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Macroscopic quantum fluctuations in the Josephson dynamics of two weakly linked
Bose-Einstein condensates
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We study analytically the quantum corrections to the Gross-Pitaevskii equation for two weakly linked
Bose-Einstein condensates. The goals are~1! to investigate dynamical regimes at the borderline between the
classical and quantum behavior of the bosonic field, and~2! to search macroscopic quantum coherence phe-
nomena not observable with other superfluid/superconducting systems. Quantum fluctuations renormalize the
classical Josephson oscillation frequencies. Large amplitude phase oscillations are modulated, exhibiting col-
lapses and revivals. We describe an interwell oscillation mode with a vanishing~ensemble averaged! mean
value of the observables, but with oscillating mean square fluctuations. We finally discuss the limit in which
the classical Gross-Pitaevskii~Josephson! dynamics is recovered.

PACS number~s!: 03.75.Fi, 74.50.1r
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The experimental observation of the Bose-Einstein c
densation of a trapped, dilute gas of alkali-metal atoms@1#,
and the high accuracy of the engineering@2,3#, are opening a
new avenue to investigate the interplay between macros
ics and quantum coherence. Foundational problems of q
tum theory @4,5# and condensed matter@4,6# can be ad-
dressed through real~and not just ‘‘gedanken’’! experiments;
dynamical regimes not accessible with oth
superconducting/superfluid systems might be testable.

The main goal of this work is to study analytically th
quantum corrections to the classical Gross-Pitaevskii dyn
ics @7# of two weakly linked Bose-Einstein condensat
~BEC’s!. The Gross-Pitaevskii equation~GPE! has been
shown to describe quite accurately the dynamical regim
experimentally investigated so far@8#. On the other hand
BEC’s can be experimentally created with a number of
oms ranging from a few thousand to several millions, and
a wide variety of confining geometries@1–3#. This is open-
ing the possibility of studying dynamical regimes at the b
derline between the quantum and classical nature of
bosonic field, and, more generally, to search new mac
scopic quantum phenomena. Several predicted effects,
for example, the collapse and the revival of the relative ph
of two coupled condensates, have never been observed
other superfluid/superconducting systems.

Different Josephson dynamical regimes are character
by the ratio of the ‘‘Josephson coupling energy’’EJ and the
‘‘on-site energy’’ Ec @9–11#. In the limit EJ@Ec ~often re-
ferred to in the literature as ‘‘classical’’@9,10#!, both the
phase difference and the relative number of condensate
oms are well defined. In this limit the classical Josephs
equations can be ‘‘microscopically’’ derived by the GPE
the ‘‘two-mode’’ approximation@14–24#. On the other hand
we will see that quantum corrections can significan
modify the classical dynamics even forEJ /Ec;102, a re-
gime accessible in current BEC experiments. Quantum fl
tuations renormalize the classical Josephson oscillation
quencies. Large amplitude phase oscillations are modul
by partial collapses and revivals. It is well known that t
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relative phase of two decoupled condensates diffuses ba
tically @4,12–14# and subsequently revives@12# after a much
longer time even though the Josephson coupling is abs
Numerical analysis has shown that even in twocoupledcon-
densates~in a symmetric double-well potential!, the relative
phase diffuses in the self-trapped, running-phase@16,17# re-
gime. Then, partial or complete revivals could occur, due
the finite number of condensate atoms@16,17#. An asymmet-
ric potential can also induce phase diffusion@18#. There have
also been studies involving atom-number fluctuations a
decoherence@14,19–21# and finite-temperature effects an
damping@19,22,23#.

For large condensates, the dynamical equations for
mean values of the physical observables decouple from
equations governing the respective quantum fluctuatio
This describes the smooth crossover from the quantum to
classical GPE regime.

