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Nonperturbative quantum electrodynamics theory of high-order harmonic generation
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Using a formal scattering theoretical approach, we develop a nonperturbative quantum electrodynamics
theory to describe high-order harmonic generation~HHG!. This approach recovers the semiclassical interpre-
tation that HHG results from the recombination of photoelectrons, ionized by the laser field, with the parent
ions, and gives the same phenomenological cutoff law. The HHG emission rate is expressed as an analytic
closed form. We also discuss the connection between HHG and the above threshold ionization from the formal
scattering viewpoint.

PACS number~s!: 32.80.Rm, 42.65.Ky, 12.20.Ds, 03.65.Nk
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I. INTRODUCTION

Recently, high-order harmonic generation~HHG! has be-
come one of the most rapidly developing topics in multiph
ton physics. A general character of a HHG spectrum is th
falls off rapidly at low orders, then exhibits a broad plate
where all the harmonics have the same strength, and end
with a sharp cutoff at frequency aroundEB13.2Up , where
EB and Up are the atomic binding energy and the electr
ponderomotive energy in the laser field, respectively. Us
a semiclassical approach, Corkum@1# has given very impor-
tant insight into the physics of the cutoff law. In Corkum
model, the electron, through tunneling, ionizes from t
atomic ground state into the continuum. Its subsequent
tion can be treated classically and consists of free oscillat
driven by the laser field. Once the electron returns to
vicinity of the nucleus, it may recombine with the nucle
and emit a harmonic photon.

There are a large number of theoretical attempts to ca
late HHG. A quantum mechanic theory of HHG, wi
classical-field treatment, has been formulated in terms of
solutions of the time-dependent Schro¨dinger equation@2# or,
equivalently, in terms of the solutions of the tim
independent Floquet equation set@3#. These numerical meth
ods are quite computer intensive. Therefore, modeling w
simplifications of HHG has become popular. Beckeret al.
@4# approximated the atomic binding potential by a ze
range potential. Lewensteinet al. @5# considered an effective
dipole model in which a Hamiltonian with just one boun
state and an undistorted continuum was introduced. B
models accounted for neither the effects of excited bo
states nor the effects of the ionic potential on the electro
motion in the continuum. They both led to comparably ma
ageable integral expressions for the harmonic intensit
Later, Beckeret al. @6# presented a general framework whic
treated HHG in strict parallelism to the Keldysh-Faisal-Re
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@7# framework for ionization such that the zero-range pote
tial model and the effective dipole model were special cas

In a classical-field approach, the key ingredient which d
termines the HHG spectrum is the ground-state expecta
value of the atomic dipole moment. Even though the form
theory of scattering has long been recognized as an adeq
tool to treat multiphoton phenomena, because both the in
and final states are the ground state of the atom in a clas
field approach, using scattering theory to treat HHG becom
very subtle. Beckeret al. @6# employed a time-dependen
Hamiltonian where the incident laser field was treated cl
sically, while the harmonic mode was quantized. In this w
they were able to define anS-matrix element for the emission
of one harmonic photon. TheS-matrix element can be envi
sioned as the coherent superposition of contributions ass
ated with classical atomic orbits, which describe an elect
that starts at the timet9 from some position within the rang
of the binding potential and, under the influence of the la
field, returns at the later timet8 to the position again within
the range of the same binding potential. The relation betw
the S-matrix element and the dipole-moment expectat
value has been discussed. They also presented a funct
relationship between ionization and harmonic generation

Until now, most theoretical works on HHG have been
the category of classical-field approaches which regards
laser field as a time-dependent external field in addition to
spatial continuity feature. In the classical-field treatment,
atom in the radiation field is not in an isolated system. Th
the energy and momentum conservation of the entire sys
consisting of the atom and the radiation field, during sequ
tial transition processes, are hard to track. To provide a m
solid basis for the classical-field approaches to HHG a
justify some assumptions used in the classical-field mod
ing, it is necessary to develop a nonperturbative quan
electrodynamics~NPQED! approach to HHG, in addition to
its own need to be a complete theory.

