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Several recent experiments on liquid and solid samples containing protons or deuterons have shown an
interesting anomaly, which is apparently absent when the hydrogen isotopes are replaced by heavier particles.
The anomaly is a shortfall in the intensity of energetic neutrons scattered by the samples; specifically, the
intensity per hydrogen isotope in bulk samples is smaller than the intensity for total scattering by an isolated
hydrogen isotope. Short-lived correlations in the spatial and spin degrees of freedom of the hydrogen isotopes
have been proposed as an explanation of the anomaly. The correlations involve entanglements of the degrees
of freedom created by the requirements of quantum mechanics applied to identical particles. By using energetic
neutrons to perform Compton scattering experiments on the hydrogen isotopes, the time scale of the experi-
mental probe covers the region of 16— 10 '°s where entangled states might still be expected to survive. The
proposed explanation is pursued here by reporting the cross section for Compton scattering, also known as
deep inelastic scattering, by two identical nuclei occupying nonequivalent states. The model reproduces the
observed dependence of the cross section on energy transfer, in which intensity accumulates at the recoil
energy of a single nucleus. Several features of the model demand that the intensity at the recoil energy is
indeed less than the intensity for total scattering by an isolated nucleus. Although the pair approximation used
here is unquestionably a first approximation to real many-body entanglements, it is a compelling explanation
of all the observations, including the restoration of the normal cross section at longer observation times
achieved by moving to longer scattering times.

PACS numbes): 34.90+q, 03.65-w, 61.12—q

[. INTRODUCTION exists, it would have a very much shorter lifetime. However,
some unexplained proton correlations in metal hydrides, e.g.,
Several very carefully controlled neutron scattering ex-strongly isotope-dependent diffusion of hydrogen isotopes
periments[1-4] have shown a shortfall in the intensity re- on a metal surfacf8] and diffusion anomalies of protons in
corded for scattering by hydrogen isotopes. In the experithe presence of positive muof@a)], can be viewed as in-
ments, primary neutrons with energies of a few eV aredirect evidence for short-lived quantum correlations in the
utilized to perform Compton scatteririglso known as deep isotopically pure systems, enhancing the diffusion. Similarly,
inelastic scattering which is described by the impulse ap- nonlinearities in the ionic conductivity of water as functions
proximation, to a good approximatidi]. The shortfall in  of the deuterium-hydrogen contefrit0] have been taken as
intensity is as much as 40% of the normally expected crossvidence for quantum correlations that are broken in the
sections. In twd2,3] of the recent papers it has been dem-mixed H-D systems(The possibility of “coherent dissipa-
onstrated that the shortfall exists only during the firstf&  tive systems,” including short-lived and spatially strongly
for protons loaded in metals, whereas in other H-containingestricted entanglement between atoms in condensed matter,
materialg1,4] the shortfall is similar in size but has a longer has been discussed in several pap&is-13.)
lifetime. Following a preamble in the next section on the interpre-
No complete theoretical explanation of the anomaloudation of entanglement in quantum systems and known limi-
findings has yet been given. It has been prop¢4éthat the tations of our model, based on scattering by a unit consisting
findings in question, and similar results obtained from Ra-of two identical particles, Secs. Ill and IV describe the cal-
man scattering by mixtures of protons and deuterons in watetulation we have done. Section V contains the application of
[6], might be caused by entanglement of the spatial degreesur theoretical findings to the interpretation of the experi-
of freedom of the hydrogen isotopes probed in scatteringments in question. Conclusions are gathered in Sec. VL.
For identical particles, with spih entanglement of the spa-
tial and spin degrees of freedom is preated by the require- Il PREAMBLE
ment of quantum mechanics that on interchange of two par-
ticles the complete wave function acquires a phase factor As concerns neutron scattering, it is tempting to try to
(—1)?. Such an entanglement of atoms is known fromtrace the shortfall in intensity back to a mixing of scattering
quantum optics experiments, where it may exist for times ug@mplitudes for total spin—3 and|+ 3, since these ampli-
to 10 °s in very well shielded environmenfg], but it has tudes are strongly different, in particular for scattering by
never been directly observed in condensed matter where, if ffrotons. The assumption is then that the eV neutrons, which
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have such short wavelengths that each of them can “see$troms extensiorf2]). Secondly, protons or deuterons are
only particles at one of the hydrogen sites involved, scattenormally not in paired states but each of them interacts with
on a quantum state that is a superposition of componentsore than one neighbor at a time. If entanglement exists, it is
with different spin projections. Such superpositions are aherefore likely to be shared by several particles, and the pair
characteristic of quantum entanglement of the spin degreawodel used here can only be seen as a model to illustrate
of freedom of two or more particles. Spin entanglement isprinciples for treating scattering on entangled systdeis
necessarily coupled to a spatial entangleménd vice though it should be noted that coherent dissipative systems
versa for identical particles. This means that the complete[11] are expressed in terms of “geminals,” i.e., two-particle
wave function for the system is also a superposition of comwave functiong A further consequence of going beyond the
ponents where particle labels have changed places betweemo-particle entanglement in a system of identical particles
the hydrogen sites involved. For the moment, we leave thevould be that particles,é,... in the labeling series,,v,4....
guestion open about how such entanglement can possibly lz@e now also allowed as partners for the particle to be ex-
created and carry out a calculation of the consequences f@elled in a Compton process. The strength of entanglement
neutron Compton scattering should entanglement indeed evetween, say, particlag and 8 and particless and vy is also
ist at the encounter of the neutron with the proton deu-  expected to vary with time, with possibility for entanglement
teron system. swapping[15,16, so that suddenly would turn out to be

