the

kT/ho= 53

©c o o ©o
o N o ©

o
tn

g(n/g =1 + m7(r)/[0.01 +n(r)]

o
o
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o
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the effective particle interactions for the caseNo£ 20 000
and ag./ap=0.0072 for various temperaturegAs noted
above, this would correspond to a relatively tight trap for

E. Excitation frequencies
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1.04 - . whether for larger atom numbers a renormalized atom-atom
(a) (b) interaction would effect frequencies calculated by the meth-
: ods of Refs[13,14], which did not assume a static conden-
o : sate. It should also be mentioned that experimentally ob-
= . served excitation frequencies with larger numbers of sodium
, atoms in a “cigar” geometry12] also exhibited a softening
; of both the quadrupole angdipole excitation frequencies as
the temperature approach€s.

1.00

E/h@

0.96 |

V. DISCUSSION AND CONCLUSIONS

N =200,000

In this work, we have extended finite-temperature mean-
field calculations for Bose-Einstein condensates confined in
L w L L . L ¥ harmonic trap$8,11]. A careful derivation of the mean-field
0 5 10 15 20 kT?h 10 20 30 40 50 equations provides improved definitions of the thermody-
© namic chemical potential and quasiparticle occupation fac-
FIG. 10. Excitation frequencies of the lowest=1 mode in  tors, yielding observables that are continuous functions of
comparison with the Kohn theorem value of unity. Results from thethe particle interactions. The numerical techniques employed
Popov (dashed lines and G2 (solid lineg approximations are in the calculations have allowed for the investigation of sys-
shown for(a) N=2x10* and (b) N=2x10°. All results are for tems with the large numbers of atoms relevant to ongoing
ag./a,=0.0072. experiments. In the process, we have been able to make sev-
eral crucial comparisons between the results of evaluating
differences increase witN (specifically, the noncondensate discrete summations over quasiparticle stégsich are nu-
density, they may not have been observable with the smallemerically time-consuming and various local-density ap-
N values studied previously. proximations. Furthermore, we have explored the implica-
The temperature dependence of the low-lying excitatiortions of a recently proposed gapless theory which takes into
frequencies obtained with the DQSP and DQSG approachexccount pairing correlations.
is shown in Fig. 11 foN=2x10* and 2< 10°. The soften- The results presented above indicate a significant inad-
ing of all the excitation frequencies in tl&2 approximation equacy of conventional static mean-field theory for compu-
was found previously by the proponents of this thefdr§]  tations of excitation frequencies of trapped Bose condensates
(for a “pancake” geometry as well as by others using a at finite temperatures. For a large number of atoms and in-
similar perturbative approach to the interacting Bose gaseraction strength, we find appreciable deviations of the di-
[50]. However, for a spherically symmetric trap, the resultspole frequency obtained with either the Popov®@2 ap-
of Ref. [11] for 2000 Rb atoms showed only a negligible proximations from expectations of the generalized Kohn
difference between Popov ar@d2 excitation frequencies. theorem. In our computations, the condensate is static in the
The present results show that for a spherically symmetripresence of thermal excitations. The excited dipole mode
trap and larger atom numbers, there can be differences beorresponds approximately to out-of-phase motion of the
tween the Popov an2 values that would be experimen- thermal cloud relative to the condensate, as observed experi-
tally detectable. These results also lead to the question ahentally[12] when the dipole mode of the thermal cloud is
excited separately. Detailed modeling of such excitation

092

P S e modes has been performed only by restrictive parametriza-
1,1 [ tion of the condensate and thermal cloud in the collisionless
25} - \\\/ [14] or hydrodynamic[13] regimes. Both of these ap-
L 04 N - proaches address the two-fluid nature of these systems, and
20 \‘\\ W\\ produ_ce dipole modes that satisfy the Kohn theorem exactly.
s 1 Ln Nz " Popov We will argue that equilibrium thermal excitations are com-
< 7 - \\/ puted accurately by the mean-field DQS methods presented
W.,sl 20 e 20 G2 here. However, any experimental probe of these excitations

/ involves perturbative processes that require other theoretical
—~— methods.

[0} R e In principle, mean-field theories that include fluctuations
1,0 T I in the population of excited stated6,51] ought to be
(a)N=20,000 (b)N=200,000 equivalent to the two-fluid dynamics in the collisionless re-
054578 20 22 22 38 42 46 50 gime. A full second-order perturbation theory of the interact-
KT/ho ing Bose gas should yield the coupled modes of the conden-

sate and thermal clouds as well as damping rates. Indeed,
FIG. 11. Excitation frequencies for the lowest=0, 1, and 2  employing the approximate many-bodymatrix in the cal-
modes for(a) N=2x10* and (b) N=2x10° within the Popov  culations(the G2 approximation described abgvgelds ex-
(dashed lingsand G2 (solid lineg models, where,./a,=0.0072.  citations that have a temperature dependence qualitatively
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similar to that of out-of-phase modes. We hope to exploreof the Netherland$T.B.). The authors are grateful for valu-

these issues in future work. able conversations with H. Beijerinck, K. Burnett, C. W.
Clark, K. K. Das, M. Doery, M. Edwards, M. Gajda, A.
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