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Electron-atom scattering in a circularly polarized laser field
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We consider electron-atom scattering in a circularly polarized laser field at sufficiently high electron ener-
gies, permitting us to describe the scattering process by a first-order Born approximation. Assuming the
radiation field has sufficiently moderate intensities, the laser dressing of the hydrogen target atom in its ground
state will be treated in second-order perturbation theory. Within this approximation scheme, it is shown that the
nonlinear differential cross sections of free-free transitions do not depend afytiaenical phasep of the
radiative process nor on thelicity of the circularly polarized laser light. Relations to the corresponding results
for linear laser polarization are established.

PACS numbes): 34.80.Qb, 34.50.Rk, 32.80.Wr

I. INTRODUCTION radiative corrections to the bound state. Section IV will be
devoted to a discussion of our numerical results for the an-
Since the early theoretical work of Bunkin and Fedorovgular distribution and the frequency dependence of the non-
[1] and Kroll and Watsof2] and the experiments by Wein- linear signals in electron-hydrogen scattering in a CP laser
gartshofer and \]un@] a considerable amount of work has field. Comparison will be made between these signals for CP
been devoted to the investigation of electron-atom scatteringnd those for LP fields and the main differences encountered
in the presence of a powerful laser field. Reviews on thigwill be analyzed. The final section will summarize our find-
topic can be found on the theoretical side in a survey by onégs. Atomic units will be used throughout our investigation.
of the present authoigl] and on the experimental situation
in a summary given by Masd®]. Further details can also be
found in the books by Mittlemap6] and by Faisa[7], as
well as in the work by Gauvril@8]. Initially the atomic target We consider free-free transitions for scattering of an elec-
was described by a static potential but starting with the workron by the potential
of Gersten and Mittlemaf®] the laser dressing of the target

II. SCATTERING ON A POTENTIAL

was taken into account, treating the radiation-atom interac- r-&(t)
tion perturbatively. Along the same lines work was published V(rt)=V(r)+ag——r, (1)
by Zon [10], Beilin and Zon[11] and, in particular, by rs

Joachain and co-workers in several consecutive pdfi@rs

15] as well as by Maquet and co-workel56—18. In all  which may describe a hydrogen atom in a laser fisl(.)
these investigations a linearly polarizécP) laser field was  denotes the potential

considered. More recently, it became of interest to analyze in

some detail the case of a circularly polariz&P) laser field 1

[19-25 to find out, in particular, whether for CP the nonlin- V(r)= —e2f( 1+ _) 2)
ear scattering cross sections depend explicitly ordthmeami- r

cal phase¢ and thehelicity of the radiation field.

It is the purpose of the present work to investigate free-and s is the static polarizability ¢s=4.5 a.u. for hydrogen
free transitions on a hydrogen atom for a CP laser field. Thén its ground state The second term in Eql) describes
scattering process is treated in the first-order Born approxiapproximately the interaction between the electron and the
mation and the target dressing by the radiation field is taketomic dipole moment induced by the field. An effective
into account in second-order perturbation theory. It will belaser-dressed potential of the form Ed) was already used
explicitly shown that in this case the nonlinear differential by several authorgl0,26,27 for LP fields.
cross sections depend neither on tly@amical phaseb nor For CP the electric field is given in the dipole approxima-
on thehelicity of the radiation field. In Sec. Il we shall start tion by
our investigations by considering free-free transitions in a

CP laser field on a laser-dressed model potential in order to R & . .
define the essential parameters of the process. We shall then =i [exp—iot)e—expiot)s”]
investigate in Sec. lll in greater detail and generality the
effects of atomic dressing evaluating first- and second-order S - R
Eﬁ(ei sinwt—€; coswt) 3
* Author to whom correspondence should be addressed. Electronic
address: Fritz.Ehlotzky@uibk.ac.at with the polarization vector defined by
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6’0 is the amplitude and the frequency of the electric field; The last two equations lead to

eI andel are unit vectors along two orthogonal directions in .
the polarization plane. |
) L . =arct +1
In the first-order Born approximation, th&matrix ele- Z % ) 7
ment corresponding to the scattering of the electron on the
potential Eq.(1) is with | an integer. We stress that the correct valuesstiould
satisfyboth Eqgs.(10) and(11) in order to be consistent with

(12
. el

(= . . . a proper use of Graf's addition theorem. By means of the
=-lI wadtO(lZf(rat)|V(f,t)|X£i(f,t)>- ()  dynamical phaseb, defined above we get
XK, f(F,t) are Volkov solutions, which describe the projectile expi dy) = ; (13
in the initial and final state, respectively. Since the Volkov 15

state is written in the velocity gauge, while the eIectron—Writing down the expansion Eq@8) for the momentum
dipole interaction in Eq(1) is written in the length gauge, a '

gauge factor would have to be introduced for consistenc ransfer o_f the_ scatte_red _electram,: k‘_kf’ one can per-
reasons. In the present approximation, however, the gau grm the time integration in E¢5) to obtain
factors drop out in Eq(5). i

