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Bose condensates in a harmonic trap near the critical temperature
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The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric har-
monic traps are surveyed numerically. The solutions of the Gross-Pitaevskii~GP! and Hartree-Fock-
Bogoliubov ~HFB! equations for the condensate and low-lying quasiparticle excitations are calculated self-
consistently using the discrete variable representation, while the most high-lying states are obtained with a
local-density approximation. Consistency of the theory for temperatures through the Bose condensation point
Tc requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the
appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB
equations are made gapless either by invoking the Popov approximation or by renormalizing the particle
interactions. The latter approach effectively reduces the strength of the effective scattering lengthasc, in-
creases the number of condensate atoms at each temperature, and raises the value ofTc relative to the Popov
approximation. The renormalization effect increases approximately with the log of the atom number, and is
most pronounced at temperatures nearTc . Comparisons with the results of quantum Monte Carlo calculations
and various local-density approximations are presented, and experimental consequences are discussed.

PACS number~s!: 03.75.Fi, 05.30.Jp, 05.10.2a
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I. INTRODUCTION

Since the first observations of Bose-Einstein condensa
~BEC! in dilute alkali-metal atom gases@1–3#, experimental
developments have posed many new tests for many-b
theory, even though weakly interacting Bose gases have
been used as a textbook paradigm@4,5#. Numerous theoreti-
cal approaches have been employed in order to obtain a
rate results for both the ground-state and nonequilibri
properties of the trapped Bose systems@6–8#. However,
there have been notable differences between theoretica
sults and experimental data on the excitation frequen
near the transition temperatureTc @9–12#. This problem has
inspired the introduction of a renormalized effective ato
atom interaction@11#. Recently developed theoretical a
proaches@13,14# that incorporate the dynamics of the no
condensate density but without a renormalized interac
have resulted in excitation frequencies in closer agreem
with experiment. Nevertheless, the unresolved issues
Bose systems nearTc have provided a motivation for us t
examine further the theoretical and numerical methods
modeling confined Bose gases nearTc . We have numeri-
cally implemented the most plausible and tractable equi
rium mean-field theories in order to systematically surv
various properties of these systems.

In this work, we follow the standard mean-field theo
@15#, with certain modifications described in detail belo
The nonlinear Gross-Pitaevskii~GP! equation, which in-
cludes interactions between the condensate and the the
atoms, is solved for a static condensate containingNc atoms.
The eigenvalue of the GP equation,m̃, is usually identified
with the thermodynamic chemical potentialm. The linear
response of the system is represented by the Hartree-F
1050-2947/2000/61~6!/063605~14!/$15.00 61 0636
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Bogoliubov ~HFB! equations, which yield the quasipartic
energies and amplitudes. These in turn determine the num
of noncondensed atomsNT as well as various coherenc
terms~thermodynamic averages over two or more Bose fi
operators!. The GP and HFB equations are iterated to se
consistency at a given temperatureT, subject to a fixed total
number of atoms in the systemN5Nc1NT . As emphasized
by Griffin @15#, the coherence terms yield an excitation spe
trum that is not gapless: the lowest-energy mode of the H
equations has finite energy and does not coincide with
solution of the GP equation. The HFB-Popov~HFBP! ap-
proximation, which neglects these terms, has been quite
cessful in describing the properties of the trapped B
gases, but is not well-grounded theoretically, and fails
yield accurate predictions for the low-lying excitations
high temperatures@9,12#. In this work, we explore a recently
proposed extension of the HFBP theory that incorporates
coherence terms in a gapless manner@16,11#; in addition, we
modify the commonly used identification of the chemic
potential with the eigenvalue of the GP equation.

The identification of the chemical potential with the e
genvalue of the GP equation is incorrect in general. In
grand-canonical ensemble, the chemical potential is defi
asm5]E/]N, corresponding to the energy costE of adding
a particle to the entire system, not only to the condens
For a dilute, weakly interacting Bose gas atT50, for which
the population of noncondensed states~the depletion! is neg-
ligible, the identificationm̃5m is justified. At finite tempera-
tures, however, the assumption yields results that are dis
tinuous as a function of thes-wave scattering lengthasc. To
a better approximation, we find that the chemical potentia
finite temperatures is given by the eigenvalue of the
equation plus a term that varies inversely with the numbe
©2000 The American Physical Society05-1
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condensate atoms. The resulting equations provide an
proved description of these finite systems, yielding obse
ables that are both continuous withasc and similar to those
obtained using path-integral Monte Carlo techniques@17#.

It is presently unclear to what extent many-body effe
beyond the mean-field approximation modify the effect
interactions among Bose-condensed atoms in harmonic t
@11,16,18,19#. For the homogeneous Bose gas, it is now
tablished both from renormalization-group@20# and pertur-
bation @21# theories that the many-bodyT matrix, or effec-
tive s-wave scattering lengtha, goes to zero atTc . The low-
energy, long-wavelength limit of the many-bodyT matrix
has been shown to be closely related to the coherence
mT @16,19#; this ‘‘anomalous average’’ represents tw
particle correlations and is the Bose analog of the superc
ducting order parameter in interacting Fermi systems. Re
malizing the interaction using themT yields a gapless HFB
theory without having to invoke the Popov approximati
@11#, but it remains uncertain whether the prescription is
propriate for nonuniform systems. The implications of th
theory for trapped Bose condensates are explored num
cally below, and the results are compared to those obta
with the Popov approximation and path-integral Monte Ca
methods.

In view of these somewhat conflicting results and un
solved issues, there is strong motivation for the continu
development of numerical methods in order to implem
various models and obtain quantitative predictions for co
parison with experiment. Quantum Monte Carlo metho
@17,22,23# are able to provide accurate results for cert
observable quantities. The computational procedure
lengthy, however, and is not demonstrably able to yield
citation frequencies since it typically applies only to equili
rium configurations. Local-density approximations~LDA !
are much simpler to apply, but the standard forms fail n
Tc and are questionable when the density is so small tha
local collision rate is insufficient to establish local therm
dynamic equilibrium. On the other hand, widely used bas
set techniques are generally unable to represent the l
numbers of atoms in excited states at high temperatures.
cently, Reidlet al. @24# have used~for 2000 Rb atoms atT
50.5Tc) a hybrid method in which a sum over discrete qu
siparticle states at low energies is supplemented by an
gral over an energy-dependent LDA above some cutoff
ergy. The interactions of these two subensembles with e
other are expressed by mean-field potentials that repre
the effect of background atoms. In the present work,
low-lying states are obtained by solving the HFB equatio
using the discrete variable representation~DVR! @25–27#
and the cutoff energy is raised until the results converge
within a stated tolerance. The techniques employed have
abled the investigation of trapped Bose gases at finite t
peratures containing a larger number of atoms than in pr
ous calculations that we are aware of. As a result,
approach of these systems to the local thermodynamic e
librium and to the hydrodynamic limit can be explored.

In Sec. II A, we outline the GP and HFB equations. W
discuss the chemical potential and gapless theories in S
II B and II C, respectively. Section II D reviews LDA meth
06360
-
-

s

ps
-

rm

n-
r-

-

ri-
ed
o

-
d
t
-
s

is
-

r
he

-
ge
e-

-
e-
-

ch
nt

e
s

to
n-
-

i-
e
ui-

cs.

ods both as alternative approaches for comparison purp
and the complementary use for the most energetic atoms
Sec. III, we discuss our numerical methods and iteration p
cedures. Section IV presents results for Bose atoms i
spherically symmetric harmonic trap as a function of t
scaleds-wave scattering length, total number of atoms, a
temperature.

