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Generation of circularly polarized high-order harmonics by two-color coplanar field mixing
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An efficient method is investigated for the generation of circularly polarized high-order harmonics by a
bichromatic laser field whose two components with frequenoiesd 2v are circularly polarized in the same
plane, but rotate in opposite directions. The generation of intense harmonics by such a driving-field configu-
ration was already confirmed by a previous experiment. With the help of both a semiclassical three-step model
as well as a saddle-point analysis, the mechanism of harmonic generation in this case is elucidated and the
plateau structure of the harmonic response and their cutoffs are established. The sensitivity of the harmonic
yield and the polarization of the harmonics to imperfect circular polarization of the driving fields are investi-
gated. Optimization of both the cutoff frequency and the harmonic efficiency with respect to the intensity ratio
of the two components of the driving field is discussed. The electron trajectories responsible for the emission
of particular harmonics are identified. Unlike the case of a linearly polarized driving field, they have a nonzero
start velocity. By comparison with the driving-field configuration where the two components rotate in the same
direction, the mechanism of the intense harmonic emission is further clarified. Depending (@mkhewn
saturation intensity for the bichromatic field with counter-rotating polarizations, this scheme might be of
practical interest not only because of the circular polarization of the produced harmonics, but also because of
their production efficiency.

PACS numbsfs): 42.50.Hz, 42.65.Ky, 32.80.Qk, 32.80.Wr

[. INTRODUCTION lished, which is terminated by a cutoff. Theoretical results
[2,3], based on the zero-range potential model, qualitatively
High-harmonic generatiofHHG), besides its intrinsic in- agree with the experimental data.
terest as a highly nonlinear phenomenon of laser-atom phys- In Ref.[4] a different scheme for the production of circu-
ics (see, for example, the review artidié] and references larly polarized harmonics is proposed. These authors suggest
therein, has the potential of providing a versatile source ofmixing a circularly polarized field with frequenay and a
radiation with unprecedented properties. Usually, linearlylinearly polarized field with frequency perpendicular to
polarized driving fields have been considered which producghe former. In this case, the selection rules allow for emission
linearly polarized harmonics. A circularly polarized driving of linearly polarized harmonics with frequencies n(2
field does not produce circularly polarized harmonics, but+1)2w in the direction of the incidend field and for cir-
rather no harmonics at all. However, circularly polarized har-cularly polarized harmonics with frequenciesn®1)w in
monics can be generated by appropriate two-color mixinghe direction of the incidenta field [5,6]. In Ref.[4] these
[2—6]. Such a scheme was first realized in the experiment bydeas are confirmed with calculations employing time-
Eichmannet al. [2] who employed two circularly polarized dependent density-functional theory. However, the intensity
laser fields with frequencies and 2w with the electric field  of the circularly polarized harmonics in this scheme is sig-
vectors rotating in the same plane. In the case where thesgficantly lower than that of the linearly polarized harmonics
two vectors rotate in the same direction, all harmonics ofof the pure one-color @ field. In contrast, in the counter-
frequenciesiw are emitted. Their polarization is elliptic, and rotating scheme of Ref.2] the intensity of the circularly
their intensities drop quickly with increasing harmonic orderpolarized harmonics was observed to be quite high. In fact,
n. On the other hand, in the counter-rotating case, selectioout of various combinations of polarizations that were ex-
rules only allow for the emission of harmonics with frequen- perimentally investigatedtwo parallel linear polarization,
cies (h=1)w. Selection rules also require that these hartwo perpendicular linear polarizations, co- and counter-
monics are circularly polarized with the sign of their helicity rotating circular polarizationsthe last mentioned setup
alternating from one harmonic to the next. In the experimentyielded the strongest harmonic signal within a certain range
[2] no attempt was made to confirm the circular polarizationof not too high harmonic frequency. Various aspects of the
of the harmonics, but the harmonic intensities were found tscheme of Ref[4] and the scheme of the two counter-
be high and the existence of a kind of plateau was estakrotating circular polarizations were compared in R].
Very recently, it has been shoWm] that the superposition of
a linearly polarized laser field and a static electric field ori-
*On leave from the Faculty of Science and Mathematics, Departented at an appropriate angle to the former is also able to
ment of Physics, University of Sarajevo, Zmaja od Bosne 35, 7100@enerate circularly polarized harmonics.
Sarajevo, Bosnia and Herzegovina. In view of the above, there is considerable practical inter-
TAlso at the Center for Advanced Studies, Department of Physicest in the generation of circularly polarized harmonics by
and Astronomy, University of New Mexico, Albuquerque, NM two incident fields with counter-rotating circular polariza-
87131. tions, be it with the circular polarization of the harmonics in
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mind or just because of their high intensity. However, on thethat approximates the return time by a real number. This
theoretical side, as pointed out in Ré¢h] and explained model is employed to explain the characteristics of the pla-
below, the reason of why these harmonics are produced witteaus and their cutoffs as they have been observed in Sec. IIl.
substantial intensity is not clear, nor is the nature of theifVe present analytical and numerical results for the cutoff
cutoff law. One of the aims of the present paper is to explordaw in Sec. V B. The semiclassical three-step model allows
the physical mechanism of harmonic emission in thisus to optimize the laser field parameters in order to increase
scheme. the harmonic emission rate and the cutoff harmonic energy.
It is well known that the cutoff position of the harmonic Such an optimization with respect to the relative intensity of
spectrum, generated by a linearly polarized laser field, can b€ two driving fields will be presented in Sec. V C. In Sec.
explained using the so-called three-step md@ed]. In this V D we WI|| dlgcuss and plot the real-sp_ace electron orbits of
classical model the atom is ionized by the laser fidicst the semlclass!cal three-_step model, Whlch_are the real parts of
step, the freed electron starting with zero velocity movesthe complex-t!me solutions. A more detailed expl_anatlon of
away from the ion and back to it under the influence of thethe cutoff positions, as well as of the corresponding plateau
laser field(second step in order to recombine in the third Structures, is presented in Sec. VI, in which we analyze the
step, emitting a harmonic photon. This model yields a cutoffeXact solutions of the saddle-po_lnt equations where aI_I times
harmonic energy equal to the sum of the atomic ionizatiorf€ complex. The results are in good agreement with the
potential |Eq| and the maximal kinetic energy acquired by umerical SFA calculations.
the electron during its propagation in the laser field, which is
3.1, with U, the ponderomotive energy. However, for Il. THEORY
any laser polarization other than linear, this three-step or
simple-man model fails because, in this case, the ionizeFa
electron, provided it starts with zero velocity, never returns
to the nucleus. A generalization of the simple-man model to 1
the case of elliptical polarization is presented in R&€]. It E(t)= —
is based on the method of complex trajectofigs]. In the 2i
present paper we will apply the same method to the case of

We consider HHG by a bichromatic elliptically polarized
ser field with the electric field

