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Generation of circularly polarized high-order harmonics by two-color coplanar field mixing

Dejan B. Milošević,* Wilhelm Becker,† and Richard Kopold
Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin, Germany

~Received 15 December 1999; published 4 May 2000!

An efficient method is investigated for the generation of circularly polarized high-order harmonics by a
bichromatic laser field whose two components with frequenciesv and 2v are circularly polarized in the same
plane, but rotate in opposite directions. The generation of intense harmonics by such a driving-field configu-
ration was already confirmed by a previous experiment. With the help of both a semiclassical three-step model
as well as a saddle-point analysis, the mechanism of harmonic generation in this case is elucidated and the
plateau structure of the harmonic response and their cutoffs are established. The sensitivity of the harmonic
yield and the polarization of the harmonics to imperfect circular polarization of the driving fields are investi-
gated. Optimization of both the cutoff frequency and the harmonic efficiency with respect to the intensity ratio
of the two components of the driving field is discussed. The electron trajectories responsible for the emission
of particular harmonics are identified. Unlike the case of a linearly polarized driving field, they have a nonzero
start velocity. By comparison with the driving-field configuration where the two components rotate in the same
direction, the mechanism of the intense harmonic emission is further clarified. Depending on the~unknown!
saturation intensity for the bichromatic field with counter-rotating polarizations, this scheme might be of
practical interest not only because of the circular polarization of the produced harmonics, but also because of
their production efficiency.

PACS number~s!: 42.50.Hz, 42.65.Ky, 32.80.Qk, 32.80.Wr
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I. INTRODUCTION

High-harmonic generation~HHG!, besides its intrinsic in-
terest as a highly nonlinear phenomenon of laser-atom p
ics ~see, for example, the review article@1# and references
therein!, has the potential of providing a versatile source
radiation with unprecedented properties. Usually, linea
polarized driving fields have been considered which prod
linearly polarized harmonics. A circularly polarized drivin
field does not produce circularly polarized harmonics,
rather no harmonics at all. However, circularly polarized h
monics can be generated by appropriate two-color mix
@2–6#. Such a scheme was first realized in the experimen
Eichmannet al. @2# who employed two circularly polarized
laser fields with frequenciesv and 2v with the electric field
vectors rotating in the same plane. In the case where th
two vectors rotate in the same direction, all harmonics
frequenciesnv are emitted. Their polarization is elliptic, an
their intensities drop quickly with increasing harmonic ord
n. On the other hand, in the counter-rotating case, selec
rules only allow for the emission of harmonics with freque
cies (3n61)v. Selection rules also require that these h
monics are circularly polarized with the sign of their helici
alternating from one harmonic to the next. In the experim
@2# no attempt was made to confirm the circular polarizat
of the harmonics, but the harmonic intensities were found
be high and the existence of a kind of plateau was es
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lished, which is terminated by a cutoff. Theoretical resu
@2,3#, based on the zero-range potential model, qualitativ
agree with the experimental data.

In Ref. @4# a different scheme for the production of circu
larly polarized harmonics is proposed. These authors sug
mixing a circularly polarized field with frequencyv and a
linearly polarized field with frequency 2v perpendicular to
the former. In this case, the selection rules allow for emiss
of linearly polarized harmonics with frequencies (2n
11)2v in the direction of the incidentv field and for cir-
cularly polarized harmonics with frequencies (4n61)v in
the direction of the incident 2v field @5,6#. In Ref. @4# these
ideas are confirmed with calculations employing tim
dependent density-functional theory. However, the inten
of the circularly polarized harmonics in this scheme is s
nificantly lower than that of the linearly polarized harmoni
of the pure one-color 2v field. In contrast, in the counter
rotating scheme of Ref.@2# the intensity of the circularly
polarized harmonics was observed to be quite high. In f
out of various combinations of polarizations that were e
perimentally investigated~two parallel linear polarization,
two perpendicular linear polarizations, co- and count
rotating circular polarizations! the last mentioned setu
yielded the strongest harmonic signal within a certain ran
of not too high harmonic frequency. Various aspects of
scheme of Ref.@4# and the scheme of the two counte
rotating circular polarizations were compared in Ref.@5#.
Very recently, it has been shown@7# that the superposition o
a linearly polarized laser field and a static electric field o
ented at an appropriate angle to the former is also able
generate circularly polarized harmonics.

In view of the above, there is considerable practical int
est in the generation of circularly polarized harmonics
two incident fields with counter-rotating circular polariz
tions, be it with the circular polarization of the harmonics

t-
0

s

©2000 The American Physical Society03-1



th

w
e
or
hi

ic
n

es
th

to
io
y
i

or
o

ze
rn
l t

e
o
ic
on
t

s-
s
th
oo

w

ll

a
g
ua

t
ua
III
ing
e
im
on
s
th
n
d

d
nic
or
In
d

his
la-
. III.

toff
ws
ase
rgy.
of
c.
of

ts of
of
au

the
es

the

d

he

-

en-
a
ing
as

ent
in

was

on

rgy
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mind or just because of their high intensity. However, on
theoretical side, as pointed out in Ref.@5# and explained
below, the reason of why these harmonics are produced
substantial intensity is not clear, nor is the nature of th
cutoff law. One of the aims of the present paper is to expl
the physical mechanism of harmonic emission in t
scheme.

It is well known that the cutoff position of the harmon
spectrum, generated by a linearly polarized laser field, ca
explained using the so-called three-step model@8,9#. In this
classical model the atom is ionized by the laser field~first
step!, the freed electron starting with zero velocity mov
away from the ion and back to it under the influence of
laser field~second step!, in order to recombine in the third
step, emitting a harmonic photon. This model yields a cu
harmonic energy equal to the sum of the atomic ionizat
potential uE0u and the maximal kinetic energy acquired b
the electron during its propagation in the laser field, which
3.17Up with Up the ponderomotive energy. However, f
any laser polarization other than linear, this three-step
simple-man model fails because, in this case, the ioni
electron, provided it starts with zero velocity, never retu
to the nucleus. A generalization of the simple-man mode
the case of elliptical polarization is presented in Ref.@10#. It
is based on the method of complex trajectories@11#. In the
present paper we will apply the same method to the cas
the two counter-rotating circularly polarized laser fields
Ref. @2#. This readily explains the mechanism of harmon
generation in this case and illustrates that actually, in c
trast to initial expectation, this mechanism is quite close
that in a linearly polarized driving field. Much of the discu
sion is based on a semiclassical three-step model that i
troduced in this paper. It is much simpler to handle than
exact method of complex trajectories without sacrificing t
much information.

An outline of the paper is as follows. In Sec. II we revie
the strong-field approximation~SFA! theory of the HHG
process and apply it to the case of a bichromatic elliptica
polarized laser field. Using the saddle-point method~SPM!
we show how the five-dimensional integral, that is the fin
result of the SFA theory, can be approximated by a sin
sum over the relevant complex solutions of the SPM eq
tions, which determine the initial~ionization! time t i and the
final ~recombination! time t f . Furthermore, we will connec
the obtained SPM equations with Newton’s classical eq
tion of motion for the electron in the laser field. In Sec.
we will first show that the numerical results obtained us
the SFA theory reproduce previous experimental and th
retical results. We will also explore the consequences of
perfect circular polarization of the high-frequency field
the harmonic emission rate. Next, results for stronger la
fields will be shown, and the dependence of the height of
plateau and its cutoff position on the total laser intensity a
its distribution over its two components will be investigate
The polarization properties of the harmonics are analyze
Sec. IV. We will present numerical results for the harmo
ellipticity and the offset angle of the polarization ellipse f
imperfect circular polarization of the high-frequency field.
Sec. V we introduce a novel semiclassical three-step mo
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that approximates the return time by a real number. T
model is employed to explain the characteristics of the p
teaus and their cutoffs as they have been observed in Sec
We present analytical and numerical results for the cu
law in Sec. V B. The semiclassical three-step model allo
us to optimize the laser field parameters in order to incre
the harmonic emission rate and the cutoff harmonic ene
Such an optimization with respect to the relative intensity
the two driving fields will be presented in Sec. V C. In Se
V D we will discuss and plot the real-space electron orbits
the semiclassical three-step model, which are the real par
the complex-time solutions. A more detailed explanation
the cutoff positions, as well as of the corresponding plate
structures, is presented in Sec. VI, in which we analyze
exact solutions of the saddle-point equations where all tim
are complex. The results are in good agreement with
numerical SFA calculations.

