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Electron-atom scattering in a circularly polarized laser field
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We consider electron-atom scattering in a circularly polarized laser field at sufficiently high electron ener-
gies, permitting us to describe the scattering process by a first-order Born approximation. Assuming the
radiation field has sufficiently moderate intensities, the laser dressing of the hydrogen target atom in its ground
state will be treated in second-order perturbation theory. Within this approximation scheme, it is shown that the
nonlinear differential cross sections of free-free transitions do not depend on thedynamical phasef of the
radiative process nor on thehelicityof the circularly polarized laser light. Relations to the corresponding results
for linear laser polarization are established.

PACS number~s!: 34.80.Qb, 34.50.Rk, 32.80.Wr
ov
-
s
rin
hi
on
n
e

or
et
a
e

e

-

ee
h

ox
ke
be
ia

rt

r
th
h
rd

be
an-
on-
ser
CP
red

d-
n.

ec-

the
e

a-

on
I. INTRODUCTION

Since the early theoretical work of Bunkin and Fedor
@1# and Kroll and Watson@2# and the experiments by Wein
gartshofer and Jung@3# a considerable amount of work ha
been devoted to the investigation of electron-atom scatte
in the presence of a powerful laser field. Reviews on t
topic can be found on the theoretical side in a survey by
of the present authors@4# and on the experimental situatio
in a summary given by Mason@5#. Further details can also b
found in the books by Mittleman@6# and by Faisal@7#, as
well as in the work by Gavrila@8#. Initially the atomic target
was described by a static potential but starting with the w
of Gersten and Mittleman@9# the laser dressing of the targ
was taken into account, treating the radiation-atom inter
tion perturbatively. Along the same lines work was publish
by Zon @10#, Beilin and Zon @11# and, in particular, by
Joachain and co-workers in several consecutive papers@12–
15# as well as by Maquet and co-workers@16–18#. In all
these investigations a linearly polarized~LP! laser field was
considered. More recently, it became of interest to analyz
some detail the case of a circularly polarized~CP! laser field
@19–25# to find out, in particular, whether for CP the nonlin
ear scattering cross sections depend explicitly on thedynami-
cal phasef and thehelicity of the radiation field.

It is the purpose of the present work to investigate fr
free transitions on a hydrogen atom for a CP laser field. T
scattering process is treated in the first-order Born appr
mation and the target dressing by the radiation field is ta
into account in second-order perturbation theory. It will
explicitly shown that in this case the nonlinear different
cross sections depend neither on thedynamical phasef nor
on thehelicity of the radiation field. In Sec. II we shall sta
our investigations by considering free-free transitions in
CP laser field on a laser-dressed model potential in orde
define the essential parameters of the process. We shall
investigate in Sec. III in greater detail and generality t
effects of atomic dressing evaluating first- and second-o
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radiative corrections to the bound state. Section IV will
devoted to a discussion of our numerical results for the
gular distribution and the frequency dependence of the n
linear signals in electron-hydrogen scattering in a CP la
field. Comparison will be made between these signals for
and those for LP fields and the main differences encounte
will be analyzed. The final section will summarize our fin
ings. Atomic units will be used throughout our investigatio

II. SCATTERING ON A POTENTIAL

We consider free-free transitions for scattering of an el
tron by the potential

V~rW,t !5V~r !1as

rW•EW~ t !

r 3
, ~1!

which may describe a hydrogen atom in a laser field.V(r )
denotes the potential

V~r !52e22r S 11
1

r D ~2!

andas is the static polarizability (as54.5 a.u. for hydrogen
in its ground state!. The second term in Eq.~1! describes
approximately the interaction between the electron and
atomic dipole moment induced by the field. An effectiv
laser-dressed potential of the form Eq.~1! was already used
by several authors@10,26,27# for LP fields.

For CP the electric field is given in the dipole approxim
tion by

EW~ t !5 i
E0

2
@exp~2 ivt !«W 2exp~ ivt !«W * #

[
E0

A2
~eW i sinvt2eW j cosvt ! ~3!

with the polarization vector defined by
ic
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«W 5
eW i1 ieW j

A2
, ~4!

E0 is the amplitude andv the frequency of the electric field
eW i andeW j are unit vectors along two orthogonal directions
the polarization plane.

In the first-order Born approximation, theS-matrix ele-
ment corresponding to the scattering of the electron on
potential Eq.~1! is

Si f
B152 i E

2`

`

dt^xkW f
~rW,t !uV~rW,t !uxkW i

~rW,t !&. ~5!

xkW i , f
(rW,t) are Volkov solutions, which describe the project

in the initial and final state, respectively. Since the Volk
state is written in the velocity gauge, while the electro
dipole interaction in Eq.~1! is written in the length gauge,
gauge factor would have to be introduced for consiste
reasons. In the present approximation, however, the ga
factors drop out in Eq.~5!.