E, A R i wt
\/Tgi(el_lslez)e

the two counter-rotating circularly polarized laser fields of N Ex .~ . L N !
Ref. [2]. This readily explains the mechanism of harmonic \/1+—£§(e1_'8262)e c.C. @

generation in this case and illustrates that actually, in con-

trast to initial expectation, this mechanism is quite close tq,\,heregj (—1<s;=<1) andE, are the ellipticity and the

that in a linearly polarized driving field. Much of the discus- g|ectric field vector amplitude of thgh component of the

sion is based on a semiclassical three-step model that is irﬂ)'ichromatic field, respectively, ang, and &, denote two

troduced in this paper. It is ”.‘“Ch ?'mp"t-‘r to handlg. than th utually perpendicular real unit vectors. The intensity of the
exact method of complex trajectories without sacrificing too. . 1 2 .
th component idj=3&,CE; [in the International System

much information. J oo . g 2 .
An outline of the paper is as follows. In Sec. Il we review (S_I) unlts_, In atomic units _'t id;=Ej]. Most of the t|_me, we
the strong-field approximatioiSFA) theory of the HHG will consider two corotating or two counter-rotating circu-
process and apply it to the case of a bichromatic elliptically/@y Polarized fields such that;=e,;=1 or e, =—g,=1,
polarized laser field. Using the saddle-point meti{&&M) rgspect_wely. Example_s of these_ two_ fields, for various inten-
we show how the five-dimensional integral, that is the finalS'y ratiosl,/l,, are displayed in Fig. 1. They show on a

result of the SFA theory, can be approximated by a Sing|équick glance that the corotating and the counter-rotating

sum over the relevant complex solutions of the SPM equaf_ields have a very different appearance, so it will not come as

tions, which determine the initidlonization) timet; and the & Surprise that they generate harmonics of very different

final (recombinatiop time t; . Furthermore, we will connect character. We will return to this point on several occasions in

the obtained SPM equations with Newton’s classical equathe course of this paper. Photoionization by these fields was

tion of motion for the electron in the laser field. In Sec. Il c@lculated in Ref[12]. , o

we will first show that the numerical results obtained using "€ Vector potential corresponding to the fielt) is
the SFA theory reproduce previous experimental and thed™(t)=—J'E(t")dt’. Frequently, we will use the quantity
retical results. We will also explore the consequences of im- e (t

perfect circular polarization of the high-frequency field on a,(t):_J dt’A(t’) (e=|e|). 2)
the harmonic emission rate. Next, results for stronger laser m

fields will be shown, and the dependence of the height of the ) . .

plateau and its cutoff position on the total laser intensity andtS Physical meaning is the position vector of an electron
its distribution over its two components will be investigated. 2ccelerated by the laser fie(d) with initial conditions such
The polarization properties of the harmonics are analyzed iff'at its average position is zero. The pondezron;otlve energy
Sec. IV. We will present numerical results for the harmonic® 2th2e entlréa f'e‘zldz IS def;ned byU p=e*(A(t))/2m
ellipticity and the offset angle of the polarization ellipse for =€ E1/(4mw?) + e°E5/(16mw?) =Up; + U p,.

imperfect circular polarization of the high-frequency field. In ~ We will calculate the emission rate of th harmonic
Sec. V we introduce a novel semiclassical three-step modetith polarizatione; with the help of the formul413,14
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FIG. 1. The electric-field vectoE(t), Eq. (1), of the w-2w
counter-rotatindpart (a)] and corotatingpart (b)] circularly polar-
ized laser field plotted for €t<T=2#/w. The various panels de-
pict the field for different combinations of the partial intensitigs
=i/6 andl,=j/6 (labeled byi+j) such that the total intensitl,

+1,=1 (in arbitrary unit3 is constant.

Wn(éj):

1 Nw 3_|_ Ao
Wzsoﬁ c | n(ej)| 1

where theT-matrix element is

- to+
Tn(ej) = f
to

with T=27/w and arbitraryt,. The time-dependent dipole
matrix elementd(t;) between the initial and final laser-
dressed atomic states, within the SF¥5], can be approxi-

T dt; .
T

mated by{14,11,16,17

i e
d(t)=— gf d3o( goler|g+ gA(tf»

X ﬁf dt(q+ ;A(ti)ler -E(ti)|4o)

i ty i
- 24 _ —t.
xex;ﬂ’ thfti dtfag+eA(t)] +ﬁEo(tf t),

— € -d(tp)explinwt;),

PHYSICAL REVIEW A61 063403

where| i) andEq= —|E,| are the atomic ground state and
its energy, respectively. The terms in the exponent in Egs.
(4) and(5) can be combined inte-iS/%. Here the quasiclas-
sical actionS consists of three terms

o0 1 t
S(q,t; ,tf):f (Eg+nfiw)dt+ —f fdt[ﬁq+eA(t)]2
ty 2m 1§

+£ixth°' ©)

The equation$4)—(6) illuminate how the three-step model is
embedded into a fully quantum-mechanical description: the
atom, which is in its ground stateso)exp(—iEgt/#), tunnels
into the continuum at some initial time due to the interac-
tion er - E(t;) with the laser fieldfor times less than; the
ground state is unperturbed by the laser field, which can be
seen from the last term on the right-hand side of &j.
Afterwards, the binding potential is neglected and the ion-
ized electron propagates in the laser fighte second term on
the right-hand side of Eq(6)]. At some final timet; the
electron returns to its starting point at the position of the ion
and recombines, emitting a harmonic photon with the energy
n% w. The T-matrix elemen{4) specifies emission of such a

photon with polarizatiorfaj [see the first term on the right-
hand side in Eq(6) and Eq.(4)]. The five-dimensional inte-
gral in Egs.(4) and(5) is over all initial and final times and
over all intermediate electron momenta. The total Hamil-
tonian has a period of so that, in the transition from th®
matrix to theT matrix in Eq.(4), the limits (—«,») of the
integral overt; are replaced byty,to+ T] following a stan-
dard procedurg13,14]. For a hydrogenlike model atom or
for a Gaussian model and for a linearly polarized laser field,
the integral over the intermediate electron momenta can be
calculated analytically11]. In the more general case of a
bichromatic elliptically polarized laser field, this integral can
be calculated by means of the method described in[Réf.
We will refer to these results as “exact.”

Extending the method of complex trajectories to fields
that are not linearly polarized, it was shown in Rédf0] that
the above five-dimensional integral can, to an excellent ap-
proximation, be evaluated by means of the saddle-point
method. The result has the form

—-1/2 i
} ool ).

g ( 9°S
e
dqxdq,

where S;=5(q;,tis,tts) IS the action(6) evaluated at the
saddle points, the quantitl ;=M (qs,t;s,tss) IS the product
of the (nonexponential matrix elements in Eq(5), and
g (i=1,...,5) combines the five variables g
=(01s,025,03s) tis,» andtss. The summation in Eq(7) is
over an appropriate subset of the saddle pointst(s,t;s),
which are the solutions of the equations

Tn(énoch Ms

m
r—la(t)—alt)]=ha, ®
f i

063403-3



MILOéEVIé, BECKER, AND KOPOLD PHYSICAL REVIEW A61 063403

1 -13
0w L e e o
Srlha+eA(t)*=E,, 9 S
- A=A g=re,=1 (127)
S a6 0---0 g=—¢,=1 (1>7)
1 ® 10 L ) 1=7€; i
—_[Aq+eA(t))2=nho+E,. 10 =2 Bo” e 8
2m K 7oA ©
5107 g R o
These equations have intuitive physical meaning. Equatiorg by ‘»A
(8) ensures that the electron returns to its starting point§ wa “x,‘
r(ts)=r(t;), while Egs.(9) and(10) express energy conser- 210 ¢ B ha,
vation at timeg; andt;, respectively. The right-hand side of g A »
Eq. (9) is negative, and as a consequence the solutionsg o= | A\z\ *A.‘
(ds,tis ,trs) are complex. The quantitp=#q in Eq. (8) is AAM%AAA‘A
the canonical momentum of the electron on its orbit tfor Y
. . . . 28
<t=t;, which is a constant of motion. A more detailed ex- 10" T T T e e
planation of the connection with classical mechanics will be Harmonic Order n

given below. The momenturp can be substituted in the , . , )
FIG. 2. Harmonic emission rates as functions of the harmonic

remaining equation®) and(10) so that, practically, we have . . o .
gedq o) (10 b Y order for the hydrogenlike model atom with the ionization potential

to solve a system of four real equ.atlons for the Vanablesof argon (Ey|=15.76 eV). The intensities of the laser field com-
Ret;, Imt;, Ret;, and Imt;. We will present these solu-

fions in See. V1. ponents arel;=1.33x 10" W/cn? and 1,=0.58< 10" W/cn?.