Exact solutions for an electron interacting with a qua
tized, elliptically polarized electromagnetic field have be
found @8#. The quantum-field version of Volkov solution
enables us to treat multiphoton ionization~MPI! as a time-

ity
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independent scattering problem in an isolated system w
consists of photons and an atom@9#. Using NPQED theory,
Guo and Drake@10# succeeded in modeling the unusual pe
splitting of the photoelectron angular distributions
standing-wave above-threshold ionization~ATI !, known as
the half Kapitza-Dirac effect in strong radiation fields. It h
also been successful in explaining the phase-difference e
in the two-color ATI @11#. Recently, J. Gaoet al. @12# ap-
plied the NPQED theory of ATI directly to treat HHG. The
suggested that transitions between the quantized Vo
states contribute dominantly to the HHG spectrum. In th
work, the cutoff position is nearEB12Up . In the current
paper, we develop a time-independent formal scatte
theory @13,9# to describe HHG. In our treatment, both th
laser field and the harmonic field are quantized. Our the
involves an ionization process of an atomic electron from
ground state to a quantized-field Volkov state due to
interaction of the laser field followed by an electro
absorption process. The harmonic generation is a resu
the recombination of the electron with its parent ions. From
physical perspective, our theory is consistent with the se
classical interpretation made by Corkum and gives the s
cutoff law. We also discuss the connection between H
and ATI from the formal scattering viewpoint.

This paper is organized as follows. In Sec. II we emp
the formal scattering theory to derive the transition rates
HHG. The HHG rate is expressed as an analytic closed fo
Numerical results are given in Sec. III. We calculate t
HHG spectra for various atomic potentials. All the spec
exhibit obvious plateau which end at a harmonic ord
EB /v13.2up . We also study HHG as a function of the e
lipticity of the laser field. Section IV discusses the conne
tion between a quantized-field Volkov state and classic
field Volkov state from the viewpoint of Floquet theor
Finally, Sec. V discusses the significance of our results.

II. TRANSITION RATE FORMULA

We consider a quantized single-mode laser field of f
quencyv with a wave vectork and a high harmonic photo
mode of frequencyv8 with a wave vectork8. In the Schro¨-
dinger picture, the Hamiltonian of the atom-radiation syst
is @14#

H5H01U~r !1VT , ~1!

where

H05
~2 i“ !2

2me
1vNa1v8Na8 , ~2!

is the noninteraction part of the Hamiltonian. Here,Na

5(a†a1aa†)/2, Na85(a8†a81a8a8†)/2 are photon numbe
operators of the laser and the harmonic photon mode, res
tively, with a anda8 being the annihilation operators whil
a† anda8† the creation operators.U(r ) is the atomic binding
potential. The total electron-photon interaction isVT5V
1V8 with
06340
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V52
e

me
A~r !•~2 i“ !1

e2A2~r !

2me
,

V852
e

me
A8~r !•~2 i“ !1

e2A~r !•A8~r !

me
. ~3!

Here, the vector potentials areA(r )5g( êaeik•r1c.c.) and
A8(r )5g8( ê8a8eik8•r1c.c.) for the laser and harmoni
mode, respectively;g5(2vVg)21/2, g85(2v8Vg8)21/2; Vg

andVg8 are the normalization volumes of the photon mod

The transverse polarizations areê5 êx cos(j/2)1i êy sin(j/2)
andê85 êx8 cos(j8/2)1 i êy8 sin(j8/2). We neglect theA82 term
for its weak strength. We note thatV8 is the interaction due
to the harmonic mode whileV is the interaction due to the
laser field.

The initial and final states of HHG are taken asuc i&
[uF i(r ),ni ,0&[F i(r ) ^ uni& ^ u0&8, and uc f&[uF i(r ),nf ,0&
[F i(r ) ^ unf& ^ u0&8 which are the eigenstates of the Ham
tonian H01U(r ) with eigenenergiesEi52EB1(ni1

1
2 )v

1 1
2 v8 andEf52EB1(nf1

1
2 )v1 3

2 v8, respectively, where
F i(r ) is the ground-state wave function of the atomic ele
tron with the binding energyEB , uni&, andunf& are the Fock
states of the laser mode with photon numberni and nf ,
while u0&8 and u1&8 are that of the harmonic mode. Th
time-independent feature of the fully quantized Hamiltoni
enables us to treat HHG as a genuine scattering process
isolated system that consists of the photons and the a
Energy is conserved throughout the interaction, resulting
v85(ni2nf)v. The formal scattering theory thus applies

TheS-matrix element between the statesc i andc f is @13#

Sf i5^c f
2uc i

1&, ~4!

where

c j
65c j1

1

Ej2H6 i e
VTc j ~ j 5 i , f !. ~5!

