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Chaotic scattering in collinear ZeÀeÀ three-body Coulomb systems

Bin Duan, Zaiqiao Bai, and Yan Gu
Department of Astronomy and Applied Physics, Center of Nonlinear Science, University of Science and Technology of Chi

Hefei, Anhui 230026, China
~Received 11 October 1999; published 17 May 2000!

We study the collinear chaotic scattering between an electron and a one-electron ion~e.g., He1) with
negative total energy. The global dynamics of the unbounded motion in phase space can be illustrated by
introducing two submanifolds of critical injecting and critical escaping. We find a type of bifurcation of chaotic
scattering resulted from the tangency between these two submanifolds, which explains the emergence or
disappearance of an extra zeroth-order chaotic band in the scattering functions as the nuclear chargeZ is
changed.

PACS number~s!: 34.80.Kw, 05.45.2a
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The classical dynamics of three-body Coulomb system
a long-standing problem of great physical importance. T
first systematic attack on it, with the aim of understand
the spectrum of a helium atom, were carried out in the ear
period of the development of quantum mechanics@1#. How-
ever, those works totally failed because, as recognized to
the pioneers had no preparation for chaos at all. Even no
thorough understanding of this high-dimensional nonin
grable system still remains a challenge for physici
equipped with knowledge of modern dynamical syst
theory. A practical strategy is to study the motions restric
on its low-dimensional invariant manifolds, which includ
among others, the coplanar motions@2,3#, the e2Ze2 and
Ze2e2 collinear motions@4–7#, and thes-wave motions@8#.
It is natural to expect that any knowledge of those s
systems will provide useful information about the origin
problem. In fact, the discovery of the stable bounded moti
in the Ze2e2 collinear helium@9,5# strongly supported the
frozen planet model which has been used in explaining
highly correlated two-electron motions observed experim
tally in doubly excited atoms or ions@10#. In this short paper
we report our recent study on the unbounded motions,
scatterings, in theZe2e2 collinear helium, noting that the
scattering process explores the outer part of the phase s
more thoroughly and that it will yield useful informatio
about two-electron correlations in three-body Coulomb s
tems.

The Ze2e2 collinear helium is composed of two elec
trons and one nucleus with chargeZ. Both electrons are col
linearly arranged on the same side of the nucleus, and s
the nucleus is much heavier than the electron, the nucleu
supposed to be fixed at the origin. The Hamiltonian of
model is~in atomic units,me5e51)
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wherer 1 ~or r 2) is the distance of the outer~or inner! elec-
tron from the nucleus withp1 ~or p2) being its conjugate
momentum. Since the potential is a homogeneous functio
r 1 andr 2, the classical dynamics is invariant under a scal
transformation with respect to the total energyE. Thus it is
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sufficient to perform calculations at the fixed energyE5
21 for the negative total energy.

The best way to study the collinear helium dynamics
using the Poincare` surface of section~SOS!, where an orbit
can be conveniently visualized by its points of intersect
with a two-dimensional SOS. The bounded motions o
Ze2e2 collinear helium were shown in Fig. 8 of Ref.@5#,
and they are hardly distinguishable from an integrable s
tem. The fundamental periodic orbit of the system appear
a fixed point in the center of an extended torus structu
Near the fixed point, the motion of the outer electron
nearly harmonic, while for large radial distances the tori a
elongated due to the almost Keplerian motion of the ou
electron. However, with the increase ofZ, the KAM tori
break up one by one, and the chaotic motion is expecte
appear. For the scattering orbits, we can classify them
direct and resonant ones. The direct scattering orbits, wh
lead to the immediate escape of the outer electron afte
e-e collision, are topologically the same as there in Coulom
potential scattering. On the other hand, in a resonant sca
ing orbit, the outer electron, which fails to escape to infin
during its first outgoing phase, will experience an indefin
number of reinjecting phase and lead to a very complex
jectory. In the following, we will focus our attention on th
characteristics of the resonant scatterings ofZe2e2 collinear
helium.