For an electron of kinetic enerds;, and momentunk, the Bfl=§ > 8(Eq—E—Nw)fRt, (14
Volkov solution reads N

where
- 1 T,
xi(r,t)= exp[ iEt+ik-r—ik-a(t)}, (6)

2m | &| ., 84

( fﬁlzelN¢q|JN(Rq) for(q) — s a I¢qT‘JN 1(Rq)
where&(t) represents the classical oscillation of the electron .G
in the electric fieldff’(t). In the case of the above CP laser —el%q qJN+1(Rq)H- (15
field this quiver motion is given by

Jn denotes a Bessel function of ordélande is the elastic
transition amplitude in the first-Born apprOX|mat|on for the

a(t)= \/E(e' sinwt—€; coswt), @ static potential Eq(2)
with aq=E&y/w?. The Fourier expansion of E¢6) leads to far(a)=2(a?+8)/(g*+4)?, (16)
the following series in terms of ordinary Bessel functions, ] ) L
N, R4 and ¢ are defined according to Eq€)—(11) usingq
instead ofk.
—iag In the presence of the radiation field the scattered electron
exp{ %. (eI sinwt— eJ coswt) may gain or loose energy equal Mw, such thatE;=E;
V2 +Nw, whereE; is the initial (final) energy of the projec-
tile andN is the net number of photons exchandgetsorbed
=exp{— iRy sin(wt— ¢} = >, In(Ry) or emitted by the colliding system and the CP field. The
N energy spectrum of the scattered electrons therefore consists
X exp(—iNwt)exp(iN éy), ®) of the elastic term, corresponding tb=0, and of a number

of sidebands, each pair of sidebands corresponding to the
same value ofN|. For free-free transitions involvinly pho-

tons one can write down the differential cross section in
terms of the scattering amplitudg' as

0 K a2+ (k.a)2 - dol” Kk
E (k.ei)2+(k.ej)25a0|8.k|' (9) d"(l; _ f|f31| 17)

which is obtained using Graf's addition theord28]. Ac-
cordingly, the following notations were introduced

Rk:

k.o Using Eq.(13) to rewrite the scattering amplitude E@.5)
! (10) one gets by elementary vector algebra the following form of

sing,= )
V(k-€)?+(k-g)? the differential cross section
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doSP Kk o le-q 2 QO =E;*w, Q' =E;*2w. (24)
90~k INRofer (@) —2as&———In(Ry)|
! q On the other hand, as in the case of potential scattering in
(18 Sec. Il, the interaction between the CP field and the projec-
tile can be treated exactly using the Volkov-type solution Eq.
(6).
We restrict our considerations to high scattering energies
1 where the first-Born approximation in terms of the scattering
IRy = E[JN,l(Rq)—JNH(Rq)]. (19 potential is reliable. Neglecting exchange effects, we de-
scribe this interaction by a static potenti®l(r,R), and the

In this form of the differential cross section it is apparent thatSCattering matrix element is then given by

the laser assisted signals in a CP field are neither sensitive to .

the dynamical phaseg,, nor to thehelicity of the photon. slelz _if dt(xe (OW (D] V] xe (DO W(1)), (25
As in the case of linear polarization, the main limitation —o ! '

of the formula Eq.(18) is its failure to describe the well

known decreasing of the target dressing with the increasin/here¥; andy,  are taken from Eqs21) and(6).

of the scattering anglgl6]. An improvement, suggested by  The differential cross sections for a process in whith

Milosevic et al.[29], consists in replacing the static polariz- photons are involved can be written as

ability, g, by the so-called dynamical polarizability

where Jy, is the first derivative of the Bessel function with
respect to its argument. It satisfies the relation

doSP k:(N
¥ (2m ren2 (26)
ds dQ K;
= (20
(1+92%/4)3 . _ .
where the transition matrix element, related to Smatrix
This permits use of Eq(18) at higher scattering angles. De- €lement Eq(25), has the following general structure
spite the above limitation, for low frequencies and small cp_ , 0) L (1) L +(2)
scattering angles, E¢18) might be useful as a starting point TR =exXpiN o) [T+ TR+ Ti"]- (27
for the corresponding investigation of many electron targets i
for which other methods will likely be prohibitively difficult T he first term,
to employ. ) -
TN = IN(R) (W1l F ()| 1), (29)
lll. ELECTRON-ATOM SCATTERIN . . .
CTRO oM SC G relates to the Bunkin-Fedorov formuld], in which the
We assume that at moderate laser field intensities, one calfressing of the target is neglected. In this cﬁ%’éreduces to
describe the field-atom interaction by time-dependent perturf {P=exp(N#,) T’ and the ordinary Bessel function,
bation theory[12]. We shall use in the followingecond-  J\(R,), contains all the field dependences of the transition

order perturbation theoryto describe the hydrogen ground . a+rix eIementsF(d) is the form factor operator
state in the presence of a CP field. According to Florescu

