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We study analytically the quantum corrections to the Gross-Pitaevskii equation for two weakly linked
Bose-Einstein condensates. The goals(djeo investigate dynamical regimes at the borderline between the
classical and quantum behavior of the bosonic field, @do search macroscopic quantum coherence phe-
nomena not observable with other superfluid/superconducting systems. Quantum fluctuations renormalize the
classical Josephson oscillation frequencies. Large amplitude phase oscillations are modulated, exhibiting col-
lapses and revivals. We describe an interwell oscillation mode with a vanigbirsgmble averaggdnean
value of the observables, but with oscillating mean square fluctuations. We finally discuss the limit in which
the classical Gross-Pitaevskilosephsondynamics is recovered.

PACS numbd(s): 03.75.Fi, 74.50tr

The experimental observation of the Bose-Einstein confelative phase of two decoupled condensates diffuses ballis-
densation of a trapped, dilute gas of alkali-metal at¢fjs tically [4,12—14 and subsequently revivg$2] after a much
and the high accuracy of the engineerj@g3], are opening a longer time even though the Josephson coupling is absent.
new avenue to investigate the interplay between macroscopNumerical analysis has shown that even in weapledcon-
ics and quantum coherence. Foundational problems of quamnlensatesin a symmetric double-well potentjalthe relative
tum theory[4,5] and condensed matt¢d,6] can be ad- phase diffuses in the self-trapped, running-phd€e17 re-
dressed through reénd not just “gedankenj’experiments; gime. Then, partial or complete revivals could occur, due to
dynamical regimes not accessible with  otherthe finite number of condensate atofi§,17. An asymmet-
superconducting/superfluid systems might be testable. ric potential can also induce phase diffus[d8]. There have

The main goal of this work is to study analytically the also been studies involving atom-number fluctuations and
quantum corrections to the classical Gross-Pitaevskii dynamdecoherencg14,19-2] and finite-temperature effects and
ics [7] of two weakly linked Bose-Einstein condensatesdamping[19,22,23.

(BEC's). The Gross-Pitaevskii equatiofGPE) has been For large condensates, the dynamical equations for the
shown to describe quite accurately the dynamical regimemean values of the physical observables decouple from the
experimentally investigated so f&8]. On the other hand, equations governing the respective quantum fluctuations.
BEC’s can be experimentally created with a number of at-This describes the smooth crossover from the quantum to the
oms ranging from a few thousand to several millions, and irclassical GPE regime.

a wide variety of confining geometri¢é—3|. This is open- The classical boson Josephson juncti&J) equations,

ing the possibility of studying dynamical regimes at the bor-derived by the GPE in the “two-mode” approximatigh4—
derline between the quantum and classical nature of th24], can be cast in terms of two canonically conjugate vari-
bosonic field, and, more generally, to search new macroables: the relative populatioN=3(N;—N,) and phasep
scopic quantum phenomena. Several predicted effects, likes ¢, — ¢, between the two traps. Quantizing BJJ, theum-

for example, the collapse and the revival of the relative phaskersN and ¢ are replaced by the corresponding operators,

of two coupled condensates, have never been observed Witfytisfying the commutation relatigp,N]=i [25]. Then the

other superfluid/superconducting systems. ~ Hamiltonian of two weakly coupled condensates redds
Different Josephson dynamical regimes are characterized

by the ratio of the “Josephson coupling energlf; and the E.. A A

“on-site energy” E. [9—11]. In the limit E;>E, (often re- H= —"N2—E, cosd+AEN, (1)

ferred to in the literature as ‘“classical[9,10]), both the 2
phase difference and the relative number of condensate at-
oms are well defined. In this limit the classical JosephsowhereE;(~N7;a~1) is the “Josephson coupling energy”;
equations can be “microscopically” derived by the GPE in Ec(~N7#, with =3/5 in 3d trap9 is the “on-site en-
the “two-mode” approximatiorj14—24. On the other hand, ergy,” the analog of the charging energy in SBI; is the

