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Intermediate Hamiltonian formulation of the valence-universal coupled-cluster method for atoms
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A formulation of the valence-universal coupled-cluster~VU-CC! method for atoms is presented. The method
is based on Lindgren’s normal-ordered exponential expansion, in which the cluster operator is restricted to its
one- and two-body components represented in terms of radial amplitudes defined by the configurational
excitations. The approach employs an intermediate Hamiltonian technique which replaces the effective Hamil-
tonian formalism used in the standard VU-CC formulation. The modified version introduces many simplifica-
tions in comparison with the standard one and, in particular, offers an efficient way of solving coupled-cluster
equations. The advantages of the approach are illustrated in a calculation for the Be atom, representing one of
the basic yet very challenging applications for VU-CC methods.

PACS number~s!: 31.15.Dv, 31.25.Eb, 31.25.Jf
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I. INTRODUCTION

In recent years, single-reference coupled-cluster~CC!
methods@1# have been demonstrated to be among the m
promising tools for the treatment of electron correlation
fects @2,3#. The success of the single-reference CC~SR-CC!
methods in describing closed-shell systems has inspired
tensive research activity towards a generalization of the
scheme to multireference cases which would enable an
plication of CC methods to open-shell or quasidegene
states. These states are characterized by a large compon
nondynamical correlation that is usually difficult or even im
possible to handle by the SR-CC approaches. The idea
multireference CC~MR-CC! theories are based on is to in
troduce different types of descriptions for dynamical a
nondynamical electron correlation effects. The zero-or
picture provided by independent-particle models can be u
to divide the functional space into the reference~model!
space and its orthogonal complement. The reference spa
spanned by zero-order functions~determinants! which domi-
nate in the target state eigenvectors, whereas excitation
erators in the so-called wave operator generate contribut
from outer space while acting on the reference functio
Hence the wave operator is assumed to give us informa
about dynamical correlation, whereas the reference spa
associated with nondynamical correlation effects. The w
operator must be determined in a self-consistent manner
posed by the iterative character of the equations, and is
used to construct an effective Hamiltonian whose action
restricted to the reference space@4–6#. Its diagonalization
within this space gives the final contribution of nondynam
cal correlation to the target state functions.

The distinction between descriptions of dynamical a
nondynamical correlations, made by the effective Ham
tonian approach, may be seen as an efficient and safe wa
providing information about dominant and less importa
components of the wave functions. For the latter, differ
approximate schemes can be considered as truncated p
bation@6,7# or CC@8–13# expansion. However, both types o
correlation effects are coupled together through the eq
tions, and the success of this kind of formulation to a la
1050-2947/2000/61~6!/062510~14!/$15.00 61 0625
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extent depends on their clear separation meaning, that
model space should be properly selected to ensure tha
wave operator is truly responsible for generating the dyna
cal part of the correlation only. In practice this may be d
ficult to achieve. First, the effective Hamiltonian formalis
assumes a description of several states at a time@4–6#, and
the requirement should be fulfilled for all of them. Second,
early formulations of multireference CC theories only co
plete reference spaces were admitted, which seriously lim
their applicability@14#. The incomplete reference space ve
sions formulated later@15–17# increased flexibility with re-
spect to the reference space choice while still preserving
size extensivity of the methods. The possibility of having
general model space allows multireference CC scheme
deal efficiently with more demanding systems reducing
intruder state@18# or convergence problems@14#. The latter
may, however, also depend on the iterative procedures
ployed @19#.

In order to define cluster operators in a second-quanti
form, one has to make a suitable choice of a Fermi vacu
All operators can then be expressed in a normal product f
with respect to the selected vacuum, and many-body te
niques based on the generalized Wick’s theorem can be
@20#. For SR-CC methods the reference function~mostly the
Hartree-Fock determinant! is usually considered as a natur
choice for the vacuum. In the case of multireference form
lations there is no such obvious choice, because we h
several reference functions which span the model space.
sically two strategies can be followed in the MR case. T
first one is to have one Fermi vacuum for all operators
tering MR-CC equations independently of the referen
function they can be associated with. The next possibility
to introduce several different vacuua. Here, for each
equation corresponding to a particular reference functi
this function is used as a vacuum. The first strategy, wh
has its origin in Brandow’s MR perturbation expansion@6#,
leads to the so-called valence-universal~or Fock-space! CC
theories~VU-CC or FS-CC! @8–10,16#. The second one fol-
lows the idea introduced in Hose-Kaldor perturbation the
@7# and it is used in the state-universal~or Hilbert-space! CC
methods~SU-CC or HS-CC! @11–13#. In the following we
©2000 The American Physical Society10-1
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L. MEISSNER AND P. MALINOWSKI PHYSICAL REVIEW A61 062510
concentrate on the VU-CC methods, which, due to the fac
having one vacuum, are more suitable for space and
symmetry adaptations, and thus for the specific case
atomic calculations.

The use of one Fermi vacuum, that is assumed in VU-
methods, does not mean that there is one preferable choi
vacuum. In fact, several possibilities can be considered
pending on the system and property we want to descr
Two basic options are the core for describing the grou
state and low-lying excited states in the presence of quas
generacy@8,9,21#; and the Slater determinant for the neut
system for a direct calculation of excitation energies from
closed-shell ground state to quasidegenerate excited s
@22–27#. In this paper we will focus on the first version o
the VU-CC method. The cluster operator is defined a
second-quantized normal-ordered excitation operator f
the reference functions to the outer space. Because we
one Fermi vacuum, the excitation operators can contain
only particle-hole creation operators but also particle-h
annihilation operators@8–10,21#. The reason for this is tha
the reference functions are generated from the vacu
through the action of a sequence of particle creation op
tors, and then particle-hole annihilation operators are ne
sary in the excitation operators to create orthogonal sp
functions. There are two important consequences of this.
first one is that contractions between cluster operators in
exponential expansion are possible. Second, the same
space function can be obtained from a particular referenc
several different excitation operators, which leads to the
called VU-CC redundancy problem. The first problem h
been resolved by defining a normal-ordered cluster exp
sion in which the normal form of the wave operator preve
contractions between cluster operators@9,10#. The redun-
dancy can be removed by introducing a valence-unive
strategy which assumes that cluster operators have to sa
the CC equations with zero, one, etc. up to the final num
of valence electrons@8,9,28,29#. This provides additiona
equations for cluster amplitudes, and additional informat
about the system under consideration. The equations ha
be solved hierarchically, starting with the zero-valence pr
lem. Valence-universal strategy gives the method a Fo
space character@16,29#.