et al. [30], one can write down an approximate solution for 1
an electron bound to a Coulomb potential in the presence of F(q)= ——[expiq-r)—1]. (29)
an electromagnetic field as follows: 2722

|W (1)) =e B[] yhyo) + | D)+ 4], (22) The other two terms in Eq27) are due to the dressing of
the atomic state in the CP field and are discussed in the next
where| i) is the unperturbed ground state of hydrogen, oftwo subsections.
energyE,, and|¢{Y"?)) denote first- and second-order cor-
rections, respectively. According to Ref80] and[31] these A. First-order dressing of the target

corrections can be written in terms of the linear response ] o .
The second term in Eq27), T{", is connected to the

|Wis(Q))=—Gc(Q)P|i1s), (22) first-order corrections to the atomic stateie of the N pho-
tons exchanged between the field and the colliding system
and of the quadratic response interacts with the bound electron. This photon may be emit-

ted or absorbed and therefore, once the integration over the
[Wij 15(Q,Q0))=Gc(Q')PGc(Q)Pjlih1s). (23 coordinates of the projectile was performed, the general
) structure of T is given by
Here G(Q1) is the Coulomb Green’s function arfd the
momentum operator of the bound electron. For a monochro- 1y_ %@ iy )+
matic field there are four values of the argument of the Green W= 2 [N -1(Rg) Ma{(2 )

functions necessary in order to write down the approximate o Mrer
solution Eq.(21), namely, +e' %Iy 1 (R M (Q7)]. (30)
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The transition matrix element {)(Q*) is related to the

exchange of one photon between the atomic electron and the
field. Their expressions read in terms of the linear response

Eq. (22) for absorption

MO = (g F(Q)|e-W1(Q 1))

+(e* - Wig(Q)|F(Q)|¢sy (3D
and emission
MO )= (g F(Q)|e* - W1(Q 7))
+<£-v915<9+>|F<6>|¢15>. (32)

respectively. Using Eq€8) and(10)—(12) of Ref.[32], one
gets

- >

MP@QH=- ~7101(T 7,q), MYP@Q)=

223

-)*->
&

2 2 3 (33)

«7101(7 5,0).

The parameters™ are related to the parameteds™ defined
in Eq. (24) by

~=1)=207.

(34

An analytic expression fo7; o, can be obtained from Egs.

(17)—(22) in Ref.[32]. One has

jl,O,l(Ti:T:rq):j?,o,l(q’Ti)_j?.,O,l(q'TI)’ (35)
where
a b _ 16 1 T
«71,0,1(q17)—«71,o,1(q,7')——EmE
xRe[a3F1(2—T,1,3,3—T;g,§)
ia2
—FF1(2—7,2,2,3—7';§,§) . (36)

The foregoing equation is written for frequencies below the

ionization threshold, where™ are realF,(a,b,b’,c;x,y) is
the Appell function of two variables, defined in RE33] and
the following notations are used

B 27 3

_1+7'+iq7" (37
B 1-7 _l—Tl—T—iqT 38
g__1+7" _1+7'1+T+iq7" (38)

Our expressions in Eq33) are equivalent with the ones

based on Eqs(1839—-(18¢ of Dubois et al. [16] and Egs.
(11)—(12) of Dubois and Maqueitl7], respectively.
By means of Eqs(33) and(13) one can write down

PHYSICAL REVIEW A 61 063417

QoW | |
4772q
+Ine1(Rg) Troa(7  7,0)],

1)_
TF\I)_

—[In- 1(Rq)«7101(7' 7 ,q)
(39

which leads to the following transition matrix element

exp(iNgy) |  a?
T(N:P:quq __fBIl(Q)JN(Rq)

- -

|2-q|

+ago——I(R) Jrod7",7,q) (. (40

To obtain the last expression, we used the following identity

Troath 7)== Toa(7 ,77,0). (41)

In this framework, where the first-order radiation correc-
tion to the ground state is taken into account only, the dif-
ferential cross section for a process in whiglphotons are
exchanged between the colliding system and the CP laser
field is given by

CP
doy

ks
d0 =k |fel (@In(Ry)
I

|CI|

—2ap0——0— N(Rq)jlol(T 7.,9) (42

We conclude from this resulti) the dynamical phasep,
drops out and hence has no effect on the differential cross
section and if) due to the appearance of the modulﬁs
-ﬁl, the helicity of the photon is not a relevant parameter.
For the purpose of future reference, we also write down

the corresponding differential cross section for linear polar-
ization

oN

dQ

k . o
=;{ £81(q)In( - G)
—>- - 2

—2ap0— (@ Q)jlol(T 7,9)

. (43

To avoid possible confusion, the linear polarization vector
was denoted b)é. One can see that, apart from the argu-
ments of the Bessel function®y, instead ofao- ), the only
difference between Eq$42) and(43) concerns the angular
parts (¢ -q| instead ofe-q).