. L . L. The harmonic yields for counter-rotating and corotating circularl
At the end of this section it is worthwhile mentioning that Y g g y

) . polarized fields are represented by filled circles and triangles, re-
the system of equatione8)—(10) can be connected with gpectively. Open symbols correspond to the same results obtained

Newton’s classical equation of motion for an electron in thepy neglecting those contributions to the time-dependent dipole ma-
laser field, which ismr(t)=—eE(t). The solution of this trix element that come from travel times=t;—t; shorter than one
equation, with the initial conditions(t;) =r; andv(t;)=v;, optical cycleT. The photon energies afew,=%#w=1.6 eV and

is hw,=2hw.

mv(t) =e[A(t) —A(t) ]+ mv;, (12) use |Eg|=11.6 eV (see Refs[2,3]). For the results pre-

sented in Figs. 2 and 3 we took the intensities of the two
(t—t;). (12) laser field components as determined in R&f.in order to
give an optimal description of the experimentally observed

i . . __one-color spectra. These values &fe=1.33x 10 W/cn?
The condition that the electron returns to its starting point

r(ty)=r; leads to m[a(t;)— a(t;)]/(t;—t;) =mv,—eA(t;)

r)—ri=a(t)—a(ty)—

eA
m () —v

15

107

=p, which agrees with Eq:8). The energy conserving con-

dition (9) demands the equality of the electron’s initial ki- R SN
netic energy in the laser field, which isv?/2, to its energy  ~ 4 et 1
E, in the atomic ground state. This requirement can only beg 0™ . & ® &=1.6=-09
satisfied for a complex velocity; such that Re;-Imv;=0 2 A

and (Rev;))?—(Imv;)?=2Eq/m. Similarly, for the energy & i

conserving condition at the timé; one hasmv(t)/2 % o b N

=nfiow+Egy. The electron’s velocity at time; satisfies the €

conditions Re/(t;)-Imv(t)=0 and [Rev(ty)]? L'QJ A

—[Imv(tf)]?=2(nhw+Ey)/m. The complex times and ve- é Wl ® A,

locities are alien to classical mechanics, but enforced by thejcz‘a T "»{ A ¢ ®

electron’s origin through tunneling. In Sec. VD we will /A A

show that the classical orbit can be extracted as the real pal x10° A *

of Eq. (12). 107 : . 4 3

5 7 9 11 13 15 17 19 21 23 25
Harmonic Order n
I1l. NUMERICAL RESULTS FOR
THE HARMONIC EMISSION RATE FIG. 3. Harmonic emission rates as functions of the harmonic

order for the zero-range potential model with the ionization poten-

. . . . " tial |[Eg|=11.6 eV and for the same laser field intensities and fre-
In this section we will present “exact” results for the quencies as in Fig. 2. The yields for corotating fieldach multi-

harmonic emission rateX;w,(g), obtained by numerical pjied by the factor 1) are represented by the fillédpen triangles
integration of Eqs(3)—(5). We will take the laser field and for ¢,=1 (¢,=0.9). The yields for the counter-rotating case are
atomic parameters of Ref2]. For a hydrogenlike model represented by a solid line for circular polarization of the second
atom we use the ionization potential of argomE component, and by filled circles for imperfect circular polarization
=15.76 eV), while for the zero-range potential model weof the second field component, modeleddy= —0.9.
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| ' ' ' ' ] gular momentum is to be conserved then absorption of one
— C2 photon with frequency @ must be followed byemissionof

10-? a—h (c;g | the photon with frequencw, and in the combined process
—cs8 the energy is only raised hy. If one assumes that the yield

- :;:tg | roughly decreases with the total number of photons emitted

or absorbed, then one should compare the yield at some fre-
quency() in the corotating case to the yield af)3in the
[ 1 counter-rotating case. Indeed, these two yields are of the
* same order.
N 1 In Fig. 3 we display harmonic spectra for the same laser
\ parameters as in Fig. 2, but for the zero-range potential
] ] model with|Eg| = 11.6 eV.(In Ref.[2] this value was chosen
N \ with the reasoning that the one parameter of the zero-range
v potential, viz., its binding energy, should be adjusted to the
80 energy difference between the ground state and the first ex-
cited state. We also demonstrate the effects of imperfect
FIG. 4. Harmonic emission rates as functions of the harmonicCircular polarization of the high-frequency field. For elliptici-
order for the hydrogenlike model atom with ionization potential ties e;=1 ande,=—0.9, the symmetry that prevents gen-
|Eo|=15.76 eV and equal intensities of the two counter-rotatingeration of harmonics of frequencynd is broken. As a con-
field components such that=1,=ix 10 W/cn?. The yields are  sequence, these harmonics are now visible, but they are still
labeled byCi, wherei=2 (dotted ling, 4 (dashed line with tri-  suppressed by about two orders of magnitude. The ninth har-
angles, 6 (long-dashed ling and 8(solid line). The photon energy  monic was detected in the experimé¢at and suppressed by
is iw=1.6 eV. The rates for a linearly polarized monochromaticthe same amount. This suggests that the ellipticity of the 2
driving field with frequencyw and intensitied =2x 10" Wicm?  field in this experiment was around 0.9. For the corotating
and 6x 10" Wicn? are represented by stars and filled circles andcase(triangles the rates are again much lower. Remarkably,
denoted by 2 andL6, respectively. in this case, the harmonics for the imperfect circular polar-
ization (,=0.9, open trianglgshave emission rates that are
andl,=0.58< 10" W/cn?. Results for stronger laser fields, significantly higher, but still too low to be of any practical
presented in Fig. 4, correspond to equal intensities of thémportance.

Harmonic Emission Rate (a.u.)
=

>

107

-17

10

Harmonic Order n

laser field components. The photon energiesfarg=% w In Ref.[2], the saturation intensity was estimated to be

=1.6 eV andhw,=2hw. 2x10% W/cn?, but for shorter pulses this intensity can be
In Fig. 2 we compare harmonic spectra obtained using thaigher. Figure 4 exhibits harmonic spectra for=1,=(2

hydrogenlike model atonj11,16 for corotating €,;=¢, +8)x 10" W/cn?. For comparison, we include the spectra