Because of their formal complexity, and problems that
use of an effective Hamiltonian technique brings, MR-C
methods have not been very widely used in routine calc
tions. This has been the reason for turning back to sin
reference CC formulations to make them more applicable
quasidegenerate@30–33# and open-shell systems@34#. Some
attempts along this line introduced two-step approache
which the main part of the nondynamical correlation w
determined within a conceptually simple and numerica
stable MR configuration interaction~CI!, scheme while a
subsequent single-reference CC calculation provided us
a more adequate description of dynamical correlation effe
@32,33#. One may also replace the CC calculation by a n
iterative correction to the MR-CI energy@35#. However, it
seems that these approaches have their limitations, so a
ther development of MR-CC schemes is highly desirab
One possible way of making the MR-CC methods more
06251
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tractive is to reformulate them by employing intermedia
Hamiltonian techniques@36,5#. Such attempts have bee
made within both VU-CC@37–40# and SU-CC approache
@41–43#. The idea underlying the intermediate Hamiltonia
approach is to divide the functional space into three s
spaces instead of two@36,5#. The additional intermediate
space plays the role of a buffer between the model space
the remaining external space. The contribution from the
termediate space, which is generated by the wave operat
the effective Hamiltonian formulation, is now given in a pr
cess of diagonalization of the intermediate Hamiltoni
@36,5#. That provides more effective computational schem
VU-CC approaches are especially suitable for the interme
ate Hamiltonian reformulation@38#. While general consider-
ations of possible implementations of the intermedi
Hamiltonian technique within VU-CC schemes can be fou
in Ref. @38#, and preliminary results of the intermedia
Hamiltonian VU-CCSD method designated for calculation
excitation energies in Ref.@39#, in this paper we present a
intermediate Hamiltonian VU-CC scheme especially d
signed for a specific case of atomic calculations. In spite
the fact that most of the existing general purpose meth
can also be applied to atoms, their accuracy is relatively
from the point of view of the requirements of atomic physic
To fully exploit the power of CC methods one should ta
the advantage of the simplifications afforded by the spher
symmetry of the problem. Whereas the single-reference
formulation for atoms was put forward by Adams and Pald
@44#, the multi reference CC formalism was proposed by
Göteborg group@21#. Here the cluster amplitudes are repr
sented in terms of products of radial, angular, and spin f
tors, allowing us to obtain a set of equations for the rad
part only @21#. While the Göteborg group’s approach i
based on the use of numerical one- and two-electron rad
function contributions to the wave function, an algebra
analog of this method was proposed by Jankowski and M
linowski @45–48,19#. The latter is the basis for the interme
diate Hamiltonian reformulation we would like to propos
In Sec. II we present a brief description the VU-CC expa
sion, and details of the effective and intermediate Ham
tonian formulations employing this kind of representation
the wave operator.

II. METHOD

A. Effective Hamiltonian formulation

While considering the Schro¨dinger equation describing
many-electron system,

HC5EC, ~1!

we assume that we have to deal with a quasidegenerate
ation in which more than one determinant is necessary
obtain a reliable zero-order description of the state. Let
define the reference~model! spaceM as spanned by severa
determinants~reference functions! which dominate in the
C-function expansion. The orbitals can then be divided in
three classes: core~C! orbitals which are doubly occupied i
all reference determinants, valence~V! or active orbitals
which are occupied in some determinants but not in all
0-2
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INTERMEDIATE HAMILTONIAN FORMULATION OF TH E . . . PHYSICAL REVIEW A 61 062510
them, and excited~E! orbitals which are unoccupied in th
reference functions. The spin orbitals will be labeled acco
ing to the conventionsa,b,cPC,i , j ,kPV,r ,s,tPE,a,b,g
PCøV,r,s,tPVøE, and l,k,mPCøVøE. In the fol-
lowing we assume that the model space is complete, wh
means that all possible distributions of valence electr
among valence spin orbitals are included in the refere
space functions. However, an incomplete model space
sion can also be considered if necessary. The Fermi vac
F is defined as a determinant constructed from the core
orbitals. Hence the core spin orbitals will be referred to
holes, and all other spin orbitals as particles. The refere
functionsFn can then be expressed using creation opera
(X†) as

Fn5Xi 1
† , . . . ,Xi L

† F ~ i 1,•••, i L!, ~2!

where L is the number of valence electrons. Secon
quantized normal-ordered excitation operators acting on
reference functions can be classified into operators leadin
the model space~internal! and operators leading to its o
thogonal complement~external!. A general form of the exci-
tation operators can written as

N@ea
r #,N@eab

rs #, . . . , ~3!

where

emn . . .
lk . . . 5Xl

†Xk
†
•••XnXm , ~4!

andN@•••# means the normal product form with respect
F. The internal excitations are those having exclusively
lence spin orbital labels, whereas all others constitute ex
nal excitations.

Internal excitations are responsible for a description
nondynamical electron correlation, whereas external ones
associated with the dynamical correlation. One possible w
of describing the dynamical part is a coupled-cluster-ty
expansion, which has proven so successful in the single
erence case. Truncation of the cluster operator allows
only an effective approximation of higher-level excitatio
via products of lower excitation rank operators, but a
guarantees the size extensivity of the method, which
nowadays considered a very important feature. However,
nondynamical effects should be treated exactly, meaning
coefficients associated with the internal excitations are de
mined by diagonalization. These different treatments of b
types of correlation can be realized within the effecti
Hamiltonian scheme@4#. The concept of the effective Hamil
tonian can be introduced by considering simple similar
transformations@5#. Let us denote the projection operator o
the reference spaceM by P, and that on its orthogona
complementM' by Q. Introducing the operator

X5QXP, ~5!

we can consider the following similarity transformation:

H̃5e2XHeX5~12X!H~11X!. ~6!
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Requiring the transformed HamiltonianH̃ to satisfy

