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Nonperturbative quantum electrodynamics theory of high-order harmonic generation
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Using a formal scattering theoretical approach, we develop a nonperturbative quantum electrodynamics
theory to describe high-order harmonic generatidilG). This approach recovers the semiclassical interpre-
tation that HHG results from the recombination of photoelectrons, ionized by the laser field, with the parent
ions, and gives the same phenomenological cutoff law. The HHG emission rate is expressed as an analytic
closed form. We also discuss the connection between HHG and the above threshold ionization from the formal
scattering viewpoint.

PACS numbegps): 32.80.Rm, 42.65.Ky, 12.20.Ds, 03.65.Nk

I. INTRODUCTION [7] framework for ionization such that the zero-range poten-
tial model and the effective dipole model were special cases.
Recently, high-order harmonic generati¢gtHG) has be- In a classical-field approach, the key ingredient which de-

come one of the most rapidly developing topics in multipho-termines the HHG spectrum is the ground-state expectation
ton physics. A general character of a HHG spectrum is that ivalue of the atomic dipole moment. Even though the formal
falls off rapidly at low orders, then exhibits a broad plateautheory of scattering has long been recognized as an adequate
where all the harmonics have the same strength, and ends ol to treat multiphoton phenomena, because both the initial
with a sharp cutoff at frequency aroulg+3.2U,, where  and final states are the ground state of the atom in a classical
Eg andU, are the atomic binding energy and the electronfield approach, using scattering theory to treat HHG becomes
ponderomotive energy in the laser field, respectively. Usingery subtle. Beckeret al. [6] employed a time-dependent
a semiclassical approach, Corkdifrj has given very impor- Hamiltonian where the incident laser field was treated clas-
tant insight into the physics of the cutoff law. In Corkum’s sically, while the harmonic mode was quantized. In this way,
model, the electron, through tunneling, ionizes from thethey were able to define ématrix element for the emission
atomic ground state into the continuum. Its subsequent mosf one harmonic photon. Th&matrix element can be envi-
tion can be treated classically and consists of free oscillationsioned as the coherent superposition of contributions associ-
driven by the laser field. Once the electron returns to theated with classical atomic orbits, which describe an electron
vicinity of the nucleus, it may recombine with the nucleusthat starts at the timg&’ from some position within the range
and emit a harmonic photon. of the binding potential and, under the influence of the laser
There are a large number of theoretical attempts to calcufield, returns at the later timg to the position again within
late HHG. A quantum mechanic theory of HHG, with the range of the same binding potential. The relation between
classical-field treatment, has been formulated in terms of thehe Smatrix element and the dipole-moment expectation
solutions of the time-dependent Sctilmger equatioi2] or,  value has been discussed. They also presented a functional
equivalently, in terms of the solutions of the time- relationship between ionization and harmonic generation.

independent Floquet equation $8t. These numerical meth- Until now, most theoretical works on HHG have been in
ods are quite computer intensive. Therefore, modeling withhe category of classical-field approaches which regards the
simplifications of HHG has become popular. Becletral.  laser field as a time-dependent external field in addition to its

[4] approximated the atomic binding potential by a zero-spatial continuity feature. In the classical-field treatment, the
range potential. Lewensteat al.[5] considered an effective atom in the radiation field is not in an isolated system. Thus,
dipole model in which a Hamiltonian with just one bound the energy and momentum conservation of the entire system
state and an undistorted continuum was introduced. Botkonsisting of the atom and the radiation field, during sequen-
models accounted for neither the effects of excited boundial transition processes, are hard to track. To provide a more
states nor the effects of the ionic potential on the electronigolid basis for the classical-field approaches to HHG and
motion in the continuum. They both led to comparably man-justify some assumptions used in the classical-field model-
ageable integral expressions for the harmonic intensitiedng, it is necessary to develop a nonperturbative quantum
Later, Beckeeet al.[6] presented a general framework which electrodynamic§NPQED) approach to HHG, in addition to
treated HHG in strict parallelism to the Keldysh-Faisal-Reissts own need to be a complete theory.
Exact solutions for an electron interacting with a quan-
tized, elliptically polarized electromagnetic field have been
*Permanent address: Department of Physics, Southern Universifpund [8]. The quantum-field version of Volkov solutions
and A&M College, Baton Rouge, Louisiana 70813. enables us to treat multiphoton ionizatigvPI) as a time-
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independent scattering problem in an isolated system which e _ e?A?(r)