=1) and for counter-rotatingeq=—¢e,=1) circularly po-  for a linearly polarized monochromatic field with frequency
larized fields. One can see that in the corotating case alb having intensity |=2x10* W/cn? (star3 and 6
harmonics of frequenciesw are emitted, but with emission x 10 W/cn? (filled circles. The figure shows that the har-
rates that are much lower than those of the harmonics in thmonic emission rates for the bichromatic counter-rotating
counter-rotating case. In the latter only the harmonics (3 circularly polarized field§each of intensityt) are generally
+1)w are found and they form a plateau with its cutoff larger than those of the linearly polarized laser fiéldth
around 2@. These findings agree both with the theoreticalintensityl). Furthermore, the structure of the spectra is quite
and experimental results presented in RE2s3]. In Fig. 2  different in these two cases. In contrast to the linearly polar-
we have also presented the rates obtained by excluding froimed laser field, which generates a plateau with a rather
the integral in Eq.(5) the contributions of travel times  abrupt cutoff, for the bichromatic counter-rotating circularly
=t;—t; shorter than one optical cycle. The harmonic emis-polarized fields two plateaus appear. The first one is higher
sion rates calculated in this way are, for almost all harmonand shorter. It is this plateau that was observed in the experi-
ics, lower by orders of magnitude than the “exact” results, ment[2]. The second plateau is longer and better described
particularly so for low-harmonic orders. This shows that theas an inclined plane. Its length is proportional to the laser
main contribution to the harmonic emission rate comes fromntensity. Compared to linear polarization, its cutoff is less
the recombination of those electrons that return during thevell defined.
first optical cycle ¢<T). In Sec. VD we will explicitly Figure 5 compares harmonic spectra such that the total
identify the corresponding electron trajectories. intensity of the two fields is kept constant while the ratio of
Figure 2 immediately draws attention to the fact that thethe intensities of the two components variek;=i
yields at a specific harmonic frequency differ by many orders< 104 W/cn? and 1,=jx 10 W/cn?, where i+j=6.
of magnitude in the corotating and in the counter-rotatingThe remaining parameters are the same as in Fig. 4. The
case. This difference largely disappears, however, if ondéigure suggests there is an optimum value of the rhtid,
adopts a different point of view: in the counter-rotating casepf about 2, for which the emission rate has a maximum and
absorption of one photon with frequency2nd another one the cutoff is highest. Away from this optimal ratio in either
with frequencyw preserves angular momentum and raisedirection, but much quicker towards small valuesl efl;,
the energy by 3. In contrast, in the corotating case, if an- the cutoff recedes and the yields drop. In contrast to the
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tions. In view of its exponential dependence of the field, the
expression(13) predicts a dramatic difference between the
rates for linear and for circular polarization at the same in-
tensity, since for the former the peak field is higher than for
the latter by a factor of/2.
For our field(1) with e;=*¢,=1, the peak field isE;
+E,)/\/2 while the intensity id =1,+1,=E2+E3. Let us
take E;=E cos\ and E;=E sin\ so that the peak field is
E(cosn+sin\)/\2<E. Hence, the peak field is always
smaller than it would be for linear polarization, where it is
just E for the same intensity=E2. However, it is not sub-
stantially smaller as long as the two intensities remain com-
parable. For example, fdr,=4l, we have a peak field of
0.9%. In view of the extremely nonlinear dependence of the
exponential(13) on the peak field, this may already cause
substantially different ionization rates and, in consequence,
FIG. 5. Harmonic emission rates as functions of the harmonicsaturation field strengths.
order for various intensities of two components of the laser field For comparison, Fig. 5 also exhibits the harmonic spec-
such that the total intensity is constamg=ix10"* W/cn? and  trum obtained for a linearly polarized one-color laser field.
I,=jx10" Wicn?. In the legend the various spectra are labeledOn the basis of the considerations of the previous paragraph
by i+]j. Otherwise, the parameters are the same as in Fig. 4. Thgie took for the comparison an intensity ok30** W/cn?,
rates for a linearly polarized laser field with intensity=3 both for the frequencw (star$ and for 2» (solid triangles.
X 10'* Wicn are represented by stars for the frequenc{L3-w  This is half the total intensity of the two-color counter-
curve and by filled triangles for the frequency.2 (L3-2w cUve.  rtating configuration. If we compare the harmonic yields of
. . . . the optimal two-color configuratiofi‘2 +4" ) with the one-
results of Fig. 4 for the lower intensities, the harmonic spec+;|or yields, we realize that there is a certain region of har-
tra for the cases “24” and "1 +5” now closely resemble 1 ,nics with harmonics numbers between 25 and 40, where
harmonic spectrq for_ linear polarization. They no longer havgnq two-color scheme provides the highest efficiency, by up
the shape of an inclined plane. to two orders of magnitude. For lower harmonic numbers,
In order to assess whether or not the scheme of the twg,q linearly polarized field with frequencya? produces the

counter-rotating circular polarizations has any advantagﬁa]igher yield, while for higher harmonic numbers the field

over the standard setup of one monochromatic linearly POyt frequencyw is more efficient. If the ratio of the satura-

larized p_ul_se, insomuch as th_e harmonic efﬂm_ency IS CON%ion intensities for the two-color field over the one-color field
cerned, it is necessary to estimate the saturation intensitigg ey increases, the advantage of the two-color field with

for these two scenarios. Unfortunately, there are no datgyyarq to the one-color field becomes dramatic, otherwise it
available, neither experimental nor accurate theoretical, f°§hrinks

ionization by the bichromatic counter-rotating circular polar-

Harmonic Emission Rate (a.u.)

0 10 20 30 40 50
Harmonic Order n

lone, and Kraino(ADK) rate[18], are ultimately based on 4 tha same time the most efficient harmonic output and the

the paradigm of tunneling out of a short-range-potentia,ispest cutoff. Again, in comparison with one-color linearly

bound state owing to an applied time-independent uniformy, )4 ri;eq driving fields of either frequency, there is a win-
electric fieldE. This rate has the form of a prefactor times 4. \vhere the two-color field is most efficient. Again, the

the exponential comparison was made for the one-color field having about
half the total intensity of the two-color field.

13

i p( 4\/2m|E0|3)
~exg — — 19
3ehE IV. POLARIZATION PROPERTIES OF THE HARMONICS
and is governed by the exponential. In order to treat a time- According to symmetry consideratiofts], in the counter-
dependent fieldE(t) in the context of a quasistatic approxi- rotating case the harmonics are circularly polarized with el-
mation, one may replacg by |E(t)| in the rate(13) and lipticities e3,.,==*1, i.e,, ,=1, eg=—1, e7=1, gg=
average over time. Up to a prefactor, this procedure returns 1, and so on. This conclusion is valid when both fields are
the exponentia(13), with E now being the peak field, as the counter-rotating exactly in the same plane and both polariza-
dominant part of the rate. In those cases that are amenable tions are exactly circular. However, in any experiment in-
a more exact approach, such as ionization in a linearly ovariably there will be some deviation from this ideal case.
circularly polarized monochromatic field, this procedure hasHere we consider the implications of having imperfect circu-
been justified. Hence, it is reasonable to assume that the elar polarization for the high-frequency field such tHap|
ponential(13) also determines the order of magnitude of the<1. We have showitsee Fig. 3 that a small change of,
ionization rate for the two counter-rotating circular polariza-has little effect on themission ratesf the relevant harmon-
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Figure 7 then presents the harmonic ellipticitie’s and
the offset angle®, as functions of the harmonic order for
various values of the ellipticity of the @ field from
—0.999 to—0.85, and for two different values of the laser
field intensities:(a) 1,=1,=2x10* W/cn? and(b) 1,=1,

o 25 50 75 100 125 150 175 200  =4X10" Wicn?. For|e,| close to 1 the harmonic elliptici-
Harmonic Order n ties e3,., are very close to circular polarization. However,

FIG. 6. Harmonic emission rates as functions of the harmonicthe (?ffset a”g'e 1S d'ffe,rem from zero even foy=—0.999,
order for helum atoms with the ionization potentidE,|  and its value is almost independefar the results presentgd
=24.6 eV. The results for the bichromatie2w circularly polar- ~ Of the value ofs,. The offset angle strongly depends on the
ized laser field with the counter-rotating components having intenhiarmonic order and on the laser field intensities, as can be
sities |, =i x 101 W/cm? andl,=jx 101 Wi/cn? are denoted by ~Seen from the bottom panels of Figsa®). The absolute
Ci+j, while the results for the monochromatic linearly polarized value of the harmonic ellipticity generally increases with in-
laser field with the intensity=15x 10" W/cn? are denoted by creasing harmonic order. The influence of the imperfection
L15-w andL15-2w for the field with the frequency and 2w, of the 2w circular polarization is larger on the ellipticity
respectively. The laser photon energyiie=1.6 eV. e3,_1 than onej, ., especially for the lower harmonics.

