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Interacting atoms under strong quantum confinement
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We calculate the energy-level shifts of a tightly confined trapped alkali-metal atom in the presence of a
second trapped atom. A complete microscopic description of the interaction energy between the two atoms is
used. This allows us to study tightly confined atoms near a Feshbach resonance and to evaluate the usefulness
of the regularizeds-function potential approximation. We present results for sodium and cesium when con-
fined in a spherically symmetric harmonic optical trap. Possible implications of the level shifts and collisional
decoherence for quantum computing with atomic systems are given.

PACS numbd(s): 32.80.Pj, 32.80.Lg, 34.50s

[. INTRODUCTION a trap interactions manifest themselves as a shift in the quan-
tized energy levels of the two-atom system. We present
During the last 15 years the ability to hold and manipulatequantitative calculations of the energy shift for two trapped
neutral atoms and ions with lasers has become a mature pdg or Cs atoms, taking into account the effects of both the
of atomic physics. These laser cooling techniques have afull interaction Hamiltonian of the two atoms and the trap-
lowed, for example, the study of weakly bound vibrational Ping potential. We compare the energy shifts from these full
levels of molecules formed from two neutral ato[ﬂs, the calculations to those calculated when the full atomic interac-

determination of threshold atomic scattering propeftge8], ~ tion potential is replaced by a regularizédunction:

the study of neutral atoms in optical lattice§5], and the 52
observation of macroscopic quantum phase transitjéhs V,;(F)= Amr—a 5(F)ir 1)
Moreover it is possible to confine one or two single Cs atoms 21 ar’’

in a magneto-optical trap7] as well as produce near-unit ) ) _
occupancy of the cells in a three-dimensional optical latticevherea is the two-bodys-wave scattering lengthy is the
[8]. Atomic collisions play a crucial role in many of the reduced mass of the atom pair, adfr) is the three-
phenomena associated with trapped cold atoms. For extimensionals function[17,18. This & function approxima-
ample, elastic collisions determine the mean field of a Bosetion of the full interaction Hamiltonian is widely and suc-
Einstein condensate, while inelastic collisions provide lossessfully used as a starting point for the derivation of the
mechanisms, which can remove atoms from a Bose condemean-field energy of weakly interacting Bose particles.
sate or an optical lattice. We will show that for scattering lengthesthat are small
Understanding collisions under tight confinement condi-compared to the spatial extent of the lowest harmonic oscil-
tions is especially important in view of the possibility of lator wave functions thé-function potential in Eq(1) pro-
using collisions of neutral atoms in single cells of optical vides an excellent approximation for the energy shift. In fact
lattices to implement quantum logic ga{€s-11]. First steps  for two interacting particles in a spherically symmetric har-
toward quantum computind 2] have been made by demon- monic trap the effect of the regularizetfunction potential
strating elementary quantum gates via ion trgl3, cavity  and thus of the full interaction Hamiltonian on the eigenen-
QED [14], and with nuclear magnetic resonar|de]. Al- ergies is known analytically18]. On the other hand, we
though no experimental work has yet been done on trappeshow that when the scattering length and the spatial extent of
neutral atoms for quantum logic, a simple gate might bethe harmonic oscillator wave functions become comparable,
made using quantum bits, or qubits, which are formed from ahe actual energy shifts and those predicted from(Excan
superposition of two or more hyperfine sublevels of abe quite different. This is especially true if a magnetic field is
ground-state alkali-metal atom confined in an optical latticeused to tunea through a region where there is a Feshbach
In a quantum gate operation, two atoms are brought togethe@esonance.
and allowed to interact for a predetermined time interval. Using the analytic expressions of the level shift, we also
The resulting phase shift gained by the atom pair, which igpresent an estimate of the phase shift associated with a gate
conditional on the hyperfine sublevels involved, permits theoperation and derive an estimate of the probability of a de-
desired quantum gaf{®-11]. structive “bad” inelastic collision during the time the gate is
As the size of atom traps decreases, it becomes necessayyerating. We will show that the probability of a bad colli-
to consider the effect of trap confinement on the collisionssion during the time the elastic collision phase is built up is
[16]. This paper therefore examines the interactions of twandependent of trap size and frequency and depends only on
atoms confined in a spherically symmetric harmonic trap. Ima ratioK/a, whereK is the inelastic rate constant.
This paper is divided into the following sections. In Sec.
Il we will set up the problem of two interacting ground-state
*Permanent address: Department of Chemistry and Biochemistrglkali-metal atoms in the absence of a confining potential. In
University of Maryland, College Park, MD 20742. Sec. Il we introduce and give properties of the confining
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spherically symmetric harmonic optical potential. The har-nuclear spin of the atoms are both aligned, the interaction
monic nature allows for a separation of center of mass ang@otential between the atoms is given by t& " potential.
relative degrees of freedom and the additional constraint ofhe doubly polarized collision is not the only collision that is
spherical symmetry leads to a separation of radial and angolely described in terms of tha®s | potential. For ex-