A starting point is the case of two protons, labetednd  the appropriate partner @f, rather thar3. This would bring
. Such a pure systefmvhich nobody has so far been able to about a fast decrease of entanglement for particles situated at
study experimentallywas recently considered theoretically two neighboring sites.
[14]. If the two protons are produced by separating them
from each othefand from the bound electrons a hydro-
gen molecule, they will exhibit a quantum entanglement ex-
pressedfor a spin singlet statd= 0 for the paij through the

IIl. THE NEUTRON SCATTERING CROSS SECTION
AND ITS COMPTON LIMIT

wave function, In this section we derive the cross section for scattering
by a system consisting of only two identical particles. Aris-
W(J=0) x[P(R,)Q(Rp) +P(Rp)Q(RL)I[T(Sa) | (Sp) ing from the principle of indistinguishability of identical par-
_ ticles is a correlation in the quantum numbers that define the
T(sp)l(sa)], (2.1

states of the system, also described as an entanglement of the
whereP (right-hand channel, sayand Q (left-hand channel, system’s spatial ar_1d spin degrees of freedom. The expligit
say are distinct one-particle orbitals. The spin part is, simi-form of the correlation in the quantum numbers found here is

correct for two particles with arbitrary spin. There are two

spatial centers, labeled 1 and 2, and the distance between
them is similar to the distance between neighboring ions in
the crystal. A particle has spih andl=3%(1) for a proton
(deuteron. The complete wave function acquires a phase

larly, expressed through a superposition of spiniys,)
and spin-down| (sg) functions for the proton& and . Evi-
dently, this wave function would lead to an equal probability
for finding the two particles in théseparatedproduct states,

P(R)T(5.)Q(Rp) L(Sp),  P(RL)L(S)Q(RL)T(SH), (—1)?" when the particles are interchanged.
The one-particle spatial orbitals discussed in the previous
P(R R . P(R R _ section are taken to be nonequivalent and purely real and
(Rp)T(sp)Q(RA) L (S4),  P(Rp) | (sp)Q( a)T(Sa)Z. they are denoted b (R) and px(R), with

One of these four states would also be the result if all en- ) )

tanglement(in spin and coordinate spaceere broken by a f dR 901(R):f dR @3(R)=1. 3.0
measurement process. Equati@l) represents a so-called
maximally entangled state, enforced by the Pauli rules fo
fermions. Similar expressions are well known from the
photon-photon pairs studied extensively in Einstein-
Podolski-Rosen-type experimer{igshere, however, the spa-
tial part of the two-particle wave function is usually not writ- 2 1y
ten ou}. At the right-hand sid¢and similarly for measuring [2(1+ST) ] " 01(RL) 02(Rp) + L @1(Rp) 02(R,) 1.