For e,=—0.9, the value that probably corresponds to the
ics. We now investigate the influence of this change on theonditions of the experimerje], the harmonic ellipticities

polarization of the harmonics. &4+ are larger than 0.9 fon<13 in Fig. 7a), while, for
In order to consider the ellipticity,, of thenth harmonic, example s ;= —0.62.

we introduce the following vector, formed by tfilematrix

Harmonic Emission Rate (a.u.)
=

elements(4), V. A SEMICLASSICAL THREE-STEP MODEL
= ) A. The model
To=2 To(&)e=[Tle,, (14) € mode
! The three-step model was originally formulated for HHG
where in a linearly polarized laser field8,9]. In the simplest

(simple-man version of this model one supposes that the

Ny electron appears in the continuum with zero initial velocity

o _Cint1enE (15 Vi=0at the position of its parent ion. Its subsequent classical

Vi+e's motion in the laser field is then restricted to one dimension,
viz., the direction of the laser field. The binding eneigy
is a unit complex polarization vectef-e,* =1, and the real never enters this mode(We will speak of a “simple-man

orthonormal unit vectors},, andey, define thenth harmonic ~ Model” whenever the electron is “put by hand” into the

polarization ellipse, which is rotated by an offset angje ~ continuum, i.e., whenever its binding energy is ignoréd.
with respect to the polarization ellipse of theand 2o fields ~ the case of an elliptically polarized laser fieldyjf=0 as for

(defined by@, and &,). All vectors defined above are or linear polarization, the electron never returns to its starting
1 2) " -

- ) point and this model is no longer applicable.
thogonal to the wave vectde=wk/c. The time-dependent ~ \ye will now formulate a semiclassical three-step model
nth-harmonic electric-field vector can be definedTagt)  that allows for both a nonzero initial velocity and a nonzero
=Rg T,exp(—inwt)]. Generally, the ellipticitye is con-

: ! s binding energy. It is because of the latter that we call it
nected with the circular polarization degrgdy the formu-  semiclassical, since invariably it will involve tunneling. Let

las us consider the saddle-point equati¢8s-(10). As a conse-

12 quence of Eq(9), since the binding energl, is negative,

(= 26 _ig. (exe), e=sgn{) 1-V1-¢° both the canonical momentufig and the start time; have
1+82 ' 1+J1-72 to be complexXit is easy to convince oneself that just one or

(16)  the other being complex will not solve the equatiorihe
return timet; then comes out complex as well. We will dis-
It can be showr14,19 that the circular polarization degree cuss these exact solutions of the saddle-point equations be-
¢, and the offset anglé, of thenth harmonic can be written low in Sec. VI. Here we will resort to an approximation: we
in terms of ourT-matrix elements as anticipate from Sec. VI and from earlier wark0,2Q that, in
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FIG. 7. Harmonic ellipticitiese;, and offset angle®, as functions of the harmonic order for various values of the ellipticity of the
high-frequency field:e,= —0.999 (solid curve, —0.99 (dotted curvg —0.95 (dashed curve —0.9 (long-dashed curye and —0.85
(dot-dashed curye and for two different values of the laser field intensitig®) 1,=1,=2x10" Wicn? and (b) 1;=1,=4
X 10'* W/cn?. The other parameters are the same as in Fig. 4.

marked contrast to the start time, the imaginary part of thehe integration over the intermediate electron momenta and
return time is very small. Hence we will assume that thereflects wave-packet spreading. Below, we will occasionally
return timet; is real. refer tod(t;,7;) as the partial time-dependent dipole. On the
Eliminating, first, the canonical momentum with the  other hand, according to E¢L0), the emitted harmonic en-
help of Eq.(8) and, second, the start time in favor of the ergyn# w is the sum of the ionization potentig,| and the

travel timer=t;—t;, we rewrite Eq.(9) as electron’s kinetic energynv(t)/2 at the moment; of re-
1 ) combination. The electron’s velocity in the laser fieldt;)
m =[p(t;—7,t;) +e€A(ts)]/m is complex because is com-
—i— —7)— + - =E,. font f . X
om| 7Latim D malt)]TeAlt =) =B (19 plex. Equation(10) now yields a complex harmonic energy

since, in general, R&t;)-Imv(t;)#0. This is a conse-
We will solve this equation for the travel timefor a fixed  quence of our assumption above of a real return timeAs
final timet;. The travel timer will, of course, be complex. mentioned above, the imaginary parttefis small and so is
For eacht; e[tg,to+ T] there is an infinite number of solu- Imv(ts). Therefore, we will ignore the imaginary part of Eq.
tions 7; (j=1,2,...). Itturns out that the set of all these (10). We then have
solutions, {7;(t;),tie[to,to+T],j=1,2,...}, forms a
single continuous curve in the complexplane such that
Im 7 is a single-valued function of Re[21]. Using these
solutions one can both estimate the probability of harmonic
emission and calculate the energy of the emitted harmonics. m
According to Eq(5), the contribution from the travel timg mv(t)) = —[a(t;— 7)— a(t;) ]+ eA(t). (21
to the time-dependent dipoti(t;) == ;d(ts,7;) is T

= Eol+ 5 {[Rev(t) P~ [Imv(t) 12,

explIm S(qt;— 7 1) /4] Let us cons_ider the solutions fOI‘. the complex .timéor
' (200  the bichromatic counter-rotating circularly polarized laser
| 7|32 field whose harmonic emission rates are given by the curve
C4 in Fig. 4. In the lower panel of Fig. 8 we plot, by a solid
where the term in the exponent is the imaginary part of thdine, the quantity—Im r as a function of Re for Rer
quasiclassical actio(6), while the factor{7;|¥? comes from  e[0,2T]. In addition to these complex solutions for with

ld(ts,7j)|oc
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60 - ' ' These are found as solutions of the energy conserving con-
dition at the moment of ionization. They are complex be-
cause the electron is born in a tunneling process. The imagi-
nary part of the travel time determines the probability of the
process, while the real part is related to the harmonic energy.
The latter can be found using Newton'’s classical equation of
motion for the electron in the laser field. A vital feature of

] the model is that the electron starts on its orbit with nonzero
complex velocity whose value is determined by the condition

o
(3=
T

Harmonic Order n
n 0 &
S (=}
.

o
T

e
)

S A \\\ . that it return to the origin. Finally, we mention that repeating
£ 005 ,’;’ Wy - oxplmSye? ] the calculations of Fig. 8 with a binding energy of zero only

" W insignificantly changes the results. In the nomenclature that

,"’ \\ e we suggested above, this would be referred to as a simple-

0 4 ‘,\\:\---":-""—,'_- ~~":,:T;~.-_-.-=-—_-.-_-.-::-_-. man model_
05 1 15 2
Re /T
B. Cutoff law

FIG. 8. Semiclassical three-step model analysis of HHG in two ] o
counter-rotating circularly polarized laser fields with photon ener- 1N Sec. VA we have shown that the main contribution to

gies iw=1.6 eV and Zw, and with the intensities,;=1,=4  the harmonic emission rate comes from electrons with travel
X 10 Wi/cn?. The ionization potential ifEq|=15.76 eV. Lower times such that Re<T/2.[In Sec. VI we will show that this
panel: Imaginary part of the complex travel timesolid line) and ~ contribution corresponds to one particular complex trajec-
the partial time-dependent dipole(t;,7;) (dot-dashed lineas  tory, denoted by2 in Figs. 13 and 1é).] In this region of
functions of the real part of the travel time Both Rer and Imr  Rer, the harmonic order has one maximysee the upper
are expressed in optical cyclés=2mn/w (note that Imr is nega-  part of Fig. § which determines the cutoff of the harmonic
tive). The exact partial time-dependent dip¢B9) and its approxi-  spectrum. This cutoff can be found as the first maximum of
mation (22) are represented by the dot-dashed and the dashed lingphe functionnZ w(7), Eq. (21). For equal intensities of the
respectively, and expressed in a.u./500. Upper panel: Harmonic ofaser field components = ,, we obtain the following cutoff
dern, obtained by introducing the solutions feiinto Eq.(21),asa  |gy:

function of the real part of/T. The two maxima of the estimated

partial time-dependent dipole are identified by vertical arrows and 1

connected to the curve=n(Re/T) in the upper panel. Nimadt © = E 3.1, +1.2E,|. (23