QH̃P50, ~7!

we can divide the eigenvalue problem ofH into two sub-
problems. Now all eigenvalues ofH can be obtained by sepa
rate diagonalizations ofPH̃P and QH̃Q. Since usually we
are not interested in all eigenvalues but only in a small sub
of them, diagonalization ofPH̃P in a relatively low-
dimensional model space is the final goal. One can view
procedure as a way of extracting a subproblem correspo
ing to m5dim M eigenvalues from the complete eigenval
problem. Contributions from orthogonal and model space
those eigenvalues are given byX and a diagonalization o
PH̃P, respectively. There are manyX operators satisfying
Eq. ~7! @5#, but we assume that by using a suitable start
point in an iterative procedure forX based on Eq.~7! we
would be able to converge at the desired solution i.e., t
PH̃P gives eigenvalues of interest. A proper selection of
model space can be a key factor here, since the effective
of the scheme may depend to a large extent on a clear s
ration of dynamical and nondynamical correlation effects
is usually assumed that the dominant part of the eigenfu
tions of all m states under consideration should be includ
in the model space. ThenX can be viewed as relatively
small, and easy to determine in a self-consistent manner.
solution that satisfies the condition is called the principal~or
standard! one, whereas all others are considered as alte
tive ~or nonstandard! @48#. ThePH̃P part of the transformed
Hamiltonian can be called the effective Hamiltonian:

He f f5PH̃P5PH~11X!P. ~8!

Using this notation, Eq.~7! can be expressed in a more sta
dard way@4,6# as

QH~11X!P2XHe f f50. ~9!

In order to introduce the exponential expansion for (11X), a
suitable definition of the cluster operator must be introduc
In our case the cluster operatorS is defined by associating
cluster amplitudes with the external part of excitation ope
tors ~3!. In the following we restrict our consideration to th
case of systems having two valence electrons (L52) andS
approximated by one- and two-body components

S'S11S2 , ~10!

where

S15Sr
aN@ea

r#1Sr
i N@ei

r #, ~11!

S25
1

4
Srs

abN@eab
rs#1

1

2
Srs

ia N@eia
rs#1

1

4
Srs

i j N@ei j
rs#. ~12!

The Einstein summation convention is used here, and clu
amplitudes having exclusively valence spin orbital labels
excluded so only external excitations are permitted in
cluster operator. The cluster amplitudes are antisymmetri
0-3
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L. MEISSNER AND P. MALINOWSKI PHYSICAL REVIEW A61 062510
their lower and upper indices, except forSrs
ia , which is anti-

symmetric in its lower indices only. Due to Eqs.~11! and
~12! the S1 and S2 operators can be additionally classifie
according to the number of active labels of the annihilat
operators:

S15S1
(0)1S1

(1) , S25S2
(0)1S2

(1)1S2
(2) . ~13!

Due to Lindgren@10#, the cluster expansion can be intr
duced in the normal-ordered forms

N@eS#5eS(0)
N@eS(1)1S(2)

#, ~14!

S(0)5S1
(0)1S2

(0) , S(1)5S1
(1)1S2

(1) , S(2)5S2
(2) . ~15!

The normal-ordered form prevents contractions betw
cluster operators in the expansion which are, in general,
sible since the cluster operators can contain particle-hole
nihilation operators. The exception isS(0), which is ex-
pressed by particle-hole creation operators only. HenceS(0)

cannot be contracted with the remainingS operators, and its
exponential expansion is already in normal-ordered fo
We have taken advantage of this in Eq.~14!. Because of
specific form of the cluster expansion~14!, we can replace
transformation~6! with a double transformation satisfying

P̄(2)~12X(2)!H̄~11X(2)!P(2)50, ~16!

H̄5e2S(0)
HeS(0)

, ~17!

X(2)5Q(2)N@eS(1)1S(2)
#P(2), ~18!

where the first transformation has a many-body charac
The superscript~2! indicates that we are concerned with
two-valence-electron problem.P̄(2) denotes a projection ont
a subspace ofM'

(2) that is reached by excitations generat
by S(2) while acting onM (2), so the number of equation
equals the number of theS(2) amplitudes. The remaining
amplitudes associated withS(0) and S(1) must be obtained
from separate calculations. This is a consequence of the c
ter operator definitions~11! and ~12!, which allows several
operators to generate the same orthogonal space determ
while acting on the reference functions. The additional eq
tions for S(0) andS(1) are provided by the valence-univers
strategy of solving the CC equations@9,28,16,29#. The strat-
egy assumes a hierarchical way of solving problems with
increasing number of valence particles, starting with
zero-valence-particle problem, so that the number of eq
tions becomes equal to the number cluster amplitudes. N
the notation introduced in Eq.~15! is consistent with that of
Eqs. ~16!–~18!, as S( i ) can be really associated with thei
valence problem. It must be mentioned that while solv
problems with a lower number of valence particles, we o
tain an additional information of the system.

For the zero- and one-valence sectors which must be
sidered in our VU-CCSD scheme, we have

X(0)5Q(0)N@eS(1)1S(2)
#P(0)50, ~19!
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X(1)5Q(1)N@eS(1)1S(2)
#P(1)5S(1)P(1). ~20!

The explicit form of the CC equations can be obtained
employing diagrammatic techniques which allow us to re
resent basic second-quantized normal-ordered operator
diagrams. Then a graphical representation of the CC eq
tions can be constructed using simple rules of operating w
diagrams based on the generalized Wick’s theorem. An
ditional simplification is introduced by the linked diagra
theorem~LDT! that can be proven for the VU-CC metho
@10,16#. This states it that disconnected terms are cance
out in the equations, so that only connected diagrams hav
be considered. Also, the linked diagram theorem guaran
the size extensivity of the method. Using Eqs.~19! and~20!,
and taking advantage of the LDT, the hierarchy of the V
CCSD equations can be expressed in the forms

P̄(0)H̄NP(0)50,

^FuHe f f
(0)uF&5Ecore5^FuH̄uF&, ~21!

P̄(1)$H̄N~11S(1)!2S(1)He f f
(1)%cP(1)50,

He f f
(1)5P(1)H̄N~11S(1)!P(1), ~22!