Based on the low frequency limit in Eq35), we also

mention that the transition matrix eleme@t0) leads to the
expression
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do$” K 192 The second remark is more general and it is valid for any
—= fE,l(q)JN(Rq)— 5 3 photon frequency. For weak laser fields at any scattering
de  k (q°+4) angles and for moderate laser intensities at small scattering
- - 2 angles, i.e., whenever the arguments of the Bessel functions
x(1+ )&MJ' (Re) (44) are small, the following relation exists foN|=1:
92+ 4 2 NA /) o
which can be immediately compared with E8.314 of By- do” 1 doy’
ron et al.[14], evaluated for linear polarization. In addition, dQ ~ oIN dQ (47)

for small scattering angles, whege<1, the quantity in front

of & may be approximated by-92«. This shows that one

may consider Eq(18) as the low frequency limit of the  Thijs relation is of particular interest since fide= =1 one
diffelrential cross section Ed42), valid at small scattering can recover in this way the perturbative limit given by
angles.

Our Egs.(42) and (43) emphasize the importance of the
geometrical relation between the momentum transfer of the do<, K lq-&|? a1 2w .
scattering electron and the polarization vector. To make the a0 %o T4 fei (Q)+—351,o,1(7 T ,a)| -
discussion clear, we shall choose the quantization &s, ! q
along the direction of the initial momentum of the projectile
and the axi®y in the scattering plane.

It is worthwhile to point out here the correspondence be-The same expression can be obtained by using Bas—
tween the three most frequently considered scattering geoms ) of Ref.[32]. One should keep in mind that in that paper
etries for LP laser light, namely, ) the photon energy was expressed in Rydbergs and that Eq.

LP1: e parallel to the initial momentung||Oz; (7) of the same papefdevoted to excitation procesges

LP2: e orthogonal to the initial momentum but in the should be modifizedBlfor free-free transitions by puttifig
scattering plane§||0y; =J1(9) —1=—0q“fg /2. In th'e weak field limit we f|nd' out

LP3: & parallel to the momentum transfeéﬂﬁ and the that, on account of the relations E@J5), the Ia_lser a_55|sted
following configurations involving CP S signal involving one CP phototabsqrbed/_emlttedwnl be

S A ' ] always one-half of the corresponding signal for LP. For
- CPL 8:(ez+'_e><)/ﬁ’ when the laser beam is propagat- pigher intensities, the deviations from this relation appear as
ing in the scattering plane, a signature of nonlinear dynamics.

CP2 e=(e,+ iey)/ﬁ, when the laser beam is parallel to
the direction of the initial momentunﬁ- ,

CP3 £=(e,+ie,)/\2 lies in the scattering plang/Q2) o _ _
and the laser beam propagates on @hedirection. ~ We shall show in this section that by adding second- or
We mention that fo€P1 andCP2 there is only one com- higher-order terms in the expansiti) we get no change in

ponent of the CP vector in the scattering plane, while forour main conclusion that neither the dynamical phageor
CP3 both components are active. One can immediately sel€ photon helicity are relevant parameters in free-free tran-

2

(48)

B. Second-order corrections to the ground state

that the following relation holds sitions at high scattering energies.
If the second-order correctiohy{?) in Eq. (21), is added
|§j.a|2:|§j.d|2/2, (45)  to the wave function that describes the ground state of hy-
drogen in the laser field, we get the third contribution to the
where the indey refers to the above enumerations. transition matrix element in Eq27). After integration over
Once we have established these correspondences, we d&g coordinates of the projectile, this contribution reads
make a couple of remarks concerning the relations between 2 o

laser assisted signals in CP and LP laser fields. We shall (2)_ %% oy Mo+ o+
always refer to LP and CP, which are connected to each T=—g e 2R M (277, 7)
other by Eq.(45).

The first remark concerns the difference between the laser
assisted signals in LP and CP in the case of the elastic term
(N=0). For low frequencies, in the forward direction, the
laser assisted signal is smaller in CP than in LP and the
difference is given by

+e? %y H(RIMEPD(Q™,07)+IW(Ry)

X[MUD(EL, Q)+ MUD(EL, Q)T (49)

In this expressioriwo of the N photons exchanged between
Lp cp 212 =12 the field and the colliding system interact with the bound
dog lea €olej-ql (a6) Clectron.M (Q'*,0%) are related to the absorptigop-
dQ dQ ® w2 q? per signg or emission(lower sign$ of both photons. Written
in terms of the quantities given by Eq22)—(23) M ) has
in any of the three related configurations. the form

063417-5
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3 I

y+ = y+ + 1 | |
MEP@Q'*,07)= lZ eiei[(P1sl F(0) Wy 15(Q"5,07)) T‘N3'°=—4—772 BLIN(Ry) — 20— - 5 J10190(Ry)
(W) 15( Q) F (@)W 15(27)) 2 2|g.a|2{T[J (Rg)+In-2(Rq)]
o - ) 1LIN+2 N-2
(Wi 12T Q) F(A)[a9)]. (50 * ’ i
_ a2 2
We stress that the complex conjugate of the polarization vec- +TIn(Ry)} — INR) | (55)

tor £ must be taken in Eq50) when M {D(Q'~,Q7), re- . _ . . o
lated to emission, is computed for a CP laser field. For thi®ne can immediately say that the differential cross section is

polarizations2=0 and the angular behavior g (! is de- again helicity independent and the dynamical phase is not a
relevant parameter.