II. THEORY

We consider HHG by a bichromatic elliptically polarize
laser field with the electric field

E~ t !5
1

2i F E1

A11«1
2 ~ ê12 i«1ê2!eivt

1
E2

A11«2
2 ~ ê12 i«2ê2!e2ivtG1c.c. ~1!

where « j (21<« j<1) and Ej are the ellipticity and the
electric field vector amplitude of thej th component of the
bichromatic field, respectively, andê1 and ê2 denote two
mutually perpendicular real unit vectors. The intensity of t
j th component isI j5

1
2 «0cEj

2 @in the International System
~SI! units; in atomic units it isI j5Ej

2]. Most of the time, we
will consider two corotating or two counter-rotating circu
larly polarized fields such that«15«251 or «152«251,
respectively. Examples of these two fields, for various int
sity ratios I 1 /I 2, are displayed in Fig. 1. They show on
quick glance that the corotating and the counter-rotat
fields have a very different appearance, so it will not come
a surprise that they generate harmonics of very differ
character. We will return to this point on several occasions
the course of this paper. Photoionization by these fields
calculated in Ref.@12#.

The vector potential corresponding to the field~1! is
A(t)52* tE(t8)dt8. Frequently, we will use the quantity

a~ t !5
e

mE t

dt8A~ t8! ~e5ueu!. ~2!

Its physical meaning is the position vector of an electr
accelerated by the laser field~1! with initial conditions such
that its average position is zero. The ponderomotive ene
of the entire field is defined byUp5e2^A2(t)&/2m
5e2E1

2/(4mv2)1e2E2
2/(16mv2)5Up11Up2.

We will calculate the emission rate of thenth harmonic
with polarizationêj with the help of the formula@13,14#
3-2
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wn~ êj !5
1

8p2«0\
S nv

c D 3

uTn~ êj !u2, ~3!

where theT-matrix element is

Tn~ êj !5E
t0

t01T dtf

T
êj* •d~ t f !exp~ invt f !, ~4!

with T52p/v and arbitraryt0. The time-dependent dipol
matrix elementd(t f) between the initial and final laser
dressed atomic states, within the SFA@15#, can be approxi-
mated by@14,11,16,17#

d~ t f !52
i

\E d3q^c0uer uq1
e

\
A~ t f !&

3E
2`

t f
dti^q1

e

\
A~ t i !uer•E~ t i !uc0&

3expH 2
i

2m\Et i

t f
dt@\q1eA~ t !#21

i

\
E0~ t f2t i !J ,

~5!

FIG. 1. The electric-field vectorE(t), Eq. ~1!, of the v-2v
counter-rotating@part ~a!# and corotating@part ~b!# circularly polar-
ized laser field plotted for 0<t<T52p/v. The various panels de
pict the field for different combinations of the partial intensitiesI 1

5 i /6 andI 25 j /6 ~labeled byi 1 j ) such that the total intensityI 1

1I 251 ~in arbitrary units! is constant.
06340
whereuc0& andE052uE0u are the atomic ground state an
its energy, respectively. The terms in the exponent in E
~4! and~5! can be combined into2 iS/\. Here the quasiclas
sical actionS consists of three terms

S~q,t i ,t f !5E
t f

`

~E01n\v!dt1
1

2mE
t i

t f
dt@\q1eA~ t !#2

1E
2`

t i
dtE0 . ~6!

The equations~4!–~6! illuminate how the three-step model
embedded into a fully quantum-mechanical description:
atom, which is in its ground stateuc0&exp(2iE0t/\), tunnels
into the continuum at some initial timet i due to the interac-
tion er•E(t i) with the laser field@for times less thant i the
ground state is unperturbed by the laser field, which can
seen from the last term on the right-hand side of Eq.~6!#.
Afterwards, the binding potential is neglected and the io
ized electron propagates in the laser field@the second term on
the right-hand side of Eq.~6!#. At some final timet f the
electron returns to its starting point at the position of the
and recombines, emitting a harmonic photon with the ene
n\v. TheT-matrix element~4! specifies emission of such
photon with polarizationêj @see the first term on the right
hand side in Eq.~6! and Eq.~4!#. The five-dimensional inte-
gral in Eqs.~4! and~5! is over all initial and final times and
over all intermediate electron momenta. The total Ham
tonian has a period ofT so that, in the transition from theS
matrix to theT matrix in Eq.~4!, the limits (2`,`) of the
integral overt f are replaced by@ t0 ,t01T# following a stan-
dard procedure@13,14#. For a hydrogenlike model atom o
for a Gaussian model and for a linearly polarized laser fie
the integral over the intermediate electron momenta can
calculated analytically@11#. In the more general case of
bichromatic elliptically polarized laser field, this integral ca
be calculated by means of the method described in Ref.@16#.
We will refer to these results as ‘‘exact.’’

Extending the method of complex trajectories to fiel
that are not linearly polarized, it was shown in Ref.@10# that
the above five-dimensional integral can, to an excellent
proximation, be evaluated by means of the saddle-po
method. The result has the form

Tn~ êj !}(
s

MsFdetS ]2S

]qk]ql
D G21/2

expS 2
i

\
SsD , ~7!

where Ss[S(qs ,t is ,t f s) is the action~6! evaluated at the
saddle points, the quantityMs[M (qs ,t is ,t f s) is the product
of the ~nonexponential! matrix elements in Eq.~5!, and
qi ( i 51, . . . ,5) combines the five variables qs
[(q1s ,q2s ,q3s), t is , and t f s . The summation in Eq.~7! is
over an appropriate subset of the saddle points (qs ,t is ,t f s),
which are the solutions of the equations

m

t f2t i
@a~ t i !2a~ t f !#5\q, ~8!
3-3
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1

2m
@\q1eA~ t i !#

25E0 , ~9!

1

2m
@\q1eA~ t f !#

25n\v1E0 . ~10!

These equations have intuitive physical meaning. Equa
~8! ensures that the electron returns to its starting po
r (t f)5r (t i), while Eqs.~9! and ~10! express energy conse
vation at timest i andt f , respectively. The right-hand side o
Eq. ~9! is negative, and as a consequence the solut
(qs ,t is ,t f s) are complex. The quantityp5\q in Eq. ~8! is
the canonical momentum of the electron on its orbit fort i
<t<t f , which is a constant of motion. A more detailed e
planation of the connection with classical mechanics will
given below. The momentump can be substituted in th
remaining equations~9! and~10! so that, practically, we have
to solve a system of four real equations for the variab
Ret i , Im t i , Ret f , and Imt f . We will present these solu
tions in Sec. VI.

At the end of this section it is worthwhile mentioning th
the system of equations~8!–~10! can be connected with
Newton’s classical equation of motion for an electron in t
laser field, which ismr̈ (t)52eE(t). The solution of this
equation, with the initial conditionsr (t i)5r i andv(t i)5vi ,
is

mv~ t !5e@A~ t !2A~ t i !#1mvi , ~11!

r ~ t !2r i5a~ t !2a~ t i !2F e

m
A~ t i !2vi G~ t2t i !. ~12!