consists of photons and an atd8]. Using NPQED theory, V== AN (ZiV)+ ——,

Guo and Draké10] succeeded in modeling the unusual peak € €

splitting of the photoelectron angular distributions in 27 (1) A/

standing-wave above-threshold ionizatiohTl), known as V/i=— iA’(r) (—iV)+ ealn)-An) (n-A'(r) 3
e

the half Kapitza-Dirac effect in strong radiation fields. It has m

also been successful in explaining the phase-difference effect

in the two-color ATI[11]. Recently, J. Gaet al. [12] ap-  Here, the vector potentials ad(r)=g(ea€*"+c.c.) and

plied the NPQED theory of ATI directly to treat HHG. They A'()=g'(e¢'a’e* "+c.c) for the laser and harmonic

Ststes contribute dominanty 1o the HHG spectrum. In 120G, ESPECIVENG=(20V,) 2% g'=(26'V}) 2%

e : andV! are the normalization volumes of the photon modes.

work, the cutoff position is neaEg+2U,. In the current Y o ~ A o~

paper, we develop a time-independent formal scatterind N€_ransverse polarizations age- €, cos§/2)+ie, sin(¢/2)

theory [13,9] to describe HHG. In our treatment, both the ande’ = e cos¢'/2)+ie, sin(¢'/2). We neglect thé\'? term

laser field and the harmonic field are quantized. Our theoryor its weak strength. We note th¥t is the interaction due

involves an ionization process of an atomic electron from théo the harmonic mode whil¥ is the interaction due to the

ground state to a quantized-field Volkov state due to thdaser field.

interaction of the laser field followed by an electron- The initial and final states of HHG are taken pg)

absorption process. The harmonic generation is a result o&|®;(r),n;,0)=d;(r)®|n;)®|0)’, and|y;)=|d;(r),n;,0)

the recombination of the electron with its parent ions. From a&=®;(r)®|n;)®|0)" which are the eigenstates of the Hamil-

physical perspective, our theory is consistent with the semitonian Hy+U(r) with eigenenergie€;=—Eg+(nj+3)w

classical interpretation made by Corkum and gives the same 1w’ andE;=—Eg+(n;+3)o+3w’, respectively, where

cutoff law. We also discuss the connection between HHGD,(r) is the ground-state wave function of the atomic elec-

and ATI from the formal scattering viewpoint. tron with the binding energfg, |n;), and|n;) are the Fock
This paper is organized as follows. In Sec. Il we employstates of the laser mode with photon numimerand n;,

the formal scattering theory to derive the transition rates ofvhile |0)’ and |1)’ are that of the harmonic mode. The

HHG. The HHG rate is expressed as an analytic closed forntime-independent feature of the fully quantized Hamiltonian

Numerical results are given in Sec. Ill. We calculate theenables us to treat HHG as a genuine scattering process in an

HHG spectra for various atomic potentials. All the spectraisolated system that consists of the photons and the atom.

exhibit obvious plateau which end at a harmonic orderEnergy is conserved throughout the interaction, resulting in

Eg/w+3.2u,. We also study HHG as a function of the el- w’=(n;—n;)w. The formal scattering theory thus applies.

lipticity of the laser field. Section IV discusses the connec- The Smatrix element between the staigsand ¢ is [13]

tion between a quantized-field Volkov state and classical-

field Volkov state from the viewpoint of Floquet theory. Si={(ws |y, (4)

Finally, Sec. V discusses the significance of our results.