P̄(2)H H̄NNF11S(1)1
1

2
S(1)21S(2)G

2N FS(1)1
1

2
S(1)21S(2)GHe f f

(2)J
c,2

P(2)50,

He f f
(2)5P(2)H̄NNF11S(1)1

1

2
S(1)21S(2)GP(2), ~23!

where subscriptsc and 2 mean connected and two-body d
grams, respectively, and

H̄N5H̄2^FuH̄uF&. ~24!

The use ofH̄N instead ofH̄ means that the effective Hamil
toniansHe f f

(1) andHe f f
(2) are redefined to give energies relativ

to the core energyEcore . P̄(0) and P̄(1) are defined in a way
analogous toP̄(2). It is worth noting that the hierarchica
strategy is indeed possible because of separation of val
problems, meaning that the CC equations in a particular
lence sector do not depend on the higher sector cluster
plitudes. As mentioned, the VU-CCSD equations are
pressed through connected terms, however, only in the c
where disconnected contributions can be constructed has
necessity of eliminating them been explicitly indicated.

The cluster operator definition@Eqs.~11! and~12!# can be
used to obtain a general purpose version of the VU-CC
method; however, to take advantage of the high symmetr
atomic systems, one should follow a strategy similar to t
described by Lindgren and Morrison@21# for separating out
the angular and spin dependences from the diagrams.
assume that the one- and two-electron cluster amplitudes
expressed as
0-4
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FIG. 1. Graphical representa
tion of the radial-angular-spin
separation of the one- and two
particle cluster amplitudes.
e
ru

or
f

th
nt
an
p

de
he
i-

s
m

a
to

he
to
e

on

tive
as
a

are
il-
nd,
ugh
t a

ive
lus-

ua-
fi-

ed
a-

ce
me-
del

he
an-
rs
e of

also

ian
the

an-
va-

f
due

di-
the
sily

n
ank
S
nr l rmrm

r
s

na l amama
s

5Rnr l r

na l aG1~a;r!, ~25!

S
nr l rmrm

r
s ,ns l smsm

s
s

na l amama
s ,nb l bmbmb

s

5(
k

Rnr l r ,ns l s

na l a ,nb l b~k!G2
(k)~ab;rs!,

~26!

with

G1~a;r!5d~ l a ,l r!d~ma ,mr!d~ma
s ,mr

s! ~27!

G2
(k)~ab;rs!

5(
q

~21! l r2mr1 l s2ms1k2qS l r k la

2mr q ma
D

3S l s k lb

2ms 2q mb
D d~ma

s ,mr
s!d~mb

s ,ms
s !,

~28!

where (•••) denotes the 3-j Wigner coefficient, andR
stands for radial one- and two-particle cluster amplitud
The spin orbital indices are used as orbital ones. The st
ture of G2

(k)(ab;rs) restricts the possiblek values to those
simultaneously satisfying the triangular conditions f
( l a ,k,l r) and (l b ,k,l s). The radial-angular-spin ansatz o
the cluster amplitudes defined by Eqs.~25! and ~26! can be
represented graphically in the form shown in Fig. 1. On
right-hand side of the graphical representation, the horizo
double-line vertices denote the radial cluster amplitudes,
the remaining ones stand for the angular-momentum gra
(G1(a;r) andG2

(k)(ab;rs)) @21#. Let us note that to apply
the separation one has to label the spin-orbital amplitu
explicitly in terms of all orbital and spin indices, and that t
indices of theR amplitudes are labeled by atomic-shell ind
ces only. One of the great advantages of the separation i
enormous reduction of the number of unknown cluster a
plitudes@21,46#.

The VU-CCSD method for atoms has been referred to
VU-CCSD/R, where R stands for indicating the reduction
radial-type equations. An explicit diagrammatic form of t
VU-CCSD/R equations, in which an additional restriction
quadratic terms inS has been imposed, can be found els
06251
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where@46,48#, and we refer to these papers for the derivati
and a more complete discussion.

B. Intermediate Hamiltonian formulation

There are several characteristic features of the effec
Hamiltonian VU-CC formulation which one can consider
important drawbacks of the method. First of all, this is
two-step approach. In the first step cluster amplitudes
calculated, allowing us to construct the effective Ham
tonian and its diagonalization in the second step. Seco
several eigenvalue problems are coupled together thro
the equations, so that we have to consider all of them a
time. Moreover, numerical experience shows that effect
iterative schemes are required to solve the equations for c
ter amplitudes@19,47#. In this section we will show how the
intermediate Hamiltonian formulation can change the sit
tion introducing many simplifications and offering an ef
cient way of solving the VU-CC equations.

The intermediate Hamiltonian technique was introduc
and primarily used in the context of multireference perturb
tion theory@36#. The idea was to divide the functional spa
into three subspaces instead of two. The additional inter
diate space plays the role of a buffer between the mo
space and the remaining external space@36#. Its contribution
to the eigenvalues given by the effective Hamiltonian in t
standard formulation is not provided via perturbation exp
sion but by diagonalization. In this way small denominato
in the expansion can be avoided in cases of the occurrenc
intruder states. Very soon nonperturbative schemes
started using this kind of technique@37–43#. However, it
seems that application of the intermediate Hamilton
scheme is especially advantageous with respect to
VU-CC method@37–40#. This follows from the fact that, in
spite of its generally nonlinear character, the VU-CC exp
sion is linear in the unknown cluster amplitudes in each
lence sector beyond the zero sector@see Eqs.~22! and~23!#.
All nonlinear terms inS in the expansion are products o
cluster operators from the lower valence sectors, which,
to valence-universal strategy, area priori determined. As a
consequence the eigenvalue problem can be solved via
agonalization of some operator which depends only on
lower sector cluster amplitudes. The operator can be ea
identified as an intermediate Hamiltonian.