The condition that the electron returns to its starting po
r (t f)5r i leads to m@a(t i)2a(t f)#/(t f2t i)5mvi2eA(t i)
5p, which agrees with Eq.~8!. The energy conserving con
dition ~9! demands the equality of the electron’s initial k
netic energy in the laser field, which ismvi

2/2, to its energy
E0 in the atomic ground state. This requirement can only
satisfied for a complex velocityvi such that Revi•Im vi50
and (Revi)

22(Im vi)
252E0 /m. Similarly, for the energy

conserving condition at the timet f one has mv2(t f)/2
5n\v1E0. The electron’s velocity at timet f satisfies the
conditions Rev(t f)•Im v(t f)50 and @Rev(t f)#2

2@ Im v(t f)#252(n\v1E0)/m. The complex times and ve
locities are alien to classical mechanics, but enforced by
electron’s origin through tunneling. In Sec. V D we w
show that the classical orbit can be extracted as the real
of Eq. ~12!.

III. NUMERICAL RESULTS FOR
THE HARMONIC EMISSION RATE

In this section we will present ‘‘exact’’ results for th
harmonic emission rates( jwn(êj ), obtained by numerica
integration of Eqs.~3!–~5!. We will take the laser field and
atomic parameters of Ref.@2#. For a hydrogenlike mode
atom we use the ionization potential of argon (uE0u
515.76 eV), while for the zero-range potential model w
06340
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use uE0u511.6 eV ~see Refs.@2,3#!. For the results pre-
sented in Figs. 2 and 3 we took the intensities of the t
laser field components as determined in Ref.@2# in order to
give an optimal description of the experimentally observ
one-color spectra. These values areI 151.3331014 W/cm2

FIG. 2. Harmonic emission rates as functions of the harmo
order for the hydrogenlike model atom with the ionization poten
of argon (uE0u515.76 eV). The intensities of the laser field com
ponents areI 151.3331014 W/cm2 and I 250.5831014 W/cm2.
The harmonic yields for counter-rotating and corotating circula
polarized fields are represented by filled circles and triangles,
spectively. Open symbols correspond to the same results obta
by neglecting those contributions to the time-dependent dipole
trix element that come from travel timest5t f2t i shorter than one
optical cycleT. The photon energies are\v1[\v51.6 eV and
\v252\v.

FIG. 3. Harmonic emission rates as functions of the harmo
order for the zero-range potential model with the ionization pot
tial uE0u511.6 eV and for the same laser field intensities and f
quencies as in Fig. 2. The yields for corotating fields~each multi-
plied by the factor 103) are represented by the filled~open! triangles
for «251 («250.9). The yields for the counter-rotating case a
represented by a solid line for circular polarization of the seco
component, and by filled circles for imperfect circular polarizati
of the second field component, modeled by«2520.9.
3-4
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GENERATION OF CIRCULARLY POLARIZED HIGH- . . . PHYSICAL REVIEW A61 063403
andI 250.5831014 W/cm2. Results for stronger laser field
presented in Fig. 4, correspond to equal intensities of
laser field components. The photon energies are\v1[\v
51.6 eV and\v252\v.

In Fig. 2 we compare harmonic spectra obtained using
hydrogenlike model atom@11,16# for corotating («15«2
51) and for counter-rotating («152«251) circularly po-
larized fields. One can see that in the corotating case
harmonics of frequenciesnv are emitted, but with emission
rates that are much lower than those of the harmonics in
counter-rotating case. In the latter only the harmonics (n
61)v are found and they form a plateau with its cuto
around 20v. These findings agree both with the theoretic
and experimental results presented in Refs.@2,3#. In Fig. 2
we have also presented the rates obtained by excluding
the integral in Eq.~5! the contributions of travel timest
5t f2t i shorter than one optical cycle. The harmonic em
sion rates calculated in this way are, for almost all harm
ics, lower by orders of magnitude than the ‘‘exact’’ resul
particularly so for low-harmonic orders. This shows that t
main contribution to the harmonic emission rate comes fr
the recombination of those electrons that return during
first optical cycle (t,T). In Sec. V D we will explicitly
identify the corresponding electron trajectories.

Figure 2 immediately draws attention to the fact that
yields at a specific harmonic frequency differ by many ord
of magnitude in the corotating and in the counter-rotat
case. This difference largely disappears, however, if
adopts a different point of view: in the counter-rotating ca
absorption of one photon with frequency 2v and another one
with frequencyv preserves angular momentum and rais
the energy by 3v. In contrast, in the corotating case, if a

FIG. 4. Harmonic emission rates as functions of the harmo
order for the hydrogenlike model atom with ionization potent
uE0u515.76 eV and equal intensities of the two counter-rotat
field components such thatI 15I 25 i 31014 W/cm2. The yields are
labeled byCi, where i 52 ~dotted line!, 4 ~dashed line with tri-
angles!, 6 ~long-dashed line!, and 8~solid line!. The photon energy
is \v51.6 eV. The rates for a linearly polarized monochroma
driving field with frequencyv and intensitiesI 5231014 W/cm2

and 631014 W/cm2 are represented by stars and filled circles a
denoted byL2 andL6, respectively.
06340
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gular momentum is to be conserved then absorption of
photon with frequency 2v must be followed byemissionof
the photon with frequencyv, and in the combined proces
the energy is only raised byv. If one assumes that the yiel
roughly decreases with the total number of photons emi
or absorbed, then one should compare the yield at some
quencyV in the corotating case to the yield at 3V in the
counter-rotating case. Indeed, these two yields are of
same order.

In Fig. 3 we display harmonic spectra for the same la
parameters as in Fig. 2, but for the zero-range poten
model withuE0u511.6 eV.~In Ref. @2# this value was chosen
with the reasoning that the one parameter of the zero-ra
potential, viz., its binding energy, should be adjusted to
energy difference between the ground state and the first
cited state.! We also demonstrate the effects of imperfe
circular polarization of the high-frequency field. For elliptic
ties «151 and«2520.9, the symmetry that prevents ge
eration of harmonics of frequency 3nv is broken. As a con-
sequence, these harmonics are now visible, but they are
suppressed by about two orders of magnitude. The ninth
monic was detected in the experiment@2# and suppressed b
the same amount. This suggests that the ellipticity of thev
field in this experiment was around 0.9. For the corotat
case~triangles! the rates are again much lower. Remarkab
in this case, the harmonics for the imperfect circular pol
ization («250.9, open triangles! have emission rates that ar
significantly higher, but still too low to be of any practica
importance.

In Ref. @2#, the saturation intensity was estimated to
231014 W/cm2, but for shorter pulses this intensity can b
higher. Figure 4 exhibits harmonic spectra forI 15I 25(2
48)31014 W/cm2. For comparison, we include the spect
for a linearly polarized monochromatic field with frequen
v having intensity I 5231014 W/cm2 ~stars! and 6
31014 W/cm2 ~filled circles!. The figure shows that the har
monic emission rates for the bichromatic counter-rotat
circularly polarized fields~each of intensityI ) are generally
larger than those of the linearly polarized laser field~with
intensityI ). Furthermore, the structure of the spectra is qu
different in these two cases. In contrast to the linearly po
ized laser field, which generates a plateau with a rat
abrupt cutoff, for the bichromatic counter-rotating circular
polarized fields two plateaus appear. The first one is hig
and shorter. It is this plateau that was observed in the exp
ment @2#. The second plateau is longer and better descri
as an inclined plane. Its length is proportional to the la
intensity. Compared to linear polarization, its cutoff is le
well defined.

Figure 5 compares harmonic spectra such that the t
intensity of the two fields is kept constant while the ratio
the intensities of the two components varies:I 15 i
31014 W/cm2 and I 25 j 31014 W/cm2, where i 1 j 56.
The remaining parameters are the same as in Fig. 4.
figure suggests there is an optimum value of the ratioI 2 /I 1
of about 2, for which the emission rate has a maximum a
the cutoff is highest. Away from this optimal ratio in eithe
direction, but much quicker towards small values ofI 2 /I 1,
the cutoff recedes and the yields drop. In contrast to
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MILOŠEVIĆ, BECKER, AND KOPOLD PHYSICAL REVIEW A61 063403
results of Fig. 4 for the lower intensities, the harmonic sp
tra for the cases ‘‘214’’ and ‘‘115’’ now closely resemble
harmonic spectra for linear polarization. They no longer ha
the shape of an inclined plane.

