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Chaotic scattering in collinear Ze~ e~ three-body Coulomb systems
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We study the collinear chaotic scattering between an electron and a one-electrémgorHe ) with
negative total energy. The global dynamics of the unbounded motion in phase space can be illustrated by
introducing two submanifolds of critical injecting and critical escaping. We find a type of bifurcation of chaotic
scattering resulted from the tangency between these two submanifolds, which explains the emergence or
disappearance of an extra zeroth-order chaotic band in the scattering functions as the nucleaZ ¢harge
changed.

PACS numbd(s): 34.80.Kw, 05.45--a

The classical dynamics of three-body Coulomb systems isufficient to perform calculations at the fixed energy
a long-standing problem of great physical importance. The-1 for the negative total energy.
first systematic attack on it, with the aim of understanding The best way to study the collinear helium dynamics is
the spectrum of a helium atom, were carried out in the earlieusing the Poincarsurface of sectioiSOS, where an orbit
period of the development of quantum mechafids How-  can be conveniently visualized by its points of intersection
ever, those works totally failed because, as recognized todawith a two-dimensional SOS. The bounded motions of a
the pioneers had no preparation for chaos at all. Even now, Ze e~ collinear helium were shown in Fig. 8 of Rgb],
thorough understanding of this high-dimensional noninte-and they are hardly distinguishable from an integrable sys-
grable system still remains a challenge for physicistsem. The fundamental periodic orbit of the system appears as
equipped with knowledge of modern dynamical systema fixed point in the center of an extended torus structure.
theory. A practical strategy is to study the motions restrictedNear the fixed point, the motion of the outer electron is
on its low-dimensional invariant manifolds, which include nearly harmonic, while for large radial distances the tori are
among others, the coplanar motiof&3], thee Ze™ and elongated due to the almost Keplerian motion of the outer
Ze e collinear motiong4—7], and thes-wave motiong8].  electron. However, with the increase @f the KAM tori
It is natural to expect that any knowledge of those sub-break up one by one, and the chaotic motion is expected to
systems will provide useful information about the original appear. For the scattering orbits, we can classify them into
problem. In fact, the discovery of the stable bounded motionglirect and resonant ones. The direct scattering orbits, which
in the Ze e~ collinear helium[9,5] strongly supported the lead to the immediate escape of the outer electron after an
frozen planet model which has been used in explaining the-e collision, are topologically the same as there in Coulomb
highly correlated two-electron motions observed experimenpotential scattering. On the other hand, in a resonant scatter-
tally in doubly excited atoms or iorf40]. In this short paper ing orbit, the outer electron, which fails to escape to infinity
we report our recent study on the unbounded motions, i.eduring its first outgoing phase, will experience an indefinite
scatterings, in th&Ze e~ collinear helium, noting that the number of reinjecting phase and lead to a very complex tra-
scattering process explores the outer part of the phase spaeetory. In the following, we will focus our attention on the
more thoroughly and that it will yield useful information characteristics of the resonant scattering€ efe™ collinear
about two-electron correlations in three-body Coulomb syshelium.
tems. We shall first explain in some detail our considerations on

The Ze“ e~ collinear helium is composed of two elec- the numerical calculations. Since the resonant scatterings can
trons and one nucleus with chargeBoth electrons are col- only be observed in injecting ensembles with an incident
linearly arranged on the same side of the nucleus, and sinanergy slightly above zero, it would be very time consuming
the nucleus is much heavier than the electron, the nucleus ts directly use the exact dynamical equations in numerical
supposed to be fixed at the origin. The Hamiltonian of thestudies. To circumvent this difficulty, we divide the position

model is(in atomic unitsm,=e=1) of the outer electron into three zones by setting two raglii
andr,. The asymptotic zone is defined by<r, where the
2 2 correlation between the two electrons can be neglected so
p1 p; Z2 Z 1 : S e o
H=—4+ —=— —— — + (1) that the mean-field approximation is justified. Specifically,