Physically,c i
1 is the scattering state att50 which has de-

veloped from a precollision statec i in the remote past, while
c f

2 is the scattering state att50 which will develop to a
postcollision statec f in the remote future. TheS-matrix el-
ement can be expressed as

Sf i5d f i22p id~Ef2Ei !Tf i , ~6!

where

Tf i5^c f uVTuc i
1& ~7!

is the transition matrix element. By imposing the lon
wavelength approximation,eik•r.1 and eik8•r.1, we
have ^c f uVTuc i&50, which is derived by noticing
^F i(r )u2 i“uF i(r )&50, due to the odd parity of the mo
mentum operator, and eliminating the terms not contribut
to high-order harmonics. Therefore, we have
7-2
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Tf i5 K c fUVT

1

Ei2H02U2VT1 i e
VTUc i L . ~8!

For the electron-laser-mode subsystem, the eigensta
the HamiltonianH01V are the quantized-field Volkov state
@8#

CPn
0 5Ve

21/2 (
j 52n

`

exp$ i @P1~up2 j !k#•r%Jj~z,h,fj!*

3exp~2 i j fj!un1 j &, ~9!

with corresponding energy eigenvaluesEPn
0 5(P2/2me)1(n

1 1
2 1up)v. Here,up5e2L2/mev is the ponderomotive en

ergy in the units of the photon energy of the laser, whereL,
as the limit ofgAn→ (g→0, n→`) is the half amplitude
of the classical field. The generalized Bessel functionsJj are
defined in terms of ordinary Bessel functions as

Jj~z,h,fj!5 (
m52`

`

J2 j 22m~z!Jm~h!~21! je2imfj,

~10!

where

z5
2ueuL
mev

uP• êu, h5
1

2
up cosj,

fj5tan21S Py

Px
tan

j

2D ~1p!.

Using the quantized-field Volkov states as unperturb
states, we treat the electron-harmonic interactionV8 as a
perturbation. Then the eigenstate of the HamiltonianH0
1VT , in the first order approximation, can be expressed
@14#

CPn,n85CPn,n8
0

1CPn,n8
8 ~11!

with

CPn,n8
8 5 (

P1n1 ,n18
uCP1n1 ,n

18
0

&
^CP1n1 ,n

18
0 uV8uCPn,n8

0 &

E~Pn,n8!2E~P1n1 ,n18!
,

~12!

whereCPn,n8
0

5CPn
0 un8& is the direct product of a quantize

Volkov state and a Fock stateun8& of the harmonic mode
with eigenenergyE(Pn,n8)5EPn

0 1(n81 1
2 )v8. Note that

there is no energy shift up to first order.
The Volkov statesuCPn,n8& form a complete set@8# and

can be used as a basis set to expand Eq.~8!,

Tf i5 (
Pn,n8

K c fUVT

1

Ei2H02U2VT1 i e UCPn,n8L
3^CPn,n8uVTuc i&. ~13!
06340
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We then assume that the effect of the binding potentialU to
HHG can be neglected when the electron is in the c
tinuum. Keeping only the leading term in the Taylor expa
sion of the inverse operator Eq.~13!, in terms of powers of
U, we dropU in the denominator and obtain

Tf i5 ip (
Pn,n8

^c f uVTuCPn,n8&^CPn,n8uVTuc i&

3d„Ei2E~Pn,n8!…. ~14!

In the derivation of Eq.~14!, the relation

lim
e→01

e

@~Ei2Em!21e2#
5pd~Ei2Em!

has been used. We expandTf i to the first-order ofV8

Tf i5 ip (
Pn,n8

@^c f uVuC8Pn,n8&^CPn,n8
0 uVuc i&

1^c f uVuCPn,n8
0 &^CPn,n8

8 uVuc i&1^c f uV8uCPn,n8
0 &

3^CPn,n8
0 uVuc i&1^c f uVuCPn,n8

0 &^CPn,n8
0 uV8uc i&#

3d„Ei2E~Pn,n8!…. ~15!

