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Interacting atoms under strong quantum confinement

E. Tiesinga,* C. J. Williams, F. H. Mies, and P. S. Julienne
Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

~Received 2 December 1999; published 17 May 2000!

We calculate the energy-level shifts of a tightly confined trapped alkali-metal atom in the presence of a
second trapped atom. A complete microscopic description of the interaction energy between the two atoms is
used. This allows us to study tightly confined atoms near a Feshbach resonance and to evaluate the usefulness
of the regularizedd-function potential approximation. We present results for sodium and cesium when con-
fined in a spherically symmetric harmonic optical trap. Possible implications of the level shifts and collisional
decoherence for quantum computing with atomic systems are given.

PACS number~s!: 32.80.Pj, 32.80.Lg, 34.50.2s
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I. INTRODUCTION

During the last 15 years the ability to hold and manipul
neutral atoms and ions with lasers has become a mature
of atomic physics. These laser cooling techniques have
lowed, for example, the study of weakly bound vibration
levels of molecules formed from two neutral atoms@1#, the
determination of threshold atomic scattering properties@2,3#,
the study of neutral atoms in optical lattices@4,5#, and the
observation of macroscopic quantum phase transitions@6#.
Moreover it is possible to confine one or two single Cs ato
in a magneto-optical trap@7# as well as produce near-un
occupancy of the cells in a three-dimensional optical latt
@8#. Atomic collisions play a crucial role in many of th
phenomena associated with trapped cold atoms. For
ample, elastic collisions determine the mean field of a Bo
Einstein condensate, while inelastic collisions provide lo
mechanisms, which can remove atoms from a Bose con
sate or an optical lattice.

Understanding collisions under tight confinement con
tions is especially important in view of the possibility o
using collisions of neutral atoms in single cells of optic
lattices to implement quantum logic gates@9–11#. First steps
toward quantum computing@12# have been made by demon
strating elementary quantum gates via ion traps@13#, cavity
QED @14#, and with nuclear magnetic resonance@15#. Al-
though no experimental work has yet been done on trap
neutral atoms for quantum logic, a simple gate might
made using quantum bits, or qubits, which are formed from
superposition of two or more hyperfine sublevels of
ground-state alkali-metal atom confined in an optical latti
In a quantum gate operation, two atoms are brought toge
and allowed to interact for a predetermined time interv
The resulting phase shift gained by the atom pair, which
conditional on the hyperfine sublevels involved, permits
desired quantum gate@9–11#.

As the size of atom traps decreases, it becomes nece
to consider the effect of trap confinement on the collisio
@16#. This paper therefore examines the interactions of t
atoms confined in a spherically symmetric harmonic trap

*Permanent address: Department of Chemistry and Biochemi
University of Maryland, College Park, MD 20742.
1050-2947/2000/61~6!/063416~8!/$15.00 61 0634
e
art
l-

l

s

e

x-
e-
s
n-

-

l

ed
e
a

.
er
l.
is
e

ary
s
o
n

a trap interactions manifest themselves as a shift in the qu
tized energy levels of the two-atom system. We pres
quantitative calculations of the energy shift for two trapp
Na or Cs atoms, taking into account the effects of both
full interaction Hamiltonian of the two atoms and the tra
ping potential. We compare the energy shifts from these
calculations to those calculated when the full atomic inter
tion potential is replaced by a regularizedd function:

Vd~rW !54p
\2

2m
ad~rW !

]

]r
r , ~1!

wherea is the two-bodys-wave scattering length,m is the
reduced mass of the atom pair, andd(rW) is the three-
dimensionald function @17,18#. This d function approxima-
tion of the full interaction Hamiltonian is widely and suc
cessfully used as a starting point for the derivation of
mean-field energy of weakly interacting Bose particles.

We will show that for scattering lengthsa that are small
compared to the spatial extent of the lowest harmonic os
lator wave functions thed-function potential in Eq.~1! pro-
vides an excellent approximation for the energy shift. In fa
for two interacting particles in a spherically symmetric ha
monic trap the effect of the regularizedd-function potential
and thus of the full interaction Hamiltonian on the eigene
ergies is known analytically@18#. On the other hand, we
show that when the scattering length and the spatial exten
the harmonic oscillator wave functions become compara
the actual energy shifts and those predicted from Eq.~1! can
be quite different. This is especially true if a magnetic field
used to tunea through a region where there is a Feshba
resonance.