For an electron of kinetic energyEk and momentumkW , the
Volkov solution reads

xkW~rW,t !5
1

~2p!3/2
exp$2 iEkt1 ikW•rW2 ikW•aW ~ t !%, ~6!

whereaW (t) represents the classical oscillation of the elect
in the electric fieldEW(t). In the case of the above CP las
field this quiver motion is given by

aW ~ t !5
a0

A2
~eW i sinvt2eW j cosvt !, ~7!

with a05E0 /v2. The Fourier expansion of Eq.~6! leads to
the following series in terms of ordinary Bessel function
JN ,

expF2 ia0

A2
kW•~eW i sinvt2eW j cosvt !G

5exp$2 iRk sin~vt2fk!%5(
N

JN~Rk!

3exp~2 iNvt !exp~ iNfk!, ~8!

which is obtained using Graf’s addition theorem@28#. Ac-
cordingly, the following notations were introduced

Rk5
a0

A2
A~kW•eW i !

21~kW•eW j !
2[a0u«W •kW u, ~9!

sinfk5
kW•eW j

A~kW•eW i !
21~kW•eW j !

2
, ~10!
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,

cosfk5
kW•eW i

A~kW•eW i !
21~kW•eW j !

2
. ~11!

The last two equations lead to

fk5arctgS kW•eW j

kW•eW i
D 1 lp ~12!

with l an integer. We stress that the correct values ofl should
satisfyboth Eqs.~10! and~11! in order to be consistent with
a proper use of Graf’s addition theorem. By means of
dynamical phasefk defined above we get

exp~ ifk!5
kW•«W

ukW•«W u
. ~13!

Writing down the expansion Eq.~8! for the momentum
transfer of the scattered electron,qW 5kW i2kW f , one can per-
form the time integration in Eq.~5! to obtain

Si f
B15

i

2p (
N

d~Ef2Ei2Nv! f N
B1 , ~14!

where

f N
B15eiNfqH JN~Rq! f el

B1~q!2as

E0

q
Fe2 ifq

«W •qW

q
JN21~Rq!

2eifq
«W * •qW

q
JN11~Rq!G J . ~15!

JN denotes a Bessel function of orderN and f el
B1 is the elastic

transition amplitude in the first-Born approximation for th
static potential Eq.~2!

f el
B1~q!52~q218!/~q214!2, ~16!

Rq and fq are defined according to Eqs.~9!–~11! using qW

instead ofkW .
In the presence of the radiation field the scattered elec

may gain or loose energy equal toNv, such thatEf5Ei
1Nv, whereEi ( f ) is the initial ~final! energy of the projec-
tile andN is the net number of photons exchanged~absorbed
or emitted! by the colliding system and the CP field. Th
energy spectrum of the scattered electrons therefore con
of the elastic term, corresponding toN50, and of a number
of sidebands, each pair of sidebands corresponding to
same value ofuNu. For free-free transitions involvingN pho-
tons one can write down the differential cross section
terms of the scattering amplitudef N

B1 as

dsN
CP

dV
5

kf

ki
u f N

B1u2. ~17!

Using Eq.~13! to rewrite the scattering amplitude Eq.~15!
one gets by elementary vector algebra the following form
the differential cross section
7-2
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dsN
CP

dV
5

kf

ki
UJN~Rq! f el

B1~q!22asE0

u«W •qW u

q2
JN8 ~Rq!U2

,

~18!

whereJN8 is the first derivative of the Bessel function wit
respect to its argument. It satisfies the relation

JN8 ~Rq!5
1

2
@JN21~Rq!2JN11~Rq!#. ~19!

In this form of the differential cross section it is apparent th
the laser assisted signals in a CP field are neither sensitiv
the dynamical phase, fq , nor to thehelicity of the photon.

As in the case of linear polarization, the main limitatio
of the formula Eq.~18! is its failure to describe the wel
known decreasing of the target dressing with the increas
of the scattering angle@16#. An improvement, suggested b
Milošević et al. @29#, consists in replacing the static polari
ability, as , by the so-called dynamical polarizability

ad5
as

~11q2/4!3
. ~20!

This permits use of Eq.~18! at higher scattering angles. De
spite the above limitation, for low frequencies and sm
scattering angles, Eq.~18! might be useful as a starting poin
for the corresponding investigation of many electron targ
for which other methods will likely be prohibitively difficul
to employ.

III. ELECTRON-ATOM SCATTERING

We assume that at moderate laser field intensities, one
describe the field-atom interaction by time-dependent per
bation theory@12#. We shall use in the followingsecond-
order perturbation theoryto describe the hydrogen groun
state in the presence of a CP field. According to Flore
et al. @30#, one can write down an approximate solution f
an electron bound to a Coulomb potential in the presenc
an electromagnetic field as follows:

uC1~ t !&5e2 iE1t@ uc1s&1uc1s
(1)&1uc1s

(2)&], ~21!

whereuc1s& is the unperturbed ground state of hydrogen,
energyE1, anduc1s

(1),(2)& denote first- and second-order co
rections, respectively. According to Refs.@30# and@31# these
corrections can be written in terms of the linear response

uwW 1s~V!&52GC~V!PW uc1s&, ~22!

and of the quadratic response

uwi j ,1s~V8,V!&5GC~V8!PiGC~V!Pj uc1s&. ~23!

Here GC(V) is the Coulomb Green’s function andPW the
momentum operator of the bound electron. For a monoch
matic field there are four values of the argument of the Gr
functions necessary in order to write down the approxim
solution Eq.~21!, namely,
06341
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V65E16v, V865E162v. ~24!