2 2 1y Ty =M the Hamiltonian can be separated into two parts, k.,

=H;+H,, for the inner and outer electrons as
wherer, (orr,) is the distance of the outéor inne) elec- )
tron from the nucleus wittp; (or p,) being its conjugate p2 Z
momentum. Since the potential is a homogeneous function of 2= T 2
r, andr,, the classical dynamics is invariant under a scaling

transformation with respect to the total enefgyThus itis and

)
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FIG. 1. Scattering functions faf=10 andE; =0.005(full range. (a) Scattering timel, (b) escaping energg; .
p2 Z 1 With the above explanation of the computational meth-
=5~ rl+ m () ods, we now turn to the description of numerical scattering

experiments. We first prepare a complete injecting ensemble
where(r,)=—0.7%/H, is the time average af, in a pe- in which the inner electron is fixed at the origin wikh,=

riod of e, [11]. Therefore, an analytical result can be ob- —1—E; while the outer electron is uniformly distributed
tained in this asymptotic zone. In the middle zone defined byithin a range ofr,=r;e[r,,r,+Ar) with H;=E;, and
r,<ri<rp, H, remains almost constant but teee correla-  Ar being the distance that the outer electron travels during a
tion is no longer negligible. In this region we rewrite the period of the inner electron. Taking each member of the
dynamical equations by using@(l), the angle action of,, injecting ensemble as an initial point, we compute its orbit
and treatl as a slow variable so that a large step integratountil the outer electron fulfills the escaping condition given
can be applied. Finally;;<r, defines thee-e strongly in- by p;>0, H;>0, andr;>r,. The records of the escaping
teracted zone, where the above method may fail. In this zonenergyE; and scattering tim&@ as a function of the initial

we use exact dynamical equations with a regularization oparameter; yield the scattering functions.

two-body collision. For our purposes, we have found that a The scattering functions for a complete injecting en-
choice ofr,~100Z andr,~5Z in our numerical code can semble withE;=0.005 andZ=10 are shown in Fig. 1, from
conserve the energy to within 10 for most of the trajecto- which we can see the hierarchical self-similar structure, the
ries we shall report below. signature of the chaotic scattering. Figure 1 shows that the
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FIG. 2. Blowup of the central part of the chaotic band in Fig. 1, the abscissa is indicated H302.(a) Scattering timel ¢, (b) escaping
energyE; .
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02 scattering functions consist of regular and irregular compo-
P (auv) nents. In the regular part, which we call the zeroth-order
1 regular bandE; and T are continuous with respect 9.
048 On the contrary, the scattering functions violently fluctuate
in the irregular part, which we call the zeroth-order chaotic
048 I band.
If we enlarge the zeroth-order chaotic band, a finer struc-
051 ture will appear(Fig. 2. We can see that the chaotic band
consists of infinitely many interlaced regular parts and fluc-
tuating parts, which are called the first-order regular bands
and chaotic bands, respectively. Each regular band is a con-
() cave parabola fofg, and a convex parabola f&; . Moving
away from the central and widest chaotic band, the width of
0.147 the regular bands and chaotic bands gradually shrink to zero
p CEM as they approach the borderline of the zeroth-order chaotic
band. Further enlargement of a first-order chaotic band re-
0.067 | , veals a similar picture, i.e(the second-ordeéregular bands
P; (au) CIiM separated bythe second-ordg¢rchaotic bands. As we will
discuss later, this hierarchical self-similar structure can actu-
0013 - T \ ally be observed in an arbitrary fine scale, which indicates
CIM v\ the existence of chaotic scattering Zre" e~ collinear he-
CIM lium.
: To understand the onset of chaotic scattering, we will
008 s s 297 375 study the global dynamics of the system on the SOS. We

choose the SOS as the phase plamep,} of the outer elec-
tron when the inner electron is at its apheli@e.,p,=0). A
typical phase portrait on the SOS is shown in Fi¢p) 3By
. ._introducing the critical escaping and injecting manifolds on

FIG. 3. (a) Phase portrait of the SOS for some bounded orbitsy,, 55g “orhits with qualitatively different behavior can be
and a part of the CEMsolid lin¢) and the CIM(dotted ling when learly identified. Consider the orbits starting from the SOS’s
Z=10. (b) Enlargement of the rectangle in Fig(a2 The CEM c_earyl € ’ . 9 e
(solid line), CIM (dotted ling, and two ensemble&ashed lines W.Ith dlfferemp1>0. and fixed';. They Can. be classified into
with E;=0.005 (uppe) and E;=0.012 (lower) are plotted. The either of the followmg threg pres according to the fate of the
FRSZ and BRSZ are marked out by shaded regions while the blanRUter electron. Ifp, is sufficiently large, the outer electron
regions below and above the CIM denoted direct scattering and/ill immediately escape to infinity with finite outgoing en-
biresonant zones, respectivelic) Propagation of the oscillated €rgy. On the other hand, ff, is not large enough, the outer
CIM in the asymptotic zone. Trajectories of a complete injectingelectron will return to the V|C|n|ty of the nucleus due to the
ensemble are plotted by stroboscopic sampling at a period of 5(time-dependentattractive potential. In addition to these two
cycles. The inset in the figure shows the enlargement of the regiogeneral situations, there exists a critical case when the outer
in the vicinity of the point A. electron directly escapes with zero energy. The intersections