We shall first explain in some detail our considerations
the numerical calculations. Since the resonant scatterings
only be observed in injecting ensembles with an incid
energy slightly above zero, it would be very time consumi
to directly use the exact dynamical equations in numer
studies. To circumvent this difficulty, we divide the positio
of the outer electron into three zones by setting two radiir a
andr b . The asymptotic zone is defined byr b,r 1 where the
correlation between the two electrons can be neglected
that the mean-field approximation is justified. Specifical
the Hamiltonian can be separated into two parts, i.e.,H
5H11H2, for the inner and outer electrons as

H25
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and
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FIG. 1. Scattering functions forZ510 andEi50.005~full range!. ~a! Scattering timeTs , ~b! escaping energyEf .
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where^r 2&520.75Z/H2 is the time average ofr 2 in a pe-
riod of e2 @11#. Therefore, an analytical result can be o
tained in this asymptotic zone. In the middle zone defined
r a,r 1,r b , H2 remains almost constant but thee-e correla-
tion is no longer negligible. In this region we rewrite th
dynamical equations by using (u,I ), the angle action ofH2,
and treatI as a slow variable so that a large step integra
can be applied. Finally,r 1,r a defines thee-e strongly in-
teracted zone, where the above method may fail. In this zo
we use exact dynamical equations with a regularization
two-body collision. For our purposes, we have found tha
choice ofr b'100Z and r a'5Z in our numerical code can
conserve the energy to within 1026 for most of the trajecto-
ries we shall report below.
06271
y

r

e,
f

a

With the above explanation of the computational me
ods, we now turn to the description of numerical scatter
experiments. We first prepare a complete injecting ensem
in which the inner electron is fixed at the origin withH25
212Ei while the outer electron is uniformly distribute
within a range ofr 15r iP@r b ,r b1Dr ) with H15Ei , and
Dr being the distance that the outer electron travels durin
period of the inner electron. Taking each member of
injecting ensemble as an initial point, we compute its or
until the outer electron fulfills the escaping condition giv
by p1.0, H1.0, andr 1.r b . The records of the escapin
energyEf and scattering timeTs as a function of the initial
parameterr i yield the scattering functions.

The scattering functions for a complete injecting e
semble withEi50.005 andZ510 are shown in Fig. 1, from
which we can see the hierarchical self-similar structure,
signature of the chaotic scattering. Figure 1 shows that
FIG. 2. Blowup of the central part of the chaotic band in Fig. 1, the abscissa is indicated asr i21002.~a! Scattering timeTs , ~b! escaping
energyEf .
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FIG. 3. ~a! Phase portrait of the SOS for some bounded orb
and a part of the CEM~solid line! and the CIM~dotted line! when
Z510. ~b! Enlargement of the rectangle in Fig. 2~a!. The CEM
~solid line!, CIM ~dotted line!, and two ensembles~dashed lines!
with Ei50.005 ~upper! and Ei50.012 ~lower! are plotted. The
FRSZ and BRSZ are marked out by shaded regions while the b
regions below and above the CIM denoted direct scattering
biresonant zones, respectively.~c! Propagation of the oscillated
CIM in the asymptotic zone. Trajectories of a complete inject
ensemble are plotted by stroboscopic sampling at a period o
cycles. The inset in the figure shows the enlargement of the re
in the vicinity of the point A.
06271
scattering functions consist of regular and irregular com
nents. In the regular part, which we call the zeroth-ord
regular band,Ef and Ts are continuous with respect tor i .
On the contrary, the scattering functions violently fluctua
in the irregular part, which we call the zeroth-order chao
band.

If we enlarge the zeroth-order chaotic band, a finer str
ture will appear~Fig. 2!. We can see that the chaotic ban
consists of infinitely many interlaced regular parts and flu
tuating parts, which are called the first-order regular ba
and chaotic bands, respectively. Each regular band is a
cave parabola forTs , and a convex parabola forEf . Moving
away from the central and widest chaotic band, the width
the regular bands and chaotic bands gradually shrink to z
as they approach the borderline of the zeroth-order cha
band. Further enlargement of a first-order chaotic band
veals a similar picture, i.e.,~the second-order! regular bands
separated by~the second-order! chaotic bands. As we will
discuss later, this hierarchical self-similar structure can ac
ally be observed in an arbitrary fine scale, which indica
the existence of chaotic scattering inZe2e2 collinear he-
lium.