On the other hand, as in the case of potential scatterin
Sec. II, the interaction between the CP field and the pro
tile can be treated exactly using the Volkov-type solution E
~6!.

We restrict our considerations to high scattering energ
where the first-Born approximation in terms of the scatter
potential is reliable. Neglecting exchange effects, we
scribe this interaction by a static potential,V(r ,R), and the
scattering matrix element is then given by

Si f
B152 i E

2`

1`

dt^xkW f
~ t !C1~ t !uVuxkW i

~ t !C1~ t !&, ~25!

whereC1 andxkW i , f
are taken from Eqs.~21! and ~6!.

The differential cross sections for a process in whichN
photons are involved can be written as

dsN
CP

dV
5~2p!4

kf~N!

ki
uTN

CPu2, ~26!

where the transition matrix element, related to theS-matrix
element Eq.~25!, has the following general structure

TN
CP5exp~ iNfq!@TN

(0)1TN
(1)1TN

(2)#. ~27!

The first term,

TN
(0)5JN~Rq!^c1suF~qW !uc1s&, ~28!

relates to the Bunkin-Fedorov formula@1#, in which the
dressing of the target is neglected. In this caseTN

CP reduces to
TN

CP5exp(iNfq)TN
(0) and the ordinary Bessel function

JN(Rq), contains all the field dependences of the transit
matrix elements.F(qW ) is the form factor operator

F~qW !5
1

2p2q2
@exp~ iqW •rW !21#. ~29!

The other two terms in Eq.~27! are due to the dressing o
the atomic state in the CP field and are discussed in the
two subsections.

A. First-order dressing of the target

The second term in Eq.~27!, TN
(1) , is connected to the

first-order corrections to the atomic state:oneof the N pho-
tons exchanged between the field and the colliding sys
interacts with the bound electron. This photon may be em
ted or absorbed and therefore, once the integration over
coordinates of the projectile was performed, the gene
structure ofTN

(1) is given by

TN
(1)52

a0v

2
@e2 ifqJN21~Rq!M at

(I )~V1!

1eifqJN11~Rq!M at
(I )~V2!#. ~30!
7-3
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The transition matrix elementM at
(I )(V6) is related to the

exchange of one photon between the atomic electron and
field. Their expressions read in terms of the linear respo
Eq. ~22! for absorption

M at
(I )~V1!5^c1suF~qW !u«W •wW 1s~V1!&

1^«W * •wW 1s~V2!uF~qW !uc1s& ~31!

and emission

M at
(I )~V2!5^c1suF~qW !u«W * •wW 1s~V2!&

1^«W •wW 1s~V1!uF~qW !uc1s&, ~32!

respectively. Using Eqs.~8! and ~10!–~12! of Ref. @32#, one
gets

M at
(I )~V1!52

«W •qW

2p2q3
J1,0,1~t1,t2,q!, M at

(I )~V2!5

2
«W * •qW

2p2q3
J1,0,1~t2,t1,q!. ~33!

The parameterst6 are related to the parametersV6 defined
in Eq. ~24! by

t651/A22V6. ~34!

An analytic expression forJ1,0,1 can be obtained from Eqs
~17!–~22! in Ref. @32#. One has

J1,0,1~t6,t7,q!5J1,0,1
a ~q,t6!2J1,0,1

b ~q,t7!, ~35!

where

J 1,0,1
a ~q,t!5J 1,0,1

b ~q,t!52
16

q

1

~11t!4

t

22t

3ReH a3F1~22t,1,3,32t;j,z!

2
ia2

q
F1~22t,2,2,32t;j,z!J . ~36!

The foregoing equation is written for frequencies below
ionization threshold, wheret6 are real.F1(a,b,b8,c;x,y) is
the Appell function of two variables, defined in Ref.@33# and
the following notations are used

a5
2t

11t1 iqt
, ~37!

j52
12t

11t
, z5

12t

11t

12t2 iqt

11t1 iqt
. ~38!

Our expressions in Eq.~33! are equivalent with the one
based on Eqs.~18a!–~18c! of Dubois et al. @16# and Eqs.
~11!–~12! of Dubois and Maquet@17#, respectively.

By means of Eqs.~33! and ~13! one can write down
06341
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TN
(1)5

a0v

4p2q2

u«W •qW u
q

@JN21~Rq!J1,0,1~t1,t2,q!

1JN11~Rq!J1,0,1~t2,t1,q!#, ~39!

which leads to the following transition matrix element

TN
CP5

exp~ iNfq!

2p2q2 H 2
q2

2
f el

B1~q!JN~Rq!

1a0v
u«W •qW u

q
JN8 ~Rq!J1,0,1~t1,t2,q!J . ~40!

To obtain the last expression, we used the following iden

J1,0,1~t1,t2,q!52J1,0,1~t2,t1,q!. ~41!

In this framework, where the first-order radiation corre
tion to the ground state is taken into account only, the d
ferential cross section for a process in whichN photons are
exchanged between the colliding system and the CP l
field is given by

dsN
CP

dV
5

kf

ki
U f el

B1~q!JN~Rq!

22a0v
u«W •qW u

q3
JN8 ~Rq!J1,0,1~t1,t2,q!U2

. ~42!