we will see that quantum corrections can significantlytotal number of condensate atonisk, is the zero-point en-
modify the classical dynamics even f&n/E.~10?, a re- ergy difference in two asymmetric traps5], or an applied
gime accessible in current BEC experiments. Quantum flucchemical potential differencénduced, for example, by the
tuations renormalize the classical Josephson oscillation fregravitational potential in vertical trafg8]). The coefficients
guencies. Large amplitude phase oscillations are modulated; ,E. are determined by the BJJ geometry and the total
by partial collapses and revivals. It is well known that thenumber of atoms. They can leonsistently calculated, for
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example, as overlap integrals of two orthogonal one-bodyyith H= — 3%/ 9¢?—T' cos¢p—iEq(dldd) and ¥ (¢b,qi(t)), ;

Gross-Pitaevskii wave functiori45,26. _ being the time-dependent parameters. This provides the fa-
In the phase representation, the operators in(Epare  mijliar Lagrange equations

expressed adN=—i(d/d}),d=¢. Then the dynamical

equation for the amplitud@ (¢,t) is (A=1), dii:ﬂ' (4)
OV(pt) V(1) _aW (1) Log, 9%
[ =— —TI' cospV(p,t)—iEg——F—, ] o )
ot dp? d We choose the time-dependent variational wave function as
2 _
W(ht)=R a0 @i Slé— dc(t),p(1), 5(1)] (5)
wherel'=2E;/E., Eq=2AEy/E;, and the time has been ’ A(t)

rescaled askE_./2)t—t. Since we are considering an isolated,
energy-conserving system, the “potential” is periodic andWith the square root of the probability densig and the
defined on a # ring, with the wave-function boundary con- dynamical phas& being real, and
ditions V() =V (p+2m). 5(t)

In the context of superconductors, Eg) describes low- S=p()[d— () ]+ TM_ be(1)]%. (6)
capacitance Josephson junctigfsl0]. The effect of dissi-
pation on its quantum statistical propertigdso displaying The pairs of time-dependent parameteps(t),p(t) and
phase transitions from normal to superconducting phase%(t) 5(t) are canonically conjugate
has been extensively studi¢d7]. In superconducting, no ’ '

current-biased junctions, the phase is localized in the mini- : _ﬂ_z TE (7a)
mum of the potential. By driving the system with an external Pe= ap P Eo.
current, the phase run8loch oscillations, leading to non-
zero (high frequency~ GHz) oscillating voltages across the p=— ﬁ =_ i<V(¢)> (7b)
junction. Such high-frequency oscillations are difficult to ob- dpe d ’
serve directly. Quantum effects are usually manifested as a WH
renormalized Josephson critical current with respect to the N=—==4\6, (70
classical predictiof28], although quantum fluctuations have 98
been observed in the measurements of quantum noise in re- H A ([(betm
sistively shunted superconducting Josephson juncti®dds o=— T 26%+ 5[ f RR'dp—(V(d))|,
[29]. We note here that a related but quite different and well- bem T
studied phenomenon is macroscopic quantum tunneling be- (7d)
E\évi%nquifferent minima, occuring in mesoscopic S‘]Jwith the effective Hamiltonian

In an (isolated BJJ, on the other hand, density oscilla- H=(T)+(V)
tions can be induced by shifting the position of the laser ot
barrier or tailoring the trapg2,3]. (A similar argument holds =p2+ 2\ 6% — f RR'd¢p+(V(p))+Egp. (8)

when considering Raman transitions between two conden- c
sate in different hyperfine levels of a single trapehe small

frequency, less than 1 kHz, oscillations of the populationThus p(t) is the momentum associated with the center-of-
imbalance, and the corresponding mean square deviationgass motiorkﬁc(t)=f$°f:R2(¢—¢c) ¢de, and5(t) is the
might be directly measurable by destructive or n0ndestruc:(—:onjugate momentumc of the width of the wave function,
tive techniques. It is worth stressing, therefore, that the set s : _1betTo2 42

experimentally accessible observables in BJJ is quite diffe?—x,hICh 'S ﬁroportlonal toM(t) = 2f¢c*7fR ¢°d¢. The ()

ent from its SJJ counterpart. Furthermore, because BEC's (!iﬂeanSfiz_:l‘If(c;b— ¢c)|?- - -de¢, and the prime stands for