Using the analytic expressions of the level shift, we a
present an estimate of the phase shift associated with a
operation and derive an estimate of the probability of a
structive ‘‘bad’’ inelastic collision during the time the gate
operating. We will show that the probability of a bad col
sion during the time the elastic collision phase is built up
independent of trap size and frequency and depends onl
a ratioK/a, whereK is the inelastic rate constant.

This paper is divided into the following sections. In Se
II we will set up the problem of two interacting ground-sta
alkali-metal atoms in the absence of a confining potential
Sec. III we introduce and give properties of the confini

ry,
©2000 The American Physical Society16-1
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TIESINGA, WILLIAMS, MIES, AND JULIENNE PHYSICAL REVIEW A 61 063416
spherically symmetric harmonic optical potential. The h
monic nature allows for a separation of center of mass
relative degrees of freedom and the additional constrain
spherical symmetry leads to a separation of radial and an
lar degrees of freedom.

A simplified model of the interacting ground-state alka
metal atoms in terms of regularizedd-function interactions is
presented in Sec. IV. Section V describes results for
trapped doubly polarized sodium and cesium atoms. The
culations show the marked differences between two limit
cases. For Na the vibrational level spacing of the short-ra
interaction potential is much larger than that of the trapp
potential, while for Cs they can be comparable.

In Sec. VI we present results for two confined Na ato
that are both in their lowest hyperfine state and are in
presence of an external magnetic fieldB. A Feshbach reso
nance for two such atoms exists nearBres591.0 mT
@3,16,19# and has profound effects on the magnetic field
pendence of the eigenenergies.

Sections VII and VIII estimate the collisional phase sh
for quantum logic gates and the relative effect of ‘‘good
elastic and ‘‘bad’’ inelastic collisions, respectively. The ra
of ‘‘good’’ to ‘‘bad’’ collisions is favorable if only spin-
dipolar relaxation is possible, but unfavorable in the case
spin-exchange collisions, with the exception of the spe
case of87Rb atoms@20,21#. We provide conclusions in Sec
IX.

II. HAMILTONIAN

The Hamiltonian structure for two colliding2S alkali-
metal atoms in the absence of a trapping potential is w
known @16,20,22–24#. Here we only mention the most re
evant features. In the absence of an external field the hy
fine states of a2S ground-state alkali-metal atom are label
by u f ,m&, wheref is the total atomic angular momentum an
m its projection on thez axis in the laboratory frame. In th
presence of a magnetic field aligned along thisz axis, f is no
longer a good quantum number and the hyperfine states
labeledua&,ub&, . . . in order of increasing internal energ
Each stateua& has a projectionma along thez axis. The
interaction between the atoms is described by theX 1Sg

1 and
a 3Su

1 adiabatic Born-Oppenheimer~ABO! potentials. Dur-
ing the collision this interaction mixes hyperfine statesuab&
wherea (b) label states of atomA(B). This leads to a set o
coupled Schro¨dinger equations or a multichannel Ham
tonian for the relative motion with one channel for each
lowed stateuab&. The multichannel HamiltonianH is con-
veniently denoted asH5T1V, whereT is the kinetic energy
operator for the relative motion andV is the interaction po-
tential matrix. As the atoms are ultracold and the two AB
potentials are independent of relative mechanical ang
momentuml , it is sufficient to assumes-wave orl 50 scat-
tering between the atoms. The numerical scattering pro
ties we present in the remainder of this paper are calcul
using a Gordon propagator@25#.

In this paper we are interested in trapping alkali-me
atoms in a specific hyperfine state. The first case is tha
doubly polarized Na or Cs atoms. Since the electron
06341
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nuclear spin of the atoms are both aligned, the interac
potential between the atoms is given by thea 3Su

1 potential.
The doubly polarized collision is not the only collision that
solely described in terms of thea 3Su

1 potential. For ex-
ample, in Na theB50 collision between au f 52,m52& and
a u f 51,m51& atom satisfies the same Hamiltonian.