The particles are at positior®B=R, and R=R. Suitably
normalized, the spatial wave function of the initial state of
the two particles is

at the left-hand sideit is therefore not knowna priori, 3.2
whether the particle observed will be or B, nor whether
this particle will have spin up or spin down. Here,=(— 1)’ where the total spin of the particles,is an

Of course, the real situation for protof@r deuteronsin integer andZ?=1. The overlap integral forp; and ¢, de-
a condensed matter system is very different from that ohoted in Eq.(3.2) by S;, is assumed to be small on account
isolated, entangled proton pairs assumed so far. First of albf the large distance between the two centers and, hence-
the particles are strongly interacting with their environmentforth, it will be neglected. The orbitalg; and ¢,, and the
which limits the survival of spatial entanglement drastically energy to which Eq(3.2) corresponds, might depend on the
(decoherence times in a metallic hydride are estimated to bemagnitude of] or whetherd is an even or an odd integer. The
of the order of 101®s for correlated objects of a few ang- spinor for the two particles is
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3 the volume of space in whiclk(R,) is appreciably differ-
XM(“'B):% (Lamlgn[IM)[I;m)|Ign). (33 ent from zero; a volume that is of the order of a unit cell in
the crystal. In consequence, the integral in question is close
The Clebsch-Gordan coefficient in E(B.3) is defined in  to zero. The corresponding integral in E§.6) can be sig-
accord  with Edmonds [16] and XﬂA(ﬁ'a)= nificantly different from zero whep’ is chosen close té&,
(—1)?Zxy(a.B). In keeping with the nonrelativistic limit SO exPiR,-(k—p’)] has relatively few oscillations in a unit
of quantum mechanics, the complete wave function of th&e€ll. From the conservation of momentum it follows ttkat
two particles is the product of Eqé3.2) and (3.3), and on —p’ =p is the initial wave vector of the struck particle. With
interchanging the particles the complete wave function doeB’ =k the second integral in E¢3.7) is close to zero and the
acquire a phase<{1)? (In the case of a system with three or product of integrals in the expression can be safely neglected
more identical particles, the spatial wave function need noth comparison to E(3.6). For the latter we writd<; (p)T5.
necessarily be either symmetrical or antisymmetrical withHere, the momentum wave function
respect to the interchange of any pair of particles, as the
complete wave function must be. _ K,(p) :Q—l/ZJ dRexp(iR-p)¢1(R) (3.9
The wave function that describes the particles after the
scattering event should also acquire a phasd )?' when _
the two particles are interchanged. As we shall see, in ordesrat'S]cIeS
for our model to reproduce the observed distribution of in- Q
tensity as a function of neutron energy transfer, one of the > K(p)|2= 3f dp|K(p)|?=1,
two particles must be found in a state described by a plane P (2m)
wave, to a good approximation, with a wave vector almostand the overlap intearal
equal to the wave-vector transfds, The magnitude ok in veriap integ
the experiment is purposely made very large.
Let the plane wave be proportional to eggR) and de- T2=f dR ¢* (R) ¢2(R). (3.9
note the second one-particle orbital % R). The plane
wave can be normalized in a box, aiR) is normalized to  The four terms that survive the Compton limit are
unity like ¢, and¢,. The normalization box has a volunfe
and the normalization factor attached to the plane wave wilk{b,[K1(p) T+ {Ko(p) T1]+ {'bg[Ko(p) T+ {Ky(p) T2},
be absorbed in a momentum wave functidty. (3.8) be-
low]. For the momenty(R) is not specified and a complex Wherep=k—p’, andK, and T, are defined in accord with

function is allowed. the foregoing definitions, Eq$3.8) and(3.9).
The neutron-nuclear interaction operator is In writing down the result for the matrix element \gfwe
will assume that the momentum wave functions constructed
V=b,expiik-R,)+bgexpik-Rp), (3.4  from ¢, and ¢, are almost the same and denote the common

) L value byK(p). One finds
where the scattering-length operatois independent of the

position variable. A matrix element &f taken between the (final|Vlinitial) =K (p)F(J’,J), (3.10
initial orbital (3.2 and the proposed final-state orbital,
namely, where

1 o L F(‘J,!J):%(<J’|ba|‘l>+§§/<‘J,|bﬁ|‘]>)(T2+ng)(3l
E[exp(lp "Ro)P(Rp)+ " explip’-Rp) (R,) ], :

(3.5 and

contains eight terms, four of the form <J'|b|J>:[Xi/|’/(a ,3)]+bva|(a B). (3.12

f dR, exfiR,,- (k—p’)]le(Ra)f dRz¢* (Rp) @2(Rp), To achieve a simple notation, Fhand the matrix element of
b we do not displayM andM .