Since only the harmonics in the direction of the laser lig
are coherent, we set the wave vector of the harmonic mod
be parallel to that of the laser mode. With this condition
direct evaluation shows^c f uVuCPn,08 &5^CPn,18 uVuc i&50
@14#. We thus have

Tf i5 ip(
Pn

@^c f uV8uCPn,0
0 &^CPn,0

0 uVuc i&d„Ei2E~Pn,0!…

1^c f uVuCPn,1
0 &^CPn,1

0 uV8uc i&d„Ei2E~Pn,1!…#. ~16!

Equation~16! suggests the following interpretation. The fir
term describes the transition of the electron from the grou
state to a Volkov state under the interaction of the laser fie
The electron then returns to the ground state and emi
harmonic photon under the electron-harmonic-mode inte
tion V8. The second term is the event unfolding in the o
posite order.

The matrix element̂CPn,0
0 uVuc i& is

^CPn,0
0 uVuc i&5Ve

21/2v~up2 j !F„P1~up2 j !k…

3Jj~z,h,fj!e
i j fj, ~17!

with j [ni2n; while
7-3
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^c f uV8uCPn,0
0 &5Ve

21/2S eg8

me
DF„P1~up2 j !k…* ê8*

3$@P1~up2 j !k#Jj 8~z,h,fj!* e2 j 8fj

1 êeLJj 811~z,h,fj!* e2( j 811)fj

1 ê* eLJj 821~z,h,fj!* e2( j 821)fj%,

~18!

with j 8[nf2n. Here,F„P1(up2 j )k… is the Fourier trans-
form of the initial wave functionF i(r ). The matrix elements
^c f uVuCPn,1

0 & and ^CPn,1
0 uV8uc i& are calculated in a simila

way. Thed functions in Eq.~16! is factorized as

d„Ei2E~Pn,0!…5S me

2v D 1/2

~ j 2up2EB /v!21/2

3d„uPu2~2mev!1/2~ j 2up2EB /v!1/2
…

and

d„Ei2E~Pn,1!…5S me

2v D 1/2

~ j 82up2EB /v!21/2

3d„uPu2~2mev!1/2~ j 82up2EB /v!1/2
….

After integrating over the radial part of the momentu
space, the transition matrix elementTf i

q for the qth order
harmonic, with the frequencyv85qv where q5 j 2 j 8,
reads

Tf i
q 5

imeeg8v2

2p
ê8* • (

j , j 8( j 2 j 85q)
~up2 j !

3Aj 2up2EB /vuF~ uPu!u2

3E sinududf H @2epAj 2up2EB /vJj~z,h,fj!

3Jj 8~z,h,fj!* ei ( j 2 j 8)fj2c.c.#

1@ êA2upJj~z,h,fj!Jj 811~z,h,fj!* ei ( j 2 j 821)fj

1 ê* A2upJj~z,h,fj!Jj 821~z,h,fj!* ei ( j 2 j 811)fj

1c.c.#J . ~19!

Here,

uPu5A2me@~ j 2up!v2EB#,

ep5~sinu cosf, sinu sinf,cosu!

is the unit vector alongP, andu andf are polar angles ofP.
In deriving Eq. ~19!, we use the relationuF„P1(up

2 j )k…uav
2 .4puF(uPu)u2 @8#. The subscript ‘‘av’’ means the

average value among the different magnetic quantum n
06340
-

bers of the atomic state. The differential rate of emission o
harmonic photon is obtained by squaring the transition m
trix element, i.e.,

dw

dV
5

Vg8

~2p!2
v82uTf i u2. ~20!

We consider the case where the incident light is linea
polarized~i.e.,j50). In this case, the emission rate per so
angle in the propagation direction of laser light is expres
as an analytic form as follows:

dw

dV U
k8ik

5
4qe2me

2v5

p2 U (
j , j 8~ j 2 j 85q!

~up2 j !Aj 2up2EB /v

3 zF~ uPu!z2~A2upD j , j 8111A2upD j , j 821!U2

.

~21!

Here

D j , j 8615 (
k152`

`

(
k252`

`

(
k350

`

~21!k3S z

2D j 12k11 j 86112k212k3

3

C
j 12k11 j 86112k212k3

k3 Jk1
~h!Jk2

~h!

~ j 12k11k3!! ~ j 86112k21k3!!

3
1

~ j 12k11 j 86112k212k311!
, ~22!

with z52A2up( j 2up2EB /v), h5 1
2 up , and Cn

m

5n!/ @m!(n2m)! #.
The momentum space integration over the azimut

angle ofP results in the oddness condition for the high-ord
harmonics, a manifestation of the parity conservation
HHG. One harmonic photon has an odd parity. It can only
converted by an odd number of laser photons since one l
photon also has an odd parity.