II. THEORETICAL FRAMEWORK

A. Thermal sums over quasiparticle states

The derivation of mean-field equations for a weakly inte
acting, dilute Bose gas has been described in detail elsew
@28–30,15#. The question of the chemical potential forT
.0 for thermal sums of quasiparticle states deserves m
thorough discussion, however, and we modify the stand
procedure. In addition, following discussions by Burn
et al. @16,11,19#, we treat the anomalous~coherence! terms
mT in a manner that produces a ‘‘gapless’’ theory.

Following the standard approach, we decompose the B
field operator into ac number for the condensate, plus a
operator representing its fluctuations. The full many-bo
Hamiltonian is approximated using mean-field theory, b
coming explicitly number-nonconserving. The gran
canonical ensemble is used, and thus the chemical poten
m, and temperature,T, are the sole fixed quantities. The ge
eralized Gross-Pitaevskii~GP! equation for the condensat
and coupled Bogoliubov equations for the excited quasip
ticle states are then solved. For a finite number of atoms
harmonic potential, however, the standard approach yie
values for the mean condensate numberNc that are discon-
tinuous as a function of interaction strengthasc. In our ap-
proach, the eigenvalue of the GP equation,m̃, is determined
by the mean number of atoms in the condensateNc . In con-
trast, the chemical potential,m, is adjusted so that the mea
total number of atoms is the desired value. A simple re
tionship is found connectingm̃, m, andNc , which is adapted
from the ideal Bose gas case.

The Hamiltonian for an interacting Bose gas in a trap
the grand-canonical ensemble is

Ĥ2mN̂5E dr H ĉ†F2
\2

2M
¹21Vext2mG ĉ1

g

2
ĉ†ĉ†ĉĉJ ,

~1!

where the field operatorĉ(r ) satisfies @ĉ(r1),ĉ†(r2)#
5d(r12r2). The pseudopotential atom-atom interaction h
been chosen to beV(r12r2)5gd(r12r2), where the cou-
pling constantg54p\2asc/M is written in terms of the scat
tering lengthasc and massM. The harmonic potential is
Vext5

1
2 Mv0

2r 2 with trapping frequencyv0 assumed to be
isotropic.

The Hamiltonian may be rewritten as

Ĥ2mN̂5H2m̃N̂1~m̃2m!N̂

5K̂1~m̃2m!N̂, ~2!
5-2
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where, as mentioned above, the Lagrange multiplierm̃ is
related to the number of atoms in the condensate. In
following, we choose to diagonalize the operatorK̂5Ĥ

2m̃N̂ rather than the originalĤ2mN̂; both choices mus
lead to the same excitation spectrum, though with
temperature-dependent shift of the vacuum for quasipar
excitations. In order to make further progress, the Bose fi
operatorĉ5F1f̂ is now decomposed intoF, a c number
for the condensate, andf̂(r ), which annihilates a therma
atom atr . The condensate density is defined bync5uFu2,
and the number of condensate atoms isNc5*dr uF(r )u2.
The noncondensate~thermal! densitynT and anomalous~co-
herence! termsmT andm̃T are @15#

nT5^f̂†f̂&, mT5^f̂f̂&, m̃T5^f̂†f̂†&, ~3!

where the angular brackets indicate a thermal average in
grand-canonical ensemble, discussed in more detail be
The mean-field approximation is used to reduce the th
and fourth-order terms to, respectively, first and second o
in f̂,f̂† so that the HamiltonianK̂ can be diagonalized, fol
lowing the procedure normally used forĤ2mN̂ @28,15#.

Excluding the possibility of aggregate motion and vor
ces @29#, F may be taken to be real. The first-order term
~plus third-order terms in the mean-field approximation! in K̂
vanish if the equation for the condensate is taken to be
generalized GP equation:

F2
\2

2M
¹21Vext1g@nc12nT1m̃T#GF5m̃F. ~4!

Note thatm̃ is the eigenvalue of the GP equation. The part
K̂ that is zeroth order in the excited orbitals is ac number

K05E drF~r !S 2
\2

2M
¹21Vext2m̃1

g

2
uF~r !u2DF~r !.

~5!

The terms inK̂ that are second order inf̂ are~in the mean-
field approximation! diagonalized by the canonical transfo
mation

f̂~r !5(
j

@uj~r !â j1v j* ~r !â j
†#,

~6!

f̂†~r !5(
j

@uj* ~r !â j
†1v j~r !â j #,

such that@â i ,â j
†#5d i , j . The operatorK̂ is diagonal to sec-

ond order in f̂ if the quasiparticle amplitudesuj (r ) and
v j (r ) are solutions of the Bogoliubov coupled equations

L̂uj~r !1Q~r !v j~r !5e juj~r !,
~7!

L̂v j~r !1Q~r !uj~r !52e jv j~r !,
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whereL̂5K1Vext2m̃12gn(r ), Q5g@nc(r )1mT(r )#, and
the total density isn(r )5nc(r )1nT(r ). For gapless theories
discussed further below, thej 50 ‘‘Goldstone mode’’ has
the propertye050, so thatu0(r )52v0(r )5F(r ). Thus on
the e j energy scale, the condensate has zero energy and
fines the vacuum for quasiparticle excitations.

After the substitution,ĉ5F1f̂, the number operatorN̂
5*dr ĉ†(r )ĉ(r ) contains terms, such as*drFf̂, that do not
conserve particle number. The Bogoliubov transformat
~6! and coupled equations~7! introduce a quasiparticle bas
such that termsâ j

†â j
† andâ j â j are eliminated, so thequasi-

particle number is conserved@28#. The diagonalized Hamil-
tonian explicitly does not conserve particle number, ho
ever; the operatorK̂ in the quasiparticle basis does n
commute with the excited particle number operatorf̂†f̂,
which has contributions fromâ†â† and ââ terms. In the
grand-canonical ensemble, onlyT and m are precisely de-
fined, and all observables must be defined in terms of th
mal averages. Each occupation number, including the c
densate number, fluctuates about its mean value

^N̂j&[^â†â&, j 50,1, . . . , ~8!

where the explicit definition of the average^Ô& is yet unde-
fined. Similarly, both the eigenvaluem̃ of the GP equation
~4! and the total energŷE& fluctuate about their mean va
ues.

Inserting the transformation~6! into Eqs. ~3! and intro-
ducing the identification given by Eq.~8!, the normal and
anomalous densities become

nT~r !5(
j 51

$^N̂j&@ uuj~r !u21uv j~r !u2#1uv j~r !u2%, ~9!

mT~r !5(
j 51

uj~r !v j* ~r !@2^N̂j&11#. ~10!

The standard normalization*dr @ uuj (r )u22uv j (r )u2#51
yields

E dr @ uuj~r !u21uv j~r !u2#[112Vj , ~11!

whereVj5*dr uv j (r )u2. The quantitiesVj are related to the
T50 depletion, which is( j 51Vj . The relation between the
total atom number and the quasiparticle occupation numb
is therefore

^N̂&[Nc1NT5^N0&1E dr nT~r !