The second case we will discuss in detail is that of
atoms in the lowest hyperfine stateua&. For finite magnetic
fields an accurate description of a collision between twoua&
state atoms involves five coupled equations@16#. The corre-
sponding five-channel Hamiltonian depends on both
X 1Sg

1 anda 3Su
1 potential. At large internuclear separation

only theuaa& state is accessible. The other four channels
asymptotically closed. In general these closed channels
lead to Feshbach resonances@26,16# in uaa& collision prop-
erties. In Na a Feshbach resonance is located at the thres
of the uaa& channel for an external magnetic fieldBres
'91 mT. Here the four closed channels create a multich
nel bound state that is coupled to theuaa& collision channel.
The scattering lengtha for two freely scatteringua& state Na
atoms is infinite at the resonance. In this situation the e
bedded bound state approaches theuaa& threshold from be-
low for increasing magnetic field. This implies a positivea in
Eq. ~1! for magnetic fields just below the resonant magne
field and negativea for magnetic fields just above.

III. TRAPPING POTENTIAL

Optical atom trapping potentials are periodic in optic
lattices or can be more arbitrarily shaped. Nevertheless
deepest part of the well~s! can be approximated by a ha
monic trapping potential. To simplify matters further we a
sume that each atom is held in a spherically harmonic tr
ping potentialU trap(rW i)5mv2r i

2/2, where rW i is the spatial
position of atomi 51 or 2, m is the atomic mass, andv is
the trapping frequency. Then the separable Hamiltonian
the center of mass and relative motion of two atoms is

S 2
\2

2M
¹R

21
1

2
Mv2R2D1S 2

\2

2m
¹ r

21
1

2
mv2r 2D , ~2!

whereRW 5(rW11rW2)/2, rW5rW22rW1 , M52m is the total mass
andm5m/2 is the reduced mass. It is implicitly assumed th
the trapping potential is the same for all the atomic hyperfi
states.

The eigenvalues of Eq.~2! of the noninteracting atoms ar
well known. In fact after introducing a spherical coordina
system we haveEtrap5EN,L

trap1En,l
trap, whereEN,L

trap is the energy
in the center of mass motion, andEn,l

trap is the energy in the
relative motion. HereL and l are the orbital angular mo
mentum for the center-of-mass and relative motion resp
tively, and

Enl
trap5S 3

2
12n1l D\v, n50,1,2, . . . ~3!

for either the center of mass or the relative motion.
6-2
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INTERACTING ATOMS UNDER STRONG QUANTUM . . . PHYSICAL REVIEW A61 063416
For composite bosons the total wave function, which
cludes both~internal! spin as well as external degrees
freedom, must be symmetric under interchange of the at
and this reduces the number of allowed orbital angular m
menta for therelative motion. For two doubly polarized Na
or Cs atoms and forua& state Na atoms only evenl are
present. Since the interaction between two atoms only
pends on the relative coordinate, only the spectrum for
relative motion can be modified by this interaction. The
mainder of this paper focuses on solving for the eigenpair
the relative motion and emphasizesl 50 because of the ul
tracold energy assumed.

For convenience we introduce a scale length based on
trapping potential, which is a measure of the extent of
lowest harmonic oscillator wave functions

d5A \

mv
. ~4!

Hence the outer turning point of the lowest harmonic os
lator state, which is defined asmv2r 2/25E00

trap, is A3d. For
optical lattices current experimentally accessible trapp
frequenciesn5v/2p range from 50 kHz to 1 MHz for so
dium and 10 kHz to 1 MHz for cesium. This corresponds
a d ranging from 150 nm to 10 nm for both atomic specie
This should be compared to typical magnetic traps used
Bose condensed alkali-metal gases where trapping freq
ciesn are on the order of 100 Hz corresponding to trap si
of 1 mm.

IV. PSEUDOPOTENTIAL APPROXIMATION

The low-energy scattering properties of two colliding a
oms can be represented quantitatively by replacing the e
interaction potentialV(r ) with a pseudopotential, which re
produces thes-wave (l 50) scattering length and cross se
tion of two freely scattering ultracold atoms. This pseudop
tential is given by

Vd~rW !54p
\2

2m
ad~rW !