(3.6 The explicit form of the scattering-length operator is
and four of the form b=A+Bs | (3.13
f dR, exp(iR,,- k)‘[f*(Ra)(Pl(Ra)f dRg In this result,sis the operator for the spin of the neutron and
A andB are linear combinations of the scattering lengths for
Xexp(—ip'-Rg)@a(Rp). (3.7  the two possible states of the total spii; 3. One sees that

the matrix elemen{(3.12 is purely real. The single-atom
Consider the first integral in Eq3.7). Because the magni- cross section is #b? whereb? is obtained by averaginig?®
tude ofk is very large, the phase factor exR(, - k) contains over random orientations df or, equivalently, random ori-
very many oscillations, betweehl and—1, asR,, varies in  entations ofs, and the result is
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b2=A2+1B2I(1+1). (3.14  The required zero overlap is achieved wat# J’, for aI_I p’
and #(R). Hence, not all values al’ are accepted in the

Let us now consider the change in energy of the partidegvaluation of thg structure factor. In the I.atter, nonzero val-
between the initial and final states. Because the duration d€S of the matrix element of the scattering-length operator
the scattering event is by design very small, we anticipat®0ey the selection rulé’=[J—1[, J, andJ+1, sinceb con-
that the position of the struck particle is almost unchangedt@ins!, which is a tensor of rank ficf. Eq. (4.3 below]. The -
and its potential energy is essentially the same in the initiaPUtcome (_)f the selection rule and the orthogonality condition
and final states of the scattering event. On the other hand, tH& to restrict]’ to the valueJ—1| andJ+1, whenceZ{’
kinetic energy of the struck particle changes frolp)2/2M =-1
to 72|k —p|2/2M. Assuming the potential energy is the same
in the initial and final states, it cancels out in the conserva- V. THE INTENSITY OF SCATTERED NEUTRONS

tion of energy of the struck particle, which then reads, Attention in this section is on the intensity at the recoil

502 12k—p|2 energy appropriate to unpolarized neutrons. The intensity is

E+ (fip) —E'+ P calculated from Eq(3.16), and its dependence on the total
2M 2Mm spin of the initial and final stated,andJ’, arises from both
the matrix elements db, andb,; and the phases= (— 1)’

whereE andE’ are the initial and final energies of the neu- g5 §’=(—1)J'. The dependence of the structure factor

tron. Moreover, measured on the scale of energy for th F(J',J)|2 onJ' is solely in the matrix element of the scat-

change in kinetic energy of the struck particle, the energy OTering length, for

the other particle is unchanged in the scattering event. Writ-

ing Aw=E—E’, the cross section for scattering is propor- (J'bg|3)=27"(3'|b,|Iy=—(3"|b,|J), (4.7

tional to

a result that follows directly from Eq%3.3) and(3.12 and

s 52 J+J’=o0dd integer. Using Eq4.1) in Eq. (3.16),
Sl hw—Er+ —k-p||K(p)|?|F(J",)|?, (3.15

z <P IKEIFFORI FQ DRP=( b JAT+ (T2 (42

where the recoil energiir= (71k)%/2M. Regarded as a func- 10 obtain the observed intensity we averagé|b,|J)*
tion of energy transfer the cross secti¢hl5 peaks at the ©OVer the prolectlo_ns Qf the |n|t|a! total spin a_nd sum over the
recoil energy, in accord with the observations we aim tovalues of the prpjecnon of the final ltotal spin. Starting from
interpret. The width in energy of the recoil peak is related toEd- (3.13 a straightforward calculation yields
the momentum densityK (p)|? in the ground state. These 1
features of the energy dependence of Ej19 are signa- 3 > 237D > EM(I b, Y Emyy
tures of the Compton limit of scattering, which has been mm’ MM’
extensively studied5].