5Nc1(
j 51

@^N̂j&~112Vj !1Vj #, ~12!

where the average number of atoms is written in terms o
contribution from the condensate and noncondensate~excita-
tions!.
5-3
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The thermal average of the diagonalized Hamiltonian th
becomes

^Ĥ2mN̂&5K01(
j 51

e j~^N̂j&2Vj !1~m̃2m!^N̂&

5Ec2mNc1(
j 51

$^N̂j&@e j1~m̃2m!~112Vj !#

1Vj~m̃2m2e j !%, ~13!

whereEc5K01m̃Nc is the total ground state, or condensa
energy.

B. Occupation factors and the chemical potential

In the Bogoliubov approach, the ensemble is conside
to be the sum of a condensate plus noninteracting quas
ticles. The mean occupation numbers of the quasipart
states are to be determined from the grand partition funct

V5Tr$exp@2b~Ĥ2mN̂!#%, ~14!

through the standard identities@4,5#

^N&5
1

bS ] ln V

]m D
T

, ^E&52S ] ln V

]b D
m,T

. ~15!

Unfortunately, while the diagonalized Hamiltonian is writte
in terms of noninteracting single-quasiparticle energies,
expressions~12! and ~13! involve the thermal averages o
particle occupation that we are now seeking to determ
Furthermore, the factorization that one makes for an id
Bose gas is invalid for a gas of interacting Bose atoms
cause the quasiparticle energies depend on the occup
numbers, as well as the reverse. Thus, rigorously, these
cupation factors should be calculated self-consistently, al
with Eqs.~4! and~7!, since they depend on as well asdeter-
minethe quasiparticle eigenvalues@31#. To do so analytically
would be a truly daunting task. We make several simply
assumptions in order to obtain results, but we emphasize
these questions merit further study.

In reality, the probabilitieŝN̂& will be peaked at the mos
probable values, as discussed below for the conden
Therefore, when evaluating the sum overNj in Eq. ~14!,
deviations of Nj 8 from ^N̂j 8& for j 8Þ j will not greatly
modify the spectrum of the quasiparticle states. If this is
a reasonable approximation is to replace^N̂j& by Nj when
estimating the mean occupation numbers from the grand
tition function. If the dependence ofe j and Nj on Nj 8( j
Þ j 8) is also neglected, thenV can be factored, and we ob
tain
06360
n

,

d
ar-
le
n,

e

e.
al
-

ion
c-
g

g
at

te.

,

r-

^Nj&5

(
Nj

Nj exp$2b@e j1~m̃2m!~112Vj !#Nj%

(
Nj

exp$2b@e j1~m̃2m!~112Vj !#Nj%

'
1

exp$b@e j1~m̃2m!~112Vj !#%21
, ; j . ~16!

In order to obtain the result on the second line of Eq.~16!,
the population dependences of the GP eigenvaluem̃ and the
quasiparticle energiese j are ignored. At sufficiently low
temperatures, thee j for trapped Bose condensates are re
tively insensitive to the value ofNc and the temperature
indeed, in the Thomas-Fermi~TF! limit, valid for large con-
densates, the excitation frequencies at zero temperature
independent ofNc .

Neglecting the factorsVj , and shifting the energy scale s
that Ej[e j1m̃, one recovers the more conventional expre
sion

^Nj&5
1

exp@b~Ej2m!#21
. ~17!

From this expression~17! for j 50, with E05m̃, one finds
that the chemical potentialm and the eigenvalue of the G
equationm̃ are related by the expression

m5m̃2
1

b
lnS 11

1

Nc
D , Nc.0. ~18!

For T50 this gives the usual definitionm̃5m, but for T
.0 there is a correction tom that increases asNc decreases.
While this additional term will not be correct at high tem
peratures where the condensate is strongly depleted, it
be shown below that results obtained with this procedure
continuous functions ofasc at all temperatures, while with
m5m̃ they are not.

It is difficult to go beyond the above approximations, b
we will suggest possible avenues to proceed in future wo
The major effect omitted is the dependence of the quasi
ticle energies,Ej ~including E05m̃) on Nc . One can first
consider the condensate term itself. We assume, for the
ment, that factorization ofV ~14! is valid, and write

V5VcVT , Vc5(
Nc

eb(mNc2Ec). ~19!

In the Thomas-Fermi approximation~kinetic energy in the
GP equation neglected!, one obtains for a spherical conde
sate@6#

m̃TF5
1

2 S 15Ncasc

a0
D 2/5

[gNc
2/5, ~20!

where the harmonic-oscillator length isa05A\/Mv. The
following relations follow in the same approximation:
5-4
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Ec5
5

7
gNc

7/55
5

7
m̃TFNc ,

]Ec

]Nc
5m̃. ~21!

Then from Eq.~19!, neglectingVT , one can obtain the mea
value of the condensate occupation from̂Nc&
5(Nc

NcP(Nc)/(Nc
P(Nc), where P(Nc)5exp@b(mNc

25
7gNc

7/5)#. We have verified numerically for typical value
of b and m that the mean value is extremely close to t
most probable valueN̄c for which P(Nc) is maximum. Fur-
thermore, an expansion of the exponent in the above exp
sion for P(Nc) yields a value for the variance ofNc , inter-
preted as the value ofs such thatP(N̄c6s)5(1/e)P(N̄c).
In the grand-canonical ensemble at zero temperature, th
fore, one obtainŝ dNc&5A(5/bg)N̄c

3/10, so that the frac-
tional width of the occupation number distribution decrea
asN̄c

27/10. This may be compared with the result of Giorgi
et al., derived from excited-state occupation numbers for
canonical ensemble,̂dNc&;(T/Tc)Nc

2/3 @32#. Either result
confirms that the fluctuations inNc are relatively small for
largeNc . One should next consider how the dependence
VT would effect ^Nc& and ^dNc&. This is left for future
work.

The dependence of the quasiparticle states on the occ
tion factors reflects the extensive nature of this finite int
acting system; that is, adding a particle to the many-bo
system alters both the number and character of the acces
states. This behavior is similar@33,34# to that of a finite gas
of noninteracting particles obeyingfractional exclusion sta-
tistics @35#, which obey a statistics intermediate between t
of bosons and fermions. The parameter representing the
tistics has been identified with the strength of thed-function
potential for an interacting trapped Bose gas in two dim
sions @34#. Indeed, our expression~18! for the thermody-
namic chemical potential is similar to that found for a no
interacting fractional-statistics gas at finite temperat
@33,34#. We hope to pursue these issues more fully in fut
work.

C. Gapless approximations

We return to the conditions for gaplessness. The GP~4!
and Bogoliubov ~7! equations together comprise th
‘‘Hartree-Fock-Bogoliubov’’~HFB! approximation for a di-
lute interacting Bose gas. In this case, one does not ob
e050, and the theory is said to not be gapless~the term has
been taken from the homogeneous situation!. In the Popov
approximation, gaplessness is ensured by neglecting the
herence termsmT and m̃T , but the justification for such an
approximation is questionable@15#.

In order to convert HFB into a gapless theory and s
retain the anomalous averages, Burnettet al. @16,11# have
recently proposed an alternative treatment in which the c
pling functions for the condensategc(r ) and excited states
ge(r ) absorb the pairing correlations, and thereby take o
spatial dependence. Equation~4! becomes

$K1Vext1gcnc12genT%F5m̃F, ~22!
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and similarly,L̂ andQ appearing in Eqs.~7! become

L̂5K1Vext2m̃12gcnc12genT , Q5gcnc . ~23!