trapped gas atoms are dilute, weakly interacting, and electria/(w_ The mean value of the population imbalance between

cally neutral, it may be easier to uncover new coIIectlvethe two traps isl\l(t)=<‘lf(¢,t)l§l‘lf(¢,t))=p(t), the rela-

guantum phenomena than in the Josephson tunneling of ; Z .
superconducting/superfluid systems. e phase |_s<;_5(t) ¢°(t)2’ and Aﬂ;e coArrgspondmg mean
In this paper we study analytically the quantum correc-Square deviations arer(t)=(N%)—(N)*=(T(t)) and

tions to the classical Gross-Pitaevskii-Josephson equation@’fp(t)ZZ?\(t)-
We provide a quite simple, though accurate, framework to  The functional form oR(¢#,t) depends on the value bf
study quantitatively the phenomena that occur in a mesod=or I'>1, R{[ ¢~ ¢(t)]/A(t)} can be well approximated
copic BJJ[31]. by a Gaussian:

We consider a time-dependent variational approach. The _ —Ua,— (1) (b~ bc)?
time evolution of the variational parameters is characterized R(¢.H)=(4mr)" e ‘ ©

by the minimization of an action with the effective Lagrang- with the caveat that during the dynamics its widthr Zt)

lan, . . ) =22\ (t) <27
L(qgi,q)=i(VV¥)—(V¥HWY) ©)] The equations of motion become
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| — ; —o The stationary results were discussed in Ré&D], where
N=—T singe 74?2, 10 y . s ’
_ ¢ (103 Egs. (13) and (14) were obtained minimizing the ground-
$=2N+E,, (10b) state energy with a Gaussian trial wave function in the case
s (100 E,=0. Linearizing Eqg.(10) for small amplitude¢ oscilla-
= ’ C . - 2
TeT T tions, we havegp=—2le “s5%¢. The condensate atoms
) 1 2 . .
S— — 28574 — T cosge 72 (100 oscillate coherently with a frequendynscalegt
g
¢

wq= VEGE e s (15)
with the total(conserveglenergy and the relative population
dispersion where the classical Josephson relation givess \E_.E;.
N2, 2 _ o2 The quantum fluctuations renormalize the Josephson plasma
H=N +UN_1F cosge 747+ EoN, (1) frequency, with wy/wc=exp(-o%J4)=(0%s/2T') 1. No-
tice that in the linear regime, the current-phase equations
ONTH N 1+4070%. (12) (109 and(10b) are effecti\?ely decoupled fronﬁ the dyr?amics
of the respective fluctuation equatiofisdc) and (10d). On
The canonically conjugate dynamical variables By, as  the contrary, for large amplitudé oscillations, Eqs(10)
in the classical Josephson Hamiltonian, and the paicannot be decoupled. In this case the exponential factor
02/2, 6= (Uay) \/UZN—(1/40'2¢), characterizing the respec- Modulates the amplitude and the frequencies of the oscilla-
tive quantum fluctuations. As expectema¢>% during the thﬂS,.Indl.JCII’lg partial collapses and revivals. Th|§ can be
dynamics. The classical Josephson equations are recoverg@en in Figs. -1(d), where we show the population im-
from Eqgs.(10a and (10b) in the limit o-,—0. We will dis- balance, the relative phase, and the respective mean square
cuss more about the transition from the quantum to the clagleviations as a function of time.

sical regimes in the following. Above the critical point =0,¢=7/2), the phasep(t)
The variational ground-state energy of E2) is given by  starts running, Fig. @), and the system is set into a macro-
£2 £2 scopic quantum self-trappingMQST) mode [15,16. The
2 0_ 2 Fe—l/&rﬁvs_ _0' width of the wave function grows and the amplitude of os-

Ege=——7 —Te 7082~ =02
9 40y ¢ 4 N.s cillations “collapses,” Fig. 2a). In the deep MQST regime,

(13 when N(t)=N(t=0), the phase diffuses as}(t)=07
+(EZ/405, It?, Fig. 2d), regardless of the initial value of
N(t=0) [32]. The relative population oscillations collapse
with a lifetime 7=2E; Y*E_ 3, while the o0?(t) tends to a
constant value, Fig.(2). However, since the total number of

whereo, 5,0y s are the solutions of

1
20’35’56_ o5 J2— g 1/8"12\1,5/80-,%‘5:_ (14)

T
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condensate atoms is finite, the phase can eventually revivaged observables and the respective mean square deviations

partially or completely. This can be seen rewriting thecan be calculated by tracing the dynamibt), ¢(t) trajec-

wave function in the N representation: ¥(¢,t) tories of each junction.