]

]r
r , ~5!

where a is a scattering length, andd(rW) the three-
dimensionald function @17,18#. This pseudopotential has
single bound state withEd,0 for positive scattering lengths
Many-body theories such as those used in describing ato
Bose condensates@6# replace the exact interaction potenti
V(r ) with such a pseudo potential.

Reference@18# shows that the problem of two atoms in
spherically symmetric harmonic trapping potential intera
ing via a regularizedd-function potential can be solved an
lytically. They find that in the limit of large positive an
negative scattering lengtha the bound state energies asym
totically approach (1/212v)\v for v50,1,2, . . . . More-
over, the eigenenergies are solely a function of the ratioa/d
and \v. To first order ina/d}Av the bound states fors
wave are
06341
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Ev,l 50
d 'H 3

2
12v1

2

Ap
S v11/2

v D a

dJ \v, ~6!

where ~ ! is a combinatorial andv50,1,2, . . . . For v50
and 1 this simplifies to@3/21(2/Ap)a/d#\v and @7/2
1(3/Ap)a/d#\v, respectively.

The three-dimensional eigenfunctionsC(rW) for the regu-
larizedd-function potential are singular at zero internucle
separation. In fact, they behave asC(12a/r ) for r→0 and
hence the radial wave functionx(rW)5rC(rW)→C(r 2a) for
r→0. Here C is a normalization constant. In essence t
radial wave function is finite atr 50. For zero scattering
lengthx(r ) naturally reduces to a radial harmonic oscillat
wave function.

V. DOUBLY POLARIZED ALKALI-METAL ATOMS

The exactradial Schrödinger equation for thes-wave
scattering of two trapped doubly polarized Na or Cs atom

S 2
\2

2m

d2

dr2
1V~r !1

1

2
mv2r 2D x~r !5Ev,l 50

exact x~r !, ~7!

where the single-channel potentialV is equal to thea 3Su
ABO potential of Na2 and Cs2, respectively, and defined
such thatV(r )→0 whenr→`. In this case the radial wave
functionx(r ) is always regular at the origin. We numerical
solve Eq.~7! for bound states by using a discrete variab
representation~DVR! @27# for the kinetic energy operato
and potentials. In a DVR the potential is diagonal inr while
the kinetic energy operator introduces coupling between
spatial grid pointsr. The corresponding eigenvalue proble
is solved using standard diagonalization software.

Figure 1 shows the first two positive eigenenergies
doubly polarized sodium as a function of trapping frequen
using the best known Na2 a 3Su

1 potential@28# which has a
scattering length of13.3 nm. The energies are in units o
hn5\v. Also shown are the eigenenergies of thed function
pseudopotential witha513.3 nm. The pseudopotentia
eigenenergies are in good to excellent agreement with
exact calculations. Notice that the ratioa/d50.36 for a trap-
ping frequencyn of 10 MHz.

Figure 2 shows the first two positive eigenenergies
doubly polarized cesium as a function of trapping frequen
based on aa 3Su

1 potential with a scattering length of
237 nm @29#. For very small trapping frequencies the co
respondingd function pseudopotential agrees with the exa
calculations. However, forn*50 kHz the pseudopotentia
does not agree with the exact calculation. The ratioa/d51
for a trapping frequency of 100 kHz.

The difference in the applicability of the pseudopotent
approximation for Na and Cs can be understood in terms
the range of validity of the Wigner threshold law. For tw
free particles the elastic cross section is given in terms o
scattering length only in the Wigner threshold regime, wh
extends up to wave vectorsk, such thatkuau!1 or alterna-
tively for collision energies, E5\2k2/(2m)!EW
6-3
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TIESINGA, WILLIAMS, MIES, AND JULIENNE PHYSICAL REVIEW A 61 063416
5\2/(2ma2). However for a confined system the energy th
determines this validity is the zero-point energy of the tra
ping potential. Consequently, the effect of the exact inter
tion potential on the lowest positive eigenstates of Eq.~7!
can be expressed in terms of a scattering length when\v is

FIG. 1. The energy in the relative motion of two trapped int
acting doubly polarized Na atoms as a function of trapping f
quencyn5v/2p. The figure shows the first two so-called trapp
states. The full lines correspond to energies obtained from e
numerical calculations. The dotted lines correspond to solutions
a regularizedd-function interaction potential witha513.3 nm
plus a trapping potential. The top axis shows the ratioa/d with d
5A\/mv.