termined b .
y Moreover, based on angular momentum algebra consider-
ations, one can argue that any contribution to the transition
(5-0)2 matrix element due to thgth order perturbative corrections
any_(2-d e - , : . :
M, s LT T T ), (51) to the atomic state will only contain terms proportional to
2m°q |e |||, wherep ands are positive integers such that

+2s=j. Therefore, as long as the scattering is treated in a
first-order Born approximation, the helicity will remain an
unobservable parameter.

It is interesting to note that the weak field limit of the
FrE=1—20"" (52) differential cross section for two CP photon absorption/

emission has a simple angular dependence givekﬁb§/|4.
Indeed, one finds
and can be expressed in terms of a series of hypergeometric
functions, as shown in the Appendix. do$h, kf

The other two atomic matrix elements in £49), M\’ ao aok 26

are related to the processes in which one photon is absorbed
and the other is emitted. They can be constructed by using on the contrary, for LP fields wheré?=1, the atomic

Eq. (50) with the tensomv;; (instead of the tensaw;;), which  matrix elementM (1) has a different angular behavior given
is also defined in Ref30]. Their angular behavior is differ- py

where7; depends not only og and 7 but also on

4w 402 |?

—J101” —7 11
q*

(56)

ent, namely,
1 |(e-q?
B e ) (57
- 1 |le-q% m™q°[ q
M= — Tit|el’T|. (53 _
2m°0%| 92 The amplitude¥; and7, depend on the momentum transfer

of the scattered electron and on the four parametersand
3 3 7+, given in Egs.(34) and (52). Finally, in the weak field
We point out that the radial integral§, and 7, must be domain, this leads to the following expressions for the dif-
computed for)’ =E;. A special work[34] will be devoted ferential cross sections for two photon absorption/emission
to their analytic evaluation since a number of technical dif-in LP fields
ficulties that are related to their singular behavior must be
discussed in detail. dotf, ki 1
Similar to the case of the first-order correction in Sec. W:aok_i

IIIA, one can expres3? as

4w?
-—7, (58)
2 q°
(2)_ an |8 q|
TN T 82 —— AT Int2(Rg) +In-2(Rg)]
ma*| o IV. RESULTS AND DISCUSSION
= = In this section we illustrate our results by considering the
+ + . . . ; .
LINRIHT N(Rq)] (54) numerical evaluation of the nonlinear differential cross sec-

tions for the elastic termN=0) and the next two sidebands

(N=1 andN=2). We focus our discussion on the geom-
Then, due to the structure of the transition matrix elementtries denoted earlier b§P3 and LP3 because in these ge-
including second-order laser dressing of the target, ometries the coupling between the laser field and the collid-
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= 04f 3 o(eV)
<
02t FIG. 2. do; /dQ normalized with respect to the field intensity,
00 . is shown as a function of the laser frequency for the geon@@g
» % “ 10 » » “ at the scattering angl@=5° and initial projectile energyE;
0,020 : . : 020 , . . =100 eV. Also plotted are the corresponding data of the Bunkin-
© 018f © 1 Fedorov formula(dotted ling and the atomic contribution of the
= oo ] gij ] first-order dressingdotted-dashed lie
= 012f ’
g oo 0.10f L . .
= 008k while it does not appear in E¢56). Hence it becomes clear
L ooost 0.06¢ that the enhancement of the LP signal originates in a two-
............ oS photon virtual transition between the ground state and the
00005 e e 000 first excited state,— E;=10.2 eV). Considerations of an-
gular momentum algebra can be used to show that such tran-
6(deg) 8(deg)

sitions are forbidden if the two photons have circular polar-
FIG. 1. doy /dQ are presented as a function of the scattering!Zation.

angle,, for a laser fieldS,=10° V/cm for the geometnCP3 (full In Fig. '1 (Pan?|saza b,, and c;) we also present the
line) and LP3 (dotted ling. The initial projectile energy iss; ~ angular distributions for the second laser frequenay,
=100 eV. Panels,, by, andc, on the left-hand side refer to =2 eV. In this case the amplitude of the quiver motion

=5 eV and the right-hand panels corresponate2 eV.In pan- takes the valuex;=3.6 a.u. and the nonlinear dynamical
elsa; and a, are also presented the field-free differential crossbehavior becomes apparent. Therefore the angular distribu-

sections(dashed lines tions are considerably different from those of the previous
case. We point out that our formul@6) reproduces quite
ing system is particularly strong. well the differences between LP and CP signalsNor 0,