lar degrees of freedom. _ _ _ample, in Na théB=0 collision between &f =2,m=2) and
A simplified model of the interacting ground-state alkali- 3 |f=1m=1) atom satisfies the same Hamiltonian.
metal atoms in terms of regularizédfunction interactions is The second case we will discuss in detail is that of Na

presented in Sec. IV. Section V describes results for twaatoms in the lowest hyperfine stg@). For finite magnetic
trapped doubly polarized sodium and cesium atoms. The cafields an accurate description of a collision between [@jo
culations show the marked differences between two ||m|t|n%tate atoms invo'ves five Coup|ed equa“@me] The corre-
cases. For Na the vibrational level spacing of the short-ranggponding five-channel Hamiltonian depends on both the
interaction potential is much larger than that of the trappingy 125 anda 33 potential. At large internuclear separations
potential, while for Cs they can be comparable. only the|aa) state is accessible. The other four channels are
In Sec. VI we present results for two confined Na atoms,symptotically closed. In general these closed channels can
that are both in their lowest hyperfine state and are in th¢a54 to Feshbach resonan¢@s, 16 in |aa) collision prop-
presence of an external magnetic fiéldA Fesh_bach reSO0-  erties. In Na a Feshbach resonance is located at the threshold
nance for two such atoms exists nedes=91.0 MT ot the |aa) channel for an external magnetic fieBes
[3,16,19 and has profound effects on the magnetic field de-_ g1 m\T. Here the four closed channels create a multichan-
pendence of the etljgenenergles. h llisional ph hift nel bound state that is coupled to tf@a) collision channel.
; Sections VIH and VIl est|31art1e t el co 'S'Oﬁ?a P fafe S dl The scattering length for two freely scatteringa) state Na
or quantum logic gates and the relative efiect of "go0d™ 515 g is infinite at the resonance. In this situation the em-

elastic and “bad” inelastic collisions, respectively. The ratio p o yjed bound state approaches |th) threshold from be-
of “good” to “bad” collisions is favorable if only spin- a%

. N X ; ow for increasing magnetic field. This implies a positaven
d|polar relaxation IS p053|blg, but unfavorgble in the case o g. (1) for magnetic fields just below the resonant magnetic
spin-exchange collisions, with the exception of the speci ield and negative for magnetic fields just above.
case of®’Rb atomg20,21]. We provide conclusions in Sec.

IX.
Ill. TRAPPING POTENTIAL

Il. HAMILTONIAN Optical atom trapping potentials are periodic in optical

I - . lattices or can be more arbitrarily shaped. Nevertheless the
meI:Iea:'o;n;”antﬁg :g:g;léf (:?;t\tl\rlg Cf)rllldmgtgn?!(la'“s- ol eepest part of the wél) can be approximated by a har-
: pping p 1al 1S Welthonic trapping potential. To simplify matters further we as-

known [16,20,22—-24 Here we only mention th_e most rel- sume that each atom is held in a spherically harmonic trap-
evant features. In the absence of an external field the hyper-

fine states of &S ground-state alkali-metal atom are labeled PG Potential Uy (ri) = m“’zr_izlz' wherer; is the spatial