The classical boson Josephson junction~BJJ! equations,
derived by the GPE in the ‘‘two-mode’’ approximation@14–
24#, can be cast in terms of two canonically conjugate va
ables: the relative populationN5 1

2 (N12N2) and phasef
5f12f2 between the two traps. Quantizing BJJ, thec num-
bersN and f are replaced by the corresponding operato
satisfying the commutation relation@f̂,N̂#5 i @25#. Then the
Hamiltonian of two weakly coupled condensates reads@11#

Ĥ5
Ec

2
N̂22EJ cosf̂1DE0N̂, ~1!

whereEJ(;NT
a ;a;1) is the ‘‘Josephson coupling energy’

Ec(;NT
2b , with b53/5 in 3d traps! is the ‘‘on-site en-

ergy,’’ the analog of the charging energy in SJJ;NT is the
total number of condensate atoms.DE0 is the zero-point en-
ergy difference in two asymmetric traps@15#, or an applied
chemical potential difference~induced, for example, by the
gravitational potential in vertical traps@3#!. The coefficients
EJ ,Ec are determined by the BJJ geometry and the to
number of atoms. They can be~consistently! calculated, for
©2000 The American Physical Society01-1
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example, as overlap integrals of two orthogonal one-bo
Gross-Pitaevskii wave functions@15,26#.

In the phase representation, the operators in Eq.~1! are
expressed asN̂52 i (]/]f),f̂5f. Then the dynamica
equation for the amplitudeC(f,t) is (\51),

i
]C~f,t !

]t
52

]2C~f,t !

]f2
2G cosfC~f,t !2 iE0

]C~f,t !

]f
,

~2!

whereG52EJ /Ec , E052DE0 /Ec , and the time has bee
rescaled as (Ec/2)t→t. Since we are considering an isolate
energy-conserving system, the ‘‘potential’’ is periodic a
defined on a 2p ring, with the wave-function boundary con
ditions C(f)5C(f12p).

In the context of superconductors, Eq.~2! describes low-
capacitance Josephson junctions@9,10#. The effect of dissi-
pation on its quantum statistical properties~also displaying
phase transitions from normal to superconducting pha!
has been extensively studied@27#. In superconducting, no
current-biased junctions, the phase is localized in the m
mum of the potential. By driving the system with an extern
current, the phase runs~Bloch oscillations!, leading to non-
zero ~high frequency;GHz) oscillating voltages across th
junction. Such high-frequency oscillations are difficult to o
serve directly. Quantum effects are usually manifested a
renormalized Josephson critical current with respect to
classical prediction@28#, although quantum fluctuations hav
been observed in the measurements of quantum noise i
sistively shunted superconducting Josephson junctions~SJJs!
@29#. We note here that a related but quite different and w
studied phenomenon is macroscopic quantum tunneling
tween different minima, occuring in mesoscopic S
@9,10,30#.

In an ~isolated! BJJ, on the other hand, density oscill
tions can be induced by shifting the position of the la
barrier or tailoring the traps@2,3#. ~A similar argument holds
when considering Raman transitions between two cond
sate in different hyperfine levels of a single traps!. The small
frequency, less than 1 kHz, oscillations of the populat
imbalance, and the corresponding mean square deviat
might be directly measurable by destructive or nondestr
tive techniques. It is worth stressing, therefore, that the se
experimentally accessible observables in BJJ is quite dif
ent from its SJJ counterpart. Furthermore, because BEC
trapped gas atoms are dilute, weakly interacting, and ele
cally neutral, it may be easier to uncover new collect
quantum phenomena than in the Josephson tunneling
superconducting/superfluid systems.

In this paper we study analytically the quantum corre
tions to the classical Gross-Pitaevskii-Josephson equat
We provide a quite simple, though accurate, framework
study quantitatively the phenomena that occur in a mes
copic BJJ@31#.

We consider a time-dependent variational approach.
time evolution of the variational parameters is characteri
by the minimization of an action with the effective Lagran
ian,

L~qi ,q̇i !5 i ^CĊ&2^CĤC& ~3!
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with Ĥ52]2/]f22G cosf2iE0(]/]f) andC„f,qi(t)…, qi
being the time-dependent parameters. This provides the
miliar Lagrange equations

d

dt

]L

]q̇i

5
]L

]qi
. ~4!

We choose the time-dependent variational wave function

C~f,t !5RFf2fc~ t !

l~ t ! GeiS[f2fc(t),p(t),d(t)] ~5!

with the square root of the probability densityR and the
dynamical phaseS being real, and

S5p~ t !@f2fc~ t !#1
d~ t !

2
@f2fc~ t !#2. ~6!

The pairs of time-dependent parametersfc(t),p(t) and
l(t),d(t) are canonically conjugate,

ḟc5
]H

]p
52p1E0 , ~7a!

ṗ52
]H

]fc
52

]

]fc
^V~f!&, ~7b!

l̇5
]H

]d
54ld, ~7c!