The angular distributions of the scattered electrons wittsince here second-order corrections are of minor importance.
final energies given b¥;=E;+Nw are shown in Fig. 1 for ForN=1 the CP signals are again one-half of the LP ones at
the three values oN: 0, 1, and 2. We have chosen two small scattering angles, as is shown in the window inserted
frequencies in the optical domain, namely=5 eV and in panel (B). With increasing scattering angle, the argument
w=2 eV, and our results are evaluated for the laser fielcbf the Bessel functions increases and nonlinear contributions
strength&,=10% V/cm and the initial scattering enerds; become important. The present frequeneys 2 eV, is too
=100 eV. small for establishing a two-photon resonance and the cho-

In the left-hand panela,, b;, andc, of Fig. 1 the laser sen intensity is not strong enough for higher-order contribu-
frequency isw=5 eV and the quiver amplitudey,, takes tions. Therefore LP and CP signals remain comparable for
the value 0.58 a.u., corresponding to the perturbative regiméN=2. We think that the differences between our data for
In panela,, at small scattering angles where the dressing ofv=2 eV and those published earlier for the same param-
the target is important, the differential cross sectiar /d) eters[20] are due to spurious phase effects present in the
exceeds the field-free signal for both linear and circular po<alculations of that work.
larizations. The nonlinear signat$g, /d(), belonging to the We shall next discuss the resonance structure of the first
final energyE;=105 eV are presented in pargl. Here we (N=1) and of the second\N(=2) sidebands considering a
recognize that for small arguments of the Bessel functionsufficiently small scattering anglé=>5°, such that the target
the assisted signals for CP have half the value of the signaldressing effects are relevant.
for LP. Finally, in panet; we find large differences between  In Fig. 2 the resonance structuresdaf, /d() are shown
the CP and LP signals. To understand this different behavidior one photon absorption in the geome@p3. We restrict
we focus on the dominant contributions to the differentialourselves to the weak field domain and we normalize the
cross sections, given b{p6) and (58), respectively. More- signals with respect to the intensity of the laser field. The
over, we note that onlyZ, of Eq. (58) has a pole at’=2  differential cross sections exhibit a number of resonance
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10 g . T . . . . effects are increasing for increasing frequencies of the laser
\
z j‘-\ (a) : beam.
— Y 20=12.09eV
g 7t A%
2 o
gb” st V. SUMMARY AND CONCLUSIONS
“: 4t In the present work we have investigated scattering of
R electrons by hydrogen atoms in the presence of a circularly
§° 2 polarized laser field. For comparison, we also considered lin-
Le early polarized laser light. Since we assumed the scattered
0 . ‘ , . , ‘ electrons to have initially some 100 eV kinetic energy, we
'10 1 2 3 4 5 6 7 were permitted to treat the scattering process in first-order
10 o . | . . : . Born approximation. The laser dressing of the atomic target
9 EY ; was treated in second-order perturbation theory, while that of
8RN\ b Z0=12.09eV the scattering electron was described by a Volkov solution.
g 7.\ 2021026V N Within this approximation scheme, we were able to show
5\ 6E h that the nonlinear cross sectio@sﬁP/dQ neither depend on
v_g” 5000\ e : the dynamical phase, contrary to what was predicted by
T - N - ; earlier work on this topi¢20,22], nor is there any indication
= 3 N lmeens | of circular dichroism. In our derivation of the above findings
& 2T — we devoted particular attention to the proper definition of the
1E w T : phases in Graf's addition theorem of Bessel functions, basing
' our considerations on the corresponding definitions in Wat-
-1 ' ‘ ' : : . son’s bool 28]. This was outlined, in particular, in Sec. Il of
0 1 2 3 4 > 6 7 this work. As we found out, it is very crucial to make a
weV) careful analysis of the phase relations in the above treatment,

for otherwise quite easily spurious phase dependences can
creep in to finally simulate circular dichroism in the process

studied above. Besides, we took advantage of our analysis to
also make a comparison between nonlinear electron-atom

contribution due to first-ordgdotted-dashed lineand second-order scattering in a circularly and a linearly polarized laser beam

dressinglong dashed line (b) Same as irfa), but for the geometry of equal frequency and intensity. Among other differences
LP3. between these two cases, we were able to show that for weak

fields, at any scattering angles, and for moderate fields, at
peaks corresponding ©=|E;|(1—n~?), where|E| is the  small scattering anglesio$7/dQ are always smaller than
binding energy of the ground state andis the principal  g4L/d(). Moreover, the resonance structures of the two
quantum number. They correspond to the poles in the angyoss sections are different, in particular, there are more reso-
lytic expression ot7y o1 in Eq. (35). At very low frequencies  pances in the linear than in the circular case. Although one
the major contribution stems from the Bunkin-Fedorov termggp, qualitatively understand these differences by using angu-
(dotted curve The first minimum of the differential cross |ar momentum considerations, we have explicitly shown in

sections, close tw=2 eV, comes from an interference be- the Appendix how the additional resonance in the case of
tween the atomic and the electronic term; the other minimaynear polarization comes about.