by |f,m), wheref is the total atomic angular momentum and POSition of atomi =1 or 2, m s the atomic mass, and is
mits projection on thez axis in the laboratory frame. In the the trapping frequency. Then the separable Hamiltonian for
presence of a magnetic field aligned along thiis, f is no the center of mass and relative motion of two atoms is
longer a good quantum number and the hyperfine states are
labeled|a),|b), ... in order of increasing internal energy.
Each statda) has a projectiorm, along thez axis. The
interaction between the atoms is described beHEJ and
a’y, adiabatic Born-OppenheiméABO) potentials. DUr-  \hereR=(f;+1,)/2, F=F,—T;, M=2mis the total mass
ing the collision this interaction mixes hyperfine state®)  andy=m/2 is the reduced mass. It is implicitly assumed that
wherea () label states of atorA(B). This leads to a set of - the trapping potential is the same for all the atomic hyperfine
coupled Schrdinger equations or a multichannel Hamil- gtates.

tonian for the relative motion with one channel for each al-  The eigenvalues of Eq2) of the noninteracting atoms are

lowed state{a8). The multichannel Hamiltoniak is con-  well known. In fact after introducing a spherical coordinate
veniently denoted ald =T+V, whereT is the kinetic energy  gystem we have= 2P+ EI®, whereE!® is the energy

operator for the relative motion andis the interaction po- i, the center of mass motionngrﬁi,r Pis the energy in the
tential matrix. As the atoms are ultracold and the two ABO ’ g

. . . . relative motion. Herel and / are the orbital angular mo-
potentials are independent of relative mechanical angulgkonium for the center-of-mass and relative motion respec-
momentunmy’, it is sufficient to assumewave or/'=0 scat-

. . ; tively, and
tering between the atoms. The numerical scattering proper-

ties we present in the remainder of this paper are calculated

using a Gordon propagatf25]. Elrap—
In this paper we are interested in trapping alkali-metal "

atoms in a specific hyperfine state. The first case is that of

doubly polarized Na or Cs atoms. Since the electron andor either the center of mass or the relative motion.

2

h 1 h? 1
—NVZR‘FEM(UZRZ —ﬂV,2+—,uw2r2 , (2)

+ 2

a

3
§+2n+/’)ﬁw, n=0,12... (©)]
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For composite bosons the total wave function, which in- 3 2 (v+1/2) a
cludes both(interna) spin as well as external degrees of Ef,/=o~ §+2v +—( Al ho, (6)
freedom, must be symmetric under interchange of the atoms Jal v

and this reduces the number of allowed orbital angular mo-

menta for therelative motion. For two doubly polarized Na Where () is a combinatorial and=0,1,2.... Forv=0

or Cs atoms and fofa) state Na atoms only everi are and 1 this simplifies to[3/2+(2/\/m)a/d]hw and [7/2
present. Since the interaction between two atoms only de+ (3/\/m)al/d]%w, respectively.

pends on the relative coordinate, only the spectrum for the The three-dimensional eigenfunctiodgr) for the regu-
relative motion can be modified by this interaction. The re-|arized 5-function potential are singular at zero internuclear

mainder of this paper focuses on sqlving for the eigenpairs o§eparation. In fact, they behave @§1—a/r) for r—0 and
the relative motion and emphasizé€s-0 because of the ul-  Lance the radial wave functiop(r) =r W (r)—C(r—a) for

tracold energy assumed. r—0. HereC is a normalization constant. In essence the

For convenience we introduce a scale length based on the ji5| \wave function is finite at=0. For zero scattering

trapping potenpal, W.h'Ch IS a measure of the extent of theiength)((r) naturally reduces to a radial harmonic oscillator
lowest harmonic oscillator wave functions wave function

d= ~ / h . (4) V. DOUBLY POLARIZED ALKALI-METAL ATOMS
w . .
H The exactradial Schralinger equation for thesswave