We conclude from this result:~i! the dynamical phasefq
drops out and hence has no effect on the differential cr
section and (i i ) due to the appearance of the modulusu«W

•qW u, thehelicity of the photon is not a relevant parameter
For the purpose of future reference, we also write do

the corresponding differential cross section for linear pol
ization

dsN
LP

dV
5

kf

ki
U f el

B1~q!JN~aW 0•qW !

22a0v
eW•qW

q3
JN8 ~aW 0•qW !J1,0,1~t1,t2,q!U2

. ~43!

To avoid possible confusion, the linear polarization vec
was denoted byeW . One can see that, apart from the arg
ments of the Bessel functions (Rq instead ofaW 0•qW ), the only
difference between Eqs.~42! and ~43! concerns the angula
parts (u«W •qW u instead ofeW•qW ).

Based on the low frequency limit in Eq.~35!, we also
mention that the transition matrix element~40! leads to the
expression
7-4
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dsN
CP

dV
.

kf

ki
U f el

B1~q!JN~Rq!2
192

~q214!3

3S 11
8

q214
D E0

u«W •qW u

q2
JN8 ~Rq!U2

, ~44!

which can be immediately compared with Eq.~2.31a! of By-
ron et al. @14#, evaluated for linear polarization. In addition
for small scattering angles, whereq!1, the quantity in front
of E0 may be approximated by 9.2as . This shows that one
may consider Eq.~18! as the low frequency limit of the
differential cross section Eq.~42!, valid at small scattering
angles.

Our Eqs.~42! and ~43! emphasize the importance of th
geometrical relation between the momentum transfer of
scattering electron and the polarization vector. To make
discussion clear, we shall choose the quantization axis,Oz,
along the direction of the initial momentum of the project
and the axisOy in the scattering plane.

It is worthwhile to point out here the correspondence
tween the three most frequently considered scattering ge
etries for LP laser light, namely,

LP1: eW parallel to the initial momentum,eW uuOz;
LP2: eW orthogonal to the initial momentum but in th

scattering plane,eW uuOy;
LP3: eW parallel to the momentum transfer,eW uuqW , and the

following configurations involving CP,
CP1: «W 5(eW z1 ieW x)/A2, when the laser beam is propaga

ing in the scattering plane,
CP2: «W 5(eW x1 ieW y)/A2, when the laser beam is parallel

the direction of the initial momentum,kW i ,
CP3: «W 5(eW y1 ieW z)/A2 lies in the scattering plane (yOz)

and the laser beam propagates on theOx direction.
We mention that forCP1 andCP2 there is only one com-

ponent of the CP vector in the scattering plane, while
CP3 both components are active. One can immediately
that the following relation holds

u«W j•qW u25ueW j•qW u2/2, ~45!

where the indexj refers to the above enumerations.
Once we have established these correspondences, w

make a couple of remarks concerning the relations betw
laser assisted signals in CP and LP laser fields. We s
always refer to LP and CP, which are connected to e
other by Eq.~45!.

The first remark concerns the difference between the la
assisted signals in LP and CP in the case of the elastic
(N50). For low frequencies, in the forward direction, th
laser assisted signal is smaller in CP than in LP and
difference is given by

ds0
LP

dV
2

ds0
CP

dV
.as

E 0
2

v2

ueW j•qW u2

q2
~46!

in any of the three related configurations.
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The second remark is more general and it is valid for a
photon frequency. For weak laser fields at any scatter
angles and for moderate laser intensities at small scatte
angles, i.e., whenever the arguments of the Bessel funct
are small, the following relation exists foruNu>1:

dsN
CP

dV
.

1

2uNu

dsN
LP

dV
. ~47!

This relation is of particular interest since forN561 one
can recover in this way the perturbative limit given by

ds61
CP

dV
5a0

2kf

ki

uqW •«W u2

4 U f el
B1~q!7

2v

q3
J1,0,1~t1,t2,q!U2

.

~48!

The same expression can be obtained by using Eqs.~14!–
~16! of Ref. @32#. One should keep in mind that in that pap
the photon energy was expressed in Rydbergs and that
~7! of the same paper~devoted to excitation processe!
should be modified for free-free transitions by puttingf el

5J10(q)2152q2f el
B1/2. In the weak field limit we find out

that, on account of the relations Eq.~45!, the laser assisted
signal involving one CP photon~absorbed/emitted! will be
always one-half of the corresponding signal for LP. F
higher intensities, the deviations from this relation appea
a signature of nonlinear dynamics.

B. Second-order corrections to the ground state

We shall show in this section that by adding second-
higher-order terms in the expansion~21! we get no change in
our main conclusion that neither the dynamical phasefq nor
the photon helicity are relevant parameters in free-free tr
sitions at high scattering energies.

If the second-order correction,uc1s
(2)& in Eq. ~21!, is added

to the wave function that describes the ground state of
drogen in the laser field, we get the third contribution to t
transition matrix element in Eq.~27!. After integration over
the coordinates of the projectile, this contribution reads

TN
(2)5

a0
2v2

4
$e22ifqJN22~Rq!M at

(II )~V81,V1!

1e2ifqJN12~Rq!M at
(II )~V82,V2!1JN~Rq!