e

where
Il. TRANSITION RATE FORMULA
We consider a quantized single-mode laser field of fre- U=+ E-psic Ut (=i, )
guencyw with a wave vectok and a high harmonic photon J B

mode of frequencyy” with a wave vectok'. In the Schre Physically, ;" is the scattering state &0 which has de-

dinger picture, the Hamiltonian of the atom-radiation system o . :
gerp y veloped from a precollision statg in the remote past, while

is[14 o . . .
[14] Y; is the scattering state at=0 which will develop to a
_ postcollision statel; in the remote future. Th&matrix el-
H=Ho+U(r)+Vr, @ ement can be expressed as
where Sti= o —2mi 6(Es—E)) Ty, (6)
(—iV)? L where
H0=2—rne+a)Na+w Na' (2)

Tri= (il V") )
is the noninteraction part of the Hamiltonian. Hei,
=(a'a+aa")/2, N;:(af‘faura'a/‘r)/g are photon number is the transition matrix element. By imposing the long-
operators of the laser and the harmonic photon mode, respemavelength approximatione’* '=1 and €% '=1, we
tively, with a anda’ being the annihilation operators while have (| V+|#;)=0, which is derived by noticing
a' anda’" the creation operatorgl(r) is the atomic binding  (®;(r)|—iV|®;(r))=0, due to the odd parity of the mo-
potential. The total electron-photon interaction =V mentum operator, and eliminating the terms not contributing
+V’ with to high-order harmonics. Therefore, we have
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(8)  HHG can be neglected when the electron is in the con-
tinuum. Keeping only the leading term in the Taylor expan-
For the electron-laser-mode subsystem, the eigenstate §fon ©Of the inverse operator E(L3), in terms of powers of
the HamiltoniarH,+ V are the quantized-field Volkov states U, we dropU in the denominator and obtain

8]

We then assume that the effect of the binding potehfib
i

T“:<‘/’f VTE “Ho—U—Vytie T

. Ty=i VW b o WO b e [V
‘Pg”:V;mj;n expli[P+ (Up— ) K]- 11T (L m be)* f prnzm,<¢4 W enn X Wenn Vel i)
. . X 6(Ei—E(Pn,n")). (14)
xXexp(—ij o) n+j), 9)

with corresponding energy eigenvalug$, = (P?/2m,)+(n  In the derivation of Eq(14), the relation
+3+Uy)w. Here,u,=e’A?/mew is the ponderomotive en-
ergy in the units of the photon energy of the laser, whiere
as the limit ofg\n— (g—0, n—) is the half amplitude
of the classical field. The generalized Bessel functigpare
defined in terms of ordinary Bessel functions as

€
iMm ——————=7d6(E,—E
M EE—E e TR TR

” has been used. We expamg to the first-order oV’
Femed= 2 I jan(OIn(m)(— 1),

10 . /
(10 Ty=im 2/ [(g V|P Pn,n/)(Wgn,nf|V|¢i>
where P o o
2| |A 1 +<lr//f|v|‘PPn,n/><\I,},3n,n/|V|dli>+<17[/f|v,|\lipn,n/>
e -
= [Pl 1= Upcos, (W E V1) + (VWD (TS IV L)
- X 8(E;—E(Pn,n")). (19
—tan- 1| Yians
de=tan PXtanz (+m).

Since only the harmonics in the direction of the laser light
Using the quantized-field Volkov states as unperturbedif€ coherent, we set the wave vector of the harmonic mode to
states, we treat the electron-harmonic interactibnas a  Pe parallel to that of the laser mode. With this condition, a
perturbation. Then the eigenstate of the Hamiltonlag  direct evaluation shows(y|V|Vp, o) = (W, 4| V|¢hi)=0
+V7, in the first order approximation, can be expressed akl4]. We thus have

[14]
Wonn =Yoo+ Vh o (11 Tn=iw; [V | W R (W Bl V] 1) 8(E; — E(Pn,0))
with VI, DRIV 44) SE ~ E(Pn,D)]. (16)
<\I,I(ilnl,nﬂv, |\I,(F)’n,n'>