Hence the outer turning point of the lowest harmonic oscil_scatterlng of two trapped doubly polarized Na or Cs atoms is

lator state, which is defined asw?r2/2=EJP, is \/3d. For 2 g 1
optical lattices current experimentally accessible trapping — o —— V() + 5 pw?r?| x(r)=E® (1), (7)
frequenciesy= w/27 range from 50 kHz to 1 MHz for so- 2p dr? 2 T

dium and 10 kHz to 1 MHz for cesium. This corresponds to
a d ranging from 150 nm to 10 nm for both atomic species.where the single-channel potentilis equal to thea 3,
This should be compared to typical magnetic traps used foABO potential of Na and Cs, respectively, and defined
Bose condensed alkali-metal gases where trapping frequesuch thatv(r)—0 whenr —«. In this case the radial wave-
ciesv are on the order of 100 Hz corresponding to trap sizegunction x(r) is always regular at the origin. We numerically
of 1 um. solve Eq.(7) for bound states by using a discrete variable
representatioDVR) [27] for the kinetic energy operator
and potentials. In a DVR the potential is diagonat iwhile
the kinetic energy operator introduces coupling between all
The low-energy scattering properties of two colliding at- spatial grid points. The corresponding eigenvalue problem
oms can be represented quantitatively by replacing the exat& solved using standard diagonalization software.
interaction potentiaV(r) with a pseudopotential, which re-  Figure 1 shows the first two positive eigenenergies for
produces the-wave (' =0) scattering length and cross sec- doubly polarized sodium as a function of trapping frequency
tion of two freely scattering ultracold atoms. This pseudopo-using the best known Na®%; potential[28] which has a

IV. PSEUDOPOTENTIAL APPROXIMATION

tential is given by scattering length oft 3.3 nm. The energies are in units of
hv=fw. Also shown are the eigenenergies of thiinction
~ 2 _ pseudopotential witha=+3.3 nm. The pseudopotential
Vg(r)=4qrﬂa5(r)5r, (5) eigenenergies are in good to excellent agreement with the

exact calculations. Notice that the ratiéd= 0.36 for a trap-
. ping frequencyv of 10 MHz.

where a is a scattering length, and(r) the three- Figure 2 shows the first two positive eigenenergies for
dimensionals function[17,18. This pseudopotential has a doubly polarized cesium as a function of trapping frequency
single bound state witB°<0 for positive scattering lengths. based on aa 33 potential with a scattering length of
Many-body theories such as those used in describing atomie 37 nm[29]. For very small trapping frequencies the cor-
Bose condensatg$] replace the exact interaction potential respondings function pseudopotential agrees with the exact
V(r) with such a pseudo potential. calculations. However, for=50 kHz the pseudopotential

Referencd 18] shows that the problem of two atoms in a does not agree with the exact calculation. The rafid= 1
spherically symmetric harmonic trapping potential interact-for a trapping frequency of 100 kHz.
ing via a regularized-function potential can be solved ana-  The difference in the applicability of the pseudopotential
lytically. They find that in the limit of large positive and approximation for Na and Cs can be understood in terms of
negative scattering lengtinthe bound state energies asymp-the range of validity of the Wigner threshold law. For two
totically approach (1/22v)hw for v=0,1,2 .... More- free particles the elastic cross section is given in terms of a
over, the eigenenergies are solely a function of the mftb  scattering length only in the Wigner threshold regime, which
andw. To first order ina/d=\w the bound states fos  extends up to wave vectoks such thatk|a]<1 or alterna-
wave are tively for collision energies, E=#1%k?/(2u)<Ey
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FIG. 3. Thev =0 wave function for the relative motion of two
0 e — trapped doubly polarized Cs atoms as a function of internuclear
0 2000 4000 6000 8000 10000 separation. The inset shows a blowup of the short-range internu-
v (kHz) clear separations. The full line corresponds to a spherical harmonic

trap with v= w/27=200 kHz, while the dotted line corresponds to
FIG. 1. The energy in the relative motion of two trapped inter- & harmonic trap with a frequency of 10 kHz. The two cases describe
acting doubly polarized Na atoms as a function of trapping fre-2 Strongly and weakly confining trap, respectively. Here the scatter-
quencyv=w/2m. The figure shows the first two so-called trapped ing length of the interaction potential for doubly polarized Cs atoms
states. The full lines correspond to energies obtained from exadé —37 nm. The arrows indicate the outer turning point of the
numerical calculations. The dotted lines correspond to solutions fof!genstates.
a regularizedé-function interaction potential witra=+3.3 nm
plus a trapping potential. The top axis shows the ratfid with d