located between two consecutive resonances, are related to Nevertheless, we should stress that a possible phase de-

the contribution of the first-order dressing correction to thependence may occur if the scattering process is treated be-
ground state in E¢21). Since the relation, Ed47), holds in  yond the first-order Born approximatidf]. In this case the
the perturbat_|ve domain, the resonance structures for .the '@ppearance of imaginary parts of the scattering amplitude
lated scattering geometry,P3, are obtained by a vertical may |ead to phase dependences and eventually circular di-
upshift of these curves by a factor Ig(R). chroism in the scattering of electrons by atoms in circularly
The frequency dependences of the next sideb&dZ)  polarized laser light. In a forthcoming paper we shall show
exhibit two series of resonances. One-photon resonances atgat, for a particular laser configuration, circular dichroism
located above 10.2 eV as discussed earlier. In addition, gye to the target dressing can be predicted for high scattering

.S€C0nd. series of resonances, located betweeﬂ 51 a.n.d 6.8 @hergies' Choosing the laser frequency and the Scattering ge-
is predicted. It corresponds two-photon virtual transitions  ometry in an appropriate way.

to excited states. This further series of resonances is related
to second-order corrections to the ground st&® and is
presented in our Fig. 3. The parelrefers to the geometry
CP3, while the other one to the geometri?3. As discussed
before, the resonance locatedwat 5.1 eV is present for LP This work has been supported by the Jubilee Foundation
only. One can explicitly see in our figures that the dressingdf the Austrian National Bank under project number 6211.

FIG. 3. (a) do,/dQ normalized with respect tt?, is shown as
a function of w for the geometryCP3 at the scattering anglé
=5° and initial projectile energf;=100 eV. Also plotted are the
results of the Bunkin-Fedorov formuldotted ling and the atomic
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APPENDIX _
2Z10/(Q",Q,q)= f drr?Byoi(Q',1)jo(ar) Byoi(2,r),

In order to evaluate analytically the atomic matrix ele- (A6)

ment M 1, in Eq. (50) we use the expressions of the linear
and quadratic response given in Rdf%l] and[30], respec-
tively. The exponential in the form factor formul@9) is oI(f(l;(Q',Q,Q)Ef drr2BIY Q7 ,0,1)jo(ar)Ryr),
written in the standard way as an expansion in spherical har-

monics. After integration over the angular coordinates of the (A7)
bound electron, one can write down the following expression
of the matrix element for two-photon absorption/emission 21%(9’,9,q)5f drrzBié(Q’,Q,r)jz(qr)Rlo(r),

- - (A8)

(s-q)? -
8772q4[21-ié T +’T+!q)

(1) = R
Ma'(Q77,07) wherej,(qr) are spherical Bessel functions of the order

B Ryq is the radial function of the hydrogen ground stdiey,
+ o375 )+ Tl 7T, 7, 0)] s defined by Eq(32) of Ref. [31], and B%, B2 by Egs.
(43)—(44) of Ref.[30].

We have obtained analytic expressions for the radial inte-
grals in Egs.(A5)—(A8). The first two integrals,Z;o; and
21101, are related to the linear response. They may be ex-
REY AT, CANC AN« )RRV AT, C it ) pressed, in terms of Appell functions, all of which depend on
the same variables, namely,

SZ

24 2q 2[0110(7' 77,9)

+ oL, T, )+ oTaon( 7T, 77,0)

+ 2ol 7,7, ] (A1) 5121_7” {i= (1-7")7 (A9)
2 T+T,_iQTT,.

Here the upper signs correspond to absorption and the lower

ones to emission processes. If the polarization vestes ~ Note that, given the definitiongA5)—(A6), these two radial
complex, its complex conjugate should be taken in order tantegrals are symmetric with respect to the parameteaad
compute two-photon emission. Using the previous equation;’. We present below the expression for the first integral
one can write down in a straightforward manner the general

structure of M () as 8rr! 5 2+T'§
Tyol( 7', 7,0) = a/
L [Gar 2Z10(( 7", 7,9) q2—7) 1+ |17 2 m(7)
ny_ s q
Mgt)_Zﬂ-zq q° Tl+s 2|, (A2) y 1—7]m2 (p+1)(p+2) (3+m—p)!
T ] p=0  (2q)° (2—p)!

where7; and7, denote the following two combinations of

p—3.4+m—p P R T
radial integrals X Re(iP"x1 Fi2-7",-1-7",4+m

—p.3= 761,40} (A10)
T,= [2110 Q)+ T, T,0) and that for the combinatiogZo( 7', 7,9) + 2Z101( 7', 7.q)
+ 2ol 77,7, 0)], (A3) 0Z101( 7", 7, Q) + 2Z104( 7, 7,)
2477’ 2 20
[OI:LO(T T 'Q)+2I O(T T 'Q)+ IlOT T vq) :_q2(2_7_1)(1+7_) 1+7_r
+ ZZl(Ti,Ti,CI)-i— T10d(7",77,0) “ 1— 7™M
2119 o oZ101 <3 ar(n) (m+1)!
+ 2Zi0l( 7, 7,9)] (A4)
2-p
As a consequence]; and 7, depend on the momentum X R 2 <_) (m+ p)p—1Xi+m+p
transfer,g, and on the four parameter$™ and 7. =1
The four radial integrals present in EGA1) are defined
by XFy(2—7,—1— 7,1+ m+p,3— 7 ,&,{1) | -
(A11)