V= > |qu o) -, Equation(16) suggests the following interpretation. The first
" pgny 2t E(Pnn')—E(Ping,np) term describes the transition of the electron from the ground
(12 state to a Volkov state under the interaction of the laser field.
The electron then returns to the ground state and emits a
Where\Ifgn n,=\Ifgn|n’) is the direct product of a quantized harmonic photon under the electron-harmonic-mode interac-
Volkov state and a Fock stat@’) of the harmonic mode tion_V’. The second term is the event unfolding in the op-
with eigenenergyE(Pn,n’)=E3,+(n’+)w’. Note that PoOsite order.
there is no energy shift up to first order. The matrix elementW 2, | V|y) is
The Volkov state§W¥p, /) form a complete sefi8] and

can be used as a basis set to expand(8y. _ . .
pand(&g (WP o VIti) =V Yo (uy—) P+ (up—)k)

Pn > X Ji(¢m pp)el (17)

Ti= 2 <¢f

Pn,n’

VTEi—HO—U—VT—He v
XU b e | V1| 1) (13  with j=n;—n; while
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E) (P+ (Up— K)* &'

IV [980 =V 1 =
e

XALP+(up— K1, (¢, my o) ¥ eV %
+eeNTj (L, p)*e 07 D%

+eeAT (L pp)*e (77D,
(18)
with j"=n¢—n. Here,®(P+ (u,—j)K) is the Fourier trans-
form of the initial wave functionb;(r). The matrix elements

(VW2 ) and (¥R, 4|V'|¢;) are calculated in a similar
way. Theé functions in Eq.(16) is factorized as

Me 1/2
5(Ei_E(Pn’O)):(Z> (j—up—EB/w)*”2
X 8(P| = (2mew) Y4(j —u,— Eg/w)'?

and

Mg 1/2 . ,
o(Ej—E(Pn,1))= Z) (j'—up—Eglw)~ 12

X 8(IP| = (2mew) Y A(j" —up—Eg/w) ).

After integrating over the radial part of the momentum
space, the transition matrix elemenf. for the qth order
harmonic, with the frequencyw’=qw where q=j—j’,
reads

H r 2
Tq:lmeeg T 2
fi 2 € S~
ji'(-i"=a)

X \j—Up—Eg/w|D(|P])|?
XJ sianqub[[Zep\/j—up—EB/wjj(g”,r],(ﬁg)

(up_j)

X T (& mp)*el0710%—c.c]

€20 (6,7, o) Ty 1(8,m, ) * €U D%

+ & 20T (L0 ) Ty a(£ el D
+c.cl. (19)

Here,

|P|=2m[(j —up) @ —Egl,
€,=(sinf cose, sind sin ¢, cos)
is the unit vector alon@, and# and ¢ are polar angles d®.

In deriving Eq. (19, we use the relation|®(P+ (up
—)Kk)|2=47|D(|P])|? [8]. The subscript “av” means the

PHYSICAL REVIEW A61 063407

bers of the atomic state. The differential rate of emission of a
harmonic photon is obtained by squaring the transition ma-
trix element, i.e.,

!

dw_ y
dQ  (27)2

o' ?|Ty|% (20

We consider the case where the incident light is linearly
polarized(i.e., £=0). In this case, the emission rate per solid
angle in the propagation direction of laser light is expressed
as an analytic form as follows:

dw 4qe’miw® o
al == 2 (uiVi-uy—Eslw
k'(|k LiTG-i"=a)
2
X|®(|P|)|2(Vzuij’j/+1+\2Uij1j/,1) .
(21
Here
* * * ¢ jH 2K+’ =1+ 2ky+ 2kg
Djjrer= 2 2 2 (—1)"3(5)
K == ky=— Kg=0

ks
j+2kl+j’:1+2k2+2k3‘]k1( 1y (7)

X2k T ko)1 (] = 11 2Ky ky)!

1
X — - , (22
with  {=2y2up(j—u,—Eg/w), #n=3u,, and CJ

=n!/[m(n—m)!].

The momentum space integration over the azimuthal
angle ofP results in the oddness condition for the high-order
harmonics, a manifestation of the parity conservation in
HHG. One harmonic photon has an odd parity. It can only be
converted by an odd number of laser photons since one laser
photon also has an odd parity.