T 1(a.u.)
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FIG. 5. g; function. (a) Z=4.5; (b) Z=2Z4; (c) Z=5.0; (d) Z=5.4; (e) Z=Z2; (f) Z=5.8. Note that the relatie position of the
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zerothorder chaotic band with respect to pointsafidB is changed after the transitigsee(a) and (f)].
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FIG. 6. Two symmetric RCO’s eZ=4.7.

of these critical escaping orbits with SOS define a curveFig. 3@ we have plotted out these primitive parts of CIM
which we shall call the critical escaping manifgldEM). By  and CEM for theZ=10 system. Noting that the CINor
applying the time reversal transformatiop,(— —p;) to the ~ CEM) is the separatrix between the regions of direct inject-
CEM, we obtain the critical injecting manifoldCIM). In ing (or escapingand reinjectingor resonantorbits, we can
numerical studies, the CIM can be generated by an injectingse them to classify the SOS into four zon@sdirect scat-
ensemble with nearly zero incident energy. tering zone(DSZ), (ii) forward resonant scattering zone
The geometrical locus of the CINor the CEM on SOS  (FRS2), (iii ) backward resonant scattering zdB&RS2), and
is in general very complicated. However, the inifiat final) (iv) biresonant zonéBRZ). It is obvious that the bounded
part of the CIM(or CEM) is relatively smooth and has the orbits form a subset of the BRZ which is invariant under the
axis p;=0 as its asymptote when——o (ort—+=). In  time evolution(i.e., under Poincarenapping, while the re-

8 8
(a) (b)
I(a.w)
ol
0—6.3 -3;.3 -6.3 217 57 0-6.3 -3.3 -0.3 27 57
t (auw) t (a.uw)

(©)

0
-6.3 -33 -0.3 27 57

t (a.u.)

FIG. 7. Two newborn asymmetric RCO(€ and D whenZ= 4.8 together with the symmetric oifd), from which they are bifurcated.
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maining points in the BRZ as well as the points in the FRSZ

will eventually fall into the BRSZ and escape to infinity.

Thus these remaining points in the BRZ plus the points in the r
FRSZ and BRSZ represent all the resonant scattering orbits
Figure 3b) shows an enlargement of the rectangle region in

Fig. 3(a@), which clearly displays the partition of regions for

orbits with different global behaviors. It should also be noted

that for a finer classification of resonant scattering orbits, it is
necessary to propagate the CIM further so that it exhibits

wild oscillations[see Fig. &)]. These oscillating segments  FIG. 8. Schematic diagram showing the transition of the CIM
of the CIM could extend back to the vicinity of the nucleus (dotted ling and the CEMsolid ling). The three situations from left
and result in secondary intersections with the CEM whichto right represent the cases 8 Z,,2,<Z<Z,, andZ>Z,, re-

BE= FRSZ
I BRSZ

generates a finer partition of the SOS. spectively.
Now we are ready to discuss the onset of the chaotic
scattering with variations of the incident energy. Two Secondly, althougtE, is, mostly, a monotonously in-

segments of incident ensembles wih=0.012 and 0.005 creasing function oZ, it exhibits a deep dip nea=5.2. To
are shown in Fig. ®). Since the lower segment does not fing out what happens in this region, the functions with
intersect with the CEM and is totally confined within the Z=4.5, 47938, 5, 5.4, 5.684, and 5.8 are plotted in Fig. 5
DSZ, all its orbits will directly escape and no chaotic scat-r ;" \which we can see two appa.rent transitions. i.e. a

tering can be observed. While the upper one cuts the CEN|,” . 3
and, consequently, the orbits located within the FRSZ will shapede; function changes to a W-shaped one and turns

reinject after their outgoing phase. These resonant scatteri?ad((nOtIng thate is defined on a circle Let us focus on

orbits lead to the zeroth-order chaotic band in the scattering'© former trans!tion which occurs §1= Z,~4.7938. IfZ
functions. Since all the orbits within FRSZ will undergo a 41 thee; function has two zero points andB. Each zero