much smaller thark,,. When this criterion is satisfied the
= filpo. W

pseudopotential is valid. F@a>0 an equivalent explanation
of the breakdown point of the pseudopotential approximation
=1i%/(2ua?). However for a confined system the energy thatfollows from an analysis of the binding energy of the last
determines this validity is the zero-point energy of the trap-hound state o#/(r). This binding energy is approximately
ping potential. Consequently, the effect of the exact interacequal to —#2/(2ua?) and as long as this energy remains
tion potential on the lowest positive eigenstates of &). |arge compared to the zero-point energy of the trap, the
can be expressed in terms of a scattering length whens Wigner threshold law criterion holds.

In other words the pseudopotential approximation is valid
_ald when Ey /ES~Ew/(fiw)>1 and thus is equivalent to
2a%/d?<1 in terms of length scales in the problem. The
0 1.0 1.5 20 2.5 3.0 . 9 .
5 T T T scattering length of sodium is small compared to the size of
the trap such thaa/d<0.36 for frequencies up to 10 MHz.
However for cesium|a/d|>1 for »>100 kHz. Notice that
whenever the eigenenergies of thdéunction potential are in
V———”‘ agreement with the exact eigenenergies, these energies are
34 given by the first-order expression of ).
--------------------------------------- Figure 3 shows the Cs dimer radial wave function of the
lowest positive-energy eigenstate for trapping frequencies of
v=10 kHz and 200 kHz. The inset depicts the wave func-
v=0 tions for small internuclear separations. For the smaller trap-
M ping frequencyla/d|=0.30<1 and the pseudopotential ap-
proximation for the eigenenergies is valid, while for the
other trapping frequendy/d| = 1.3 and the approximation is
incorrect.
The shape of the radial wave functions in Fig. 3 can be
explained from the shape of the harmonic oscillator, regular-
FIG. 2. The energy in the relative motion of two trapped inter- i_zed 6-function potenti_al and freely scattering Wav_e func-
acting doubly polarized Cs atoms as a function of trapping fre-lONS. Thenodelessrad|al n=0, /:_0 harmonic oscillator
quencyv=w/2m. The figure shows the first two so-called trapped Wave function has outer turning points of 210 nm and 50 nm
states. The full lines correspond to energies obtained from exad®r »=10 kHz and 200 kHz, respectively. These outer turn-
numerical calculations. The dotted lines correspond to solutions fol1g points compare well with the outer turning points of the
a regularizeds function interaction potential wita=—37 nm plus ~ exact wave functions as indicated by the arrows in Fig. 3.
a trapping potential. The top axis shows the rati@/d with d However, at small internuclear separation the exact wave
=Vhlpo. functions are dramatically modified by the interaction poten-

E (units of hv)

400 600 800 1000

v (kHz)

0 200
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with B,¢s=90.98 mT,A;,;=0.10 mT, anda,q=3.38 nm.
Confining two|a) state atoms in a spherically harmonic
potential leads to a multichannel eigenvalue problem. Nu-
merically the five coupled Schdinger equations are dis-
cretized using a DVR. Although the size of the resulting
eigenvalue problem is five times larger than that encountered
in Sec. V, it remains sufficiently small that iterative eigen-
value solvers are not needed.
Figure 4 shows the results of the exact calculation as a
function of magnetic field for a fixed trapping frequencyf
1 MHz. The zero energy is at taa) dissociation limit in
the absence of the trapping potential. Negative energies cor-

E (units of hv)