We then consider the case where the incident light is el-
liptically polarized. The emission rate per solid angle can be
written as

Q| T peag)l (29
ey =—F5 -z € (Pt Qey)|”.
dQ Kk (2m)* y
Here,
. 3 &
P=2i Im(A)+2 cosERe(C)JrZ cosERe(D),
. & &
Q=2i Im(B)—2smERe(C)+25|n§Re(D). (24

average value among the different magnetic quantum numFhe parameters, B, C, andD are defined as
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FIG. 1. Harmonic emission rate as a function of harmonic order
in YAG of intensity 2.2

for He, Ne, Ar, Kr, and Xe
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100 T T T

Cutoff harmonic Order

Ponderomotive Parameter

FIG. 3. The cutoff harmonic order as a function of ponderomo-
tive parameteu, . The straight lineg.=Eg/w+ 3.2u, corresponds

x 10" Wicn? for a hydrogenlike atomic model. The correspond- to the cutoff law.

ing parameters are,=20 andEg/w=10.4, 12.0, 13.4, 18.5, and

21.1 for He, Ne, Ar, Kr, and Xe, respectively.

>

Bi'a=i-j")

A= (Uup—

fosir?acos¢d0d¢$(§,n,¢§)
xkyj,(g,n’qgg)*ei(i*i’ﬁﬁg,

p)

Li'a=i-j")

B=

X f 2sirfosingdode J;({, 1. ¢;)

X\7j’(§1 ni(ﬁf)*ei(jij,)(ﬁgy

>

IBMCRIE

C=

X f sin6dod¢.7(¢, 7, &)

(i —up—Eg/w)|®(|P)?

(up—1)(j —up—Eg/)|®(|P)?

(29

(26)

(Up—i)\i—up—Eg/w2u,|®(|P])|?

(27)

(il
Xk7j/+l(§l771¢§)*el(1 ] )gbfy
~ 10 F W%gg%‘:o Mi‘ eboob e A.A 1
Q r -% ]
;8/ [ g MA ]
@ 10° [ A ]
I S \Ob . ]
c s [ X ] % &A‘A ]
S 10° [ . \ . Y % ]
2 . 1 . \ v
£ - | (T8 \ -
040" \ ¥ W R, e g
-g r \ _._u:=10 ]
E 1048 r —O—up=20 ]
EOF by ——0 ]
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[o2]
(=]

and

D= X (U= )\i—upy—Eglw\2uy®(|P)P
i (a=ji=i"
xf Sin6d0d G T (£, 7,0 T 1L, 0, )"
><ei(j*j’+1)¢§, (28

with (=2 sin6\u,(j —u,—Eg/w)(1+cosécos2p), 7

= 3u, cosé, and ¢.=tan ‘[tan¢ tan(é/2)](+ ).

Ill. NUMERICAL RESULTS

We first consider the case where the incident light is lin-
early polarized. Figure 1 presents the HHG spectra of He,
Ne, Ar, Kr, and Xe produced by a Nd:YAG lasehd
=1.165 eV of intensity 2.2 10 W/cn?. The correspond-
ing parameters arel,=20 and Eg/w=10.4, 12.0, 13.4,
18.5, and 21.1 for He, Ne, Ar, Kr, and Xe, respectively. We
use the hydrogenic atomic modab(P)=2372a5%(a
+P?)2, wherea=2m.Eg. All the HHG spectra exhibit a
clear plateau, which ends at a harmonic order reafw
+3.2u,. We then study the dependence of the HHG on the
incident intensity. Figure 2 presents the HHG spectra of Xe
with u,=2, 5, 10, 20, and 30; while Fig. 3 presents the
cutoff harmonic ordeq, as a function ofu,. The straight
line qc.=Eg/w+3.2u, in Fig. 3 exhibits an almost perfect
fit. We also compare HHG spectra obtained from the calcu-
lations using various atomic model potentials and ground
state wave functiongFig. 4). The black circles are the
results where the ground-statewave function in the
momentum space takes the Gaussian fordn(|P|)
= (4 a)¥%exd —(P%2a)] with a=2m.Eg; while the
black squares are the results for the hydrogenlike atoms. The
NPQED approach to HHG also enable us to calculate HHG
spectra even when the analytic form of the ground state wave
function is unknown. The open circles present the results

FIG. 2. Harmonic emission rate as a function of harmonic orderusing a Hartree-Fock wave function. All the HHG spectra are

for Xe in YAG for five different intensities.

similar and end up at the same cutoff harmonic order. Figure
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FIG. 4. Comparison of harmonic spectra obtained with Gauss- FIG. 6. Harmonic emission rate as a function of harmonic order
ian, hydrogenlike and Hartree-Fock atomic models. Parametertor Xe for five values of ellipticities. Parameteg /w=10.4 and
Eg/w=10.4 andu,=20. u,=10.