3@M̃at
(II )~E1 ,V2!1M̃at

(II )~E1 ,V1!#%. ~49!

In this expressiontwo of the N photons exchanged betwee
the field and the colliding system interact with the bou
electron.M at

(II )(V86,V6) are related to the absorption~up-
per signs! or emission~lower signs! of bothphotons. Written
in terms of the quantities given by Eqs.~22!–~23! M at

(II ) has
the form
7-5
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M at
(II )~V86,V6!5 (

j ,l 51

3

« j« l@^c1suF~qW !uwl j ,1s~V86,V6!&

1^wj ,1s~V7!uF~qW !uwl ,1s~V6!&

1^wl j ,1s~V87,V7!uF~qW !uc1s&#. ~50!

We stress that the complex conjugate of the polarization v
tor «W must be taken in Eq.~50! whenM at

(II )(V82,V2), re-
lated to emission, is computed for a CP laser field. For
polarization«W 250 and the angular behavior ofM at

(II ) is de-
termined by

M at
(II )5

~«W •qW !2

2p2q4
T1~t81,t82;t1,t2,q!, ~51!

whereT1 depends not only onq andt6 but also on

t8651/A22V86 ~52!

and can be expressed in terms of a series of hypergeom
functions, as shown in the Appendix.

The other two atomic matrix elements in Eq.~49!, M̃at
(II ) ,

are related to the processes in which one photon is abso
and the other is emitted. They can be constructed by u
Eq. ~50! with the tensorw̃l j ~instead of the tensorwl j ), which
is also defined in Ref.@30#. Their angular behavior is differ
ent, namely,

M̃at
(II )5

1

2p2q2 F u«W •qW u2

q2
T̃11u«W u2T̃2G . ~53!

We point out that the radial integralsT̃1 and T̃2 must be
computed forV85E1. A special work@34# will be devoted
to their analytic evaluation since a number of technical d
ficulties that are related to their singular behavior must
discussed in detail.

Similar to the case of the first-order correction in Se
III A, one can expressTN

(2) as

TN
(2)5

a0
2v2

8p2q2 H u«W •qW u2

q2
$T1@JN12~Rq!1JN22~Rq!#

1T̃1JN~Rq!%1T̃2JN~Rq!J . ~54!

Then, due to the structure of the transition matrix elem
including second-order laser dressing of the target,
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TN
CP52

1

4p2 H f el
B1JN~Rq!22a0v

u«W •qW u

q3
J1,0,1JN8 ~Rq!

2a0
2v2

u«W •qW u2

2q4
$T1@JN12~Rq!1JN22~Rq!#

1T̃1JN~Rq!%2
a0

2v2

2q2
T̃2JN~Rq!J , ~55!

one can immediately say that the differential cross sectio
again helicity independent and the dynamical phase is n
relevant parameter.

Moreover, based on angular momentum algebra consi
ations, one can argue that any contribution to the transi
matrix element due to thej th order perturbative correction
to the atomic state will only contain terms proportional
u«W •qW upu«W u2s, wherep ands are positive integers such thatp
12s5 j . Therefore, as long as the scattering is treated i
first-order Born approximation, the helicity will remain a
unobservable parameter.

It is interesting to note that the weak field limit of th
differential cross section for two CP photon absorptio
emission has a simple angular dependence given byuqW •«W u4.
Indeed, one finds

ds62
CP

dV
5a0

4kf

ki

uqW •«W u4

26 U f el
B12

4v

q3
J1,0,12

4v2

q4
T 1U2

. ~56!

On the contrary, for LP fields whereeW251, the atomic
matrix elementM at

(II ) has a different angular behavior give
by

M at
(II )5

1

2p2q2 F ~eW•qW !2

q2
T11T2G . ~57!

The amplitudesT1 andT2 depend on the momentum transf
of the scattered electron and on the four parameterst86 and
t6, given in Eqs.~34! and ~52!. Finally, in the weak field
domain, this leads to the following expressions for the d
ferential cross sections for two photon absorption/emiss
in LP fields

ds62
LP

dV
5a0

4kf

ki

1

26U~qW •eW !2S f el
B12

4v

q3
J1,0,12

4v2

q4
T1D

2
4v2

q2
T 2U2

. ~58!

IV. RESULTS AND DISCUSSION

In this section we illustrate our results by considering t
numerical evaluation of the nonlinear differential cross s
tions for the elastic term (N50) and the next two sideband
(N51 andN52). We focus our discussion on the geom
etries denoted earlier byCP3 andLP3 because in these ge
ometries the coupling between the laser field and the co
7-6
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ing system is particularly strong.
The angular distributions of the scattered electrons w

final energies given byEf5Ei1Nv are shown in Fig. 1 for
the three values ofN: 0, 1, and 2. We have chosen tw
frequencies in the optical domain, namely,v55 eV and
v52 eV, and our results are evaluated for the laser fi
strengthE05108 V/cm and the initial scattering energyEi
5100 eV.