FIG. 2. The energy in the relative motion of two trapped int
acting doubly polarized Cs atoms as a function of trapping
quencyn5v/2p. The figure shows the first two so-called trapp
states. The full lines correspond to energies obtained from e
numerical calculations. The dotted lines correspond to solutions
a regularizedd function interaction potential witha5237 nm plus
a trapping potential. The top axis shows the ratio2a/d with d
5A\/mv.
06341
t
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-

much smaller thanEW . When this criterion is satisfied th
pseudopotential is valid. Fora.0 an equivalent explanation
of the breakdown point of the pseudopotential approximat
follows from an analysis of the binding energy of the la
bound state ofV(r ). This binding energy is approximatel
equal to2\2/(2ma2) and as long as this energy remai
large compared to the zero-point energy of the trap,
Wigner threshold law criterion holds.

In other words the pseudopotential approximation is va
when EW /Ev,l 50

exact 'EW /(\v)@1 and thus is equivalent to
2a2/d2!1 in terms of length scales in the problem. Th
scattering length of sodium is small compared to the size
the trap such thata/d,0.36 for frequencies up to 10 MHz
However for cesium,ua/du.1 for n.100 kHz. Notice that
whenever the eigenenergies of thed-function potential are in
agreement with the exact eigenenergies, these energie
given by the first-order expression of Eq.~6!.

Figure 3 shows the Cs dimer radial wave function of t
lowest positive-energy eigenstate for trapping frequencie
n510 kHz and 200 kHz. The inset depicts the wave fun
tions for small internuclear separations. For the smaller tr
ping frequencyua/du50.30,1 and the pseudopotential ap
proximation for the eigenenergies is valid, while for th
other trapping frequencyua/du51.3 and the approximation is
incorrect.

The shape of the radial wave functions in Fig. 3 can
explained from the shape of the harmonic oscillator, regu
ized d-function potential and freely scattering wave fun
tions. Thenodelessradial n50, l 50 harmonic oscillator
wave function has outer turning points of 210 nm and 50
for n510 kHz and 200 kHz, respectively. These outer tu
ing points compare well with the outer turning points of t
exact wave functions as indicated by the arrows in Fig.
However, at small internuclear separation the exact w
functions are dramatically modified by the interaction pote

-
-

ct
or

-
-

ct
or

FIG. 3. Thev50 wave function for the relative motion of two
trapped doubly polarized Cs atoms as a function of internuc
separation. The inset shows a blowup of the short-range inte
clear separations. The full line corresponds to a spherical harm
trap with n5v/2p5200 kHz, while the dotted line corresponds
a harmonic trap with a frequency of 10 kHz. The two cases desc
a strongly and weakly confining trap, respectively. Here the sca
ing length of the interaction potential for doubly polarized Cs ato
is 237 nm. The arrows indicate the outer turning point of t
eigenstates.
6-4
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INTERACTING ATOMS UNDER STRONG QUANTUM . . . PHYSICAL REVIEW A61 063416
tial. The wave functions have 56 nodes, which equals
number of bound states of thea 3Su potential. In fact inside
10 nm the interaction potential is much stronger than
trapping potential and the shape of the wave function
nearly identical to the free scattering wave function at z
collision energy.

The nodelessv50, l 50 wave functionx of the regu-
larized d-function potential has a nonvanishing value atr
50. Remnants of this behavior can be observed in the e
radial wave function for the weak 10-kHz harmonic trap
noting the nearly linearC(r 2a) fit between 10 nm and 70
nm. In other words, the exact wave function seems to
trapolate to a node atr 52a, in the same way that the
pseudopotential wave functions extrapolate tor 52a. On
the other hand, for the exact wave function forn5200 kHz
no r 2a behavior can be distinguished, since thed-function
approximation has failed.