5 presents the 35th harmonic strengths as a function of infFOr example, there exists a dip for the 17th harmonic, while
tensity in a logarithmic scale for hydrogenic, Gaussian andt local minimum is induced at = O for the 33rd harmonic.
Hartree-Fock atomic model. Here again all curves follow a
similar intensity dependence and interference pattern. We
find that the slope changes as the harmonic enters the plateau
region([i.e., for q=35, u,=(q—Eg/w)/3.2=7.8, which is
just the cutoff poink The NPQED approach to HHG involves an ionization of
We then consider the case where the incident light is elthe electron from the ground state to a quantized-field
liptically polarized. Figure 6 presents the HHG spectra of XeVolkov state under the interaction of the laser field followed
for u,=10 and £=0.3, 0.4, 0.5, and 0.6. Hereg by a returning of the electron to the ground state with a
=tan(¢/2) is the ellipticity of the laser field. For compari- harmonic photon emission. This is consistent with the semi-
son, HHG spectrum fog =0 is also given. With the increase classical model that HHG results from the recombination of
of the ellipticity, the harmonic intensity decreases whereashe electrons, excited into the continuum by the laser field,
the cutoff shifts toward the lower harmonic order. The cutoffwith the parent ions. Other quantum theories which recover
harmonic order is approximately given It /w+3.2u,(1  the semiclassical interpretation are the zero-range potential
—&2)/(1+¢€?) [15]. On the other hand, fos=0.6 we ob- model[4,6] and the effect dipole mod¢b]. They use time-
serve, instead of a plateau structure, a decrease of the halependent classical-field Volkov stafgl] as intermediate
monic intensity. In Fig. 7, we plot the harmonic strengths asstates, by which HHG can be interpreted in terms of classical
a function of the laser ellipticity for 17th, 33rd, and 43rd orbits departing from and returning to the ion. As is well
harmonics. The curves are normalized such that the haknown, a classical-field Volkov state represents an
monic strengths fos =0 are set to 1. The harmonic strength otherwise-free electron moving in a time-dependent classical
decreases drastically as the laser ellipticity increases from ém plane wave. In contrast, a quantized-field Volkov state is
to 0.5. Furthermore, interference effects are clearly observed coherent superposition of photonic Fock states in addition

IV. RELATION BETWEEN QUANTIZED-FIELD AND
CLASSICAL-FIELD VOLKOV STATES

= . -
i 1 =10
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FIG. 5. Comparison of intensity dependences of the 35th order FIG. 7. Harmonic emission rate of various harmonics as the
harmonic for Gaussian, hydrogenlike, and Hartree-Fock atomidunction of ellipticity for Xe. Parameter&g/w=10.4 andu,
models with parametdtz/w=10.4. =10.

063407-6



NONPERTURBATIVE QUANTUM ELECTRODYNAMIGS . .. PHYSICAL REVIEW A 61 063407

to the description of the electron motion. It represents the
stimulated emission and absorption of photons in the quan-

tized field by the electron. In order to clarify the intrinsic i1
connection between the NPQED approach and the classical- b= ¥ |, (35

guantized-field Volkov state and a corresponding classical-
field Volkov state.