In the left-hand panelsa1 , b1, andc1 of Fig. 1 the laser
frequency isv55 eV and the quiver amplitude,a0, takes
the value 0.58 a.u., corresponding to the perturbative reg
In panela1, at small scattering angles where the dressing
the target is important, the differential cross sectionds0 /dV
exceeds the field-free signal for both linear and circular
larizations. The nonlinear signals,ds1 /dV, belonging to the
final energyEf5105 eV are presented in panelb1. Here we
recognize that for small arguments of the Bessel functi
the assisted signals for CP have half the value of the sig
for LP. Finally, in panelc1 we find large differences betwee
the CP and LP signals. To understand this different beha
we focus on the dominant contributions to the different
cross sections, given by~56! and ~58!, respectively. More-
over, we note that onlyT2 of Eq. ~58! has a pole att852

FIG. 1. dsN /dV are presented as a function of the scatter
angle,u, for a laser fieldE05108 V/cm for the geometryCP3 ~full
line! and LP3 ~dotted line!. The initial projectile energy isEi

5100 eV. Panelsa1 , b1, andc1 on the left-hand side refer tov
55 eV and the right-hand panels correspond tov52 eV. In pan-
els a1 and a2 are also presented the field-free differential cro
sections~dashed lines!.
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while it does not appear in Eq.~56!. Hence it becomes clea
that the enhancement of the LP signal originates in a tw
photon virtual transition between the ground state and
first excited state (E22E1510.2 eV). Considerations of an
gular momentum algebra can be used to show that such
sitions are forbidden if the two photons have circular pol
ization.

In Fig. 1 ~panelsa2 , b2, and c2) we also present the
angular distributions for the second laser frequency,v
52 eV. In this case the amplitude of the quiver motio
takes the valuea053.6 a.u. and the nonlinear dynamic
behavior becomes apparent. Therefore the angular distr
tions are considerably different from those of the previo
case. We point out that our formula~46! reproduces quite
well the differences between LP and CP signals forN50,
since here second-order corrections are of minor importa
For N51 the CP signals are again one-half of the LP one
small scattering angles, as is shown in the window inser
in panel (b2). With increasing scattering angle, the argume
of the Bessel functions increases and nonlinear contribut
become important. The present frequency,v52 eV, is too
small for establishing a two-photon resonance and the c
sen intensity is not strong enough for higher-order contri
tions. Therefore LP and CP signals remain comparable
N52. We think that the differences between our data
v52 eV and those published earlier for the same para
eters @20# are due to spurious phase effects present in
calculations of that work.

We shall next discuss the resonance structure of the
(N51) and of the second (N52) sidebands considering
sufficiently small scattering angle,u55°, such that the targe
dressing effects are relevant.

In Fig. 2 the resonance structures ofds1 /dV are shown
for one photon absorption in the geometryCP3. We restrict
ourselves to the weak field domain and we normalize
signals with respect to the intensity of the laser field. T
differential cross sections exhibit a number of resona

s

FIG. 2. ds1 /dV normalized with respect to the field intensity
is shown as a function of the laser frequency for the geometryCP3
at the scattering angleu55° and initial projectile energyEi

5100 eV. Also plotted are the corresponding data of the Bunk
Fedorov formula~dotted line! and the atomic contribution of the
first-order dressing~dotted-dashed line!.
7-7
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peaks corresponding tov5uE1u(12n22), whereuE1u is the
binding energy of the ground state andn is the principal
quantum number. They correspond to the poles in the a
lytic expression ofJ1,0,1 in Eq. ~35!. At very low frequencies
the major contribution stems from the Bunkin-Fedorov te
~dotted curve!. The first minimum of the differential cros
sections, close tov52 eV, comes from an interference b
tween the atomic and the electronic term; the other minim
located between two consecutive resonances, are relate
the contribution of the first-order dressing correction to
ground state in Eq.~21!. Since the relation, Eq.~47!, holds in
the perturbative domain, the resonance structures for the
lated scattering geometry,LP3, are obtained by a vertica
upshift of these curves by a factor log10(2).

The frequency dependences of the next sideband (N52)
exhibit two series of resonances. One-photon resonance
located above 10.2 eV as discussed earlier. In additio
second series of resonances, located between 5.1 and 6.
is predicted. It corresponds totwo-photon virtual transitions
to excited states. This further series of resonances is rel
to second-order corrections to the ground state~21! and is
presented in our Fig. 3. The panela refers to the geometry
CP3, while the other one to the geometryLP3. As discussed
before, the resonance located atv55.1 eV is present for LP
only. One can explicitly see in our figures that the dress

FIG. 3. ~a! ds2 /dV normalized with respect toI 2, is shown as
a function of v for the geometryCP3 at the scattering angleu
55° and initial projectile energyEi5100 eV. Also plotted are the
results of the Bunkin-Fedorov formula~dotted line! and the atomic
contribution due to first-order~dotted-dashed line! and second-orde
dressing~long dashed line!. ~b! Same as in~a!, but for the geometry
LP3.
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effects are increasing for increasing frequencies of the la
beam.