In order to assess whether or not the scheme of the
counter-rotating circular polarizations has any advant
over the standard setup of one monochromatic linearly
larized pulse, insomuch as the harmonic efficiency is c
cerned, it is necessary to estimate the saturation intens
for these two scenarios. Unfortunately, there are no d
available, neither experimental nor accurate theoretical,
ionization by the bichromatic counter-rotating circular pola
izations. In the tunneling regime, all approximate theoreti
expressions for ionization rates, such as the Ammosov,
lone, and Krainov~ADK ! rate @18#, are ultimately based on
the paradigm of tunneling out of a short-range-poten
bound state owing to an applied time-independent unifo
electric fieldE. This rate has the form of a prefactor time
the exponential

R;expS 2
4A2muE0u3

3e\E D ~13!

and is governed by the exponential. In order to treat a tim
dependent fieldE(t) in the context of a quasistatic approx
mation, one may replaceE by uE(t)u in the rate~13! and
average over time. Up to a prefactor, this procedure retu
the exponential~13!, with E now being the peak field, as th
dominant part of the rate. In those cases that are amenab
a more exact approach, such as ionization in a linearly
circularly polarized monochromatic field, this procedure h
been justified. Hence, it is reasonable to assume that the
ponential~13! also determines the order of magnitude of t
ionization rate for the two counter-rotating circular polariz

FIG. 5. Harmonic emission rates as functions of the harmo
order for various intensities of two components of the laser fi
such that the total intensity is constant:I 15 i 31014 W/cm2 and
I 25 j 31014 W/cm2. In the legend the various spectra are labe
by i 1 j . Otherwise, the parameters are the same as in Fig. 4.
rates for a linearly polarized laser field with intensityI 53
31014 W/cm2 are represented by stars for the frequencyv (L3-v
curve! and by filled triangles for the frequency 2v (L3-2v curve!.
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tions. In view of its exponential dependence of the field,
expression~13! predicts a dramatic difference between t
rates for linear and for circular polarization at the same
tensity, since for the former the peak field is higher than
the latter by a factor ofA2.

For our field~1! with «156«251, the peak field is (E1

1E2)/A2 while the intensity isI 5I 11I 25E1
21E2

2. Let us
take E15E cosl and E25E sinl so that the peak field is
E(cosl1sinl)/A2,E. Hence, the peak field is alway
smaller than it would be for linear polarization, where it
just E for the same intensityI 5E2. However, it is not sub-
stantially smaller as long as the two intensities remain co
parable. For example, forI 254I 1 we have a peak field o
0.95E. In view of the extremely nonlinear dependence of t
exponential~13! on the peak field, this may already cau
substantially different ionization rates and, in consequen
saturation field strengths.

For comparison, Fig. 5 also exhibits the harmonic sp
trum obtained for a linearly polarized one-color laser fie
On the basis of the considerations of the previous paragr
we took for the comparison an intensity of 331014 W/cm2,
both for the frequencyv ~stars! and for 2v ~solid triangles!.
This is half the total intensity of the two-color counte
rotating configuration. If we compare the harmonic yields
the optimal two-color configuration~‘‘2 14’’ ! with the one-
color yields, we realize that there is a certain region of h
monics, with harmonics numbers between 25 and 40, wh
the two-color scheme provides the highest efficiency, by
to two orders of magnitude. For lower harmonic numbe
the linearly polarized field with frequency 2v produces the
higher yield, while for higher harmonic numbers the fie
with frequencyv is more efficient. If the ratio of the satura
tion intensities for the two-color field over the one-color fie
further increases, the advantage of the two-color field w
regard to the one-color field becomes dramatic, otherwis
shrinks.

Figure 6 shows comparable results for helium atoms
for higher laser field intensities. The conclusions are mu
the same. Again, an intensity ratio of roughly 1:2 genera
at the same time the most efficient harmonic output and
highest cutoff. Again, in comparison with one-color linear
polarized driving fields of either frequency, there is a wi
dow where the two-color field is most efficient. Again, th
comparison was made for the one-color field having ab
half the total intensity of the two-color field.

IV. POLARIZATION PROPERTIES OF THE HARMONICS

According to symmetry considerations@5#, in the counter-
rotating case the harmonics are circularly polarized with
lipticities «3n618 561, i.e., «4851, «58521, «7851, «885
21, and so on. This conclusion is valid when both fields
counter-rotating exactly in the same plane and both polar
tions are exactly circular. However, in any experiment
variably there will be some deviation from this ideal cas
Here we consider the implications of having imperfect circ
lar polarization for the high-frequency field such thatu«2u
,1. We have shown~see Fig. 3! that a small change of«2
has little effect on theemission ratesof the relevant harmon-
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GENERATION OF CIRCULARLY POLARIZED HIGH- . . . PHYSICAL REVIEW A61 063403
ics. We now investigate the influence of this change on
polarizationof the harmonics.

In order to consider the ellipticity«n8 of thenth harmonic,
we introduce the following vector, formed by theT-matrix
elements~4!,

Tn5(
j

Tn~ êj !êj5uTnuen8 , ~14!

where

en85
ê1n8 1 i«n8ê2n8

A11«8n
2

~15!

is a unit complex polarization vectoren8•en8* 51, and the real

orthonormal unit vectorsê1n8 andê2n8 define thenth harmonic
polarization ellipse, which is rotated by an offset angleun
with respect to the polarization ellipse of thev and 2v fields
~defined byê1 and ê2). All vectors defined above are or
thogonal to the wave vectork5v k̂/c. The time-dependen
nth-harmonic electric-field vector can be defined asTn(t)
5Re@Tn exp(2invt)#. Generally, the ellipticity« is con-
nected with the circular polarization degreez by the formu-
las

z5
2«

11«2
5 i k̂•~e3e* !, «5sgn~z!S 12A12z2

11A12z2D 1/2

.

~16!

It can be shown@14,19# that the circular polarization degre
zn8 and the offset angleun of thenth harmonic can be written
in terms of ourT-matrix elements as

FIG. 6. Harmonic emission rates as functions of the harmo
order for helium atoms with the ionization potentialuE0u
524.6 eV. The results for the bichromaticv-2v circularly polar-
ized laser field with the counter-rotating components having int
sities I 15 i 31014 W/cm2 and I 25 j 31014 W/cm2 are denoted by
Ci1 j , while the results for the monochromatic linearly polariz
laser field with the intensityI 51531014 W/cm2 are denoted by
L15–v and L15–2v for the field with the frequencyv and 2v,
respectively. The laser photon energy is\v51.6 eV.
06340
e

zn85
Im Mn

Nn
(1)

, tan 2un5
ReMn

Nn
(2)

, ~17!

where

Nn
(6)5uTn~ ê1!u26uTn~ ê2!u2, Mn52Tn* ~ ê1!Tn~ ê2!.

~18!

Figure 7 then presents the harmonic ellipticities«n8 and
the offset anglesun as functions of the harmonic order fo
various values of the ellipticity of the 2v field from
20.999 to20.85, and for two different values of the las
field intensities:~a! I 15I 25231014 W/cm2 and ~b! I 15I 2
5431014 W/cm2. For u«2u close to 1 the harmonic elliptici-
ties «3n618 are very close to circular polarization. Howeve
the offset angle is different from zero even for«2520.999,
and its value is almost independent~for the results presented!
of the value of«2. The offset angle strongly depends on t
harmonic order and on the laser field intensities, as can
seen from the bottom panels of Figs. 7~a,b!. The absolute
value of the harmonic ellipticity generally increases with i
creasing harmonic order. The influence of the imperfect
of the 2v circular polarization is larger on the ellipticity
«3n218 than on«3n118 , especially for the lower harmonics
For «2520.9, the value that probably corresponds to t
conditions of the experiment@2#, the harmonic ellipticities
«3n118 are larger than 0.9 forn<13 in Fig. 7~a!, while, for
example,«118 520.62.