-10 T respond to “real” bound states and positive energies corre-
6 909 91.0 91.1 91.2 spond to trapped states. Clearly for increadsng real bound
90.9 91.0 011 912 state turns into a trapped state, shifts the energy of the

trapped states up by approximately ohe, and creates a
picture of avoided crossings. This is the Feshbach resonance.
FIG. 4. The energy in the relative motion of two trapped inter- The figure als_‘o shows th? eigenenergies Whe{ﬂ”‘”g"?‘
acting Na atoms in their lowea) hyperfine states as a function of channel regulquzed 6 function replaces the exapt f.'Ve'
magnetic field. The trapping frequeney: w/2 is 1 MHz. The full ~ channel potential, such that the strength of énfeinction is
lines correspond to energies obtained from exact numerical calcd€lated to the exact scattering length dfea) collision. For
lations. The dotted lines correspond to eigenenergies for trapped N2ositive scattering length the regularizédunction potential
atoms interacting via a regularizédfunction potential with a mag- has a bound state that crosses zero energy when the scatter-
netic field dependent scattering length given by the inset. This inséfig length is infinite. Consequently &sincreases the bound
shows the exact scattering length for two freely scattefingstates ~ State turns into a trapped state and again a picture of avoided
near a Feshbach resonance. The scattering length is infinite arossings is created. The magnetic field behavior of the
90.985 mT and zero at 91.08 mT. The long-dashed lines corresportstound state, however, is much stronger than for the exact
to energies of thé=0, n=0,1,2, and 3 harmonic oscillator states. calculation.

The exact and approximate positive eigenenergies are in
tial. The wave functions have 56 nodes, which equals thé@gdreement on both sides of the resonance as is expected
number of bound states of tlee’s,, potential. In fact inside When one realizes that the scattering length is small com-
10 nm the interaction potential is much stronger than theg?ared to ad of 29.7 nm for thev=1 MHz harmonic trap.
trapping potential and the shape of the wave function igconsequently these energies are also close to the radial har-
nearly identical to the free scattering wave function at zergnonic oscillator energies, /7w=3/2+2n for n=0,1,2,
collision energy. and 3. Large differences between the exact and approximate

The nodelesy =0, /=0 wave functiony of the requ-  €igenenergies occur only near the resonance when the scat-
larized 5-function potential has a nonvanishing valuerat tering length is on the order of, or larger thah,
=0. Remnants of this behavior can be observed in the exact
radial wave function for the weak 10-kHz harmonic trap by VIl. PHASE SHIFT OF QUANTUM GATES
noting the nearly lineaC(r —a) fit between 10 nm and 70 . . . .
nm. In other words, the exact wave function seems to ex- The energies that were calculated in the previous seetlons
trapolate to a node at=—a, in the same way that the can be used to calculate the entanglement or p_he_se shift of a
pseudopotential wave functions extrapolaterte —a. On quantum gate. If the trapping potennals are initially hon-
the other hand, for the exact wave function for 200 kHz overlapping and both atoms are in the lowest trap state, their

no r —a behavior can be distinguished, since tHéunction energy i.S %w. The wells are then brought together. Fo_r
approximation has failed ' overlapping wells the total energy of the lowest state is

32w+ EGG . After a timeAt the wells are separated and a
reasonable estimate of the additional phase thaintieeact-

VI. TRAPPING NEAR A Na FESHBACH RESONANCE ing atom pair accumulates after a tini is

B (mT)

The sswave Hamiltonian for two interacting sodium at- AS(t)=(E§H-3/2hw)At/h. (9)
oms in their|a) hyperfine state involves five coupled chan-
nels (see Sec. )| A Feshbach resonance occurs Bt Notice that it is implicitly assumed that overlapping of the
=91.0 mT where thdaa) scattering length near the reso- wells has been achieved in an adiabatic fashion and the time
nance is presented in the inset of Fig. 4. This scatteringo overlap is short compared tot. Whenever the scattering
length is parametrized by8,16,19 length is small compared to the size of the trapping potential,
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E®@ can be replaced with the corresponding eigenenergy VIIl. COLLISIONAL DECOHERENCE

from the regularizeds-function potential yielding fov =0, The preceding section described the effects of elastic scat-

tering on the eigenstates of two tightly confined atoms. Two-
body collisions typically introduce inelastic processes as well
\/; d 2u [16,20,22—24 The loss or collisional decoherence will re-
duce the quality of a quantum gate.