In the proposed gapless theories, labeledG1, andG2, the
coupling constants are chosen to be

$gc ;ge%5H $g1 ;g%, G1

$g1 ;g1%, G2,
~24!

where

g1~r !5gF11
mT~r !

nc~r ! G . ~25!

The renormalized couplingg1 replaces the two-bodyT ma-
trix associated with binary atomic collisions, which is th
scattering lengthasc in vacuo, by the zero momentum an
energy limit of the homogeneous many-bodyT matrix
@16,11,19#. In the G1 approximation, only the condensat
condensate and condensate-excited are dressed, whileG2 is
motivated by the expectation that all particle interactio
should be similar. Renormalization of the coupling has
additional advantage of removing the ultraviolet divergen
in mT resulting from high-energy quasiparticle contributio
of Eq. ~10! in the T-matrix approximation. In nonuniform
systems such as the trapped Bose gases, however, the
of g1(r ) can diverge in regions near the condensate surf
where the condensate density vanishes more rapidly than
anomalous average. In practice, this divergence may
eliminated by setting g1(r )5g$11mT(r )/@nc(r )1d#%,
whered'1022. While the results, described in detail below
are found not to depend strongly on the choice ofd, its
existence underlines a deficiency in the theory in its pres
form. The consequences of theG1 approximation are no
explored in this work. In the following, the notationg(r )
will be used in place ofg1(r ) and in distinction fromg,
which is unrenormalized.

D. Local-density approximation

In local-density-approximation~LDA ! schemes, the con
densate density is assumed to be varying sufficiently slo
that the population of excited states is determined entirely
the local potential and temperature. The thermal density m
then be treated locally as if the interacting Bose gas w
homogeneous. We will discuss three basic LDA schemes
several variants.

In the semiclassical approximation to the GP and H
equations@24,36#, the thermal atom quasiparticle amplitud
in the Bogoliubov equations~7! become local functions
u(p,r ) andv(p,r ). With the Popov approximation, one ob
tains the coupled algebraic equations

S L~p,r ! gnc~r !

2gnc~r ! 2L~p,r !
D S u~p,r !

v~p,r !
D 5e~p,r !S u~p,r !

v~p,r !
D ,

~26!
5-5
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whereL(p,r )5p2/2m1Vext(r )2m̃12gn(r ). With the con-
dition u(p,r )22v(p,r )251, the local excitation energie
may be immediately obtained, e(p,r )5@L(p,r )2

2g2nc
2(r )2#1/2, and have the well known linear dispersio

The noncondensate density from Eq.~9! may then be easily
found @24#:

nT~r !5E d3p

~2p!3 FL~p,r !

e~p,r ! S ^n~p,r !&1
1

2D2
1

2G
3Q„L~p,r !22g2nc

2~r !…, ~27!

where

^n~p,r !&5
1

exp@b„e~p,r !1m̃2m…#21
, ~28!

such that theQ function is unity when the argument is pos
tive, and zero otherwise. These equations define the Har
Fock Bogoliubov Popov LDA, which we will refer to as th
‘‘BPLDA.’’ For G2 calculations, one obtains the BGLD
by the substituiong→g(r ) everywhere. Then one needs

mT~r !5E d2p

~2p!3
u~p,r !v~p,r !@2^n~p,r !&11#

52g~r !nc~r !E d3p

~2p!3

1

2e
@2^n~p,r !&11#

3Q„L~p,r !22g2nc
2~r !…. ~29!

The integral is not formally convergent, however. Since
anomalous averages appear only in the context of theG1 and
G2 approximations, where the formal ultraviolet divergen
is eliminated, we may safely neglect the11 term following
the 2̂ n(p,r )&.

The semiclassical HFBP approximation exhibits a gapl
excitation spectrum only if the condensate is also trea
within the LDA, which implies the TF density:

nc~r !5
m̃2Vext~r !22gnT~r !

g
Q@m̃2Vext~r !22gnT~r !#.

~30!

The TF approximation is valid in the limit of largeNc ,
where the energy contribution from the mean-field~Hartree!
potential exceeds that of the kinetic energy. For this reas
Eq. ~30! is not expected to be a good representation of
condensate density close to the transition temperature.

In the regime of small condensate numbers, therefore
becomes more important to solve the equations for the c
densate and excitations exactly in order to obtain the lo
lying discrete states, as described in the preceding sectio
this work, we use the exact GP and HFB equations, but
sum over discrete states is combined with an energy inte
over high-lying states using LDA functions in the mann
described by Reidlet al. @24#:
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nT~r !5(
j

nj~r !Q~ec2e j !1E
ec

`

denT~e,r !, ~31!

wherenj (r ) is the j th term of Eq.~9!, ec is a low-energy
cutoff, and, in the above notation,nT(e,r ) has the form

nT~e,r !5
m3/2

23/2p
F2^n~p,r !&112

e

LG@L2Vext1m̃22gn#1/2.

~32!

A similar equation applies to the anomalous averagemT .
This latter hybrid procedure is referred to below as the d
crete quasiparticle sum~DQS! approximation, an abbrevia
tion for ‘‘discrete Hartree-Fock-Bogoliubov quasipartic
sum.’’ Either a Popov orG2 approximation may be mad
within the DQS, and these are referred to below as DQ
and DQSG, respectively.

A simpler LDA may be formulated by treating the loc
excitations within the Hartree-Fock approximation, which i
nores the linear dispersion at low energies. The conden
density may again be obtained within the TF approximat
using Eq. ~30!. The thermal density is given bynT(r )
5*@d3p/(2p)3#^n(p,r …&, where^n(p,r )& is defined in Eq.
~28! but with e(p,r )5L(p,r ). Integration over the moment
readily yields

nT~r !5
1

lT
3

g3/2~e2b[Vext(r )12gn(r )2m] !, ~33!

where the thermal de Broglie wavelength islT

5(2p\2/mkT)1/2 and ga(z)5( j 51
` zj / j a. As usual, the

chemical potentialm is determined by the condition that th
total atomic numberN5*dr @nc(r )1nT(r )#. With the TF
expression~30! for the condensate, the argument of theg3/2
function in Eq.~33! is always less than unity. If an ‘‘exact’
solution for the condensate is used~i.e., obtained by solving
the GP equation!, the results are generally improved, but
noted below and in Ref.@17#, there is then a range of tem
peraturesT&Tc for which theg3/2 function given in Eq.~33!
diverges, since its argument can become greater than un

An even simpler form of the LDA has been formulate
@36,37# in which the effect of interactions on the excite
states is completely ignored. Assuming a TF form for t
ground state, this LDA consists of the parametrically coup
equations~in view of the other approximations here, in the
equations we ignore the distinction betweenm̃ andm):

nc~r !5
m̃2Vext~r !

g
Q@m̃2Vext~r !#, ~34!

nT~r !5
1

lT
3

g3/2~e2buVext(r )2m̃u!. ~35!

In this approximation, the interaction enters only via t
chemical potential in the TF equation, which is a function
5-6
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asc and condensate number. For a spherical conden
m̃TF5 1

2 (15Ncasc/a0)2/5\v0, wherea05A\/Mv0 is the bare
oscillator length.