negative values of Im, there are also complex conjugate rig should be compared to the well-known cutoff law for a
solutions 7* with positive Im7. These are unphysical and linearly polarized laser fielthfw=3.17U,+ 1.3|E,| (see
must be discarded as they lead to an exponentially increasir]gefs_[&ll])_ It agrees with the numericalp results presented
emission probability. We also show in the lower panel ofjn Fig. 4.
Fig. 8, as a dot-dashed line, the partial time-dependent di- £q\ the case of different intensities of the laser field com-
pole, obtained according to E(RO). Clearly, there are two o haniq 1, we determine the maximum of the electron’s
regions of Rer for which this quantity has a maximum. Pre- ;netic energyE, i, naxas a function of the ratio of the inten-
sumably, these W'” d"”.“”a‘e the harmonu; response. Thgity of the second laser field component and the total inten-
upper panel of Fig. 8 displays the harmonic energy calcu—sity R=1,/(1,+1,). For Eo=0, this is equal to the maxi-
Ia.ted from Eq.(21) as a fupction of Re. The maxima agree '\ of the harmonic photon énergy. In Fig. 9 we plot, by a
with the upper cutoff in Fig. 4 around=50. . solid line, Ei, max divided by the ponderomotive energy
The lower panel of Fig. 8 also displays, as a dashed I'nel'J;[,(R). In order to specify the absolute valueBf,, maxas a
an approximation to the partial emission rd®0) that is function of R we also present, with a dashed Iifﬁ,-
obtained using the following expansion of Brin powers of  yi i1 by the ponderomotivé energy calculated I,';T:‘X
Im7, The ratio of these two ponderomotive energies is
Up(R)/Up(R=0.5)=2(4—-3R)/5. We excludeR<0.05 and
R>0.95 because in these regions the polarization of the laser
field is close to circular and the harmonic emission rate is
negligible. From Fig. 9 one can see &, max/Up(R) (solid
line) increases with increasing up to a maximum value of
. o . 254 atR=0.84. On the other handgi, max/U,(R=0.5)
wheretip=t; —Rer, and the real part of the initial velocity (dashed lingdecreases monotonically with increpasIRgAII

is Vir=[ a(t;g) — a(t;) ]/Rer+eA(t;gr)/m. One can see that . . : i
this approximation agrees reasonably well with the exact ex(_)f this agrees with the numerical results presented in Fig. 5.

pression(20).

In conclusion, this semiclassical three-step model con-
tains most of the relevant information about the HHG pro-  Figure 8 shows that the functions exp(8t#)/| /%2 and
cess. The crucial gquantities are the complex travel timen(Re7/T) do not assume their maxima at the same positions.

e J
ImS(q,t;—7,t))=— 3 R[E(tiR)'ViR](lm )3

+0O[(Im 7)%], (22)

C. Optimization of the harmonic emission rate
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FIG. 9. The maximal kinetic energy of the electron according to R= b1 (l+h)

the semiclassical three-step model as a function of the ratio of the
intensity of the second laser field component over the total intensit){he
R=1,/(I1+1;). Solid line: Ej, max divided by the ponderomotive
energyU,(R). Dashed lineE,j, max divided by the ponderomotive
energyU,(R=0.5) for equal intensitiesI{=1,). The cutoff law
forI,=1,, Ekin,max:‘?’-l?Up/\/Er is emphasized in the figure.

FIG. 10. Maximal partial emission ratéw,, max (solid line) and
corresponding harmonic photon enemfyw=E,,+|Eol as
functions of the ratidR=1,/(1;+1,). The dasheddot-dashegline
shows the harmonic photon energy divided by the ponderomotive
energyU,(R) [constant ponderomotive energy,(R=0.5)]. The
results are obtained from the semiclassical three-step model. The
laser field and atomic parameters are the same as in Fig. 8, except
In Sec. V B we have explored the cutoff harmonic ordexrs  that the intensities of the laser field components vary such that the
a function of the ratidR. It is of comparable interest to maxi- sum of the intensities is constant and equdlg+l,=8
mize the emission rate with respect to both the omlend X 10 Wren?.
the ratioR. Hence, in this subsection we analyze the partial
emission rateAw,(7)=exp(2 ImS/%)|n/7|3. This rate can
easily be obtained within our semiclassical three-step mod
[cf. Eq.(20)]. Figure 10 displays, as a solid line, the function
Aw, ma=maxAw,(7) as a function of the normalized inten-
sity ratioR=1,/(1,+1,), for 1, +1,=8x 10" W/cn?, and
the other parameters as in Fig..8. It is.interesting to observe  r (t")=Rer(t")—r(t;—7)]
that Aw, o R) does not reach its maximum fof=1,, but
for I,>14. Hence, in order to attain the highest emission rate
one has to employ a disproportionately large intensity of the
high-frequency component. This is in agreement with the ) ] ]
numerical results presented in Fig. 5. The optimal value O§|m|larly, for the real electron velocity along this trajectory
the parameteR, in the present case, iR=0.68, which We obtain
means|,~2l,. The harmonic photon energyfw=E,, e 7
+ | E0_| that cprrequnds to the val_ue _ﬁffor WhI_Ch Awg(7) Vo(t')==At")+—=Req(ti— 7,t¢). (25
has its maximum is plotted again in two different ways: m m
scaled to the ponderomotive potentid)(R) (dashed ling
and to the ponderomotive potential for equal intensities o
the laser field componentglot-dashed ling In the former
case, the maximum of the rate and the maximal harmoni
order roughly coincide.

According to Fig. 8, for a fixech we concentrate on a
ep?articular solutionr, which, in turn, implies an associated
value oft;. The corresponding trajectomy,(t’'), ti—Rer
<t’'<t;, is then obtained as the solution of the classical
equation of motiorfsee Eq(12)]

fi
= E(t’ —ty)Req(ti—7,t) + a(t’) —a(t;). (24)

gn the preceding two equations, we have explicitly written
the canonical momentuigpas a function of its two variables
(Ei =t;— 7 andt;. Notice thatr,(t;) =0, since we assumegd
as real, whiler(t;—Rer)#0 sincet;—Rer#t;. The start
time t; is complex, after all.
In Figs. 11 and 12 we present such real-space trajectories
for the same example that we have considered in Sec. V A.
In the preceding subsections we have shown that the bd=igure 11 depicts the four trajectories that correspond to the
havior of the harmonic emission rates can be adequately digirst four maxima of the harmonic order as a function of the
cussed in terms of electronic trajectories that have a reakal part ofr as shown in the upper part of Fig. 8. Each curve
return time, but a complex travel time. If so, is it possible tois labeled with the corresponding values rof The corre-
assign physical meaning to the associated complex traject@ponding values of Re/T are given in the caption of Fig.
ries? Here we will make the case that the answer is affirmall. As mentioned above, the curves do not start at the origin,
tive. but at some distance of about 4 a.u. away from it. In a tun-

D. Real-space electronic trajectories
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above. Upon a further increase of Rehe electron’s excur-
sion becomes still larger, but the corresponding harmonic
energy reduceg&f. the dotted curve labeled #3This agrees
with what is expected from the curve=n( Rer) plotted in

the upper panel of Fig. 8.

The velocities(25) corresponding to the orbits of Fig.
11(a) are displayed in Fig. 1b), and the electric-field vector
E(t) of the driving field responsible for these harmonics is
traced in Fig. 1&) over its period from—T/2 to T/2. The

initial (ionization times and the finalrecombinatioi times

of the four harmonics considered in Fig.(&Rare marked by
stars and filled circles, respectively, and the numbers in Figs.
12(b,0) indicate the corresponding harmonic ordersFor
example, the electron that recombines emitting the harmonic
n=>51is “born” at t=—0.1211 with a large velocity com-
x{au) ponent in the negativg-axis direction. Under the action of