) . —. , For ultracold ground-state alkali-metal atom collisions,
to first ord.er_lna/ d. an.dn is defined by 1/¢*%d?). NoFe that. several inelastic processes exist. These processes lead to the
the quantityn can be interpreted as the mean density define@onversion of internal hyperfine energy into excess kinetic
by the average value of the local densit{x) = |\Iflp(x)|2 of  energy, which is significantly larger than the typical depths
the lowest unit-normalized three-dimensional harmonic-of optical or magnetic trapping potentials. Consequently af-
oscillator wave functionV’,, for an isolated atom; that is,  ter the transition both atoms are lost from the confinement.
The exception is the collision between tham) state atoms,
as no energetically lower two-body states exist. Other atoms
are necessary to cause loss processes in those circumstances.
Three-body recombination is such a procgks,19.
The latter part of Eq(10) is provided to show the connection ~ Two “weak” two-body inelastic processes are due to the
to mean-field descriptions of Bose condensffdsand col-  Spin-spin dipol¢22] and second-order spin-orbit interactions
lisional frequency shifts for atomic clocK80], althought [31] that cause coupling betweesrandd partial waves and
here there are only two particles. determine the collisional lifetime of two doubly polarized

A criterion for the usefulness of this collisional phase alkali-metal atoms. The two processes dominate for those
shift for a quantum gate is defined as the time it takes tdransitions where the sum of the atomic projections,
creater phase difference. For thé-function potential we +Mg, is not conserved. Typical rate coefficients are on the

2 a y/—
Ad(t)=—= s wAt=47 -—anAt (10

n= f A3XW T (X)W 15(X) [P 1(X).. (1D

find order of K 4i,=10""° cm¥s for the lighter alkalis andg;,
=5x10 12 cm?/s for cesium[32].
m2d 1 A strong loss channel is due to the spin-exchange mecha-
At= 2 2w (12)  nism. This process conserves,+ mg and is a consequence

of the splitting between th& '3 ; anda ®%,, potentials in-
sider~1.5 nm, where the depth of these ABO potentials is

Hence, since we assumed tlaa>1, the time intervalt is , ; :

. — . . much larger than the confinement energies. Typical loss rate
much larger than the classical oscillation timer/2), in a coefficients are on the order oK..— 10 cnd/s to
harmonic oscillator potential. For Cs and for Na near a 0-10 /s, An exception is the ssi;_-exchan e loss rate
Feshbach resonance the scattering length can become SU1é':fliefficients -f0r87Rb W[r)\ere due to tﬁe near idgntit of all
ciently large thati/a~1 and Eq(12) can only be used as a observable scattering len ,ths values on the orderyof a few
gualitative guide to the required interaction time. More exactt. g ‘engins,
calculations using Eq9) are then required. :

mes 10 4 cm®/s are observef21,20.
For some implementation of quantum gates the phas Inelastic rate coefficients have a Wigner threshold law
shift is not the whole story. So far we have assumed th

at is independent of the collision energy in the limit of zero
each atom is in a single spin state. However, for a quantu

inetic energy. If we then assume that the effect of the con-
gte cachstom can b n stomic cgenstpgsnd ) and 1070 Poenlaron e st vansiton i neglgble snd
hence the two-atom state vector in a linear superposition of q y P P

product state$uv), where u(v)=a, or B. The pair wave proportional to the square of the local densif), the time
function is then for collisional decoherence is on the order of

Caa|aa>+caﬁ|a18>+cﬁa|ﬁa>+cﬁﬁ|ﬁﬁ>l (13) 1
T=—, (14
where the coefficients are arbitrary. Such linear superposi-
tion is called an entanglement when the state vector cannot

be written as a product of atomic states or a linear superpayheren is the mean density as defined in Sec. VII. For our
sition of atomic states. The interaction potential and hencgurposes a quantitative definition of the collisional decoher-
the energy shift will be different for each stdi@B). As a  ence time is not necessary.