V. SUMMARY AND CONCLUSIONS

In the present work we have investigated scattering
electrons by hydrogen atoms in the presence of a circul
polarized laser field. For comparison, we also considered
early polarized laser light. Since we assumed the scatte
electrons to have initially some 100 eV kinetic energy, w
were permitted to treat the scattering process in first-or
Born approximation. The laser dressing of the atomic tar
was treated in second-order perturbation theory, while tha
the scattering electron was described by a Volkov soluti
Within this approximation scheme, we were able to sh
that the nonlinear cross sectionsdsN

CP/dV neither depend on
the dynamical phasefq , contrary to what was predicted b
earlier work on this topic@20,22#, nor is there any indication
of circular dichroism. In our derivation of the above finding
we devoted particular attention to the proper definition of
phases in Graf’s addition theorem of Bessel functions, bas
our considerations on the corresponding definitions in W
son’s book@28#. This was outlined, in particular, in Sec. II o
this work. As we found out, it is very crucial to make
careful analysis of the phase relations in the above treatm
for otherwise quite easily spurious phase dependences
creep in to finally simulate circular dichroism in the proce
studied above. Besides, we took advantage of our analys
also make a comparison between nonlinear electron-a
scattering in a circularly and a linearly polarized laser be
of equal frequency and intensity. Among other differenc
between these two cases, we were able to show that for w
fields, at any scattering angles, and for moderate fields
small scattering angles,dsN

CP/dV are always smaller than
dsN

LP/dV. Moreover, the resonance structures of the t
cross sections are different, in particular, there are more r
nances in the linear than in the circular case. Although o
can qualitatively understand these differences by using an
lar momentum considerations, we have explicitly shown
the Appendix how the additional resonance in the case
linear polarization comes about.

Nevertheless, we should stress that a possible phase
pendence may occur if the scattering process is treated
yond the first-order Born approximation@6#. In this case the
appearance of imaginary parts of the scattering amplit
may lead to phase dependences and eventually circula
chroism in the scattering of electrons by atoms in circula
polarized laser light. In a forthcoming paper we shall sh
that, for a particular laser configuration, circular dichrois
due to the target dressing can be predicted for high scatte
energies, choosing the laser frequency and the scattering
ometry in an appropriate way.
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APPENDIX

In order to evaluate analytically the atomic matrix e
mentM at

II in Eq. ~50! we use the expressions of the line
and quadratic response given in Refs.@31# and @30#, respec-
tively. The exponential in the form factor formula~29! is
written in the standard way as an expansion in spherical
monics. After integration over the angular coordinates of
bound electron, one can write down the following express
of the matrix element for two-photon absorption/emission

M at
(II )~V86,V6!52

~sW•qW !2

8p2q4
@ 2I 10

21~t87,t7,q!

1 2I 10
21~t86,t6,q!1 2I101~t7,t6,q!#

1
sW2

24p2q2
@ 0I 10

01~t7,t7,q!

1 2I 10
21~t7,t7,q!1 0I 10

01~t6,t6,q!

1 2I 10
21~t6,t6,q!1 0I101~t7,t6,q!

1 2I101~t7,t6,q!#. ~A1!

Here the upper signs correspond to absorption and the lo
ones to emission processes. If the polarization vectorsW is
complex, its complex conjugate should be taken in orde
compute two-photon emission. Using the previous equat
one can write down in a straightforward manner the gen
structure ofM at

(II ) as

M at
(II )5

1

2p2q2 F ~sW•qW !2

q2
T11sW2T2G , ~A2!

whereT1 andT2 denote the following two combinations o
radial integrals

T152
1

4
@ 2I 10

21~t87,t7,q!1 2I 10
21~t86,t6,q!

1 2I101~t7,t6,q!#, ~A3!

T25
1

12
@ 0I 10

01~t7,t7,q!1 2I 10
21~t7,t7,q!1 0I 10

01~t6,t6,q!

1 2I 10
21~t6,t6,q!1 0I101~t7,t6,q!

1 2I101~t7,t6,q!#. ~A4!

As a consequence,T1 and T2 depend on the momentum
transfer,q, and on the four parameterst86 andt6.

The four radial integrals present in Eq.~A1! are defined
by

0I101~V8,V,q![E drr 2B101~V8,r ! j 0~qr !B101~V,r !,

~A5!
06341
r-
e
n

er

o
n,
al

2I101~V8,V,q![E drr 2B101~V8,r ! j 2~qr !B101~V,r !,

~A6!

0I 10
01~V8,V,q![E drr 2B 10

01~V8,V,r ! j 0~qr !R10~r !,

~A7!

2I 10
21~V8,V,q![E drr 2B 10

21~V8,V,r ! j 2~qr !R10~r !,

~A8!

where j l(qr) are spherical Bessel functions of the orderl.
R10 is the radial function of the hydrogen ground state,B101

is defined by Eq.~32! of Ref. @31#, andB 10
01, B 10

21 by Eqs.
~43!–~44! of Ref. @30#.

We have obtained analytic expressions for the radial in
grals in Eqs.~A5!–~A8!. The first two integrals,0I101 and
2I101, are related to the linear response. They may be
pressed, in terms of Appell functions, all of which depend
the same variables, namely,

j15
12t8

2
, z15

~12t8!t

t1t82 iqtt8
. ~A9!

Note that, given the definitions~A5!–~A6!, these two radial
integrals are symmetric with respect to the parameterst and
t8. We present below the expression for the first integral

2I101~t8,t,q!5
8tt8

q~22t8!~11t!
F 2

11t8
G 21t8

(
m50

`

am8 ~t!