VI. TRAPPING NEAR A Na FESHBACH RESONANCE

The s-wave Hamiltonian for two interacting sodium a
oms in theirua& hyperfine state involves five coupled cha
nels ~see Sec. II!. A Feshbach resonance occurs atB
591.0 mT where theuaa& scattering length near the res
nance is presented in the inset of Fig. 4. This scatte
length is parametrized by@3,16,19#

FIG. 4. The energy in the relative motion of two trapped int
acting Na atoms in their lowestua& hyperfine states as a function o
magnetic field. The trapping frequencyn5v/2p is 1 MHz. The full
lines correspond to energies obtained from exact numerical ca
lations. The dotted lines correspond to eigenenergies for trappe
atoms interacting via a regularizedd-function potential with a mag-
netic field dependent scattering length given by the inset. This i
shows the exact scattering length for two freely scatteringua& states
near a Feshbach resonance. The scattering length is infinit
90.985 mT and zero at 91.08 mT. The long-dashed lines corresp
to energies of thel 50, n50,1,2, and 3 harmonic oscillator state
06341
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a5abgS 11
Dbg

B2Bres
D ~8!

with Bres590.98 mT,Dbg50.10 mT, andabg53.38 nm.
Confining two ua& state atoms in a spherically harmon

potential leads to a multichannel eigenvalue problem. N
merically the five coupled Schro¨dinger equations are dis
cretized using a DVR. Although the size of the resulti
eigenvalue problem is five times larger than that encounte
in Sec. V, it remains sufficiently small that iterative eige
value solvers are not needed.

Figure 4 shows the results of the exact calculation a
function of magnetic field for a fixed trapping frequencyn of
1 MHz. The zero energy is at theuaa& dissociation limit in
the absence of the trapping potential. Negative energies
respond to ‘‘real’’ bound states and positive energies co
spond to trapped states. Clearly for increasingB a real bound
state turns into a trapped state, shifts the energy of
trapped states up by approximately one\v, and creates a
picture of avoided crossings. This is the Feshbach resona

The figure also shows the eigenenergies when a~single-
channel! regularized d function replaces the exact five
channel potential, such that the strength of thed function is
related to the exact scattering length of auaa& collision. For
positive scattering length the regularizedd function potential
has a bound state that crosses zero energy when the sc
ing length is infinite. Consequently asB increases the bound
state turns into a trapped state and again a picture of avo
crossings is created. The magnetic field behavior of
bound state, however, is much stronger than for the ex
calculation.

The exact and approximate positive eigenenergies ar
agreement on both sides of the resonance as is expe
when one realizes that the scattering length is small co
pared to ad of 29.7 nm for then51 MHz harmonic trap.
Consequently these energies are also close to the radial
monic oscillator energiesEn /\v53/212n for n50,1,2,
and 3. Large differences between the exact and approxim
eigenenergies occur only near the resonance when the
tering length is on the order of, or larger than,d.

VII. PHASE SHIFT OF QUANTUM GATES

The energies that were calculated in the previous sect
can be used to calculate the entanglement or phase shift
quantum gate. If the trapping potentials are initially no
overlapping and both atoms are in the lowest trap state, t
energy is 3\v. The wells are then brought together. F
overlapping wells the total energy of the lowest state
3/2\v1E0,0

exact. After a timeDt the wells are separated and
reasonable estimate of the additional phase that theinteract-
ing atom pair accumulates after a timeDt is

Dd~ t !5~E0,0
exact23/2\v!Dt/\. ~9!

Notice that it is implicitly assumed that overlapping of th
wells has been achieved in an adiabatic fashion and the
to overlap is short compared toDt. Whenever the scattering
length is small compared to the size of the trapping poten
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Eexact can be replaced with the corresponding eigenene
from the regularizedd-function potential yielding forv50,

Dd~ t !5
2

Ap

a

d
vDt54p

\

2m
an̄Dt ~10!

to first order ina/d, andn̄ is defined by 1/(p3/2d3). Note that
the quantityn̄ can be interpreted as the mean density defi
by the average value of the local densityn(xW )5uC1p(xW )u2 of
the lowest unit-normalized three-dimensional harmon
oscillator wave functionC1p for an isolated atom; that is,

n̄5E d3xC1p* ~xW !uC1p~xW !u2C1p~xW !. ~11!