01101(9',Q,Q)Ef drr2Bipi(Q',1)jo(ar) Bioi(2,1),
(A5) Here the following notations have been used:
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AURELIA CIONGA, FRITZ EHLOTZKY, AND GABRIELA ZLOH PHYSICAL REVIEW A 61 063417

' the integrals,Z %% and ,723 are no more symmetric with

TT
D — (A12) respect to the parametersand 7', than those that take the
THr —iqTT values in Eqs(34) and (52), respectively. The expressions
. for the integral ,Z3% 7', 7,q) as well as that for the combi-
ap(1)= — 5——oF)| L-1-73-7+m —|, nation oZ (7', 7,9) + ,Z%(',7,q) are written below
(Alg) 21 T,(T+ T,) 7 ’ ’
where ,F ; denotes the Gauss function. We stress that all the 22107 »7:8)= a(1+ 7) (7 +1) mE:O Al 7"27)
definitions and notations used in this paper for the hypergeo-
metric functions are those given in R¢83]. To avoid pos- [T/(T_ nl"™ ®),
sible confusion, be reminded that according to i) the - ;
parameters and 7’ take the values™ given by Eq.(34). 7(r'+1)] 3—7'+m

The other two radial integrals are related to the quadratic 2
: . + + —
response; they are expressed as a series of hypergeometric X 2 (pF1)(p*2)(3—Pp)
functionsF, instead of Appell function§ ;. Although all the p=0 (2q7")P

functionsF,, which are involved, depend also on the same p—1.4—p ,
variables, namely, XRe(iP"xz "Fa(6+m1,4-pd-7

’ ’ +m,6;§2,§2)} (A15)
:T—T o T+T (AL4)
2 27 z T(l—T’-i-iQT,), and
2477 | 7' (7+7") 3 (5) 7 (7—1) m
VAT G R VAT G e (7, L Re(i x3F»(5+m,1,3,3- 7'
oL3o 7 T @)+ 2 L3 7,7, 0) a(l+7)| 7(1+7) mzzo ml 7 7-)2—7"—i-m (7' +1) &P 7
5 » m
6(1+7) |7 (7+7") (6)m 7' (7—1)
+m,5;&,, + d (7,7
£2.00)} a7 (7' +1) m§=:0 ml )3—T'+m (7' +1)
p—2

X3 PF,(6+m,1,1+p,4— 7 + m,e;gz,gz)}

2 )
i

xRe{ > (—

p=1\2q7’

3 x

1277 | 7' (7+ 7' o (r—1)|" T+7 5
- Sackab] ISP kGt 0 PR (5)m
qQA+7) | 7(1+7') | m=0 (7' +1) T 3-7+m
’ . -1 (4)m ’ .
XFy(5+m,1,3,4-7'+m)5;&,00)—x; ——F2(4+m1,2,4- 7"+ m,4;6,,05,)
3—7+m
-1 (4)m ’
+X2 —F2(4+m1112=2_7- +m14;521§2) ’ (A16)
1-7+m
|
where ), denotes the Pochhammer symbol and the follow- 1 #(r—1) 1
ing notations have been used: Cp(7',7)= —
1 mH| (7 4+1) 3—7+tm
Xo=————— (A17)
r=1-iqr ak 1
XoFi(l=1-74—7+mM,8)— —— ——
b’(’)1 ! Fi(1,—1-7,3—7+m,&5,)
T,7)— & =~ ,2—l—7T,0—7TIM, y
" m! 2—7+m? ? X oF1(1,—1—7,3—7+m,8,) |, (A19)

(A18)
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di(7',7)= i —(T;l 2;2F1(1,—1— r5—7
m| \7+1) 4a—7+m
M, &)+ 5 —oFi(1,-3- 737
+m,d,) |, (A20)
with
- (A21)

_(T+1)(T+T’).

The expressions of the radial integrals in EGs10)—(Al11)

PHYSICAL REVIEW A61 063417

and (A15)—(A16) were written down for real values of the
parameters— and 7’ =,

The onephoton resonances discussed in Sec. IV are re-
lated to the poles of the four radial integrald5)—(A8).
They occur for 7" =n, which corresponds tav=|E,|(1
—n~?) with n=2. Twophoton resonances are related to
poles of 4Z9% and ,Z5;, only. They occur forr’ *=n and
they correspond to @=|E,;|(1—n"?). The integral ;7%
has poles for any value of, while we should note thatZ 5
has poles only forr’ "=3. This explains the absence of a
resonance ab=5.1 eV in the frequency dependence of the
nonlinear signal foN=2 if the laser field is circularly po-
larized, see Fig. @), because onlyZ 1 enters into the ex-
pression forZ;.
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