V. A SEMICLASSICAL THREE-STEP MODEL

A. The model

The three-step model was originally formulated for HH
in a linearly polarized laser field@8,9#. In the simplest
~simple-man! version of this model one supposes that t
electron appears in the continuum with zero initial veloc
vi50 at the position of its parent ion. Its subsequent class
motion in the laser field is then restricted to one dimensi
viz., the direction of the laser field. The binding energyE0
never enters this model.~We will speak of a ‘‘simple-man
model’’ whenever the electron is ‘‘put by hand’’ into th
continuum, i.e., whenever its binding energy is ignored.! In
the case of an elliptically polarized laser field, ifvi50 as for
linear polarization, the electron never returns to its start
point and this model is no longer applicable.

We will now formulate a semiclassical three-step mod
that allows for both a nonzero initial velocity and a nonze
binding energy. It is because of the latter that we cal
semiclassical, since invariably it will involve tunneling. Le
us consider the saddle-point equations~8!–~10!. As a conse-
quence of Eq.~9!, since the binding energyE0 is negative,
both the canonical momentum\q and the start timet i have
to be complex~it is easy to convince oneself that just one
the other being complex will not solve the equations!. The
return timet f then comes out complex as well. We will dis
cuss these exact solutions of the saddle-point equations
low in Sec. VI. Here we will resort to an approximation: w
anticipate from Sec. VI and from earlier work@10,20# that, in
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FIG. 7. Harmonic ellipticities«n8 and offset anglesun as functions of the harmonic order for various values of the ellipticity of
high-frequency field:«2520.999 ~solid curve!, 20.99 ~dotted curve!, 20.95 ~dashed curve!, 20.9 ~long-dashed curve!, and 20.85
~dot-dashed curve!, and for two different values of the laser field intensities:~a! I 15I 25231014 W/cm2 and ~b! I 15I 254
31014 W/cm2. The other parameters are the same as in Fig. 4.
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marked contrast to the start time, the imaginary part of
return time is very small. Hence we will assume that t
return timet f is real.

Eliminating, first, the canonical momentumq with the
help of Eq. ~8! and, second, the start time in favor of th
travel timet5t f2t i , we rewrite Eq.~9! as

1

2m H m

t
@a~ t f2t!2a~ t f !#1eA~ t f2t!J 2

5E0 . ~19!

We will solve this equation for the travel timet for a fixed
final time t f . The travel timet will, of course, be complex.
For eacht fP@ t0 ,t01T# there is an infinite number of solu
tions t j ( j 51,2, . . . ). It turns out that the set of all thes
solutions, $t j (t f),t fP@ t0 ,t01T#, j 51,2, . . .%, forms a
single continuous curve in the complext plane such that
Im t is a single-valued function of Ret @21#. Using these
solutions one can both estimate the probability of harmo
emission and calculate the energy of the emitted harmon
According to Eq.~5!, the contribution from the travel timet j
to the time-dependent dipoled(t f)}( jd(t f ,t j ) is

ud~ t f ,t j !u}
exp@ Im S~q,t f2t j ,t f !/\#

ut j u3/2
, ~20!

where the term in the exponent is the imaginary part of
quasiclassical action~6!, while the factorut j u3/2 comes from
06340
e
e

ic
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the integration over the intermediate electron momenta
reflects wave-packet spreading. Below, we will occasiona
refer tod(t f ,t j ) as the partial time-dependent dipole. On t
other hand, according to Eq.~10!, the emitted harmonic en
ergy n\v is the sum of the ionization potentialuE0u and the
electron’s kinetic energymv2(t f)/2 at the momentt f of re-
combination. The electron’s velocity in the laser field,v(t f)
5@p(t f2t,t f)1eA(t f)#/m is complex becauset is com-
plex. Equation~10! now yields a complex harmonic energ
since, in general, Rev(t f)•Im v(t f)Þ0. This is a conse-
quence of our assumption above of a real return timet f . As
mentioned above, the imaginary part oft f is small and so is
Im v(t f). Therefore, we will ignore the imaginary part of Eq
~10!. We then have

n\v5uE0u1
m

2
$@Rev~ t f !#

22@ Im v~ t f !#
2%,

mv~ t f !5
m

t
@a~ t f2t!2a~ t f !#1eA~ t f !. ~21!

Let us consider the solutions for the complex timet for
the bichromatic counter-rotating circularly polarized las
field whose harmonic emission rates are given by the cu
C4 in Fig. 4. In the lower panel of Fig. 8 we plot, by a sol
line, the quantity2Im t as a function of Ret for Ret
P@0,2T#. In addition to these complex solutions fort, with
3-8
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GENERATION OF CIRCULARLY POLARIZED HIGH- . . . PHYSICAL REVIEW A61 063403
negative values of Imt, there are also complex conjuga
solutionst* with positive Imt. These are unphysical an
must be discarded as they lead to an exponentially increa
emission probability. We also show in the lower panel
Fig. 8, as a dot-dashed line, the partial time-dependent
pole, obtained according to Eq.~20!. Clearly, there are two
regions of Ret for which this quantity has a maximum. Pre
sumably, these will dominate the harmonic response.
upper panel of Fig. 8 displays the harmonic energy cal
lated from Eq.~21! as a function of Ret. The maxima agree
with the upper cutoff in Fig. 4 aroundn550.

The lower panel of Fig. 8 also displays, as a dashed l
an approximation to the partial emission rate~20! that is
obtained using the following expansion of ImS in powers of
Im t,

Im S~q,t f2t,t f !52
e

3

]

]t iR
@E~ t iR!•viR#~ Im t!3

1O@~ Im t!5#, ~22!

wheret iR[t f2Ret, and the real part of the initial velocity
is viR5@a(t iR)2a(t f)#/Ret1eA(t iR)/m. One can see tha
this approximation agrees reasonably well with the exact
pression~20!.

In conclusion, this semiclassical three-step model c
tains most of the relevant information about the HHG p
cess. The crucial quantities are the complex travel tim

FIG. 8. Semiclassical three-step model analysis of HHG in t
counter-rotating circularly polarized laser fields with photon en
gies \v51.6 eV and 2\v, and with the intensitiesI 15I 254
31014 W/cm2. The ionization potential isuE0u515.76 eV. Lower
panel: Imaginary part of the complex travel timet ~solid line! and
the partial time-dependent dipoled(t f ,t j ) ~dot-dashed line! as
functions of the real part of the travel timet. Both Ret and Imt
are expressed in optical cyclesT52p/v ~note that Imt is nega-
tive!. The exact partial time-dependent dipole~20! and its approxi-
mation ~22! are represented by the dot-dashed and the dashed
respectively, and expressed in a.u./500. Upper panel: Harmoni
dern, obtained by introducing the solutions fort into Eq.~21!, as a
function of the real part oft/T. The two maxima of the estimate
partial time-dependent dipole are identified by vertical arrows
connected to the curven5n(Ret/T) in the upper panel.
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These are found as solutions of the energy conserving c
dition at the moment of ionization. They are complex b
cause the electron is born in a tunneling process. The im
nary part of the travel time determines the probability of t
process, while the real part is related to the harmonic ene
The latter can be found using Newton’s classical equation
motion for the electron in the laser field. A vital feature
the model is that the electron starts on its orbit with nonz
complex velocity whose value is determined by the condit
that it return to the origin. Finally, we mention that repeati
the calculations of Fig. 8 with a binding energy of zero on
insignificantly changes the results. In the nomenclature
we suggested above, this would be referred to as a sim
man model.