Having established the correct energy dependence of the
cross section, we turn attention to the intensity that accumu-
lates aroundEg. From Eq.(3.11),

n

I 1 1)2
:(sM,A2+4lBZ(2J'+1)|(|+1)(2|+1)’J, | J},

4.3

IF(3",9)[7=7((I' b+ L bglI))?[ T+ {ToHl% where the last quantity on the right-hand side is the square of
a 6] symbol [16]. The results(4.2) and (4.3) completely
) ] ] o determine the intensity of the Compton scattering of unpo-
This expression depends on the total spin of the initial angyyized neutrons by a pair of correlated nuclei.
final states through the matrix elements of the_scattering- In considering the application of expressi@n3), thought
length operator and the phaseand{”. In the following text  myst pe given to the dependence of the energy of the par-
we evaluate expressioB.16 for the intensity, or structure ticles on their total spin, arising ultimately from the principle
factor, assoma'ted with the Compton scattering by a pair opy indistinguishability of identical particles. Fdr=3%, to
correlated particles. _ each energy level there corresponds one definite value of the
The initial and final wave functions belong to states of theygig) spin, 0 or 1. There is not necessarily a one-to-one cor-
two particles with widely different energies and the overlaprespondence between the spin values and the energy levels
of the wave functions is negligible. Using for particles with spiri >3, and energy levels to which there
) correspond symmetricégntisymmetrical spatial wave func-
[Xf/l,(a,ﬁ)]JrX,J\,l(a,B): 83,3 Om M7 tions can occur for any evefodd) value of the total spin.
The magnitude of the energy dependence, known as the ex-
one finds change splitting, is related to the overlap of one-particle or-
bitals at different centers. For the moment, we will assume
finallinitiald = £ 8- 1 8w wir (142K (=D T the energy dependence is very small and unimportant in ad-
( | )=2 00w (1 LKA PT dressing the questions at hand. Rather, all valuekaoidJ’
+ZKo(—p')T4]. (3.17 are now regarded as equally likely, subject to the tenets of
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guantum mechanics. In consequence, we will sum the inten- 2l JJI+1)
sity over the allowed values ¢f and average it with respect Z (2J+1)|1— m =1(21+1)?
to J. J=o

In executing the sum od’ we recall the conditiord’ ) ) ) )

final states of the particles. From Ed.3), one-half this value. Thus, averages of the structure factor
over J-even andJ-odd states generate the same numerical
1 factor ;. Assembling the results, the intensity per particle at
> 3 > 23+1) > [(ZmAl(3" bl 3) |z M) the recoil energy, summed ovér and averaged with respect
I+ mymy MM’ to J, is

J(J+1)

:(Gind4ﬂ)(l—m y (44)

1
w; (23+ 1)2J IF(3",9)|2

whereoi.= ml (I +1)B? is the single-atom incoherent cross

; 1/ 0inc
section. , , :_(_) 2(Ti= T2+ [T+ T,
The result(4.4) is central in subsequent developments so 4\ 4m
it is fitting to record an alternative derivation of it. From the 1/ o
first equality in Eq(4.1) we find(J|b,|J)=(J|b,|J) and the = 2(4;7”: (| T4|2+|T5)?). (4.9
sum

This result is seen as our central finding. In arriving at the
,2, [(3"M '|(ba_bﬁ)|JM>|2:<JM|(ba_b,8)2|JM> final expression we assume the single-particle orbitalt,in
M andT, are the same for all values df
For the combination of overlap integrals in Eg.6) we

contains no contribution from the terdhn=J". For unpolar- ' - ’
submit the inequality

ized neutrons,
(b,—bg)2=1B2(I,—14)%=1B%(212+212—K?), (| T2 +|ToH)=1. 4.7

whereK=(l,+15). Usinglizlffl(l +1) we find The inequality follows by expressingi(R) as an expansion
in terms of complete sets of single-particle orbitals for the
two sites. Equality in4.7) is achieved when coefficients in
. the expansion are zero for all orbitals except those describing
the ground state, denoted in E.2) by ¢,(R) and ¢,(R).
Now, previously we have establishéd’ = —1 so the quan- The result(4.6) is smaller than the result corresponding to
tity considered here is precisely the quantity needed for théotal scattering by an isolated partitdé= (o/47), whereb?
structure facto3.16 when it is summed over all’. Note is given in Eq.(3.14 and o is the total single-atom cross
that the algebraic factor is positive, since it is the diagonakection. In part, the shortfall in intensity in Compton scatter-
matrix element of the square of an operator, and it reduceig is due to the absence of the initial wave function Eq.
the matrix element below the value appropriate to simplg3.2) in the final state; the Compton scattering process is