ḋ52
]H

]l
522d21

]

]lF E
fc2p

fc1p

RR9df2^V~f!&G ,
~7d!

with the effective Hamiltonian

H5^T&1^V&

5p212ld22E
fc2p

fc1p

RR9df1^V~f!&1E0p. ~8!

Thus p(t) is the momentum associated with the center-
mass motionfc(t)5*fc2p

fc1pR2(f2fc)fdf, andd(t) is the

conjugate momentum of the width of the wave functio
which is proportional tol(t)5 1

2 *fc2p
fc1pR2f2df. The ^ &

means*fc2p
fc1puC(f2fc)u2

•••df, and the prime stands fo

]/]f. The mean value of the population imbalance betwe
the two traps isN(t)5^C(f,t)N̂C(f,t)&5p(t), the rela-
tive phase isf(t)5fc(t), and the corresponding mea
square deviations aresN

2 (t)5^N̂2&2^N̂&25^T(t)& and
sf

2 (t)52l(t).
The functional form ofR(f,t) depends on the value ofG.

For G@1, R$@f2fc(t)#/l(t)% can be well approximated
by a Gaussian:

R~f,t !5~4pl!21/4e2(1/8l)(f2fc)2
~9!

with the caveat that during the dynamics its width 2sf(t)
52A2l(t)!2p.

The equations of motion become
1-2
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FIG. 1. The population imbal-
anceN, the relative phasef, and
the corresponding fluctuationssN

andsf as a function of time. The
initial conditions are N54,
f50, G5100,sN50, sf50.26,
andE050.
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Ṅ52G sinfe2sf
2 /2, ~10a!

ḟ52N1E0 , ~10b!

ṡf52sfd, ~10c!

ḋ522d21
1

2sf
4 2G cosfe2sf

2 /2 ~10d!

with the total~conserved! energy and the relative populatio
dispersion

H5N21sN
2 2G cosfe2sf

2 /21E0N, ~11!

sN5
1

2sf
A114sf

4 d2. ~12!

The canonically conjugate dynamical variables areN,f, as
in the classical Josephson Hamiltonian, and the p
sf

2 /2, d5(1/sf)AsN
2 2(1/4sf

2 ), characterizing the respec
tive quantum fluctuations. As expected,sNsf> 1

2 during the
dynamics. The classical Josephson equations are recov
from Eqs.~10a! and ~10b! in the limit sf→0. We will dis-
cuss more about the transition from the quantum to the c
sical regimes in the following.

The variational ground-state energy of Eq.~2! is given by

Egs5
1

4sf,s
2 2Ge2sf,s

2 /22
E0

2

4
5sN,s

2 2Ge21/8sN,s
2

2
E0

2

4
,

~13!

wheresf,s ,sN,s are the solutions of

2sf,s
4 e2sf,s

2 /25e21/8sN,s
2

/8sN,s
2 5

1

G
. ~14!
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The stationary results were discussed in Ref.@10#, where
Eqs. ~13! and ~14! were obtained minimizing the ground
state energy with a Gaussian trial wave function in the c
E050. Linearizing Eq.~10! for small amplitudef oscilla-

tions, we havef̈522Ge2sf,s
2 /2f. The condensate atom

oscillate coherently with a frequency~unscaled!:

vq5AEcEJe
2sf,s

2 /4 ~15!

where the classical Josephson relation givesvc5AEcEJ.
The quantum fluctuations renormalize the Josephson pla
frequency, with vq /vc5exp(2sf,s

2 /4)5(sf,s
2 A2G)21. No-

tice that in the linear regime, the current-phase equati
~10a! and~10b! are effectively decoupled from the dynamic
of the respective fluctuation equations~10c! and ~10d!. On
the contrary, for large amplitudef oscillations, Eqs.~10!
cannot be decoupled. In this case the exponential fa
modulates the amplitude and the frequencies of the osc
tions, inducing partial collapses and revivals. This can
seen in Figs. 1~a!–1~d!, where we show the population im
balance, the relative phase, and the respective mean sq
deviations as a function of time.