It is shown in Ref.@37# that a low-order expansion of Eq
~35! yields the following expression forN0 /N:

Nc

N
512S T

Tc
0D 3

2h
z~2!

z~3! S T

Tc
0D 2S Nc

N D 2/5

, ~36!

where z(n) is the Riemann zeta function,h5m̃TF /kBTc
0

' 1
2 z(3)1/3(15N1/6asc/a0)2/5, and the critical temperature fo

N ideal Bose atoms in a harmonic trap is given by@38,39#

kBTc
0/\v050.9405N1/320.684210.50N21/3. ~37!

Equation~36! is solved iteratively forNc /N.

E. Ideal Bose gas

Some of the plots given below contain results for ide
noninteracting Bose atoms (asc50) in a harmonic trap. The
results given forNc were obtained from sums over the occ
pation numbers as given in Eq.~8!, with dj52l j11, Ej
5\v(l 12nj13/2). The chemical potentialm was adjusted
to satisfy the conditionN5( j 50^Nj&. An alternative expres-
sion can be obtained from the density distribution given
Chouet al. @40#:

N5
z1

12z1
1(

l 51

`

z1
l
„$~12e22lb!@ tanh~b l /2!#%23/221…,

~38!

where z15eb(m23/2). This expression requires fewer term
than the aforementioned procedure, and gives identica
sults for temperatures up to about 0.9Tc .

III. COMPUTATIONAL TECHNIQUES

With a spherically symmetric trapping potential, all o
servables may be decomposed into functions of radiusr and
spherical harmonicsY l

m(u,f). The GP and Bogoliubov
equations then become one-dimensional inr; the ground
state is assumed to have (l ,m)5(0,0), while the excitations
obtained using the Bogoliubov equations are 2l 11 degen-
erate. Both equations are solved using the discrete vari
representation~DVR!, a computationally efficient approac
for the trapped interacting Bose gases that has been rec
described in detail@25#.

We have used two variants of the DVR approach: an eq
distant mesh array derived from sine functions as discus
by Colbert and Miller@26#, and a mesh based on Gaussi
quadrature, using the zeros of associated Laguerre polyn
als LNL

a (r ), whereNL is the order of the quadrature anda

52 for a spherical condensate@27#. The latter DVR has the
advantage of having a fine mesh for smallr where the con-
densate density is nonzero, and a more coarse mesh at l
distances where the thermal distribution varies slowly.
though the condensate and excited orbitals are compute
the physical grid, the matrix elements of the operators
06360
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represented by Laguerre polynomials up to the order defin
the Gauss quadratureNL , which in the present calculation
range from 1000 to 2800; matrix elements of the kine
energy are computed from expressions given in Ref.@27#.
Increasing the value ofNL increases the accuracy of high
lying states, allowing for a larger cutoff energyec at which
the discrete sums are terminated, and a smaller numbe
atoms in the LDA integrals. Since high-order polynomia
extend far beyond values ofRmax&50a0 relevant to trapped
condensates, the number of spatial grid points required
be limited to justNg;200 for all values ofNL .

Implementation of the above mean-field theory require
stable and efficient iteration procedure to solve the GP
Bogoliubov equations for a given total number of atomsN
and temperatureT. In our approach, the functionsnc(r )
5F2(r ), nT(r ), and mT(r ) are calculated self-consistentl
using Eqs.~4! and ~7!–~10!, supplemented by the LDA ex
pressions for states above the cutoffec , for fixed Nc andT;
the chemical potentialm is determined by Eq.~18!. Because
this iteration procedure is especially delicate nearTc , yet is
crucial for the results presented, we give a few more deta

We emphasize that the convergence criterion must c
sider the spatial distribution functionsnc(r ) andnT(r ) rather
than simply the aggregate valuesNc and NT . The iterative
procedure can be decomposed into three separate leve
self-consistency, subject to the minimization of the ‘‘Error

Error5E dr @ unc
out~r !2nc

in~r !u1unT
out~r !2nT

in~r !u#.

~39!

The ‘‘in’’ and ‘‘out’’ functions are the input and output o
the combined GP and HFB equations plus the high-ene
LDA integral. Normally, the Error diminishes~though not
necessarily monotonically! through level 1 iterations, in
which the output functions are fed back into the GP, HF
and high energy LDA equations. In this level, the condens
number Nc is held constant while the condensate dens
~normalized to unity! is allowed to vary. When the Erro
reaches some predetermined tolerance, level 2 iterations
gin and Nc is adjusted to approach the condition thatNc
1NT5N. The first level 2 adjustment from the converge
level 1 iterations is based on a simple proportionality b
tweenN andNc . Subsequent level 2 adjustments are ba
on a linear relation betweenNc andN, where the parameter
are obtained from the last two level 2 iterations. AfterNc
1NT has converged toN to the desired tolerance, level
iterations proceed, in which iteration levels 1 and 2 are
peated with successively larger number of Laguerre fu
tionsNL and mesh pointsNg . These three levels of iteratio
typically achieve accuracies for the condensate numberNc of
a few atoms. While this accuracy is beyond what is acc
sible to current experiments, it permits the comparison
different theoretical models.

The iteration procedure is illustrated in Fig. 1, whic
tracks a calculation for 23105 atoms and scaled temperatu
t5kBT/\v553 @from Eq. ~37!, tc

0'54.3#, using the La-
guerre DVR basis. After more than 50 iterations,Nc con-
verged from the initial estimate of 109 to the final value
5-7
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149 atoms@Fig. 1~e!#. Each adjustment ofNc ~level 2! or NL
~level 3! results in a jump in the error@Fig. 1~f!#, which then
converges again. In this calculation,NL increased from 1300
to 2100 @Fig. 1~d!#, corresponding to an increase of me
points ~up to Rmax542) from 149 to 190@Fig. 1~a!#, an in-
crease inec from 102\v0 to 144\v0 @Fig. 1~c!#, and a de-
crease in the fraction of the total number of atoms in
LDA integral from 57% to 40%@Fig. 1~b!#.

The fraction of atoms in the LDA integral is negligibl
only for calculations at low temperatures with smallN. Since
Tc rises as;0.94N1/3, the required number of thermal stat
rises with N for calculations nearTc , and inevitably the
LDA integration must include a larger fraction of atoms. F
N523104, 23105, and 106, at most 9%, 38%, and 74% o
the atoms were in the integral at temperatures in the vici
of Tc . Correspondingly, the mesh sizeNg required to ensure
convergence increased from 140 to 210 forN between 103

and 106. The reasonNg does not increase more rapidly wit
N is that the LDA approximation improves with the tot
number of atoms.

It should be pointed out that for large values ofN, the

FIG. 1. Convergence of the self-consistency procedure, foN
523105, asc/a050.0072,tsc553, and a Laguerre DVR mesh.~a!
Number of points in the DVR mesh,Ng . ~b! Fraction of atoms in
the LDA integral,F int . ~c! Cutoff energy,ec , specifying the upper
limit of the discrete quasiparticle sum.~d! Order of the Laguerre
polynomial,NL . ~e! Condensate numberNc . ~f! Error, defined by
Eq. ~39!, showing convergence up to each change ofNc or Ng , and
ultimately convergence to the condition thatNc1NT5N.
06360
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iteration procedure could exhibit instabilities when the te
perature approachedTc . For N.105, we found that there
often appeared to be~at least! two semistable regions whe
Nc&5000, between which the calculation tended to fluctua
In order to ensure the solution remained in the more sta
state, small temperature incrementsDt50.2 were used.