Keplerian excursion and reinject from the langeregion, a poi_nt of thesf function _cor_responds toa di_stinct dire_ct scat-
finer structure of the zeroth-order chaotic band will be geni€ring orbits with both incident and escaping energies equal
erated by “secondary scatterings with negative incident ento zero, which we shall call a reversible critical oriRCO).
ergy.” Just as in the original scattering, an orbit in the sec-On the SOS, a RCO is represented by a sequence of points
ondary scatterings will either directly escape, if it falls into where the CIM meets the CEM. By using the time reversal
the BRSZ after the first excursion, or reinject once more if itsymmetry, we can declare that there exist at least(timoe-
falls into the BRZ. The same story repeats itsalfinfinitum  reversal symmetric RCO’s which are characterized by
which explains the self-similarity of the scattering functions.=0 and p,=0, respectively, when the outer electron is
Based on the above discussions we conclude that chaotitopped in the vicinity of the nucleus. Therefoteand B
scattering can only occur E; is less than aZ-dependent  must represent two symmetric RCO’s. Specifically, the point
thresholdE., where the incident ensemble is tangent to thea(B) corresponds to the one witt,=0(p,=0) when p,
CEM. Furthermore, we can see that the resonant witith =0 (Fig. ).
(which is defined as the portion of the resonant orbits in @ \when z=Zz,,de;/dr; vanishes at pointA [Fig. 5(b)],
complete injecting enfgmblebeys the square root law near \yhich causes a bifurcation of the zero points of ghéunc-
Ec, i.e., Dr<(E.—E;)™™ In order to evaluate the value of i, Geometrically, it is manifested by the tangency between
E., we can prepare a critical injecting ensemble and COMine CIM and the CEM at the corresponding points.ZIf
pute the energy, [expressed by Eq3)] of the outer elec- passes this point, two additional zero points app€aandD
tron v_vhen it attains the asymptotic region_during its firstin Fig. 50)], whi(':h correspond to two asymmetric RCO's
?huetgg'nne% phasz.s I; ?Sﬂf;rt?;t] V;'fthtrfgeir?ifiztlter;nrgr;ﬂ;mﬁ [Fig. 7]. An important physical consequence of this bifurca-
gyes o . I b ¥ tion is that a new zeroth-order chaotic band will be observed
smooth which coincides witlE; in its zeroth-order regular . L : o . .
band and takes negative values in the zeroth-order chaot|£the incident energy is suff|C|en_tIy small. With the increase
band ofE; . Since the numerical calculations of are much Of Z, the two new—born_ zero_pomts depart gradu_ally and at
easier than that foE; , it is convenient to use; instead of £ £2=2.684 they collide with the poinB and disappear
éFlg. 5e)]. This is the inverse transition of the former one.

E; in the study of the zeroth-order structure of the scatterin . ) .
functions. The threshold enerdg., which characterizes the After the second bifurcation, the zeroth-order chaotic band

emergence of chaotic scattering, can be simply read as tHll again consist of one piece. .
maximum ofe; . From a topological point of view, the two symmetric

The thresholdE, as a function ofZ is shown in Fig. 4, RCO's are connected through the production and annihila-
from which we can see two remarkable features. Fist, tion of the asymmetric RCO pair. This can cause an impor-
nearly vanishes< 10 19 if Z<Z,~1.534. We are not sure tant global effect. Geometrically, whehruns fromZ; to Z,,
whether the CEM coincides exactly with the CIM in this the two critical manifolds approach and cross each other and,
case. This seems to suggest that the system is integrabledénsequently, their relative location is actually exchanged
Z<Z,, and this is supported by our observation on the phasé-ig. 8. SinceE, characterizes, in a sense, the width of the
portrait of the bounded motions also. region enclosed by the CIM and the CEM, the crossing of
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these two manifolds can explain the observed decreaig of shown in Fig. 4. It is expected that these results will provide
during the transitions. necessary information for understanding the quantum mani-

In conclusion, our investigations show that the one-festations of classical chaos in real two electron-systems.
dimensionalze e~ system is chaotic whed>Z,~1.534.

For such two-electron systems, chaotic scatteforgchaotic This work was supported by the Nonlinear Science
autoionization will occur in a prescribed energy regime as Project of the Climbing Program for Fundamental Research.
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