FIG. 11. Electron trajectories for the same laser field and atomi he forceF(t) = —eE(t), both V?'O‘F'W components increase.
e x component of the electric field changes its sign at the

parameters as in Fig. 8, obtained from the semiclassical three-step ", _ . loci
model. Four trajectories are presented that correspond to the firfPiNt E(0)=0, so that the electron’s velocity component

four maxima of the harmonic orderas a function of the Reas  Starts decreasing. In contrast, the compongnkeeps in-

depicted in the upper panel of Fig. 8. Each trajectory is labeled by*réasing, up to the final time=t;, when bothv, and vl
the corresponding values af the respective values of RéT are ~ have maxima. A similar analysis can be done for the other

identified in the upper left corner. values ofn. For all cases presented in Fig. 12, ionization
happens near a maximum of the electric-field amplitude
neling picture, this would be called the “exit of the tunnel.” |E(t)|, so that the probability of the process is high. From
In contrast, they terminate exactly at the origin. The trajec+ig. 12b) it follows that the kinetic energyv(t;)/2 has a
tory in Fig. 11 with the shortest travel time, labeled by maximum for the curve labeled 51, which agrees with our
=51, corresponds to the first maximum of the function previous results.
=n(Rer) in Fig. 8. This trajectory starts at the point  The orbits depicted in Fig. 18) (excluding the lowest
(4.3,0.8); it first moves in the negatiyedirection and then harmonic numben=19) are quite similar to the orbits for
slowly turns until it travels by an angle of 57.2° with respectHHG in a linearly polarized field. The reason becomes clear
to the negativey axis. After its maximal excursion at the from Fig. 14c). In between the start time and the return time
point (20.6;-9.7), the electron on this trajectory turns back the x component of the electric field changes from its nega-
and moves almost opposite to its former direction. Finally, ittive maximum to(and beyonylits positive maximum while,
terminates exactly at the origin with the kinetic energy thatin comparison, itsy component remains small. Its effect is
allows for the emission of the harmonic=51. The other compensated by thecomponent of the initial velocityoth-
orbits are longer and more complicated. They all have a trierwise, the electron would be unable to return to the oyigin
angular shape that reflects the threefold symmetry otsthe However, according to Fig. 1B), this initial y component
2w counter-rotating circularly polarized field cagd. Figs.  gradually increases from= 19 ton=43 (dotted curvg, and
12(c) and 1. We will show in Sec. VI that the most relevant in consequence, the intensities of the harmonics decrease.
of these trajectories is the one that corresponds to the thir@ihis pattern repeats itself three times during each cycle of
maximum ofn in Fig. 8, labeled byn=35. It has the shape the field, each time rotated by 120°. If one were able to
of a triangle with its base along theaxis: the electron re- separate the contribution to the harmonic spectrum from just
turns practically along this axis. one-third of the period, the polarization of the harmonics
Figure 8 suggests that the main contribution to the harwould be largely linear. It is the superposition of the three
monic emission rate comes from travel times shorter tharontributions from each cycle that generates the circular po-
0.5T. In Fig. 12a) we investigate in more detall trajectories larization of the harmonics.
that correspond to these travel times. The shortest orbit pre-
sented(bold solid line has Rer=0.223r andn=19. The
electron on this trajectory is never further away from the
origin than 5 a.u. Strictly speaking, the picture of quantum In this section, we will consider the exact numerical so-
orbits has little physical significance in this case, since thdutions of the SPM equation®)—(10) for the same example
orbits never leave the region of a realistic binding potentialas in Sec. V A, not making the approximation of a real return
Emission of the associated harmonic is genuinely quanturtime t;. The easiest way to extract the physical information
mechanical and the visualization in terms of classical orbit§rom these solutions is to present the imaginary part of the
does little to elucidate the physics. However, for increasing final (recombinationtime t; as a function of the real part of
(and, also, increasing R¢ Fig. 12a) shows the orbits be- the travel timer. This is done in Fig. 1&), for the solutions
coming longer and longer. The orbit that corresponds to theuch that Re does not exceed two optical cycles. For each
maximal harmonic orden=51 has already been discussedvalue of the harmonic orden, which we continuously

VI. EXACT SADDLE-POINT ANALYSIS

063403-11



MILOéEVIé, BECKER, AND KOPOLD PHYSICAL REVIEW A61 063403

1.5
(a)
—_19 1
----- 31
< ——— 43
— N R —-—- 51
) IS - 43 05
> IR > 3
\\ = \~\\\“ RS S
10 | ™ .\§\ Ne
- ég\\\ 0 L
™.
~
N
T
_15 . . T -0.5
0 5 10 15 20 25
X (a.u.)
-1 L
-2 -1.5 -1 -0.5 0 0.5 1
v, (a.u.)
t=—T/2, TI2
1t (c)
o 05
."é'
=3
g -7/3,0, 713
A
= 07
Wi
51
19
-05 r
-6 -T |3
-1 -0.5 0 05 1

E(f (arb. units)

FIG. 12. Electron trajectorie) and velocitiegb) for some representative examples of short travel times<RE/2. The laser field and
atomic parameters are the same as in Figs. 8 and 11. The respective values of the harmoniarerderen to the right of the curve&)
The curve traced out by the electric-field veckit) for —T/2<t<T/2 in the direction specified by the arrows. For some points on the
curve, the time is indicated. The times for which the investigated orksand (b) start and terminate are marked by stars and filled dots,
respectively, and the respective harmonic orders.

change fromn=4 to n=70, we have found 11 solutions keeps the imaginary part of the return time, which increases
(t; ,t¢), denoted by the numbers in italics in Fig.(48 We  quickly when the harmonic number exceeds a classical cut-
restrict the plot of Int;/T to the narrow interval—0.05 off (or goes below a minimujnThis can be followed in Fig.
<Imt;/T=<0.05 because for large values of 1piT the 13(a) by means of the occasional values of the harmonic
probability of the HHG process is low. Practically, already numbers that are provided. In general, the larger the absolute
for [Imt;/T|=0.01 the harmonic emission rates are all butvalue of Imt;, the smaller is the contribution to the har-
negligible. monic spectrum.

Figure 13a) must be compared with Fig. 8. It contains  This comparison between the semiclassical three-step
much the same, but also some additional information. Firstinodel and the exact saddle-point analysis is made quantita-
we notice that for some particular values of Réne quantity  tive in Fig. 13b). In its upper part, we compane(Rer)
Imt;/T goes to infinity. These values correspond exactly tocalculated from the exact saddle-point methtite broken
the extrema oh(Re7) in the upper part of Fig. 8. We divide curve) and from the semiclassical three-step matiet solid
the curven(Re7) into segments such that each segment idine, reproduced from Fig.)8 This shows that the two results
bordered by two adjacent extrema. Then each segment coase virtually identical except near the extreman¢Re 7) and
responds to a particular solution that is labeled by a numbefor very short times Re/T. The exact saddle-point method
in italics in Fig. 13a). We can see by inspection how the being fully quantum mechanical does not yield extrema of
saddle-point method heals a deficiency of the semiclassicdihe harmonic number. Also, for very short travel times, the
three-step model: the latter is unable to describe harmonidormer exhibits a gap in the travel times: the trajectoi2es
above or below the respective extrema in Fig. 8. In contrastand 1 maintain a finite distance with respect to the travel
the saddle-point method reproduces those as well, since time Rer. Their closest approach occurs precisely at the har-
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FIG. 13. (a) The imaginary part of the recombination tirheas

a function of the real part of the travel time obtained from the
exact solutions of the saddle-point equatig8s-(10). Notice that  arbitrary units as a function of the harmonic order for the same laser
Imt; is a single-valued function of Reexcept for very short times, field and atomic parameters as in Fig(8. Partial contributions of

cf., part(b). In some representative cases marked by stars, the vaach of the first eight solutions of the SPM equations that are shown
ues of the harmonic order corresponding to a giverrRee indi-  in Fig. 13. (b) Comparison of the saddle-point approximati@m-
cated.(b) Upper part: Comparison of the exact saddle-point analysigluding the first 12 saddle-point solutigngull line) and the exact
(broken line$ to the semiclassical three-step modsblid lines, ~ SFA result obtained by numerical integratidfilled circles.
reproduced from Fig.)8 The harmonic numbers have been divided
by 100 so that they fit on the same scale witht}ifil, which is
plotted in the lower part, reproduced from péaj, but on an ex-

FIG. 14. Logarithm(base 10 of the harmonic emission rate in

harmonics are below the continuum threshold and neither
b sl o n vericl s and. o s fldang_ TR 19 1 semcassel nee sep moce v o e
the atomic parameters are the same as in Fig. 8. For the interval ?Or completeness. The second solutitabeled?) is the most

Rer covered in the figure, we have found 11 solutions which are, " -

labeled by numbers in italics. |mportant one. This follows from the analy5|s of Sec|df.