IV. THERMAL AVERAGES

A. Condensate fraction

In several of the plots to follow, results are presented
a series of values ofasc/a0. For comparison with curren
experiments, we note that the scattering lengthsasc for
87Rb, 23Na, and 7Li are approximately given by
110aB , 52aB , and 227.3aB , respectively, whereaB
'5.292310211 m is the Bohr radius. Thus, if one takesv
5(vxvyvz)

1/3, then for the recent MIT experiments@12# on
23Na, n5v/2p596.4 Hz, the JILA experiments@9# give
n5182.5 Hz, and the Rice experiments@3# give n
5144.6 Hz, corresponding toasc/a050.001 29, 0.007 29,
and20.000 46, respectively.

Figure 2 illustrates the consequences of setting the eig
value of the GP equationm̃ equal to the chemical potentia
m, as discussed in Sec. II A. With this assumption~here used
in conjunction with the Popov approximation,mT50), Nc
goes to zero abruptly withT when the population in excited
states reaches the total number of atomsN55000. By con-
trast, results forasc50, obtained as described in Sec. II E
have a smooth tail at high temperature. Thus, in the li
asc→0, the results nearTc exhibit a discontinuity with re-
spect to the ideal gas results.

Figures 3 and 4 show results obtained from calculation
which the chemical potential is as given in Eq.~18!. The
smooth variation of the chemical potential, Fig. 3, throu
Tc is reflected in all relevant properties of the system, inclu
ing the number of condensate atoms and excitation frequ

FIG. 2. If m5m̃, from the HFBP discrete quasiparticle su
~DQS! nearTc there is a discontinuity in theNc vs T function with
respect toasc. The figures showNc vs T for N55000 atoms, for
several values ofasc/a0. Even in the limit of smallasc/a0 , Nc goes
to zero abruptly withT for the self-consistent solution, while for th
ideal Bose gas (asc50), Nc(T) has a smooth tail.
5-8
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cies. Whenasc.0, the chemical potential evolves contin
ously from positive to negative values, relative to t
harmonic-oscillator zero-point energy3

2 \v, as the tempera
ture increases. Sincem increases with the interactio
strength, the value at which the chemical potential pas

FIG. 3. The chemical potential in units of\v relative to the
harmonic-oscillator zero-point energy,m/\v23/2, vsT for various
values ofasc/a0. ~a! shows the full range of temperatures up toTc ,
while ~b! shows a limited range nearTc .

FIG. 4. Whenm differs from m̃ according to Eq.~18!, theNc vs
T function from the discrete quasiparticle sum behaves smoo
with respect toasc. Shown are the results for~a! N51000 and~b!
N520 000 atoms. The critical temperature forasc50, defined as
the maximum ofd2Nc /dT2, is indicated with an arrow. Forasc

,0 the maximum value ofNc is limited due to the instability of the
condensate. In~b!, open circles denote results obtained with the
approach.
06360
es

through zero increases withasc even thoughTc decreases. In
addition, Fig. 3 shows that forasc,0, m,3\v/2 every-
where, with maximum values at temperaturesT;Tc .

Figure 4 shows the number of condensate atoms a
function of temperature forN51000 and 20 000 for a rang
of interaction strengthsasc/a0, calculated within the DQS
formalism. The condensate population nearTc is evidently a
continuous function of both the scattering length and te
perature.

The plots shown in Fig. 4, especially for 20 000 atom
show that theG2 renormalization procedure results in a si
nificantly higher value ofNc , relative to that obtained within
the Popov approximation, for the larger values ofasc. Fur-
thermore, the difference between theG2 and Popov results
becomes more pronounced asasc increases. This behavior i
consistent with expectation becauseG2 produces a weaken
ing of the atom-atom interaction. The use of the occupat
factors~16! rather than Eq.~8! also increases the value ofNc
by a few atoms at high temperatures, but the effect is m
smaller than what results from the use ofG2 theory.

For asc,0, the Nc values reach a maximum when th
calculation becomes numerically unstable@41–44#, reflecting
the physical instability of the cloud towards spatial collap
The maximumNc values depend onasc, as shown by the
termination of the curves for these cases. ForT50, the
maximum value is given byNc

max50.573a0 /asc @41#. This
critical number is known to decrease whenT.0 due to the
presence of thermal atoms@42,43#. In these plots, the maxi
mum Nc is 80% to 57% of the value calculated forT50,
confirming that the thermal cloud significantly decreases
stability of the condensate forasc,0.

B. Comparison with LDA and QMC

It is interesting to explore how our finite-temperature r
sults compare with those obtained by other methods. Lo
density approximations are much simpler to implement
merically than the full self-consistent HFB equations a
their variants. The opposite is true of Monte Carlo calcu
tions, but these do not invoke the mean-field approximati
and therefore yield results for equilibrium configurations th
are essentially exact.

Figure 5 for N523104 comparesNc values from the
Popov andG2 quasiparticle sums~DQSP and DQSG! with
several LDA methods. Our Hartree-Fock LDA~HFLDA!
solves the GP equation for the condensatenc(r ), iterated to
self-consistency using Eq.~33! for the thermal distribution
nT(r ). We found it most efficient to start at low temperatur
in order to obtain good initial estimates ofnT(r ) at succes-
sively higher values ofT. No solution could be found for
Nc /N,0.035 due to the failure of the HFLDA, as discuss
above and in Ref.@17#.

The ‘‘semi-ideal’’ LDA ~SILDA! @37# omits thenT(r )
term in the TF expressions for the condensate~30! and for
the total densitynT(r ) in Eq. ~33!. This results in the simple
expressions~35! which are related solely through the chem
cal potential. Iterative solution of these equations yields
sults that are close to the other functions plotted in Fig.
The actualnT(r ) distribution calculated with this approac

ly
5-9
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exhibits a sharp peak at the edge of the condensate due t
discontinuity at the Thomas-Fermi condensate radius.

The inset of Fig. 5 shows that the Hartree-Fock Bogol
bov LDA methods, BPLDA and BGLDA, agree most close
with the hybrid method, DQSP and DQSG, respectively. T
two BLDA methods employ a TF condensate, and thus
nT(r ) functions exhibit a small spike at the edge of the co
densate, which has a cusp. As with the HFLDA, the cal
lations required iteration to self-consistency, which was
cilitated when initial values were obtained by extrapolati
from results from lower-temperature values.

It is remarkable that the values forNc from BLDA calcu-
lations agreed with the corresponding DQS results to be
than 0.4% ofN in every case for which results were o
tained. Even for HFLDA and SILDA, the differences wit
DQS results are less than the fractional error in current
periments. Thus these comparisons show that relativ
simple LDA expressions are useful for obtaining the cond
sate fraction as a function of temperature. It is only in t
region nearTc and above, where the condensate number
comes small, that our LDA methods failed.