To understand the onset of chaotic scattering, we w
study the global dynamics of the system on the SOS.
choose the SOS as the phase plane$r 1 ,p1% of the outer elec-
tron when the inner electron is at its aphelion~i.e., p250). A
typical phase portrait on the SOS is shown in Fig. 3~a!. By
introducing the critical escaping and injecting manifolds
the SOS, orbits with qualitatively different behavior can
clearly identified. Consider the orbits starting from the SOS
with differentp1.0 and fixedr 1. They can be classified into
either of the following three types according to the fate of t
outer electron. Ifp1 is sufficiently large, the outer electro
will immediately escape to infinity with finite outgoing en
ergy. On the other hand, ifp1 is not large enough, the oute
electron will return to the vicinity of the nucleus due to th
~time-dependent! attractive potential. In addition to these tw
general situations, there exists a critical case when the o
electron directly escapes with zero energy. The intersect
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FIG. 4. ThresholdEc as a function ofZ.
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FIG. 5. « f function. ~a! Z54.5; ~b! Z5Z1; ~c! Z55.0; ~d! Z55.4; ~e! Z5Z2; ~f! Z55.8. Note that the relative position of the
zeroth-order chaotic band with respect to points AandB is changed after the transition@see~a! and ~f!#.
062711-4
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FIG. 6. Two symmetric RCO’s atZ54.7.
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of these critical escaping orbits with SOS define a cur
which we shall call the critical escaping manifold~CEM!. By
applying the time reversal transformation (p1→2p1) to the
CEM, we obtain the critical injecting manifold~CIM!. In
numerical studies, the CIM can be generated by an injec
ensemble with nearly zero incident energy.

The geometrical locus of the CIM~or the CEM! on SOS
is in general very complicated. However, the initial~or final!
part of the CIM~or CEM! is relatively smooth and has th
axis p150 as its asymptote whent→2` ~ or t→1`). In
06271
,

g

Fig. 3~a! we have plotted out these primitive parts of CI
and CEM for theZ510 system. Noting that the CIM~or
CEM! is the separatrix between the regions of direct inje
ing ~or escaping! and reinjecting~or resonant! orbits, we can
use them to classify the SOS into four zones:~i! direct scat-
tering zone ~DSZ!, ~ii ! forward resonant scattering zon
~FRSZ!, ~iii ! backward resonant scattering zone~BRSZ!, and
~iv! biresonant zone~BRZ!. It is obvious that the bounded
orbits form a subset of the BRZ which is invariant under t
time evolution~i.e., under Poincare´ mapping!, while the re-
.
FIG. 7. Two newborn asymmetric RCO’s~C and D! whenZ54.8 together with the symmetric one~A!, from which they are bifurcated
1-5
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maining points in the BRZ as well as the points in the FR
will eventually fall into the BRSZ and escape to infinit
Thus these remaining points in the BRZ plus the points in
FRSZ and BRSZ represent all the resonant scattering or
Figure 3~b! shows an enlargement of the rectangle region
Fig. 3~a!, which clearly displays the partition of regions fo
orbits with different global behaviors. It should also be not
that for a finer classification of resonant scattering orbits,
necessary to propagate the CIM further so that it exhi
wild oscillations@see Fig. 3~c!#. These oscillating segment
of the CIM could extend back to the vicinity of the nucle
and result in secondary intersections with the CEM wh
generates a finer partition of the SOS.

Now we are ready to discuss the onset of the cha
scattering with variations of the incident energyEi . Two
segments of incident ensembles withEi50.012 and 0.005
are shown in Fig. 3~b!. Since the lower segment does n
intersect with the CEM and is totally confined within th
DSZ, all its orbits will directly escape and no chaotic sc
tering can be observed. While the upper one cuts the C
and, consequently, the orbits located within the FRSZ w
reinject after their outgoing phase. These resonant scatte
orbits lead to the zeroth-order chaotic band in the scatte
functions. Since all the orbits within FRSZ will undergo
Keplerian excursion and reinject from the larger 1 region, a
finer structure of the zeroth-order chaotic band will be g
erated by ‘‘secondary scatterings with negative incident
ergy.’’ Just as in the original scattering, an orbit in the s
ondary scatterings will either directly escape, if it falls in
the BRSZ after the first excursion, or reinject once more i
falls into the BRZ. The same story repeats itselfad infinitum
which explains the self-similarity of the scattering function