The latter part of Eq.~10! is provided to show the connectio
to mean-field descriptions of Bose condensates@6# and col-
lisional frequency shifts for atomic clocks@30#, althought
here there are only two particles.

A criterion for the usefulness of this collisional pha
shift for a quantum gate is defined as the time it takes
createp phase difference. For thed-function potential we
find

Dt5
p3/2

2

d

a

1

v
. ~12!

Hence, since we assumed thatd/a@1, the time intervalDt is
much larger than the classical oscillation time, 2p/v, in a
harmonic oscillator potential. For Cs and for Na near
Feshbach resonance the scattering length can become
ciently large thatd/a'1 and Eq.~12! can only be used as
qualitative guide to the required interaction time. More ex
calculations using Eq.~9! are then required.

For some implementation of quantum gates the ph
shift is not the whole story. So far we have assumed t
each atom is in a single spin state. However, for a quan
gate each atom can be in atomic eigenstatesua& andub& and
hence the two-atom state vector in a linear superpositio
product statesumn&, wherem(n)5a, or b. The pair wave
function is then

caauaa&1cabuab&1cbauba&1cbbubb&, ~13!

where the coefficientsc are arbitrary. Such linear superpos
tion is called an entanglement when the state vector ca
be written as a product of atomic states or a linear supe
sition of atomic states. The interaction potential and he
the energy shift will be different for each stateuab&. As a
result each term of Eq.~13! obtains a different phase shi
when the trapping potentials are brought together. Hence
atoms can be entangled and for the effectiveness of the
the relative phase shift is then crucial. If the energy shift
eachuab& pair can be calculated via ad-function pseudopo-
tential, this then implies that the time it takes to accumul
a p phase difference is inversely proportional to the diffe
ence in scattering lengths.
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VIII. COLLISIONAL DECOHERENCE

The preceding section described the effects of elastic s
tering on the eigenstates of two tightly confined atoms. Tw
body collisions typically introduce inelastic processes as w
@16,20,22–24#. The loss or collisional decoherence will re
duce the quality of a quantum gate.

For ultracold ground-state alkali-metal atom collision
several inelastic processes exist. These processes lead
conversion of internal hyperfine energy into excess kine
energy, which is significantly larger than the typical dept
of optical or magnetic trapping potentials. Consequently
ter the transition both atoms are lost from the confineme
The exception is the collision between twoua& state atoms,
as no energetically lower two-body states exist. Other ato
are necessary to cause loss processes in those circumsta
Three-body recombination is such a process@16,19#.

Two ‘‘weak’’ two-body inelastic processes are due to t
spin-spin dipole@22# and second-order spin-orbit interaction
@31# that cause coupling betweens andd partial waves and
determine the collisional lifetime of two doubly polarize
alkali-metal atoms. The two processes dominate for th
transitions where the sum of the atomic projections,ma
1mb , is not conserved. Typical rate coefficients are on
order of Kdip510215 cm3/s for the lighter alkalis andKdip
55310212 cm3/s for cesium@32#.

A strong loss channel is due to the spin-exchange mec
nism. This process conservesma1mb and is a consequenc
of the splitting between theX 1Sg and a 3Su potentials in-
side r'1.5 nm, where the depth of these ABO potentials
much larger than the confinement energies. Typical loss
coefficients are on the order ofKse510211 cm3/s to
10210 cm3/s. An exception is the spin-exchange loss ra
coefficients for 87Rb where, due to the near identity of a
observable scattering lengths, values on the order of a
times 10214 cm3/s are observed@21,20#.

Inelastic rate coefficients have a Wigner threshold l
that is independent of the collision energy in the limit of ze
kinetic energy. If we then assume that the effect of the c
fining potential on the inelastic transition is negligible a
consequently that the atom loss at each point in the tra
proportional to the square of the local densityn(xW ), the time
for collisional decoherence is on the order of

t5
1

Kn̄
, ~14!

wheren̄ is the mean density as defined in Sec. VII. For o
purposes a quantitative definition of the collisional decoh
ence time is not necessary.