The quantum Monte Carlo~QMC! approach uses the ex
act Hamiltonian with a hard-sphere atom-atom interacti
Based on extensive numerical experience with4He @22#,
QMC should be most useful for the calculation of equili
rium quantities, such as the condensate fraction. Holzm
et al. @17# have provided benchmark QMC calculations f
the case of 104 Bose atoms confined in a spherical trap, w
asc/a050.0043. Table I shows comparisons between our
sults and those of QMC@17,45# for the condensate numbe
as a function of temperature. The DQSP, DQSG, and Q
values differ by up to 1.2% of the total atom numberN. It is
notable that at higher temperatures,Nc falls off less quickly
using HFBP andG2 than QMC. This may be due in part t
the fact that the relationship betweenNc andm in Eq. ~18! is
not entirely correct at higher temperatures, as discusse
Sec. II B, and may resemble ideal-gas statistics too clos

FIG. 5. Comparison of values forNc /N from quasiparticle sums
with the Popov and G2 approximations, as compared with HFL
and SILDA for N520 000 atoms andasc/a050.0072. BLDA re-
sults are too close to distinguish on this scale. On an expan
scale, the inset gives differences between indicated LDA and D
methods.
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Presumably the many-body effects that necessitate the re
malization of the atom-atom interaction are already includ
in the QMC procedure, in which case results withG2 should
be closer than Popov to the QMC. Indeed, fort5kBT/\v
,17.3, the Popov results lie below QMC, while theG2
numbers are higher and closer to QMC. Above a scaled t
peraturet517.8, however, theG2 results rise above QMC
values.

C. Critical temperature versus asc

Figures 4 and 5 show that large values ofasc have the
effect of flattening the curve of condensate number as a fu
tion of temperature, as is already apparent in the plots
Giorgini et al. @36#. If these curves are fit to a functio
Nc /N512(T/Tc)

a, one obtains values fora as low as 1.4,
compared with the ideal-gas value of 3. Another parame
to characterize the effect of atom-atom interactions is
shift of the critical temperature from the ideal Bose gas ca
For the homogeneous Bose gas, where it is uniquely defi
as the point at whichNc goes to zero, this shift has been th
subject of intense discussion recently@46#. For atoms in a
harmonic potential, as is especially clear in Fig. 4, this po
is not sharp~indeed, the number of condensate atoms is fin
at all temperatures in a mesoscopic system!. Definitions of
Tc that have been proposed include the point at which
density at the origin reaches the critical density for a hom
geneous gas@47#, the maximum of the specific heat, and th
maximum of the temperature derivative of the specific h
@39#. Since such energy-weighted properties pose additio
problems for numerical calculations of thermal averages,Tc
is determined here as the maximum of the functi
d2Nc /dT2. The inflection point of theNc versusT function,
or zero ofd2Nc /dT2, deviated from Eq.~37! by a signifi-
cantly larger amount.

ed
S

TABLE I. Comparison of condensate numbers,n0, obtained
from quantum Monte Carlo calculations and from this work, w
and without atom-atom interactions, and results obtained here f
discrete Bogoliubov quasiparticle sums and discrete Hartree-F
sums. The error limits for QMC are of course purely positive f
n050.

QMC DQSG DQSP HFLDAa HFLDAb

T/\v Nc Nc Nc Nc Nc

16.667 2265~10! 2213 2159 2216 2222
16.949 1971~10! 1936 1883 1945 1935
17.242 1656~15! 1654 1599 1630 1638
17.544 1374~10! 1367 1309 1323 1333
17.857 1057~10! 1072 1016 1008 1022
18.182 741~10! 782 726 686
18.519 440~10! 501 448
18.868 180~10! 247 205
19.231 21~11! 140 57
19.608 0~20! 71 21
19.802 0~20! 15
20.0 0~10! 12
20.202 0~14! 9

aHolzmannet al. @17,45#.
bThis work, using Eq.~35!.
5-10
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Figure 6 showsTc values extracted from the data used
Fig. 4. For comparison, the ideal-gas data are analyzed
similar manner, yielding values ofTc that are close to, bu
not identical with, those obtained using Eq.~37!. Figures
6~a! and 6~b! correspond to 1000 and 20 000 atoms, resp
tively. The inset in Fig. 6~b! shows how the transition tem

FIG. 6. Values for the critical temperature,Tc , defined as the
maximum ofd2Nc /dT2. Results are shown for~a! N51000 and~b!
N520 000 atoms, for the DQSP and DQSG approaches. The s
line represents the semiclassical predictionTc5Tc

02DTc , where
Tc

0 is the transition temperature in the noninteracting limit. The in
in ~b! shows theNc(T), Nc(T)/dT, andd2Nc /dT2 functions from
which Tc is determined for the casesasc/a050.0048, the last with
a spline fit.
06360
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perature is determined from the data in a typical case,
making use of the three functionsNc(T), dNc(T)/dT, and
d2Nc /dT2. Since both the condensate number and its te
perature derivative are nearly straight lines, accurate calc
tion of the second derivative requires accurate numeric
ues of these functions.

A semiclassical analysis by Giorginiet al. @48# indicates
that the transition temperature should decrease linearly f
the ideal-gas value with increasing particle interactions. T
results of the DQS-Popov calculations confirm this gene
scaling; furthermore, as the number of atoms increases,
observed shift in the critical temperaturedTc matches the
semiclassical expression more closely at largerasc/a0. In
contrast, with the DQS-G2 approachdTc shows significant
deviations from linear scaling for smallN, and these become
more pronounced as the number of atoms increases. FN
523104, the shifts are significantly less than the semicla
sical values for the larger values ofasc/a0 considered.

D. Renormalization of the atom-atom interaction

As indicated in Fig. 4, theG2 renormalization yields val-
ues for Nc /N that reflect the weakening of the atom-ato
repulsion; at any given temperature, the number of atom
the condensate increases relative to the value obtained u
the Popov approximation. Perhaps more interesting is
spatial variation of the effective interaction in the harmon
trap. The renormalization is governed by the local value
mT relative tonc . In general,umTu increases with the numbe
of noncondensed atomsnT since more terms enter the su
~10!; however,mT vanishes whennc50, since the ‘‘quasi-
hole’’ amplitudev i50. In general, therefore, one might ex
pect the local renormalized interaction to reach a minim
at some temperature. For a uniform Bose gas, this minim
occurs at exactly the transition temperature, and correspo
to a vanishing of the effective scattering length@20,21#.

In Fig. 7 we compare the condensate and thermal de
ties with the spatial variations of the anomalous average

lid

t

nd
FIG. 7. The functionsnc(r ),
nT(r ), mT(r ), and g(r )/g are
shown for N520 000 atoms,
asc/a050.0072 over a wide range
of temperatures.umT(r )u is largest
at the edge of the condensate a
increases withT up to Tc .
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the effective particle interactions for the case ofN520 000
and asc/a050.0072 for various temperatures.~As noted
above, this would correspond to a relatively tight trap
23Na.! For these plots,d50.01 in Eq.~25!. There is a slight
dependence of the results ond, since much smaller value
d;1024 lead to a small bump in themT(r ) function at the
very edge of the condensate. The dependence on this
trary parameter indicates an ambiguity in the theory; ho
ever, the integrated numbers are not significantly altered
the choice ofd, since the errors are incurred in regions
very small condensate density.