As mentioned, our intermediate Hamiltonian formulatio
of the VU-CCSD method concerns valence sectors of a r
0-5



st
h
og

th
g

ty
or

d
go
-

f

ac

m
ti
a
s
ci

tors

be

the
ive
il-
ure
n.
s at

tors
ing
rme-
e,
ns
ce
dis-
one

ust
n be

sal.
truct
hey
o-

are
trate
of
set
n
il-

lues
ear
n
the
ap-

ue,
ble

of
ion-
d to

be
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higher than zero. The zero-valence sector represents the
dard single-reference CCSD method for the core. For hig
sectors the intermediate space is extracted from the orth
nal complement of the model spaceM ( i ) ( i 51 and 2!, and
can be defined in a simple way as that associated with
projection operatorP̄( i ). For the projection on the remainin
part of theM'

( i ) space we useQ̄( i ). Hence

Q( i )5 P̄( i )1Q̄( i ). ~29!

The starting point in our derivation is again a similari
transformed Hamiltonian for one- and two-valence sect
satisfying equations analogous to Eq.~16!:

P̄( i )~12X( i )!H̄N~11X( i )!P( i )50, ~30!

X( i )5Q( i )N@eS(1)1S(2)
#P( i ) ~ i 51,2!. ~31!

Let us now introduce the operators

Y( i )5Q̄( i )X( i ), Z( i )5 P̄( i )X( i ),
~32!

X( i )5Z( i )1Y( i ).

With this notation Eq.~30! can be written as

P̄( i )~12Z( i )!~12Y( i )!H̄N~11Y( i )!~11Z( i )!P( i )50,
~33!

since

11X( i )5~11Y( i )!~11Z( i )!. ~34!

Condition ~33! leads to separation of a problem correspon
ing to several eigenvalues which are now provided by dia
nalization of theP( i )-P( i ) part of the transformed Hamil
tonian ~the effective Hamiltonian!. However, the same
eigenvalues can be obtained as a subset of eigenvalues o
operator

P0
( i )~12Z( i )!~12Y( i )!H̄N~11Y( i )!~11Z( i )!P0

( i ) , ~35!

where

P0
( i )5P( i )1 P̄( i ) ~36!

is a projection operator on the model and intermediate sp
Since operator~35! and the operator

P0
( i )~12Y( i )!H̄N~11Y( i )!P0

( i ) ~37!

are related by similarity transformation, they have the sa
eigenvalues. So the eigenvalues obtained within the effec
Hamiltonian formulation are among those given by diagon
ization of operator~37!. Operator~37! can be recognized a
an intermediate Hamiltonian. To obtain its more expli
form let us first note that, due to definition~32!, we have
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Hint
( i ) 5P0

( i )~12Y( i )!H̄N~11Y( i )!P0
( i )

5P0
( i )H̄N~11Y( i )!P0

( i ) . ~38!

It is also easy to see that for the one- and two-valence sec
we have

Y(1)50, Y(2)5NFS2
(1)1S1

(1)S2
(1)1

1

2
S2

(1)2GP(2), ~39!

and the intermediate Hamiltonians for these sectors can
written as

Hint
(1)5P0

(1)H̄NP0
(1) , ~40!

Hint
(2)5P0

(2)H̄NP0
(2)1P0

(2)H̄NNFS2
(1)1S1

(1)S2
(1)1

1

2
S2

(1)2GP(2).

~41!

Let us now discuss the advantages of dealing with
intermediate Hamiltonian approach instead of the effect
Hamiltonian one. First of all the two-step effective Ham
tonian formalism is replaced with a one-step proced
which is a diagonalization of the intermediate Hamiltonia
The diagonalization provides eigenvalues and eigenstate
the same time. The intermediate Hamiltonians~40! and~41!
are constructed from cluster operators from the lower sec
which are known due to the hierarchical strategy of solv
the equations. Hence there is no dependence of the inte
diate Hamiltonian matrix on its eigenvector or eigenvalu
which is frequently the case in many other implementatio
of the intermediate Hamiltonian technique. Moreover, sin
the coupling term between different eigenstate problems
appears, then the eigenvalues can be obtained one by
with a properly selected diagonalization procedure. It m
be stressed, however, that a set of cluster amplitudes ca
determined when all eigenvectors ofHint corresponding to
the model space under consideration are at our dispo
Since the cluster amplitudes are only necessary to cons
the higher-valence-sector intermediate Hamiltonians, t
are not required in the final sector. In our case the tw
valence sector is the final one so, for example, if we
interested only in the ground-state energy we can concen
on obtaining this single eigenvalue without the necessity
considering the others. On the other hand, the complete
of eigenvalues ofHint also contains energies which are give
by the so-called alternative solutions of the effective Ham
tonian approach. The important feature of these eigenva
is that they have to be the same in all solutions they app
in. This is not so obvious when the effective Hamiltonia
formulation is discussed, and it has not been detected in
numerical studies made so far because of the additional
proximations imposed on the VU-CCSD equations@49#. Let
us finally state that the intermediate Hamiltonian techniq
applied to the VU-CCSD method, offers a very dependa
way of solving the equations because of the existence
efficient diagonalization procedures. Perturbation-expans
based iterative techniques that have been mostly use
solve the standard VU-CCSD equations can be seen to
0-6
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much less effective and fail to reach convergence in so
cases, even in those instances for which the intruder s
problem does not seem to be too severe@14,19#. The
Newton-Raphson scheme, just recently introduced, and
cessfully employed in VU-CCSD calculations, is nume
cally demanding, and depends much on quality of the st
ing vector. Therefore, its applicability is rather limited
relatively small systems.