3F12t

t Gm

(
p50

2
~p11!~p12!

~2q!p

~31m2p!!

~22p!!

3Re$ i p23x1
41m2pF1~22t8,212t8,41m

2p,32t8;j1 ,z1!%. ~A10!

and that for the combination0I101(t8,t,q)1 2I101(t8,t,q)

0I101~t8,t,q!1 2I101~t8,t,q!

52
24tt8

q2~22t8!~11t!
F 2

11t8
G 21t8

3 (
m50

`

am8 ~t!F12t

t Gm

~m11!!

3ReH (
p51

2 S i

qD 22p

~m1p!p21x1
11m1p

3F1~22t8,212t8,11m1p,32t8,j1 ,z1!J .

~A11!

Here the following notations have been used:
7-9
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x15
tt8

t1t82 iqtt8
, ~A12!

am8 ~t!5
1

m!

1

22t1m2F1S 1,212t,32t1m,
t21

t11D ,

~A13!

where 2F1 denotes the Gauss function. We stress that all
definitions and notations used in this paper for the hyperg
metric functions are those given in Ref.@33#. To avoid pos-
sible confusion, be reminded that according to Eq.~A1! the
parameterst andt8 take the valuest6 given by Eq.~34!.

The other two radial integrals are related to the quadr
response; they are expressed as a series of hypergeom
functionsF2 instead of Appell functionsF1. Although all the
functionsF2, which are involved, depend also on the sa
variables, namely,

j25
t2t8

2t
, z25

t1t8

t~12t81 iqt8!
, ~A14!
w
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the integrals0I 10
01 and 2I 10

21 are no more symmetric with
respect to the parameterst and t8, than those that take th
values in Eqs.~34! and ~52!, respectively. The expression
for the integral2I 10

21(t8,t,q) as well as that for the combi
nation 0I 10

01(t8,t,q)1 2I 10
21(t8,t,q) are written below

2I 10
21~t8,t,q!5

2

q
~11t!F t8~t1t8!

t~t811!
G 5

(
m50

`

dm8 ~t8,t!

3F t8~t21!

t~t811!
Gm

~6!m

32t81m

3 (
p50

2
~p11!~p12!~32p!

~2qt8!p

3Re$ i p21x2
42pF2~61m,1,42p,42t8

1m,6;j2 ,z2!% ~A15!

and
0I 10
01~t8,t,q!1 2I 10

21~t8,t,q!5
24tt8

q~11t! F t8~t1t8!

t~11t8!
G 3

(
m50

`

cm8 ~t8,t!
~5!m

22t81m
F t8~t21!

t~t811!
Gm

Re$ ix2
3F2~51m,1,3,32t8

1m,5;j2 ,z2!%1
6~11t!

q2t8
F t8~t1t8!

t~t811!
G 5

(
m50

`

dm8 ~t8,t!
~6!m

32t81m
F t8~t21!

t~t811!
Gm

3ReH (
p51

2 S i

2qt8
D p22

x2
11pF2~61m,1,11p,42t81m,6;j2 ,z2!J

2
12tt8

q~11t! F t8~t1t8!

t~11t8!
G 3

(
m50

`

bm8 ~t8,t!F t8~t21!

t~t811!
Gm

ReH ix2
3F2

t1t8

t

~5!m

32t81m

3F2~51m,1,3,42t81m,5;j2 ,z2!2x2
21 ~4!m

32t81m
F2~41m,1,2,42t81m,4;j2 ,z2!

1x2
21 ~4!m

12t81m
F2~41m,1,2,22t81m,4;j2 ,z2!G J , ~A16!
where (n)m denotes the Pochhammer symbol and the follo
ing notations have been used:

x25
1

t8212 iqt8
~A17!

and

bm8 ~t8,t!5
1

m!

1

22t1m2F1~1,212t,32t1m,d2!,

~A18!
-
cm8 ~t8,t!5

1

m! F2
t8~t21!

t~t811!

1

32t1m

3 2F1~1,212t,42t1m,d2!2
t2t8

t

1

22t1m

3 2F1~1,212t,32t1m,d2!G , ~A19!
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dm8 ~t8,t!5
1

m! F2S t21

t11D 2 1

42t1m2F1~1,212t,52t

1m,d2!1
1

22t1m2F1~1,232t,32t

1m,d2!G , ~A20!

with

d25
~t21!~t2t8!

~t11!~t1t8!
. ~A21!

The expressions of the radial integrals in Eqs.~A10!–~A11!
06341
and ~A15!–~A16! were written down for real values of th
parameterst6 andt86.

The one-photon resonances discussed in Sec. IV are
lated to the poles of the four radial integrals~A5!–~A8!.
They occur for t15n, which corresponds tov5uE1u(1
2n22) with n>2. Two-photon resonances are related
poles of 0I 10

01 and 2I 21
01, only. They occur fort815n and

they correspond to 2v5uE1u(12n22). The integral 0I 10
01

has poles for any value ofn, while we should note that2I 21
01

has poles only fort81>3. This explains the absence of
resonance atv55.1 eV in the frequency dependence of t
nonlinear signal forN52 if the laser field is circularly po-
larized, see Fig. 3~a!, because only2I 21

01 enters into the ex-
pression forT1.
n-

.
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