The manner in whichg(r )/g attains a minimum inr is
shown in Fig. 8 for the particular case ofN523105. The
global minimum occurs at a temperature close toTc , defined
above. Following this procedure, we consider thegmin(r)/g
functions for various values ofN for asc/a050.0072, which
are displayed in Fig. 9. Though we have increasedN without
changingasc/a0, the approach to the thermodynamic limit

FIG. 8. Variation of the renormalization factor,g(r )/g, with
temperature nearTc for N5200 000 andasc/a050.0072. The range
of the minimum decreases as the condensate shrinks withT, while
the minimum value continues to decrease up to a point, and
increases.

FIG. 9. The curves shown are the ‘‘minimum’’ function
gmin(r)/g, as a function of temperature~such as shown in the previ
ous figure! for eachN value given. These curves are forasc/a0

50.0072.
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beginning to emerge. The minimum for eachN is found to
always occur very close to the calculated transition tempe
ture, and its value decreases approximately with log10(N)
over the range ofN considered. ForN5106, we obtain
gmin(r)/g'0.2. It should be noted that although the fracti
of total atoms in the LDA integral increased to approx
mately 3

4 for N5106 nearTc , the high-energy LDA contri-
bution tomT was in every case less than 2%, and typically
order of magnitude less than this value.

It should be emphasized that theG2 renormalization em-
ployed in the present calculations is derived for a unifo
Bose gas, and should best represent large condensate d
ties or low temperatures where the LDA is most applicab
While the LDA is bound to fail forT→Tc , the regime where
it loses validity will become smaller with increasingN, and
should approach the critical region where perturbation the
itself breaks down. It would be preferable to define the ren
malization of the particle interactions in terms of the fu
many-bodyT matrix in a trap, and we hope to pursue th
issue in future work. TheG2 approach as formulated abov
however, should properly describe the effects of two-bo
correlations for large trapped condensates at low to inter
diate temperatures. Thus, the strong reduction in the ef
tive interaction strength over much of the condensate, in
cated by theG2 theory, could have significant experiment
consequences. The predictions for the excitation frequen
are discussed further below.

E. Excitation frequencies

The quasiparticle eigenvalues correspond to excita
frequencies, but it remains unclear what relationship ex
between these values and experimentally observed r
nances of the trapped gas at finite temperatures when
potential of a harmonic trap is perturbed periodically. In
mean-field calculations such as those presented here
linear-response equations assume that the thermal dens
fixed, while in experiments it would also be perturbed. F
this reason, the dipole excitation frequency obtained wit
mean-field theories will generally not satisfy the generaliz
Kohn theorem@49#, which states that there is a mode
which the entire ensemble oscillates at the bare trap
quency. Calculations explicitly including the dynamics
both nc and nT @13,14# are found to be consistent with th
Kohn theorem.

Figure 10 shows small but significant deviations in t
Kohn mode from unity forN523104 and 23105, both
within the DQS-Popov and DQS-G2 approaches. That th
G2 frequency should be lower than the Popov value can
be simply understood in terms of an overall decrease in
interatomic repulsion, since this would predict a mode clo
to unity. Rather, the spatial variation of the effective intera
tion leads to a flattening of the effective potential, compris
of the trap plus the Hartree potential; the looser effect
confinement softens all the modes. We are not aware of o
computational results in which the Popov value starts fr
below unity and rises above, before falling nearTc . This
behavior may be a consequence of a more rigorous treatm
of the chemical potential, Eq.~18!. Alternatively, since the

en
5-12
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differences increase withN ~specifically, the noncondensa
density!, they may not have been observable with the sma
N values studied previously.

The temperature dependence of the low-lying excitat
frequencies obtained with the DQSP and DQSG approac
is shown in Fig. 11 forN523104 and 23105. The soften-
ing of all the excitation frequencies in theG2 approximation
was found previously by the proponents of this theory@11#
~for a ‘‘pancake’’ geometry! as well as by others using
similar perturbative approach to the interacting Bose
@50#. However, for a spherically symmetric trap, the resu
of Ref. @11# for 2000 Rb atoms showed only a negligib
difference between Popov andG2 excitation frequencies
The present results show that for a spherically symme
trap and larger atom numbers, there can be differences
tween the Popov andG2 values that would be experimen
tally detectable. These results also lead to the questio

FIG. 10. Excitation frequencies of the lowestl 51 mode in
comparison with the Kohn theorem value of unity. Results from
Popov ~dashed lines! and G2 ~solid lines! approximations are
shown for ~a! N523104 and ~b! N523105. All results are for
asc/a050.0072.

FIG. 11. Excitation frequencies for the lowestl 50, 1, and 2
modes for~a! N523104 and ~b! N523105 within the Popov
~dashed lines! andG2 ~solid lines! models, whereasc/a050.0072.
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whether for larger atom numbers a renormalized atom-a
interaction would effect frequencies calculated by the me
ods of Refs.@13,14#, which did not assume a static conden
sate. It should also be mentioned that experimentally
served excitation frequencies with larger numbers of sod
atoms in a ‘‘cigar’’ geometry@12# also exhibited a softening
of both the quadrupole anddipole excitation frequencies a
the temperature approachesTc .

V. DISCUSSION AND CONCLUSIONS

In this work, we have extended finite-temperature me
field calculations for Bose-Einstein condensates confined
harmonic traps@8,11#. A careful derivation of the mean-field
equations provides improved definitions of the thermod
namic chemical potential and quasiparticle occupation f
tors, yielding observables that are continuous functions
the particle interactions. The numerical techniques emplo
in the calculations have allowed for the investigation of s
tems with the large numbers of atoms relevant to ongo
experiments. In the process, we have been able to make
eral crucial comparisons between the results of evalua
discrete summations over quasiparticle states~which are nu-
merically time-consuming! and various local-density ap
proximations. Furthermore, we have explored the impli
tions of a recently proposed gapless theory which takes
account pairing correlations.

The results presented above indicate a significant in
equacy of conventional static mean-field theory for comp
tations of excitation frequencies of trapped Bose condens
at finite temperatures. For a large number of atoms and
teraction strength, we find appreciable deviations of the
pole frequency obtained with either the Popov orG2 ap-
proximations from expectations of the generalized Ko
theorem. In our computations, the condensate is static in
presence of thermal excitations. The excited dipole mo
corresponds approximately to out-of-phase motion of
thermal cloud relative to the condensate, as observed ex
mentally @12# when the dipole mode of the thermal cloud
excited separately. Detailed modeling of such excitat
modes has been performed only by restrictive parametr
tion of the condensate and thermal cloud in the collisionl
@14# or hydrodynamic @13# regimes. Both of these ap
proaches address the two-fluid nature of these systems,
produce dipole modes that satisfy the Kohn theorem exac
We will argue that equilibrium thermal excitations are com
puted accurately by the mean-field DQS methods prese
here. However, any experimental probe of these excitati
involves perturbative processes that require other theore
methods.

In principle, mean-field theories that include fluctuatio
in the population of excited states@16,51# ought to be
equivalent to the two-fluid dynamics in the collisionless r
gime. A full second-order perturbation theory of the intera
ing Bose gas should yield the coupled modes of the cond
sate and thermal clouds as well as damping rates. Ind
employing the approximate many-bodyT matrix in the cal-
culations~theG2 approximation described above! yields ex-
citations that have a temperature dependence qualitati

e
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similar to that of out-of-phase modes. We hope to expl
these issues in future work.
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