Structure of the intermediate Hamiltonians~40! and ~41!
is very simple comparing to the equations of the effect
Hamiltonian approach@Eqs. ~22! and ~23!#. For the one-
valence sector this is a matrix representation ofH̄N in the
space spanned by$Xr

†F,Xr
†Xs

†XaF%. Sincer ands are in-
dices of unoccupied spin orbitals inF, anda represents oc-
cupied ones, then the eigenvalue problem ofHint

(1) does not
depend on the selection made for valence orbitals. Henc
follows immediately that the effective Hamiltonian approa
for the one-valence sector is also invariant with respect to
choice of valence orbitals as far as eigenvalues are c
cerned. However, for cluster amplitudes this is not the ca
The cluster amplitudes must be obtained fromm(1) ~the num-
ber of valence spin orbitals, and the dimension of theM (1)

model space! eigenvectors ofHint
(1) corresponding to selecte

eigenvalues of interest. Let us denote byV0 an m(1)3m(1)

matrix consisting of coefficients of the reference functions
thesem(1) eigenvectors, and byV a matrix containing coef-
ficients of the excited determinants in the eigenvectors.
cording to Eq.~32! we have

Z(1)5 P̄(1)N@eS(1)
#P(1)5S(1)P(1), ~42!

which means that matrix representation of theZ operator
containsS(1) amplitudes. MatrixZ can be easily obtained b
imposing the intermediate normalization on selectedm(1)

eigenvectors ofHint
(1) ,

F I

ZG5FV0

V G @V0#21, ~43!

whereI is anm(1)3m(1) unit matrix. We assume thatV0 is
invertible ~nonsingular!. The cluster amplitudes are the
given by the matrix

Z5VV0
21, ~44!

and the number of them as well as their values depend on
choice of the active orbital levels. The structure ofHint

(2) @Eq.

~41!#, is more complicated. In addition to theP0
(2)H̄NP0

(2)

part, that is analogous to the expression forHint
(1) , it contains

a second term that is constructed fromH̄N andS(1) operators
obtained in the previous one-valence sector. TheS(1) opera-
tors transfer the information about active orbital levels to
two-valence sector, so theHint

(2) eigenvalues are not indepen
dent of the active orbital selection. As in the one-valen
sector, a matrix representation ofZ(2) can be obtained from
m(2)5dim M (2) eigenvectors ofHint

(2) by imposing the inter-
mediate normalization. However, unlike the one-valence s
06251
e
te

c-

t-

e

it

e
n-
e.

-

he

e

e

c-

tor, cluster amplitudes are not given directly but must
calculated, if necessary, according to Eqs.~31! and ~32!:

S(2)P(2)5Z(2)2NFS1
(1)1

1

2
S1

(1)2GP(2). ~45!

It can be seen that, contrary to the effective Hamilton
VU-CCSD equations, a graphical representation ofHint

(2) can
contain disconnected diagrams. This is because of the in
mediate Hamiltonian specific formulation, which does n
allow us to eliminate the disconnected part. This does
mean that the method generates disconnected contribu
and, hence, is not size extensive. The approach is fully
extensive; however, cancellation of the disconnected term
purely numerical, and takes place during diagonalization
Hint

(2) . One may say that the disconnected part is essentia
size extensivity, since it cancels out all disconnected te
generated by the diagonalization. The disconnected te
which must be included are simple, and do not make
explicit expression forHint

(2) more complicated. However, on
has to be very careful when introducing approximatio
other than those imposed on theS operator. In such case
cancellation of the disconnected terms inHint

(2) , and those
generated by the diagonalization, may not be complete, le
ing to a size-extensivity error. The simple structure of t
intermediate Hamiltonians enables us to base constructio
their matrix elements on diagrams appearing in the effec
Hamiltonian approach. Many of them are not required in
formulation, including some quite troublesome ones lik
those arising from the renormalization term. As mention
above only a few disconnected simple diagrams must
added.

In order to describe specific features of the atomic vers
of the VU-CCSD method, let us note that it is essential
the intermediate Hamiltonian formulation to have the mo
and intermediate space uniquely defined by internal exc
tions and external excitations associated with the cluster
erator in a given sector. This means that the same sp
should be generated by the excitation operators indep
dently of the particular reference function they act on. In t
spin-orbital version this is the case, because the intermed
space functions can be associated with spin-orbital indice
particle-hole creation operators in the excitation operato
The reference functions can be related to all possible dis
butions of valence electrons among valence orbitals. T
makes the labeling of matrix elements of the intermedi
Hamiltonian well defined. In case of the VU-CCSD/
method, where cluster operators are represented in term
radial amplitudes, the problem is more complicated. This
because of the angular-momentum coupling present in thS2
definition @Eq. ~26!#, which can involve active orbital indice
of the annihilation operators. The coupling makes tw
particle radial amplitude labeling dependent on a particu
occupation of valence orbitals in the model space. Theref
a direct use of radial amplitude labels for matrix elements
the intermediate Hamiltonian is not possible. The probl
can be overcome by specifying one of the possible occup
0-7
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FIG. 2. Graphical representa
tion of Hint
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cu-
cies of valence orbitals in the model space as a basic
and then defining all internal and external radial amplitud
with respect to that choice.

For the one-valence sector the possibility of making d
ferent choices for the basic occupancy does not lead to
ambiguity, since symmetry blocks are entirely defined by
symmetry of occupied valence orbital, thusHint

(1) can be in-
dividually constructed for each active orbital symmetry a
then diagonalized. However, in case of the two-valence s
tor we do not have this property. Here the intermedi
Hamiltonian matrix representation does depend on the
lected occupancy for valence electrons, and the numbe
radial amplitudes associated with one occupancy can, in g
eral, be different from that corresponding to another o
Therefore, while constructing matrix representation ofHint

(2)

we should be aware of the fact that a description of cer
06251
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states may not be provided for some selections. A diagr
matic representation ofHint

(2) is shown in Fig. 2. The dashe
and double lines are designated for one- and two-part
vertices ofH andR, respectively@46#. The rectangle contains
basic graphs ofHint

(2) which must be contracted with th
angular-momentumG2

(k)(m,n;r,s) diagram for which the
wavy line is used. One may compare the diagrammatic r
resentation ofHint

(2) with that of the standard VU-CCSD equa
tions shown in Ref.@46#. In Sec. III we present a more de
tailed discussion of the intermediate Hamiltonian VU
CCSD/R method, as well as results of our prelimina
calculation for the beryllium atom.