JJ+1)
41(1+1)

(IM|(b,—bg)2IM)=B2I(l +1)(1—

incoherent scattering by an isolated particle. inelastic and incoherent, and the cross sectiga appears
The value of the structure factor corresponding to Eqinstead ofo=oj,.. In our model result there is also a factor
(4.4), namely, 7 in the intensity that has its origin in the same physical
process, which manifests itself in the calculation by the ap-
D R ) J(J+1) pearance in Eq(3.16 of the difference in scattering-length
= [FQ" D)= (oind4m)|[T1+ (T 1_m ' operators for the two particles and no contribution to the

(4.5 scattering event from states with the same total nuclear spin
J.

depends on whethekis an even or an odd integer, the two ~ TO conclude this section, let us return to a fact already

possibilities giving opposite signs fdr=(—1)’. Hence, the Mentioned, that the energy of the particles depends on their

average of Eq(4.5) with respect toJ is to be made sepa- total spin. For a system consisting of only two identical par-

rately forJ even andJ odd. ticles, the solution of Schdinger's equation for the spatial
The integerd=0,1,2,...,2, and the total number of initial Wave function that corresponds to the lowest eigenvalue has
spin states is an even value of the total spin, since the wave function for
this eigenvalue is not antisymmetrical. In the casd of
2l the structure factor per particle for this state is
JEO (23+1)=(21+1)2

12 |F,0)2=3(0nddm)| T+ T2
Also, J'#J
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Taking T;=T,, on the grounds that the two spatial centers (b) A cross section of normal size for protons for time
have the same local structure, use of E47) brings us to  larger than 10%*°s in the Nb and Pd hydridd4,2].
the result (=3), (c) A small (about 10% but time-independent shortfall in
the cross section for deuterons in Nbfg).
1 ) 12 (d) A big shortfall in the H/D cross section ratio for mix-
73%3 IF".0<(aind/4m). 48 tures of DO/H,O [1]. This ratio is~30% below the conven-
tionally expected one for admixtureXy=[D]/[H+D]
Consider next =1. The state of lowest energy corresponds<0.4, but approaches the conventional valueXgr0.9.

to J=0 or 2. The structure factor per particle satisfies The values off in Eq. (5.2 at once admit the entangle-
ment of spatial and spin degrees of freedom in pairs of iden-

tical particles as a candidate for the explanation of the short-

1 ’ 2
2 2 IF(J",0*<(ind4m) (4.9 fall in the observed intensity for scattering by protons or
v deuterons. Taking'§= 3, a fraction 0.4 of pairs of correlated
and protons yields a shortfall of 30% in the intensity relative to

o, and a fraction 0.7 of pairs gives a 50% shortfal|2].

. o1 With a purely quantum-mechanical effect as the explana-
2 2 IF3",2[*<3(0ind4m) (410 tion of the anomalies one expects progressively smaller

I anomalies with increasing mass of the particles. It is encour-
aging to find our proposal fits this trend. A fraction of only
0.1 of pairs of deuterons gives a 10% shortfall in the inten-
sity, in line with the experimental resyl2]. With more mas-
sive particles even fewer pairs of correlated particles should

The intensity per particie in Compton Scattering from two be formed; thus the attendant shortfall in intenSity will be
identical nuclei has been shown to be less than the singlery small and, we propose, too small to be measured.
atom incoherent cross section. There are various reasons why It can be shown that, if quantum correlations are deleted
our favored expression for the intensity per particle is then the final state, by setting’=0, the conventional cross
result(4.6). For one thing, the result can be interpreted as th&€ction is recovered. The gradual transition from anomalous
incoherent addition of intensity for each center, and thisfo normal cross sections as the scattering times are increased
structure in the result is consistent with the incoherent naturkl,2] can be seen as due to the destruction of entanglement in
of Compton scattering as a probe of matter. The re¢gu@  the states of the unit of two particles. Such decoherence is
is arrived at by including all the initial states with the appro- most likely associated with the interaction of the particles
priate quantum statistical weights. We expect this to be apwith the environment. Certainly, we expect the Compton
plicable because of the energy scales in the experiment. THvent to destroy an entangled state enjoyed by the struck
separation in energy of the initial states is small, as we havgarticle.
previously mentioned, and surely the separation is very small

while their average is less than or equalitar;,/4).