Above the critical point (N50,f5p/2), the phasef(t)
starts running, Fig. 2~b!, and the system is set into a macr
scopic quantum self-trapping~MQST! mode @15,16#. The
width of the wave function grows and the amplitude of o
cillations ‘‘collapses,’’ Fig. 2~a!. In the deep MQST regime
when N(t).N(t50), the phase diffuses assf

2 (t).sf,s
2

1(Ec
2/4sf,s

2 )t2, Fig. 2~d!, regardless of the initial value o
N(t50) @32#. The relative population oscillations collaps
with a lifetime t.2EJ

21/4Ec
23/4, while thesN

2 (t) tends to a
constant value, Fig. 2~c!. However, since the total number o
1-3
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FIG. 2. N,f,sN ,sf as a func-
tion of time. The initial conditions
are the same as in Fig. 1 exce
N(t50)550.
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condensate atoms is finite, the phase can eventually re
partially or completely. This can be seen rewriting t
wave function in the N representation: C(f,t)
5(NaNFN(f)e2 i /\ENt, whereEN are the eigenenergies o
Eq. ~2!. For instance, in the limitEcNT!EJ , the eigenvalue
spectrum is approximately linearEN;EJ /NTN ~for a discus-
sion of the spectrum in various regimes, see, e.g.,@16#!, and
the revival time istR;hNT /EJ . More generally, the occur
rence of a complete or partial revival, or the complete
struction of it, depends on the detailed eigenspectrum of
Hamiltonian. We note that Eq.~10! cannot describe the re
vival after a complete collapse since the Gaussian ansatz
~9! ~and, consequently, the semiclassical approximation
derlying it! breaks down whensf.p.

Equations~10! admit, as a dynamical solution, a qui
peculiar oscillation mode, with zero relative phase and po
lation imbalance, but oscillating fluctuations, according to

N~ t !50, ~16a!

f~ t !50, ~16b!

sN
2 ~ t !5

1

4sf
2 1

ṡf
2

4
, ~16c!

s̈f~ t !5
1

sf
3 22Gsfe2sf

2 /2, ~16d!

with initial conditions N(t50)50,f(t50)50;E050 and
arbitrary sf(t50). This collective oscillation mode can b
experimentally observed by lowering or increasing the hei
of the barrier of a BJJ ensemble in thermodynamic equi
rium. This corresponds to changingG in Eq. ~16! from its
initial value. The temporal evolution of the ensemble av
06360
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aged observables and the respective mean square devia
can be calculated by tracing the dynamicalN(t),f(t) trajec-
tories of each junction.

Classical limit. Increasing the number of atoms,sf→0
as G21/4;NT

2(1/4)(a1b) , and sN /NT;G1/2/NT

;NT
(1/2)(a1b)21→0, if 1

2 (a1b)21,0. Moreover, for a
given initial valueN(t50), the amplitude of the ‘‘particle’’
oscillations in thef potential of Eq.~2!, decreases asfmax

;G21/2;NT
2(1/2)(a1b) . Then Eqs.~10a! and ~10b! decouple

from Eqs. ~10c! and ~10b!, and the time evolution of the
mean values of current and phase become independent o
corresponding dispersions. In the MQST regime, the colla
time ~and, consequently, the time over which the semicla
cal predictions are reliable!, increases ast;NT

(1/4)(3b2a) . In
this framework the classical limit emerges naturally@6#. A
similar result displaying the asymptotic approach towards
classical limit upon increase of the number of condens
atoms has also been found in@17#.

Numerical estimates. Following the analytical estimation
of the Josephson coupling energy and the on-site ene
given for two weakly coupled condensates in@22#, we have

G.1.7NT

a0

as

exp~2S!

tanh~S/2!
,

with a0 ,as the trap length and the scattering length, resp
tively, and withS;(1/\)A2msB

2(V02m). sB is the width
of the barrier,V0 its height, andm the chemical potential.
For typical traps and condensates, and taking sodium at
a0;104 Å, as;50 Å, andsB;5 m m. With a height of
the barrier such that (V02m);30 nK, we haveS'8 and
G'80 for NT;1000. By varying the width and/or the heigh
of the barrier, and the total number of condensate atoms,
1-4
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can let the system span from theG!1 to theG@1 limits.
The temperature should be small compared to the Josep
coupling energy@19,22# to avoid destroying the quantum
fluctuations. Damping effects are also reduced by decrea
the total number of atoms. We conclude noting that Eqs.~10!
can be easily generalized to describe interwell tunneling
an array of trapped condensates, recently observed in@3#. In
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that experiment, the average populationper site is of the
order of thousand condensate atoms, a regime where q
tum fluctuations can play an important role. This proble
along with the effects of temperature and damping, certa
deserves further studies.
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