=Snan@n(p)e "EN, whereEy are the eigenenergies of  Classical limit Increasing the number of atoms,,—0

Eq. (2). For instance, in the imE,Nt<E,, the eigenvalue as  I'"Y~N;®@*A) — and oy /Nt~TYIN;

spectrum is approximately line&~E;/N;N (for a discus- ~N{¥2@*A-1_.0 if i(a+pB)—1<0. Moreover, for a

sion of the spectrum in various regimes, see, ¢lf)), and  given initial valueN(t=0), the amplitude of the “particle”

the revival time isrg~hNy/E;. More generally, the occur- oscillations in theg potential of Eq.(2), decreases a,ay

rence of a complete or partial revival, or the complete de-.p-12_N-(12@*6) Then Eqs(108 and(10b) decouple

struction of it, depends on the detailed eigenspectrum of thgom Eqs. (109 and (10b), and the time evolution of the

Hamiltonian. We note that Eq10) cannot describe the re- mean values of current and phase become independent of the

vival after a complete collapse since the Gaussian ansatz Egerresponding dispersions. In the MQST regime, the collapse

(9) (and, consequently, the semiclassical approximation Untme (and, consequently, the time over which the semiclassi-

derlying iy breaks down whew y=. _ _cal predictions are reliablgincreases as~N{#48~a) |
Equations(10) admit, as a dynamical solution, a quite s framework the classical limit emerges naturdi]. A

peculiar oscillation mode, with zero relative phase and popugjmilar result displaying the asymptotic approach towards the

lation imbalance, but oscillating fluctuations, according to  |assical limit upon increase of the number of condensate

N(t)=0, (16g  atoms has also been found|[ib7].
Numerical estimated-ollowing the analytical estimations
#(1)=0, (16 of the Josephson coupling energy and the on-site energy
L - given for two weakly coupled condensateq 2], we have
2 ¢
= —s 4+ — —
on(t) 202 2 (160 P17, a exp(—S) |
a, tanh(S/2)
5 (0= 5 — 2T e o2 16
7y(t)= o3 Te€ O (169 it ay,3a, the trap length and the scattering length, respec-

tively, and with S~(1/ﬁ)\/2mazB(Vo—,u). o is the width
with initial conditions N(t=0)=0,4(t=0)=0;E;=0 and of the barrier,V, its height, andu the chemical potential.
arbitrary o ,(t=0). This collective oscillation mode can be For typical traps and condensates, and taking sodium atoms
experimentally observed by lowering or increasing the height,~10* A, a;~50 A, andog~5 um. With a height of
of the barrier of a BJJ ensemble in thermodynamic equilibthe barrier such thatg— ) ~30 nK, we haveS~8 and
rium. This corresponds to changidgin Eq. (16) from its  I'~=80 for Nt~ 1000. By varying the width and/or the height
initial value. The temporal evolution of the ensemble aver-of the barrier, and the total number of condensate atoms, one
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can let the system span from the<1 to theI’>1 limits.  that experiment, the average populatiper siteis of the

The temperature should be small compared to the Josephserder of thousand condensate atoms, a regime where quan-
coupling energy[19,27 to avoid destroying the quantum tum fluc_tuations can play an important role. This proble_m,
fluctuations. Damping effects are also reduced by decreasir?ong with the effects of temperature and damping, certainly
the total number of atoms. We conclude noting that Eb@. eserves further studies.

can be easily generalized to describe interwell tunneling in  This work was partly supported by NSF Grant No.
an array of trapped condensates, recently observgsl.in PHY94-15583.
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