V. COMPARISON WITH EXPERIMENTS

relative to the tempgrature of thg sample and, also, the spread VI. CONCLUSION
in energy sampled in the experiments.
We will evaluate Eq(4.6) with T;=T,, which is an as- We report a theoretical discussion of scattering of ener-

sumption consistent with our earlier use of a common valugetic neutrons by particles in a solid, with a view to inter-
for the momentum wave function of the one-particle orbitalspreting recent experiments on samples loaded with protons
in the initial state. In this case, the intensity per partiele ~ or deuterons. A prime objective is a complete and transpar-

relative to the single-atom cross section is ent account of the influence on scattering of entanglement of
the spatial and spin degrees of freedom of the particles. This
f=0./0=3%(0inc/0)T3, (5.1) is realized by recourse to a simple model built from elemen-
tary units of two particlegnuclei, which might capture es-
and we submit the inequalitﬁs%. One finds sential features expected of a many-body quantum system.
The initial and final states of the two particles in a unit are
f:O.49T§ for the proton, represented by nonrelativistic wave functions; a wave func-
tion is the product of a spin and an orbital wave function, and
and, each of these is a linear combination of products of non-
equivalent one-particle orbitals. An interchange of the two
f=0.13T§ for the deuteron. (5.2 particles in the initial or final wave functions creates a phase

factor (—1)? wherel is the magnitude of the spin of a
The main features of the experimental res(ilts-3] are  particle.
the following. The initial state in the scattering event is a state of equi-
(a) A big shortfall in the cross section for protons in me- librium, and use of one product wave function to describe the
tallic hydrides; about 30% in Nb-H and about 50% in Pd-H,initial state is expected to be an acceptable approximation to
when the neutron scattering tinfebservation timgis less  the true ground-state wave function. For the final state we
than 510 ¢s[1,2]. use a wave function in which a particle is represented by a
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plane wave, and the second one-particle orbital is unspecifiddted for a unit of two particles is a fraction of the incoherent

but assumed to be spatially localized. This highly excitedsingle-atom cross section.

state of a two-particle unit has no overlap with the initial  The model is shown to fit key experimental results. In so

state. We demonstrate that the specified final state of the twéoing, it is found that there are fewer correlated pairs in the
particles produces in the cross section the observed depefystem of deuterons than in the system of protons. This find-
dence on the energy transferred to the sample, which is &9 is quite consistent with an explanation based on a purely
typical Compton profile centered at the recoil energy of ongluantum-mechanical effect. Another relevant example is the
particle. isotope effect observed in the localizationof and protons

With regard to the interpretation of experiments, our key!" Metal hydrideg9(b)]. . .
finding is a reduction of the cross section per particle below,  Persuasive as our argument appears, it might be casuistic.

the cross section for a single isolated particle. The reductio@:éer all, in the properties of quantum many-particle systems

is caused by entanglement of the spatial and spin degrees re is abunda_nt evidence of great subtletigs.
freedom of i/he twogparticles in a unl?t. P 9 Note added in proofRecent papers by FillauxL7] and

In the favored model, two factors contribute to the calcu—lkﬁ.d";‘1 anthlllau>{1'8]' d|icgsshadrelatedbsca:jter{/r\1/g problerr; '? |
lated reduction in the cross section. First, orthogonality ofVNich protons participaté in hydrogen bonds. We are gratetu

the initial and final states means that these states have diffe! Franois Fillaux for information about this work.

ent total spins, so in the expression _for the cross section the ACKNOWLEDGMENTS

sum over all allowed values of the final total spin excludes

the value of the initial total spin. Secondly, scattering in- One of us(S.W.L) thanks Professor E. Balcar and Pro-
volves only the (incoherent spin-dependent part of the fessor H. R. Glyde for useful discussions and correspon-
nuclear scattering-length operator. Absence of the spindence. E.B.K. wishes to thank Professor C. A.
independent part of the scattering length, which is equal t€hatzidimitriou-Dreismann and Professor E. ias for
the coherent scattering length, means the cross section calamany interesting discussions.
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