III. COMPUTATIONAL DETAILS AND RESULTS

While applying the VU-CC theory, various researche
encountered serious solvability problems. The first do
0-8
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mented and best known example of such a problem is du
Salomonsonet al. @50#, who studied the 2s2 1S and 2p2 1S
states in the beryllium atom. These authors were also the
to explain the failure in reaching a convergence of their
erative procedure of solving equations in the presence
intruder states. The intruder state problem of VU-CC me
ods was related by many authors to the requirement of c
pleteness of the model space present in the early form
tions of the theory@14,51#. A formulation of the incomplete
model space version of the VU-CC method@15,16,22–25#
was then considered the best remedy to the problem@14#.
However, in spite of the indisputable progress that has b
made in solving the intruder state problem by introduc
incomplete model spaces into the calculation, one canno
sure that the problem has been truly overcome. As b
shown by Jankowski and Malinowski@19#, the solvability
problem of the VU-CC equations can also be related to
efficiency of various iterative schemes used for solving
equations. It was demonstrated that use of the New
Raphson~NR! method, which belongs to a category ve
effective quadratically convergent procedures enables on
reach convergence in several iterations in cases when
standard Jacobi method or most commonly used reduced
ear equation@52# methods either do not converge, diverge,
are at most very slowly convergent@19#. Moreover, it has
been emphasized that the power of a method used for sol
the equations can also be illustrated by showing its ability
provide along with a standard solution, so-called nonsta
ard solutions in which the role of the model space deter
nants in not so dominant@49,19#. Again the NR scheme ha
proven its effectiveness in attaining many physically me
ingful nonstandard solutions while employing different sta
ing vectors@49,53#.

The Jankowski-Malinowski results indicated the impo
tance of the effectiveness of iterative schemes used for s
ing the equations. Unfortunately, the NR method, that pro
so efficient, is not feasible for larger systems~at least in its
most straightforward form! because of large core demand
The use of the scheme in realistic non model calculati
was basically possible within the VU-CCSD/R method b
cause of the significant reduction of the dimension of
problem caused by the use of configurational cluster am
tudes. In this context the intermediate Hamiltonian formu
tion of the VU-CC method offers not only a dependable a
numerically stable way of solving the equations, but it c
also be easily applied in large-scale calculations; this is
to mention many other advantages of the approach, discu
in Sec. II B.

Motivated by the special importance of the Be atom in
history of VU-CC applications, we will illustrate the advan
tages of the intermediate Hamiltonian formulation on t
system. The intermediate Hamiltonian version of the V
CCSD/R program can be easily obtained from the NR V
CCSD/R code. The zero-valence sector calculation rem
unchanged, representing the standard SR-CCSD approa
the core. For higher sectors let us note that the NR sch
requires the construction of matrices of coefficients of lin
and nonlinear terms. The general structure of the cluster
plitude equations looks like@46#
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ai1(
i

bi j t j1(
j <k

ci jk t j tk50, ~46!

where indicesi, j, andk run over all cluster amplitudes whic
must be determined in a given sector. For the one-vale
sector theB(5@bi j #) matrix contains a matrix representatio
of P̄(1)H̄NP̄(1) @see Eq.~22!#. Now it is sufficient to extend
the set of amplitudes by admitting internal excitations wh
constructing this contribution toB to obtain, according to Eq
~40!, theHint

(1) matrix. After selecting one of several possib
occupancies of valence orbitals of a given symme
(s,p,d, . . . ) andgenerating internal and external radial am
plitude labels corresponding to this symmetry, anHint

(1) ma-
trix can be constructed for each symmetry blo
( 2S, 2P, 2D, . . . ) separately.

After renormalization of chosen eigenvectors ofHint
(1) cor-

responding to selected valence orbitals@Eq. ~43!#, one can
obtainR(1)-cluster amplitudes from theZ(1) matrix,

Zr
j @ i

j #5Rr
i , ~47!

Zrs
j a~k!@ i

j #5Rrs
i a~k! ~ i 51, . . . ,L !, ~48!

where Zr
j @ i

j # „Zrs
j a(k)@ i

j #… should be understood as a matr
element ofZ(1) taken from a row numbered by the extern
amplitude label@ r

j # „@ rs
j a(k)#…, and a column numbered b

the internal amplitude label@ i
j #. Indexj is related to the basic

occupancy selected for a given symmetry block.
In the two-valence sector the situation is a bit more co

plicated. Unlike the one-valence sector, the dimension of
Hint

(2) matrix, whose rows and columns are labeled by inter
and external radial amplitude indices, is different for diffe
ent occupations of valence orbitals. For example, if in the
calculation one selects 2s and 2p orbitals as active in the
ground-state calculation, then, due to the definition of
cluster amplitudes@Eq. ~26!#, we have two internal radia
labels when 2s is doubly occupied „@2s 2s

2s 2s(0)# and
@2p 2p

2s 2s (1)#…, and four of them for double occupation for 2p
„@2s 2s

2p 2p(1)# and@2p 2p
2p 2p(k)# (k50,1,2)…. Similarly, the number

of external amplitudes differs in both cases. Hence the
mension ofHint

(2) and the number of its eigenvalues can
different depending on the selected basic occupancy. H
ever the eigenvalues are not affected by the choice, an
description of the same state is always identical in all ca
while some eigenvalues may not be given by allHint

(2) . As-
suming that the selection is made and internal and exte
amplitudes are defined by that choice, a matrix represe
tion of the principal part ofHint

(2) , meaning the first term in
Eq. ~41!, can be obtained from the two-valenceB matrix as
in the one-valence sector. Construction of a matrix repres
tation of the second term is less straightforward, but ag
diagrams used to build theA(5@ai #) matrix in the NR VU-
CCSD version@Eq. ~46!# can be utilized. In fact we need
only some of them, i.e., those which do not represent
renormalization term and involve at least one two-bodyS(1)

diagram@see Eq.~41!#. Since only connected diagrams ca
be obtained from the standard version, we have to sup
ment them with disconnected diagrams which must be
0-9
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cluded in the intermediate Hamiltonian formulation. In ad
tion, all the diagrams must be connected with t
G(2)(k)(m,n;r,s) diagram, as shown in Fig. 2. For the prin
cipal part of the intermediate Hamiltonian ther ands indi-
ces run over all unoccupied orbital labels, whereas for
second term in Eq.~41! they are restricted to valence labe
because the second operator acts on the model space.