We then consider the case where the incident light is
liptically polarized. The emission rate per solid angle can
written as

dw

dV U
k8ik

5
qe2me

2v5

~2p!4 uê8* •~Pêx1Qêy!u2. ~23!

Here,

P52i Im~A!12 cos
j

2
Re~C!12 cos

j

2
Re~D !,

Q52i Im~B!22 sin
j

2
Re~C!12 sin

j

2
Re~D !. ~24!

The parametersA, B, C, andD are defined as
7-4



in-
He,

e

the
Xe
he

t
cu-
nd

The
HG
ave
ults
re

ure

de

d-
d

de

o-

NONPERTURBATIVE QUANTUM ELECTRODYNAMICS . . . PHYSICAL REVIEW A 61 063407
A5 (
j , j 8(q5 j 2 j 8)

~up2 j !~ j 2up2EB /v!zF~ uPu!z2

3E 2 sin2u cosfdudfJj~z,h,fj!

3Jj 8~z,h,fj!* ei ( j 2 j 8)fj, ~25!

B5 (
j , j 8(q5 j 2 j 8)

~up2 j !~ j 2up2EB /v!zF~ uPu!z2

3E 2 sin2u sinfdudfJj~z,h,fj!

3Jj 8~z,h,fj!* ei ( j 2 j 8)fj, ~26!

C5 (
j , j 8(q5 j 2 j 8)

~up2 j !Aj 2up2EB /vA2upzF~ uPu!z2

3E sinududfJj~z,h,fj!

3Jj 811~z,h,fj!* ei ( j 2 j 821)fj, ~27!

FIG. 1. Harmonic emission rate as a function of harmonic or
for He, Ne, Ar, Kr, and Xe in YAG of intensity 2.2
31014 W/cm2 for a hydrogenlike atomic model. The correspon
ing parameters areup520 andEB /v510.4, 12.0, 13.4, 18.5, an
21.1 for He, Ne, Ar, Kr, and Xe, respectively.

FIG. 2. Harmonic emission rate as a function of harmonic or
for Xe in YAG for five different intensities.
06340
and

D5 (
j , j 8(q5 j 2 j 8)

~up2 j !Aj 2up2EB /vA2upzF~ uPu!z2

3E sinududfJj~z,h,fj!Jj 821~z,h,fj!*

3ei ( j 2 j 811)fj, ~28!

with z52 sinuAup( j 2up2EB /v)(11cosj cos 2f), h

5 1
2 up cosj, andfj5tan21@ tanf tan(j/2)#(1p).

III. NUMERICAL RESULTS

We first consider the case where the incident light is l
early polarized. Figure 1 presents the HHG spectra of
Ne, Ar, Kr, and Xe produced by a Nd:YAG laser (\v
51.165 eV! of intensity 2.231014 W/cm2. The correspond-
ing parameters areup520 and EB /v510.4, 12.0, 13.4,
18.5, and 21.1 for He, Ne, Ar, Kr, and Xe, respectively. W
use the hydrogenic atomic modelF(P)523p1/2a5/4/(a
1P2)2, wherea52meEB . All the HHG spectra exhibit a
clear plateau, which ends at a harmonic order nearEB /v
13.2up . We then study the dependence of the HHG on
incident intensity. Figure 2 presents the HHG spectra of
with up52, 5, 10, 20, and 30; while Fig. 3 presents t
cutoff harmonic orderqc as a function ofup . The straight
line qc5EB /v13.2up in Fig. 3 exhibits an almost perfec
fit. We also compare HHG spectra obtained from the cal
lations using various atomic model potentials and grou
state wave functions~Fig. 4!. The black circles are the
results where the ground-states-wave function in the
momentum space takes the Gaussian formF(uPu)
5(4p/a)3/4exp@2(P2/2a)# with a52meEB ; while the
black squares are the results for the hydrogenlike atoms.
NPQED approach to HHG also enable us to calculate H
spectra even when the analytic form of the ground state w
function is unknown. The open circles present the res
using a Hartree-Fock wave function. All the HHG spectra a
similar and end up at the same cutoff harmonic order. Fig

r

r

FIG. 3. The cutoff harmonic order as a function of ponderom
tive parameterup . The straight lineqc5EB /v13.2up corresponds
to the cutoff law.
7-5
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5 presents the 35th harmonic strengths as a function o
tensity in a logarithmic scale for hydrogenic, Gaussian a
Hartree-Fock atomic model. Here again all curves follow
similar intensity dependence and interference pattern.
find that the slope changes as the harmonic enters the pla
region @i.e., for q535, up5(q2EB /v)/3.257.8, which is
just the cutoff point#.