An original classical-field Volkov wave functiofl6]
WY(r,t) is a solution of the time-dependent Dirac equation.
The classical-field nonrelativistitNR) Volkov wave func-
tion _§hould be considered as a solution of the following Heg=Euy. (36)
Schralinger equation.(But the problem has never been

simple. The subtlety due to the NR electron and relativisticHere the Floquet HamiltoniaH ¢ is a time-independent in-

field approach, we show below the relation between a i1

Eq. (34) can be written as a secular equation, with the
quasienergy as the eigenvalue

light was not solved until a recent wof&7].) finite dimensional Hermitian matrix with nonvanishing ele-
ments
IV c(r,t
Ho()We(r,t) =i % (29 P2

(HF)j’j:2_me+upw+jw’

with Hamiltonian ¢
(HF)j,jilz_Eweiid)‘f,
(—iV)? eA v e?A?(t)

ome m A (V) F

. (30
2me (Hp)jj=2= no. (37)

in the long-wavelength approximation, the classical fieldin most cases, the time-independent Floquet equations are
vector potential iA(t) = A (ee Wt+c.c.) with A the ampli-  Solved by numerical methods. However, in our case, we have

tude of the field. The Volkov wave functiodf o(r,t) can be well-known classical-field Volkov solutions

He(t) =

approximately expressed f8|

P2
P-r—(z—me—i—upw)t

\Pc(r,t)=Ve”2exp[i

p? t
\Ifc(lr,t):veWexp[ip-r—i2m t—if drVe(P,7)|, o
e —® . * *i]—¢ ..
(31 szw Ji(Lnd)*e T Pexpijwt). (39)
where Comparing Eq(38) with Eq. (33), we obtain
e e’A%(t) W=T(&m o) e o
Ve(Pt)=——A(t)-P+ (32
me 2mg p2
E=5—+Uuyo. (39

On the other hand, the Hamiltoniad(t) in the long- 2me

wavelength approximation is a periodic function tofvith
frequencyw. According to Floquet’s theorenm¥ ~(r,t) can
also be written a$18]

Although the Floquet theory is a semiclassical theory,
Shirley [18] has pointed out that the Floquet states can be
interpreted physically as quantum field states. Actually, we
find that, based on the Floquet equation, a quantized-field

} - B Volkov state can be identified as a correspondence from a
\Ifc(r,t)zexm(P-r—Et)]_;x yiexpijot). (33 classical field Volkov state. A NR quantized-field Volkov
. wave functionW ,(r) can be regarded as a solution of the

time-independent Schdinger eigenvalue equatidd7
Here, E is the quasienergy of the electron. Substituting Eq. P g g quatiqa7]

(33) into Eq.(29) and identifying the Fourier coefficients of
the like terms on both sides of the equation, we obtain -

1
2mev2+v+wr\|a Y, (r=E,¥,(r), (40

(o . _ whereV is defined by Eq(3). Let
Wj_7(3'¢fl//j+1+e ey ) Y =4

2
(——I—Upw-l-jw

2mg
_\/—1/2.iP-
+ 90 ( o+ i1 2) = Ed;. (34) W=V ™1, ¢k, (42)
By defining a vector with an infinite dimension then, in the long-wavelength approximatiaf, satisfies
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PZ
o
+e ke 1]+ cosgw k—1)(k—2) ¢y
+¢<k+1><k+2>¢k+z]=EM¢k.

We consider the large-photon-number limit by lettikg n
+j with n>j and gJ/n—A (g—0, n—). By defining
®j=n+j, then Eq.(42) becomes

P2
-

(k+1/2)

” e CRNC= T

(42

. {o . .
tupotjo <pj—7(e"/’§<pj+l+e "o 1)

+no(¢j 2+ ¢j12)=(E,—No)e;. (43

Herej runs from—n to infinite. Since Eq(43) is exactly the
same with Eq.(34) in the limit of n—co with identifying

E,=E+nw, we obtain

@i=Ji(Lm o) e (44)

Therefore, we reobtained the quantized-field Volkov state

W ,(r)=V, exp(iP- r)j;;n Ti({mde)*

xXexp(—ij ¢g)n+j), (45)

which agrees with Eq(9) in the long-wavelength approxi-

mation.

V. DISCUSSION AND CONCLUSION

PHYSICAL REVIEW A61 063407

S=(|U(0,— )| ) (46)
with

U|(t,t,):TeX[{—ifthH|(T) (47)
t/

in the interaction representation. The Hamiltonkdy{t) was
defined in Eq(A5) in Ref.[6] and T was the Dyson'’s order-

ing operator. Since the laser field was treated as an external
and classical field, the electron was not in an isolated system;
hence, formal scattering theory cannot be applied directly.
Strictly speaking, the “interaction Hamiltonian” adopted by
Beckeret al. is not a true interaction Hamiltonian due to the
time dependence of the external em field. There is no a trans-
formation which can remove the time dependence in the
Hamiltonian to find the true Schadinger picture and the true
Heisenberg picture.