B. Cutoff law

In Sec. V A we have shown that the main contribution
the harmonic emission rate comes from electrons with tra
times such that Ret,T/2. @In Sec. VI we will show that this
contribution corresponds to one particular complex traj
tory, denoted by2 in Figs. 13 and 14~a!.# In this region of
Ret, the harmonic order has one maximum~see the upper
part of Fig. 8! which determines the cutoff of the harmon
spectrum. This cutoff can be found as the first maximum
the functionn\v(t), Eq. ~21!. For equal intensities of the
laser field componentsI 15I 2, we obtain the following cutoff
law:

nmax\v5
1

A2
3.17Up11.2uE0u. ~23!

This should be compared to the well-known cutoff law for
linearly polarized laser field:nmax\v53.17Up11.3uE0u ~see
Refs. @8,11#!. It agrees with the numerical results present
in Fig. 4.

For the case of different intensities of the laser field co
ponentsI 1ÞI 2, we determine the maximum of the electron
kinetic energyEkin,max as a function of the ratio of the inten
sity of the second laser field component and the total int
sity R5I 2 /(I 11I 2). For E050, this is equal to the maxi-
mum of the harmonic photon energy. In Fig. 9 we plot, by
solid line, Ekin,max divided by the ponderomotive energ
Up(R). In order to specify the absolute value ofEkin,max as a
function of R we also present, with a dashed line,Ekin,max
divided by the ponderomotive energy calculated atI 15I 2.
The ratio of these two ponderomotive energies
Up(R)/Up(R50.5)52(423R)/5. We excludeR,0.05 and
R.0.95 because in these regions the polarization of the la
field is close to circular and the harmonic emission rate
negligible. From Fig. 9 one can see thatEkin,max/Up(R) ~solid
line! increases with increasingR up to a maximum value of
2.54 at R50.84. On the other hand,Ekin,max/Up(R50.5)
~dashed line! decreases monotonically with increasingR. All
of this agrees with the numerical results presented in Fig

C. Optimization of the harmonic emission rate

Figure 8 shows that the functions exp(ImS/\)/utu3/2 and
n(Ret/T) do not assume their maxima at the same positio
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In Sec. V B we have explored the cutoff harmonic ordern as
a function of the ratioR. It is of comparable interest to max
mize the emission rate with respect to both the ordern and
the ratioR. Hence, in this subsection we analyze the par
emission rateDwn(t)[exp(2 ImS/\)un/tu3. This rate can
easily be obtained within our semiclassical three-step mo
@cf. Eq. ~20!#. Figure 10 displays, as a solid line, the functio
Dwn,max[maxtDwn(t) as a function of the normalized inten
sity ratio R5I 2 /(I 11I 2), for I 11I 25831014 W/cm2, and
the other parameters as in Fig. 8. It is interesting to obse
that Dwn,max(R) does not reach its maximum forI 15I 2, but
for I 2.I 1. Hence, in order to attain the highest emission r
one has to employ a disproportionately large intensity of
high-frequency component. This is in agreement with
numerical results presented in Fig. 5. The optimal value
the parameterR, in the present case, isR50.68, which
means I 2'2I 1. The harmonic photon energyn\v5Ekin
1uE0u that corresponds to the value oft for which Dwn(t)
has its maximum is plotted again in two different way
scaled to the ponderomotive potentialUp(R) ~dashed line!
and to the ponderomotive potential for equal intensities
the laser field components~dot-dashed line!. In the former
case, the maximum of the rate and the maximal harmo
order roughly coincide.

D. Real-space electronic trajectories

In the preceding subsections we have shown that the
havior of the harmonic emission rates can be adequately
cussed in terms of electronic trajectories that have a
return time, but a complex travel time. If so, is it possible
assign physical meaning to the associated complex traje
ries? Here we will make the case that the answer is affir
tive.

FIG. 9. The maximal kinetic energy of the electron according
the semiclassical three-step model as a function of the ratio of
intensity of the second laser field component over the total inten
R5I 2 /(I 11I 2). Solid line: Ekin,max divided by the ponderomotive
energyUp(R). Dashed line:Ekin,max divided by the ponderomotive
energyUp(R50.5) for equal intensities (I 15I 2). The cutoff law
for I 15I 2 , Ekin,max53.17Up /A2, is emphasized in the figure.
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According to Fig. 8, for a fixedn we concentrate on a
particular solutiontn which, in turn, implies an associate
value of t f . The corresponding trajectoryrn(t8), t f2Ret
<t8<t f , is then obtained as the solution of the classi
equation of motion@see Eq.~12!#

rn~ t8![Re@r ~ t8!2r ~ t f2t!#

5
\

m
~ t82t f !Req~ t f2t,t f !1a~ t8!2a~ t f !. ~24!

Similarly, for the real electron velocity along this trajecto
we obtain

vn~ t8![
e

m
A~ t8!1

\

m
Req~ t f2t,t f !. ~25!

In the preceding two equations, we have explicitly writt
the canonical momentumq as a function of its two variables
t i5t f2t andt f . Notice thatrn(t f)50, since we assumedt f
as real, whiler (t f2Ret)Þ0 sincet f2RetÞt i . The start
time t i is complex, after all.

In Figs. 11 and 12 we present such real-space trajecto
for the same example that we have considered in Sec. V
Figure 11 depicts the four trajectories that correspond to
first four maxima of the harmonic order as a function of t
real part oft as shown in the upper part of Fig. 8. Each cur
is labeled with the corresponding values ofn. The corre-
sponding values of Ret/T are given in the caption of Fig
11. As mentioned above, the curves do not start at the ori
but at some distance of about 4 a.u. away from it. In a t

e
ty

FIG. 10. Maximal partial emission ratedwn,max ~solid line! and
the corresponding harmonic photon energyn\v5Ekin1uE0u as
functions of the ratioR5I 2 /(I 11I 2). The dashed~dot-dashed! line
shows the harmonic photon energy divided by the ponderomo
energyUp(R) @constant ponderomotive energyUp(R50.5)]. The
results are obtained from the semiclassical three-step model.
laser field and atomic parameters are the same as in Fig. 8, ex
that the intensities of the laser field components vary such that
sum of the intensities is constant and equalsI 11I 258
31014 W/cm2.
3-10
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GENERATION OF CIRCULARLY POLARIZED HIGH- . . . PHYSICAL REVIEW A61 063403
neling picture, this would be called the ‘‘exit of the tunnel
In contrast, they terminate exactly at the origin. The traj
tory in Fig. 11 with the shortest travel time, labeled byn
551, corresponds to the first maximum of the functionn
[n(Ret) in Fig. 8. This trajectory starts at the poin
(4.3,0.8); it first moves in the negativey direction and then
slowly turns until it travels by an angle of 57.2° with respe
to the negativey axis. After its maximal excursion at th
point (20.6,29.7), the electron on this trajectory turns ba
and moves almost opposite to its former direction. Finally
terminates exactly at the origin with the kinetic energy th
allows for the emission of the harmonicn551. The other
orbits are longer and more complicated. They all have a
angular shape that reflects the threefold symmetry of thev –
2v counter-rotating circularly polarized field case@cf. Figs.
12~c! and 1#. We will show in Sec. VI that the most relevan
of these trajectories is the one that corresponds to the t
maximum ofn in Fig. 8, labeled byn535. It has the shape
of a triangle with its base along thex axis: the electron re-
turns practically along this axis.