We then consider the case where the incident light is
liptically polarized. Figure 6 presents the HHG spectra of
for up510 and «50.3, 0.4, 0.5, and 0.6. Here,«
5tan(j/2) is the ellipticity of the laser field. For compar
son, HHG spectrum for«50 is also given. With the increas
of the ellipticity, the harmonic intensity decreases wher
the cutoff shifts toward the lower harmonic order. The cut
harmonic order is approximately given byEB /v13.2up(1
2«2)/(11«2) @15#. On the other hand, for«50.6 we ob-
serve, instead of a plateau structure, a decrease of the
monic intensity. In Fig. 7, we plot the harmonic strengths
a function of the laser ellipticity for 17th, 33rd, and 43
harmonics. The curves are normalized such that the
monic strengths for«50 are set to 1. The harmonic streng
decreases drastically as the laser ellipticity increases fro
to 0.5. Furthermore, interference effects are clearly obser

FIG. 4. Comparison of harmonic spectra obtained with Gau
ian, hydrogenlike and Hartree-Fock atomic models. Parame
EB /v510.4 andup520.

FIG. 5. Comparison of intensity dependences of the 35th o
harmonic for Gaussian, hydrogenlike, and Hartree-Fock ato
models with parameterEB /v510.4.
06340
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For example, there exists a dip for the 17th harmonic, wh
a local minimum is induced at« 5 0 for the 33rd harmonic.

IV. RELATION BETWEEN QUANTIZED-FIELD AND
CLASSICAL-FIELD VOLKOV STATES

The NPQED approach to HHG involves an ionization
the electron from the ground state to a quantized-fi
Volkov state under the interaction of the laser field follow
by a returning of the electron to the ground state with
harmonic photon emission. This is consistent with the se
classical model that HHG results from the recombination
the electrons, excited into the continuum by the laser fie
with the parent ions. Other quantum theories which reco
the semiclassical interpretation are the zero-range pote
model @4,6# and the effect dipole model@5#. They use time-
dependent classical-field Volkov states@16# as intermediate
states, by which HHG can be interpreted in terms of class
orbits departing from and returning to the ion. As is we
known, a classical-field Volkov state represents
otherwise-free electron moving in a time-dependent class
em plane wave. In contrast, a quantized-field Volkov state
a coherent superposition of photonic Fock states in addi

s-
rs

er
ic

FIG. 6. Harmonic emission rate as a function of harmonic or
for Xe for five values of ellipticities. ParametersEB /v510.4 and
up510.

FIG. 7. Harmonic emission rate of various harmonics as
function of ellipticity for Xe. ParametersEB /v510.4 and up

510.
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to the description of the electron motion. It represents
stimulated emission and absorption of photons in the qu
tized field by the electron. In order to clarify the intrins
connection between the NPQED approach and the class
field approach, we show below the relation between
quantized-field Volkov state and a corresponding classi
field Volkov state.

An original classical-field Volkov wave function@16#
CC(r ,t) is a solution of the time-dependent Dirac equatio
The classical-field nonrelativistic~NR! Volkov wave func-
tion should be considered as a solution of the followi
Schrödinger equation.~But the problem has never bee
simple. The subtlety due to the NR electron and relativis
light was not solved until a recent work@17#.!

HC~ t !CC~r ,t !5 i
]CC~r ,t !

]t
, ~29!

with Hamiltonian

HC~ t !5
~2 i“ !2

2me
2

e

me
A~ t !•~2 i“ !1

e2A2~ t !

2me
, ~30!

in the long-wavelength approximation, the classical fie
vector potential isA(t)5L( êe2 iwt1c.c.) withL the ampli-
tude of the field. The Volkov wave functionCC(r ,t) can be
approximately expressed as@7#

CC~r ,t !5Ve
21/2expF iP•r2 i

P2

2me
t2 i E

2`

t

dtVC~P,t!G ,
~31!

where

VC~P,t !52
e

me
A~ t !•P1

e2A2~ t !