Fig. 8 where it extends up to the first maximumngRer)],
monic corresponding to the binding energy of the modeland we will confirm it below by the direct calculation of its
atom. In the lower part of Fig. 1B), the curves Int;/T of  contribution. This solution intersects the axis ti=0. We
Fig. 13a) are redrawn on an expanded vertical scale. Thidvave marked by stars three representative harmonic orders
allows one to scrutinize the behavior of tmwhen the tra- that about delineate the region of harmonics where the solu-
jectories2 and 1 approach each other. tion 2 makes significant contributions. Figure 8 suggests that

We will now investigate some of the solutions in detail. the solutions3, 4, and9-11in Fig. 13 are not important and
The first solutionl from Fig. 13 corresponds to small values this will be confirmed below. However, the solutiobs8,
of the travel time and, therefore, to electrons that have noaccording to Fig. 8, make non-negligible contributions to the
spent enough time in the laser field to acquire significanharmonic emission rate. The relevant values ébr each of
kinetic energy from it. These electrons contribute only tothese solutions are denoted in Fig.(83
very low values ofh and are not relevant to the explanation In Fig. 14a we present the partial harmonic emission
of the plateaus and their cutoffs. In fact, the correspondingates, calculated using Ed8) and(7), that correspond to the
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first eight solutions from Fig. 13. The most important con-an efficient method for their generation. We have reconsid-
clusion is that the solutio essentially dominates the entire ered a method proposed previously for the generation of such
spectrum up to the final cutoff. This is the solution with harmonics, a driving field being the superposition of two
travel times around/3 whose electronic orbits we have in- circularly polarized fields with frequencias and 2w that
vestigated closely in Fig. 12. Also, as suggested by Fig. 8otate in opposite directions within the same plane, and ex-
the solutions3 and 4 make the smallest contribution. Near tended it to higher laser intensities. Our calculations show
every maximum of the function(Re7) in Fig. 8 two solu-  that the harmonic spectrum exhibits two plateaus: a shorter
tions contribute. This is reflected in Fig. 14 by the intersec—p|a»[eau with higher intensity is superposed on a longer one
tion of their contributions in the high-energy part of the specith |ower intensity. We explained the features of these pla-
trum. For example, partial rates of the solutioBsand 3 o5,5 and their cutoffs in terms of the Lewenstein model,
Intersect at_the harmonic order 53, those of the solutns |, an approximate semiclassical three-step model as well
o o oo e e s, iy e morecompete sadle pot analy i terms ofcom
P b lex electron trajectories. The semiclassical three-step model

after such an intersection and must be discarded. If it el SIso starts from the saddle-point equations, but approximates
possible to give a rigorous mathematical justification of the P q ’ PP

steps leading from th&@ matrix (4) to its saddle-point ap- the re_t_urn_ time as a real qu_antity. This leads to significa_nt
proximation(7) then such a prescription would be part of it. SimPlifications and makes this model a useful tool for arbi-
Since such a rigorous derivation of the saddle-point evalua@'y configurations of the incident laser field. Using the in-
tion of a five-dimensional integral appears to be out of thd®nSity ratio of the two field components as a parameter, we
question, we have to accomplish this based on physical int?Ptimized the harmonic spectrum with respect to the har-
ition. For example, the contributions of the solutions labelegMonic order(obtaining the cutoff law in the procgsr with
3, 4, and6 out of the set discussed above have to be droppetgspect to the harmonic emission rate. We have also identi-
after the points of intersection. This problem is also dis-fied and discussed the electron trajectories that give the
cussed in Ref[20]. dominant contribution to the harmonic emission rate. We
In a way, the analysis of the harmonic spectrum in termsanalyzed the influence of imperfect circular polarization of
of quantum trajectories leads to complementary conclusionghe high-frequency laser field component on the harmonic
for the two counter-rotating circular polarizations as com-emission rates and found it to be small. It degrades, however,
pared to the standard situation of one linearly polarizedo some extent the circular polarization of the harmonics.
monochromatic driving field. In the latter case, there are esThe saturation intensity for the two-color circularly polarized
sentially two quantum trajectories which produce a pro-ield is unknown(cf. Ref.[23]). If it should exceed the satu-
nounced interference pattern within the plateau. Howeveration for a linearly polarized field by, say, just 50%, then
beyond the cutoff just one trajectory still contributébe  thjs field produces harmonics more efficiently throughout
other one becomes unphysical and has to be dropped, 1 ost of the spectrum.
consequently, the interferences cease, thg spectrum decrease$, this paper we have concentrated on harmonic emission
smoothly, and the phases of the harmonics IftR2]. On py one single atom. For the practical relevance of the scheme
the other hand, in the case of the two bichromatic circulaknat we investigated, the collective response of a gas sample
polarizations, just one trajectorgolution 2) dominates the s decisive. Because both circularly polarized components of
entire spectrum up to the cutoff. This one keeps contributing,yr driving field propagate in the same direction, the condi-
beyond the cutoff, but from there on it has to compete withyjons for phase matching are not very differgs from har-
another onésolution5). Hence, the plateau is comparatively monic generation in the standard situation of one linearly
smooth while the region beyond the cutoff exhibits a typicalyo|arized driving field, cf., e.g., Ref1]. An adequate treat-
interference pattern, cf. Fig. ) (in fact, this pattern only  ment of propagation must also include the effects of ioniza-
shows when the harmonic number is continuously varied  tion of the atoms in the gas sample. Nothing is known about
Finally, in Fig. 14b) we compare the results of a numeri- ot jonization rates by the field that we considered. Owing
cal calculation of thé matrix (4), obtained by the numerical 5 the genuine three dimensionality of all this, a reliable cal-
integration and the fast Fourier transform of EGB—(6) to  cyjation of the collective response will not be easy.
its saddle-point evaluatiof¥) including the first 12 solutions We can summarize the reason for the surprising efficiency
of the saddle-poi_nt equatipns._ The latter curve is labelegyf harmonic generation by a single atom due to the two
SPM. It was obtained considering the harmonic omi@s @  counter-rotating circularly polarized fields as follows. The
continuous parameter. The interferences between the contidyrongest contribution to the harmonic emission rates comes
butions from different trajectories are better visible this way.from those orbits with rather short travel times such that
Except for the lowest harmonics, the agreement between th8e -~ T/3. Some of them are depicted in Fig.(a2 and they
exact numerical computation and the saddle-point approxigo not look very different from the one-dimensional orbits

mation is quite good. responsible for harmonic generation by a linearly polarized
field. Indeed, the analysis of Fig. @2 shows that they are
VIl. CONCLUSIONS generated during those parts of the optical cycle where the

field traces out a path that {$o lowest approximational-
In the context of an increasing interest for the generatiormost linear. Figure (B) shows that for all but extreme ratios
of circularly polarized high-order harmonics, we presentedf the intensitied; andl, one cycle of the field comprises
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three such segments. However, for each such segment, téher by 120°) that produced the circular polarization of the
field also has a much smaller component that is perpendictemitted harmonics.

lar to the linear path. The impact of this component must be Figure 1b) depicts the electric-field vector for the case of
cancelled by an appropriate initial velocity. The larger thiscorotating polarizations. A quick glance makes clear that
initial velocity component, the smaller is the contribution to none of the above applies here anymore, and this provides an
harmonic emission. Inspection of Fig(al shows that the intuitive understanding of the virtual absence of high-
afore-mentioned counterproductive component of thdarmonic generation in this case.

electric-field vector has an average of about zero for the in-

tensity distribution “2+4,” and we saw in Fig. 5 that it was ACKNOWLEDGMENTS
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