result each term of Eq(13) obtains a different phase shift  The ratio of the time scale for collisional decoherence to
when the trapping potentials are brought together. Hence twghe time scale to accumulate upraphase shift introduces a

atoms can be entangled and for the effectiveness of the gagiterion for the feasibility of a quantum gate. That is, for
the relative phase shift is then crucial. If the energy shift forpest performance this ratio

each|a ) pair can be calculated via&function pseudopo-
tential, this then implies that the time it takes to accumulate o a  a
a 7 phase difference is inversely proportional to the differ- F= T_are

=— == (15
ence in scattering lengths. At pw K @i
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must be much larger than one. Here we used (#8), the  The breakdown occurs when the scattering length of Cs is on

definition of the mean density, and introduced the inelastic the order of or large compared to the extent of the trapping
scattering lengtiy,o= wK/(2%). The quantityF is indepen-  Potential. We also showed that for Na in the lowest hyperfine
dent of the mean density and hence independent of the costate a magnetic-field-induced Feshbach resonance leads to a
fining potential. similar breakdown of the pseudopotential as the scattering
The value of the ratid= is dramatically different for the length of two freely scattering atoms is infinite at resonance.
“weak” two-body inelastic processes and the strong two- Finally we estimated the interaction-induced entangle-

body spin-exchange mechanism. For example, for doubljnent and collisional decoherence of the two atoms. En-
polarized Na the inelastic rate coefficient &g, tanglement can in principle be used to build a computational

~10 % cmi/s and hencea;=10 % nm. Here we used 9ate of a quantum computer. We find that the_ necessary time
aine(NM)=0.394n(amu)< (10~ 1% cm?/s), where the atomic scale st for the operation of a quantum gate is proportional
mass is in atomic mass units and is in units of o the trap oscillation period timed/a. The latter ratio is
10~ cm?/s. The small value fomy, implies thatF = 10* proportional to the extent of the lowest harmonic oscillator

and makes a quantum gate feasible. On the other hand, féfate and the scattering length or differences of scattering
the spin-exchange loss mechanism we have for sodiygn lengths depending on the |mpIemen}at|on of the quantum
~1 nm and thu$~1. In fact any quantum gate that suffers gate. Consequently for doubly polarized Na the entangle-

from a large spin-exchange decoherence seems impracticall€nt must be built up over tens to hundreds of oscillation
periods, while for Cs and for Na near a Feshbach resonance

a few oscillation periods should be sufficient.
We find that the time scale for collisional decoherence
We have investigated the effects of the atom-atom intergue to inelastic collisions is on the order of Kf{), whereK

actions on two ul'gracold and confined ?'ka"'_meta' aloMSig the inelastic rate constant andhe mean density. Conse-
The confinement is due to external optical fields such a

i . . ) ﬁuently the ratio of the decoherence time aftds indepen-
opuga! lattices. .For S|mpI|C|ty we have ap_proxmateq thedent of the trapping frequency. Moreover, this ratio is very
conflnlng po_tentlal by a spherically symmetr_lc h'armo'mc po'favorable, i.e.> 1, for collisional relaxation due to the mag-
tential. The interaction between' the atoms is given In terms, e spin-spin dipole and second-order spin-orbit interac-
of the exact short-range potentials due to chemical bInOllngEions for all alkali-metal gases except atomic cesium. Colli-

Interactions. sional relaxation due to the spin-exchange mechanism,

We have numerically calculated the bound states of the,, o\er is with the exception 6FRb unacceptably large.
radial Schralinger equation for two doubly polarized sodium A quantitative calculation of the interaction-induced en-

atoms, two doubly polarized cesium atoms, and wo SOdIurIPanglement will have to address the far more complex calcu-

atoms in the lowest hyperfine state near a magnetic-field_.. . :
induced collisional Feshbach resonance. The eigenenergiratlon of the energy shifts of not perfectly overlapping and

fttharmonic traps. Moreover such calculations have to indi-

just above the dissociation limit of the atom-atom mteractlonCate whether bringing together individually trapped atoms

correspond to those populated by trapped ultracold aloMYan be done adiabatically. A breakdown of adiabaticity could

These energies were compared to the eigen energies obtainlg d to decoherence of a quantum gate. We hope to address

for a regularized-delta-function pseudo potential which re-some of these issues in future publications.

produces the ultra-cold scattering length of two freely scat-
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