2me
. ~32!

On the other hand, the HamiltonianHC(t) in the long-
wavelength approximation is a periodic function oft with
frequencyv. According to Floquet’s theorem,CC(r ,t) can
also be written as@18#

CC~r ,t !5exp@ i ~P•r2Et!# (
j 52`

`

c j exp~ i j vt !. ~33!

Here,E is the quasienergy of the electron. Substituting E
~33! into Eq. ~29! and identifying the Fourier coefficients o
the like terms on both sides of the equation, we obtain

S P2

2me
1upv1 j v Dc j2

zv

2
~eifjc j 111e2 ifjc j 21!

1hv~c j 221c j 12!5Ec j . ~34!

By defining a vector with an infinite dimension
06340
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.

c5S A

c j 21

c j

c j 11

A

D , ~35!

Eq. ~34! can be written as a secular equation, with t
quasienergy as the eigenvalue

HFc5Ec. ~36!

Here the Floquet HamiltonianHF is a time-independent in
finite dimensional Hermitian matrix with nonvanishing el
ments

~HF! j , j5
P2

2me
1upv1 j v,

~HF! j , j 6152
z

2
ve6 ifj,

~HF! j , j 625hv. ~37!

In most cases, the time-independent Floquet equations
solved by numerical methods. However, in our case, we h
well-known classical-field Volkov solutions

CC~r ,t !5Ve
21/2expH i FP•r2S P2

2me
1upv D t G J

3 (
j 52`

`

Jj~z,h,fj!* e2 i j fj exp~ i j vt !. ~38!

Comparing Eq.~38! with Eq. ~33!, we obtain

c j5Jj~z,h,fj!* e2 i j fj,

E5
P2

2me
1upv. ~39!

Although the Floquet theory is a semiclassical theo
Shirley @18# has pointed out that the Floquet states can
interpreted physically as quantum field states. Actually,
find that, based on the Floquet equation, a quantized-fi
Volkov state can be identified as a correspondence from
classical field Volkov state. A NR quantized-field Volko
wave functionCm(r ) can be regarded as a solution of th
time-independent Schro¨dinger eigenvalue equation@17#

F2
1

2me
“

21V1vNaGCm~r !5EmCm~r !, ~40!

whereV is defined by Eq.~3!. Let

Cm~r !5Ve
21/2eiP•r(

k
fkuk&, ~41!

then, in the long-wavelength approximation,fk satisfies
7-7
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F P2

2me
1~k11/2!S v1

e2g2

me
D Gfk2

eguP• êu
me

@eifjAk11fk11

1e2 ifjAkfk21#1
e2g2

2me
cosj@A~k21!~k22!fk22

1A~k11!~k12!fk12#5Emfk . ~42!

We consider the large-photon-number limit by lettingk5n
1 j with n@ j and gAn→L (g→0, n→`). By defining
w j5fn1 j , then Eq.~42! becomes

F P2

2me
1upv1 j vGw j2

zv

2
~eifjw j 111e2 ifjw j 21!

1hv~w j 221w j 12!5~Em2nv!w j . ~43!

Herej runs from2n to infinite. Since Eq.~43! is exactly the
same with Eq.~34! in the limit of n→` with identifying
Em5E1nv, we obtain

w j5Jj~z,h,fj!* e2 i j fj. ~44!

Therefore, we reobtained the quantized-field Volkov stat

Cm~r !5Ve
21/2exp~ iP•r ! (

j 52n

`

Jj~z,h,fj!*

3exp~2 i j fj!un1 j &, ~45!

which agrees with Eq.~9! in the long-wavelength approxi
mation.

V. DISCUSSION AND CONCLUSION

To understand the difference between our approach
classical-field approaches, we briefly review the latter as
lows. In classical-field approaches, most theories evalu
the time-dependent dipole moment expectation valueD(t) of
the dressed ground state. The harmonic generations ar
lated to the Fourier components ofD(t). Beckeret al. @6#
adopted a different treatment by calculating theS-matrix el-
ement for harmonic emission rather than the dipole mom
expectation value. TheS-matrix treatment applies for trans
tions from an initial to a different final state under the inte
action. While for the case where the initial and the fin
states are the same, the probability and the rate of the t
sition means the leaving probability and the leaving ra
However, in a classical-field treatment, the initial and t
final states in HHG are both the atomic ground stateF i(r ).
If the laser and the harmonic fields are both treated as ex
nal field, one will not get a correctS-matrix element as wel
as a correct transition matrix element. To treat HHG a
scattering process, Beckeret al. used quantized harmoni
mode while treated the incident laser field classically. T
initial and the final states then becamec i5uF i(r ),0& and
c f5uF i(r ),1&, respectively, whereu0& and u1& were the
Fock states of the harmonic mode. TheS-matrix element for
spontaneous emission of one harmonic photon took the f
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S5^c f uUI~`,2`!uc i& ~46!