Figure 8 suggests that the main contribution to the h
monic emission rate comes from travel times shorter t
0.5T. In Fig. 12~a! we investigate in more detail trajectorie
that correspond to these travel times. The shortest orbit
sented~bold solid line! has Ret50.223T and n519. The
electron on this trajectory is never further away from t
origin than 5 a.u. Strictly speaking, the picture of quantu
orbits has little physical significance in this case, since
orbits never leave the region of a realistic binding potent
Emission of the associated harmonic is genuinely quan
mechanical and the visualization in terms of classical or
does little to elucidate the physics. However, for increasinn
~and, also, increasing Ret) Fig. 12~a! shows the orbits be
coming longer and longer. The orbit that corresponds to
maximal harmonic ordern551 has already been discuss

FIG. 11. Electron trajectories for the same laser field and ato
parameters as in Fig. 8, obtained from the semiclassical three
model. Four trajectories are presented that correspond to the
four maxima of the harmonic ordern as a function of the Ret as
depicted in the upper panel of Fig. 8. Each trajectory is labeled
the corresponding values ofn; the respective values of Ret/T are
identified in the upper left corner.
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above. Upon a further increase of Ret, the electron’s excur-
sion becomes still larger, but the corresponding harmo
energy reduces~cf. the dotted curve labeled 43!. This agrees
with what is expected from the curven[n( Ret) plotted in
the upper panel of Fig. 8.

The velocities~25! corresponding to the orbits of Fig
11~a! are displayed in Fig. 11~b!, and the electric-field vecto
E(t) of the driving field responsible for these harmonics
traced in Fig. 12~c! over its period from2T/2 to T/2. The
initial ~ionization! times and the final~recombination! times
of the four harmonics considered in Fig. 12~a! are marked by
stars and filled circles, respectively, and the numbers in F
12~b,c! indicate the corresponding harmonic ordersn. For
example, the electron that recombines emitting the harmo
n551 is ‘‘born’’ at t520.1211T with a large velocity com-
ponent in the negativey-axis direction. Under the action o
the forceF(t)52eE(t), both velocity components increas
The x component of the electric field changes its sign at
point E(0)50, so that the electron’s velocity componentvx
starts decreasing. In contrast, the componentvy keeps in-
creasing, up to the final timet5t f , when bothvy and uvxu
have maxima. A similar analysis can be done for the ot
values ofn. For all cases presented in Fig. 12, ionizati
happens near a maximum of the electric-field amplitu
uE(t)u, so that the probability of the process is high. Fro
Fig. 12~b! it follows that the kinetic energymv2(t f)/2 has a
maximum for the curve labeled 51, which agrees with o
previous results.

The orbits depicted in Fig. 12~a! ~excluding the lowest
harmonic numbern519) are quite similar to the orbits fo
HHG in a linearly polarized field. The reason becomes cl
from Fig. 12~c!. In between the start time and the return tim
the x component of the electric field changes from its neg
tive maximum to~and beyond! its positive maximum while,
in comparison, itsy component remains small. Its effect
compensated by they component of the initial velocity~oth-
erwise, the electron would be unable to return to the orig!.
However, according to Fig. 12~b!, this initial y component
gradually increases fromn519 ton543 ~dotted curve!, and
in consequence, the intensities of the harmonics decre
This pattern repeats itself three times during each cycle
the field, each time rotated by 120°. If one were able
separate the contribution to the harmonic spectrum from
one-third of the period, the polarization of the harmon
would be largely linear. It is the superposition of the thr
contributions from each cycle that generates the circular
larization of the harmonics.

VI. EXACT SADDLE-POINT ANALYSIS

In this section, we will consider the exact numerical s
lutions of the SPM equations~8!–~10! for the same example
as in Sec. V A, not making the approximation of a real retu
time t f . The easiest way to extract the physical informati
from these solutions is to present the imaginary part of
final ~recombination! time t f as a function of the real part o
the travel timet. This is done in Fig. 13~a!, for the solutions
such that Ret does not exceed two optical cycles. For ea
value of the harmonic ordern, which we continuously
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tep
rst

y
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FIG. 12. Electron trajectories~a! and velocities~b! for some representative examples of short travel times Ret,T/2. The laser field and
atomic parameters are the same as in Figs. 8 and 11. The respective values of the harmonic ordern are given to the right of the curves.~c!
The curve traced out by the electric-field vectorE(t) for 2T/2<t<T/2 in the direction specified by the arrows. For some points on
curve, the timet is indicated. The times for which the investigated orbits~a! and~b! start and terminate are marked by stars and filled d
respectively, and the respective harmonic orders.
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change fromn54 to n570, we have found 11 solution
(t i ,t f), denoted by the numbers in italics in Fig. 13~a!. We
restrict the plot of Imt f /T to the narrow interval20.05
<Im t f /T<0.05 because for large values of Imt f /T the
probability of the HHG process is low. Practically, alrea
for uIm t f /Tu>0.01 the harmonic emission rates are all b
negligible.

Figure 13~a! must be compared with Fig. 8. It contain
much the same, but also some additional information. F
we notice that for some particular values of Ret the quantity
Im t f /T goes to infinity. These values correspond exactly
the extrema ofn(Ret) in the upper part of Fig. 8. We divide
the curven(Ret) into segments such that each segmen
bordered by two adjacent extrema. Then each segment
responds to a particular solution that is labeled by a num
in italics in Fig. 13~a!. We can see by inspection how th
saddle-point method heals a deficiency of the semiclass
three-step model: the latter is unable to describe harmo
above or below the respective extrema in Fig. 8. In contr
the saddle-point method reproduces those as well, sinc
06340
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keeps the imaginary part of the return time, which increa
quickly when the harmonic number exceeds a classical
off ~or goes below a minimum!. This can be followed in Fig.
13~a! by means of the occasional values of the harmo
numbers that are provided. In general, the larger the abso
value of Imt f , the smaller is the contribution to the ha
monic spectrum.

This comparison between the semiclassical three-s
model and the exact saddle-point analysis is made quan
tive in Fig. 13~b!. In its upper part, we comparen(Ret)
calculated from the exact saddle-point method~the broken
curve! and from the semiclassical three-step model~the solid
line, reproduced from Fig. 8!. This shows that the two result
are virtually identical except near the extrema ofn(Ret) and
for very short times Ret/T. The exact saddle-point metho
being fully quantum mechanical does not yield extrema
the harmonic number. Also, for very short travel times, t
former exhibits a gap in the travel times: the trajectories2
and 1 maintain a finite distance with respect to the trav
time Ret. Their closest approach occurs precisely at the h
3-12
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GENERATION OF CIRCULARLY POLARIZED HIGH- . . . PHYSICAL REVIEW A61 063403
monic corresponding to the binding energy of the mo
atom. In the lower part of Fig. 13~b!, the curves Imt f /T of
Fig. 13~a! are redrawn on an expanded vertical scale. T
allows one to scrutinize the behavior of Imt f when the tra-
jectories2 and1 approach each other.

We will now investigate some of the solutions in deta
The first solution1 from Fig. 13 corresponds to small value
of the travel time and, therefore, to electrons that have
spent enough time in the laser field to acquire signific
kinetic energy from it. These electrons contribute only
very low values ofn and are not relevant to the explanatio
of the plateaus and their cutoffs. In fact, the correspond

FIG. 13. ~a! The imaginary part of the recombination timet f as
a function of the real part of the travel timet, obtained from the
exact solutions of the saddle-point equations~8!–~10!. Notice that
Im t f is a single-valued function of Ret except for very short times
cf., part~b!. In some representative cases marked by stars, the
ues of the harmonic order corresponding to a given Ret are indi-
cated.~b! Upper part: Comparison of the exact saddle-point analy
~broken lines! to the semiclassical three-step model~solid lines,
reproduced from Fig. 8!. The harmonic numbers have been divid
by 100 so that they fit on the same scale with Imt f /T, which is
plotted in the lower part, reproduced from part~a!, but on an ex-
panded scale for the vertical axis. In~a! and~b!, the laser field and
the atomic parameters are the same as in Fig. 8. For the interv
Ret covered in the figure, we have found 11 solutions which
labeled by numbers in italics.
06340
l
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harmonics are below the continuum threshold and neit
amenable to the semiclassical three-step model nor to
saddle-point method. Nevertheless, we have included th
for completeness. The second solution~labeled2! is the most
important one. This follows from the analysis of Sec. V@cf.
Fig. 8 where it extends up to the first maximum ofn(Ret)#,
and we will confirm it below by the direct calculation of it
contribution. This solution intersects the axis Imt f50. We
have marked by stars three representative harmonic or
that about delineate the region of harmonics where the s
tion 2 makes significant contributions. Figure 8 suggests t
the solutions3, 4, and9–11 in Fig. 13 are not important and
this will be confirmed below. However, the solutions5–8,
according to Fig. 8, make non-negligible contributions to t
harmonic emission rate. The relevant values ofn for each of
these solutions are denoted in Fig. 13~a!.