Based on the above discussions we conclude that cha
scattering can only occur ifEi is less than a (Z-dependent!
thresholdEc , where the incident ensemble is tangent to
CEM. Furthermore, we can see that the resonant widthDr
~which is defined as the portion of the resonant orbits i
complete injecting ensemble! obeys the square root law ne
Ec , i.e., Dr}(Ec2Ei)

1/2. In order to evaluate the value o
Ec , we can prepare a critical injecting ensemble and co
pute the energy« f @expressed by Eq.~3!# of the outer elec-
tron when it attains the asymptotic region during its fi
outgoing phase. In contrast with the scattering functionEf ,
the energy« f as a function of the initial parameterr i is
smooth which coincides withEf in its zeroth-order regula
band and takes negative values in the zeroth-order cha
band ofEf . Since the numerical calculations of« f are much
easier than that forEf , it is convenient to use« f instead of
Ef in the study of the zeroth-order structure of the scatter
functions. The threshold energyEc , which characterizes the
emergence of chaotic scattering, can be simply read as
maximum of« f .

The thresholdEc as a function ofZ is shown in Fig. 4,
from which we can see two remarkable features. First,Ec
nearly vanishes (,10210) if Z,Z0'1.534. We are not sure
whether the CEM coincides exactly with the CIM in th
case. This seems to suggest that the system is integrab
Z,Z0, and this is supported by our observation on the ph
portrait of the bounded motions also.
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Secondly, althoughEc is, mostly, a monotonously in
creasing function ofZ, it exhibits a deep dip nearZ55.2. To
find out what happens in this region, the« f functions with
Z54.5, 4.7938, 5, 5.4, 5.684, and 5.8 are plotted in Fig.
from which we can see two apparent transitions, i.e.
V-shaped« f function changes to a W-shaped one and tu
back ~noting that« f is defined on a circle!. Let us focus on
the former transition which occurs atZ5Z1'4.7938. If Z
,Z1, the« f function has two zero pointsA andB. Each zero
point of the« f function corresponds to a distinct direct sca
tering orbits with both incident and escaping energies eq
to zero, which we shall call a reversible critical orbit~RCO!.
On the SOS, a RCO is represented by a sequence of p
where the CIM meets the CEM. By using the time rever
symmetry, we can declare that there exist at least two~time-
reversal! symmetric RCO’s which are characterized byr 2

50 and p250, respectively, when the outer electron
stopped in the vicinity of the nucleus. ThereforeA and B
must represent two symmetric RCO’s. Specifically, the po
A(B) corresponds to the one withr 250(p250) when p1

50 ~Fig. 6!.
When Z5Z1 ,d« f /dri vanishes at pointA @Fig. 5~b!#,

which causes a bifurcation of the zero points of the« f func-
tion. Geometrically, it is manifested by the tangency betwe
the CIM and the CEM at the corresponding points. IfZ
passes this point, two additional zero points appear@C andD
in Fig. 5~c!#, which correspond to two asymmetric RCO
@Fig. 7#. An important physical consequence of this bifurc
tion is that a new zeroth-order chaotic band will be observ
if the incident energy is sufficiently small. With the increa
of Z, the two new-born zero points depart gradually and
Z5Z2.5.684 they collide with the pointB and disappear
@Fig. 5~e!#. This is the inverse transition of the former on
After the second bifurcation, the zeroth-order chaotic ba
will again consist of one piece.

From a topological point of view, the two symmetr
RCO’s are connected through the production and annih
tion of the asymmetric RCO pair. This can cause an imp
tant global effect. Geometrically, whenZ runs fromZ1 to Z2,
the two critical manifolds approach and cross each other a
consequently, their relative location is actually exchang
~Fig. 8!. SinceEc characterizes, in a sense, the width of t
region enclosed by the CIM and the CEM, the crossing

FIG. 8. Schematic diagram showing the transition of the C
~dotted line! and the CEM~solid line!. The three situations from lef
to right represent the cases ofZ,Z1 ,Z1,Z,Z2, and Z.Z2, re-
spectively.
1-6
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these two manifolds can explain the observed decrease oEc
during the transitions.

In conclusion, our investigations show that the on
dimensionalZe2e2 system is chaotic whenZ.Z0'1.534.
For such two-electron systems, chaotic scattering~or chaotic
autoionization! will occur in a prescribed energy regime a
06271
-

shown in Fig. 4. It is expected that these results will prov
necessary information for understanding the quantum m
festations of classical chaos in real two electron-systems
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