with

UI~ t,t8!5T expF2 i E
t8

t

dtHI~t!G ~47!

in the interaction representation. The HamiltonianHI(t) was
defined in Eq.~A5! in Ref. @6# andT was the Dyson’s order-
ing operator. Since the laser field was treated as an exte
and classical field, the electron was not in an isolated syst
hence, formal scattering theory cannot be applied direc
Strictly speaking, the ‘‘interaction Hamiltonian’’ adopted b
Beckeret al. is not a true interaction Hamiltonian due to th
time dependence of the external em field. There is no a tra
formation which can remove the time dependence in
Hamiltonian to find the true Schro¨dinger picture and the true
Heisenberg picture.

Unlike the work of Beckeret al. @6#, we use quantized-
field method to both laser and harmonic fields, so that HH
can be treated as a time-independent scattering process
isolated system which consists of photons and an atom.
can readily find the well-defined Schro¨dinger picture,
Heisenberg picture, and interaction picture in our approa
Step-by-step energy conservation is achieved in all sub
cesses by NPQED theory. The processes underlying H
can be expressed as a concise formal expression@see Eq.
~16!#. In comparison to the zero-range potential model@4#
and the effective dipole model@5#, the advantage of our ap
proach is that it gives more freedom for the choice of t
binding potentialU(r ), since it allows numerical solution o
F(uPu) in the calculation of the HHG spectra.

We now consider the connection between HHG and A
from the viewpoint of formal scattering theory. Both AT
and HHG are scattering processes that involve the elect
atomic Coulomb interactionU and the electron-photon inter
action VT . We consider theS matrix defined in Eq.~4!.
Before the laser pulse comes in, the electron is bound
atomic potentialU. The initial condition of the interaction
can be considered as thatU is on andVT is off in the remote
past. The full interaction takes place in the presence of
time-independent potentialsU andVT . Since ATI and HHG
have the same precollision state, the scattering wave func
c i

1 are the same for both cases. The difference between
and HHG is that the wave functions of the electron af
collision with the light are subjected to different bounda
conditions. HHG is a single-potential scattering process w
the final condition thatU is on andVT is off after the colli-
sion. The final-state scattering wave functionc f

2 is given by
Eq. ~5!. In contrast, ATI is a breakup process with the fin
condition U off and VT off after the collision. The corre-
sponding final-state scattering wave function is@13#

c f
25c f1

1

Ej2H6 i e
~U1VT!c f , ~48!

and the transition matrix element then becomes@9#

Tf i5(
m

^c f uCm&^CmuVTuc i&. ~49!

~Em5Ei5Ef !
7-8
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Here, the final statec f is the free-electron and free-photo
state.

Recently, J. Gaoet al. @12# showed a NPQED scatterin
theory of HHG. They extended the NPQED description
ATI to HHG. By replacing the final statec f with a bound
electron and free-photon state, i.e.,c f5uF i(r ),nf ,1&, they
applied Eq.~49! directly to calculate the HHG spectra. I
their theory an extra phase shift was introduced in the w
functions of intermediate states to accompany the transit
The scattering process in our treatment is different from
one of J. Gaoet al., that shows the process discussed
them is not the only possible process to generate high
monics. In contrast, in our treatment the high harmonics
generated without assumption on phase shift in the w
functions. The relation between this work and J. Gaoet al.’s
work will be further discussed in future publications.

In conclusion, we develop a time-independent form
scattering theory to describe HHG. This theory recovers
ev

s.
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semiclassical interpretation that HHG results from the
combination of the photoelectrons, excited into the co
tinuum by the laser field, with the parent ions, and gives
same phenomenological cutoff law. The HHG emission r
can be expressed as an analytic closed form when the
dent light is linearly polarized.
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