Unlike the work of Beckeft al. [6], we use quantized-
field method to both laser and harmonic fields, so that HHG
can be treated as a time-independent scattering process in an
isolated system which consists of photons and an atom. One
can readily find the well-defined Schiinger picture,
Heisenberg picture, and interaction picture in our approach.
Step-by-step energy conservation is achieved in all subpro-
cesses by NPQED theory. The processes underlying HHG
can be expressed as a concise formal expredsiea Eqg.
(16)]. In comparison to the zero-range potential modgl
and the effective dipole modgb], the advantage of our ap-
proach is that it gives more freedom for the choice of the
binding potentialJ(r), since it allows numerical solution of
®(|P|) in the calculation of the HHG spectra.

We now consider the connection between HHG and ATI
from the viewpoint of formal scattering theory. Both ATI
and HHG are scattering processes that involve the electron-
atomic Coulomb interactiob) and the electron-photon inter-
action V1. We consider theS matrix defined in Eq.(4).

To understand the difference between our approach angefore the laser pulse comes in, the electron is bound by
classical-field approaches, we briefly review the latter as folatomic potentiall. The initial condition of the interaction
lows. In classical-field approaches, most theories evaluatgan be considered as tHatis on andVy is off in the remote

the time-dependent dipole moment expectation vai(1§ of

past. The full interaction takes place in the presence of the

the dressed ground state. The harmonic generations are rféne-independent potentials andVy. Since ATl and HHG

lated to the Fourier components Bft). Beckeret al. [6]
adopted a different treatment by calculating Samatrix el-

have the same precollision state, the scattering wave function
" are the same for both cases. The difference between ATI

ement for harmonic emission rather than the dipole momenand HHG is that the wave functions of the electron after
expectation value. Th&matrix treatment applies for transi- collision with the light are subjected to different boundary
tions from an initial to a different final state under the inter- conditions. HHG is a single-potential scattering process with
action. While for the case where the initial and the finalthe final condition that) is on andV is off after the colli-
states are the same, the probability and the rate of the traision. The final-state scattering wave functigp is given by
sition means the leaving probability and the leaving rateEq. (5). In contrast, ATl is a breakup process with the final
However, in a classical-field treatment, the initial and thecondition U off and V off after the collision. The corre-
final states in HHG are both the atomic ground sthiér). sponding final-state scattering wave functiorj i8]

If the laser and the harmonic fields are both treated as exter-

nal field, one will not get a corre&matrix element as well Ui =it e (VYD (48)
as a correct transition matrix element. To treat HHG as a ) -

scattering process, Becket al. used quantized harmonic and the transition matrix element then becorf¥s

mode while treated the incident laser field classically. The

initial and the final states then becamig=|®;(r),0) and T. = N VAR 49
;=] ®i(r),1), respectively, wherg0) and |1) were the fi % (W) (Y ul Vel ). 49

Fock states of the harmonic mode. TBeatrix element for

spontaneous emission of one harmonic photon took the form (Eu=E=E)
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Here, the final state); is the free-electron and free-photon semiclassical interpretation that HHG results from the re-
state. combination of the photoelectrons, excited into the con-
Recently, J. Gaet al. [12] showed a NPQED scattering tinuum by the laser field, with the parent ions, and gives the
theory of HHG. They extended the NPQED description ofsame phenomenological cutoff law. The HHG emission rate
ATI to HHG. By replacing the final staté; with a bound  can be expressed as an analytic closed form when the inci-

electron and free-photon state, i.¢=|®i(r),ns,1), they  dent light is linearly polarized.
applied Eq.(49) directly to calculate the HHG spectra. In

their theory an extra phase shift was introduced in the wave
functions of. mtermedlatg states to accompany the transition. ACKNOWLEDGMENTS
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