In Fig. 14~a! we present the partial harmonic emissio
rates, calculated using Eqs.~3! and~7!, that correspond to the

al-

is

of
e

FIG. 14. Logarithm~base 10! of the harmonic emission rate in
arbitrary units as a function of the harmonic order for the same la
field and atomic parameters as in Fig. 8.~a! Partial contributions of
each of the first eight solutions of the SPM equations that are sh
in Fig. 13. ~b! Comparison of the saddle-point approximation~in-
cluding the first 12 saddle-point solutions! ~full line! and the exact
SFA result obtained by numerical integration~filled circles!.
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first eight solutions from Fig. 13. The most important co
clusion is that the solution2 essentially dominates the entir
spectrum up to the final cutoff. This is the solution wi
travel times aroundT/3 whose electronic orbits we have in
vestigated closely in Fig. 12. Also, as suggested by Fig
the solutions3 and 4 make the smallest contribution. Nea
every maximum of the functionn(Ret) in Fig. 8 two solu-
tions contribute. This is reflected in Fig. 14 by the inters
tion of their contributions in the high-energy part of the spe
trum. For example, partial rates of the solutions2 and 3
intersect at the harmonic order 53, those of the solution4
and 5 at n554, those of6 and 7 at 34, and so on. The
contribution of one of these pairs increases exponenti
after such an intersection and must be discarded. If it w
possible to give a rigorous mathematical justification of
steps leading from theT matrix ~4! to its saddle-point ap-
proximation~7! then such a prescription would be part of
Since such a rigorous derivation of the saddle-point eva
tion of a five-dimensional integral appears to be out of
question, we have to accomplish this based on physical i
ition. For example, the contributions of the solutions labe
3, 4, and6 out of the set discussed above have to be drop
after the points of intersection. This problem is also d
cussed in Ref.@20#.

In a way, the analysis of the harmonic spectrum in ter
of quantum trajectories leads to complementary conclus
for the two counter-rotating circular polarizations as co
pared to the standard situation of one linearly polariz
monochromatic driving field. In the latter case, there are
sentially two quantum trajectories which produce a p
nounced interference pattern within the plateau. Howe
beyond the cutoff just one trajectory still contributes~the
other one becomes unphysical and has to be dropped! and,
consequently, the interferences cease, the spectrum decr
smoothly, and the phases of the harmonics lock@1,22#. On
the other hand, in the case of the two bichromatic circu
polarizations, just one trajectory~solution 2! dominates the
entire spectrum up to the cutoff. This one keeps contribut
beyond the cutoff, but from there on it has to compete w
another one~solution5!. Hence, the plateau is comparative
smooth while the region beyond the cutoff exhibits a typi
interference pattern, cf. Fig. 14~b! ~in fact, this pattern only
shows when the harmonic number is continuously varied!.

Finally, in Fig. 14~b! we compare the results of a nume
cal calculation of theT matrix ~4!, obtained by the numerica
integration and the fast Fourier transform of Eqs.~4!–~6! to
its saddle-point evaluation~7! including the first 12 solutions
of the saddle-point equations. The latter curve is labe
SPM. It was obtained considering the harmonic ordern as a
continuous parameter. The interferences between the co
butions from different trajectories are better visible this wa
Except for the lowest harmonics, the agreement between
exact numerical computation and the saddle-point appr
mation is quite good.

VII. CONCLUSIONS

In the context of an increasing interest for the generat
of circularly polarized high-order harmonics, we presen
06340
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an efficient method for their generation. We have recons
ered a method proposed previously for the generation of s
harmonics, a driving field being the superposition of tw
circularly polarized fields with frequenciesv and 2v that
rotate in opposite directions within the same plane, and
tended it to higher laser intensities. Our calculations sh
that the harmonic spectrum exhibits two plateaus: a sho
plateau with higher intensity is superposed on a longer
with lower intensity. We explained the features of these p
teaus and their cutoffs in terms of the Lewenstein mod
using an approximate semiclassical three-step model as
as the more complete saddle-point analysis in terms of c
plex electron trajectories. The semiclassical three-step m
also starts from the saddle-point equations, but approxim
the return time as a real quantity. This leads to signific
simplifications and makes this model a useful tool for ar
trary configurations of the incident laser field. Using the
tensity ratio of the two field components as a parameter,
optimized the harmonic spectrum with respect to the h
monic order~obtaining the cutoff law in the process!, or with
respect to the harmonic emission rate. We have also ide
fied and discussed the electron trajectories that give
dominant contribution to the harmonic emission rate. W
analyzed the influence of imperfect circular polarization
the high-frequency laser field component on the harmo
emission rates and found it to be small. It degrades, howe
to some extent the circular polarization of the harmoni
The saturation intensity for the two-color circularly polarize
field is unknown~cf. Ref. @23#!. If it should exceed the satu
ration for a linearly polarized field by, say, just 50%, the
this field produces harmonics more efficiently througho
most of the spectrum.

In this paper we have concentrated on harmonic emiss
by one single atom. For the practical relevance of the sche
that we investigated, the collective response of a gas sam
is decisive. Because both circularly polarized component
our driving field propagate in the same direction, the con
tions for phase matching are not very different@5# from har-
monic generation in the standard situation of one linea
polarized driving field, cf., e.g., Ref.@1#. An adequate treat-
ment of propagation must also include the effects of ioni
tion of the atoms in the gas sample. Nothing is known ab
total ionization rates by the field that we considered. Ow
to the genuine three dimensionality of all this, a reliable c
culation of the collective response will not be easy.

We can summarize the reason for the surprising efficie
of harmonic generation by a single atom due to the t
counter-rotating circularly polarized fields as follows. Th
strongest contribution to the harmonic emission rates co
from those orbits with rather short travel times such th
Ret'T/3. Some of them are depicted in Fig. 12~a!, and they
do not look very different from the one-dimensional orb
responsible for harmonic generation by a linearly polariz
field. Indeed, the analysis of Fig. 12~c! shows that they are
generated during those parts of the optical cycle where
field traces out a path that is~to lowest approximation! al-
most linear. Figure 1~a! shows that for all but extreme ratio
of the intensitiesI 1 and I 2 one cycle of the field comprise
3-14
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three such segments. However, for each such segment
field also has a much smaller component that is perpend
lar to the linear path. The impact of this component must
cancelled by an appropriate initial velocity. The larger th
initial velocity component, the smaller is the contribution
harmonic emission. Inspection of Fig. 1~a! shows that the
afore-mentioned counterproductive component of
electric-field vector has an average of about zero for the
tensity distribution ‘‘214,’’ and we saw in Fig. 5 that it was
this configuration that produced the most intense harmon
Finally, it is the superposition of the contributions from th
three segments of one optical cycle~rotated relative to each
,

e-
. A

ev

.

ev
.

t.

.
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other by 120°) that produced the circular polarization of t
emitted harmonics.

Figure 1~b! depicts the electric-field vector for the case
corotating polarizations. A quick glance makes clear t
none of the above applies here anymore, and this provide
intuitive understanding of the virtual absence of hig
harmonic generation in this case.
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