The ratio of the time scale for collisional decoherence
the time scale to accumulate up ap phase shift introduces a
criterion for the feasibility of a quantum gate. That is, f
best performance this ratio

F5
t

Dt
5

2\

m

a

K
5

a

ainel
~15!
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must be much larger than one. Here we used Eq.~12!, the
definition of the mean densityn̄, and introduced the inelasti
scattering lengthainel5mK/(2\). The quantityF is indepen-
dent of the mean density and hence independent of the
fining potential.

The value of the ratioF is dramatically different for the
‘‘weak’’ two-body inelastic processes and the strong tw
body spin-exchange mechanism. For example, for dou
polarized Na the inelastic rate coefficient isKdip
'10215 cm3/s and henceainel51024 nm. Here we used
ainel(nm)50.394m(amu)K(10210 cm3/s), where the atomic
mass is in atomic mass units andK is in units of
10210 cm3/s. The small value forainel implies thatF5104

and makes a quantum gate feasible. On the other hand
the spin-exchange loss mechanism we have for sodiumainel
'1 nm and thusF'1. In fact any quantum gate that suffe
from a large spin-exchange decoherence seems impract

IX. CONCLUSIONS

We have investigated the effects of the atom-atom in
actions on two ultracold and confined alkali-metal atom
The confinement is due to external optical fields such
optical lattices. For simplicity we have approximated t
confining potential by a spherically symmetric harmonic p
tential. The interaction between the atoms is given in ter
of the exact short-range potentials due to chemical bind
interactions.

We have numerically calculated the bound states of
radial Schro¨dinger equation for two doubly polarized sodiu
atoms, two doubly polarized cesium atoms, and two sod
atoms in the lowest hyperfine state near a magnetic-fi
induced collisional Feshbach resonance. The eigenene
just above the dissociation limit of the atom-atom interact
correspond to those populated by trapped ultracold ato
These energies were compared to the eigen energies obt
for a regularized-delta-function pseudo potential which
produces the ultra-cold scattering length of two freely sc
tering atoms.

For two doubly polarized sodium atoms the two a
proaches are in excellent agreement while for two dou
polarized cesium atoms the pseudopotential breaks do
E.

od
.
,

u-

D
ol
C
et
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The breakdown occurs when the scattering length of Cs is
the order of or large compared to the extent of the trapp
potential. We also showed that for Na in the lowest hyperfi
state a magnetic-field-induced Feshbach resonance lead
similar breakdown of the pseudopotential as the scatte
length of two freely scattering atoms is infinite at resonan

Finally we estimated the interaction-induced entang
ment and collisional decoherence of the two atoms. E
tanglement can in principle be used to build a computatio
gate of a quantum computer. We find that the necessary
scaledt for the operation of a quantum gate is proportion
to the trap oscillation period timesd/a. The latter ratio is
proportional to the extent of the lowest harmonic oscilla
state and the scattering length or differences of scatte
lengths depending on the implementation of the quant
gate. Consequently for doubly polarized Na the entang
ment must be built up over tens to hundreds of oscillat
periods, while for Cs and for Na near a Feshbach resona
a few oscillation periods should be sufficient.

We find that the time scale for collisional decoheren
due to inelastic collisions is on the order of 1/(Kn̄), whereK

is the inelastic rate constant andn̄ the mean density. Conse
quently the ratio of the decoherence time anddt is indepen-
dent of the trapping frequency. Moreover, this ratio is ve
favorable, i.e.,@ 1, for collisional relaxation due to the mag
netic spin-spin dipole and second-order spin-orbit inter
tions for all alkali-metal gases except atomic cesium. Co
sional relaxation due to the spin-exchange mechani
however, is with the exception of87Rb unacceptably large.

A quantitative calculation of the interaction-induced e
tanglement will have to address the far more complex ca
lation of the energy shifts of not perfectly overlapping a
inharmonic traps. Moreover such calculations have to in
cate whether bringing together individually trapped ato
can be done adiabatically. A breakdown of adiabaticity co
lead to decoherence of a quantum gate. We hope to add
some of these issues in future publications.
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