The numerical cancellation of disconnected contributio
taking place in the intermediate Hamiltonian formulation b
sically requires the inclusion of all terms in the equatio
that approximation~10! leads to. Any additional simplifica
tions may generate irreducible disconnected compone
The reason for this is that diagonalization of the intermed
Hamiltonian gives disconnected contributions, and they m
have their counterparts in the matrix elements ofHint to
cancel them out. Moreover, any approximation made in
one-valence sector can affect the cancellation of disc
nected terms in the two-valence sector. Thus the best wa
guarantee a complete cancellation of disconnected contr
tions is to utilize the fact that without additional simplifica
tions both schemes give the same result. Let us recall
that in the NR implementation of the VU-CCSD/R meth
@45–48,53#, such additional simplifications have been intr
duced. That is terms only up to and including quadratic ter
in Shave been taken into account in the equations for clu
amplitudes and in the expression for the effective Ham
tonian at each level of valence rank. It must be emphas
the distinction between this and the general form of the V
CCSD equations~46! which are quadratic in the unknow
cluster amplitudesS( i ) at eachi-valence level beyond the
zero level. For the reasons given above, reproduction of
quadratic version within the intermediate Hamiltonian fo
mulation is not simple. So we have supplemented the
VU-CCSD/R equations with the remaining terms~higher
than quadratic! that should be present in the full VU
CCSD/R scheme at the one- and two-valence level, leav
the zero-valence sector unchanged. Having the new NR
CCSD/R version implemented, we could use a more co
plete set of diagrams to build the intermediate Hamiltonia
in addition, we were able to check the code, since res
provided by both schemes should be the same.

Although there is no need to construct two-valence clus
amplitudes~the two-valence sector is the final one! we give a
prescription of how to obtain them from theZ(2) matrix.
Since theZ(2) radial amplitudes are defined with respect
some selected valence orbital occupancy, one has to con
the angular coupling between different occupancies w
trying to calculate cluster radial amplitudes. As a con
quence the relation between theR(2) cluster amplitudes and
matrix elements ofZ(2) is more complicated, and can b
written in the form

(
k

Zrs
mn~k!@ i j

mn~k!#5@k#(
k,k1

H k k1 k

l r l m l i
J H k k1 k

l s l n l j
J

3@Rrs
i j ~k1!1d~k1,0!@ l i ,l j #

1/2Rr
i Rs

j #,

~49!

where $•••% denotes the 6-j coefficients, @ l i ,l j #5(2l i
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11)(2l j11), andm andn are indices of valence orbitals se
lected for the basic occupancy in the reference space.
relation holds for a given pair ofi and j valence indices.
Generally, relation~49! is a small system of linear equation
which does not always givesR(2) radial amplitudes as they
are defined by Eq.~26!. This depends on the pair ofi and j
indices, and the choice made form andn. When excitations
from 1s22s2 are considered~i.e., when one is interested onl
in 1S states!, only Rnl n8 l

2s 2s ( l ) and Rns n8s
2p 2p (1) cluster ampli-

tudes can be obtained via relation~49!. That is,

Znl n8 l
2s 2s

~ l !@2s 2s
2s 2s~0!#5Rnl n8 l

2s 2s
~ l !1Rnl

2sRn8 l
2s , ~50!

Zns n8s
2s 2s

~0!@2p 2p
2s 2s ~1!#5Rns n8s

2p 2p
~1!. ~51!

The Rnl n8 l 8
2p 2p (k1) amplitudes (l or l 8.0) cannot be deter-

mined this way because there are noZnl n8 l 8
2s 2s (k) ~for lÞ l 8)

and not enough equations of type~49! which link Znl n8 l
2s 2s ( l )

andRnl n8 l
2p 2p(k1) ~for l 5 l 8), namely,

Znl n8 l
2s 2s

~ l !@2p 2p
2s 2s ~1!#5

1

3 (
k15u l 21u

l 11

Rnl n8 l
2p 2p

~k1!1d~ l ,1!Rnl
2pRn8 l

2p .

~52!

If one is interested in even-parity states of3P and 1D sym-
metry, in addition to those of1S symmetry, then amplitudes
which describe excitations from 1s22p2 must be used. This
time all R(2) radial cluster amplitudes can be determin
from Znl n8 l

2p 2p(k)@2s 2s
2p 2p(1)# andZnl n8 l 8

2p 2p (k)@2p 2p
2p 2p(k)# matrix el-

ements.
In the present calculations 1s2 defines the Fermi vacuum

and 2s and 2p orbitals are used as valence ones. This de
mines the complete model space (2s,2p) both at one- and
two-valence levels because the knowledge of the active
bital set specifies the relevant complete model spaces con
ered at both valence levels. We have employed
9s 9p 7d 7 f 5g Slater-type basis set introduced in our pre
ous calculations@48# ~which was denoted there as theAd
basis set!. The computations were performed when using o
program package to solve the system of nonlinear equat
at the zero-valence level~by means of the effective Newton
Raphson iterative procedure!, and the eigenvalue problem o
the intermediate Hamiltonian at one- and two-valences lev
~by diagonalization of non-HermitianHint

(n) matrices!.
For symmetry reasons the eigenvalue problem ofHint at

the one-valence level can be separated into two subprob
corresponding to two possible occupancies in the (2s,2p)
model space: 1s22s and 1s22p. At the two-valence level the
problem can be split into a subproblem associated w
double occupancy of 2s and 2p (1s22s2 and 1s22p2) and a
subproblem corresponding to 1s22s2p. Therefore, different
types of radial amplitudes can be obtained within each s
problem. For the one-valence sector those will beZr

2s and
Zrs

1s 2s(k) for 2s andZr
2p andZrs

1s 2p(k) for 2p. In Table I we
collect the numbers of one- and two-particle radialZ ampli-
tudes to be considered. As written in Sec. II, the eigenval
of H int

(1) do not depend on the choice of valence orbita
0-10
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Therefore, it is sufficient to constructHint
(1) using a radial

amplitude labeling which corresponds to excitations fro
any symmetry-representative of valence orbitals. Increas
the number of valence orbitals of the same symmetry d
not changeHint

(1) , whereas in the case of an effective Ham
tonian approach the size of the set of nonlinear equation
be solved increases according to the growing number of o
valence cluster amplitudes.

At the two-valence level one can consider two possi
occupancies in the (2s,2p) model space for even-parit
states. In order to calculate energies of1S states it is suffi-
cient to take into account only excitations from 1s22s2, i.e.,
to consider only 152 radial amplitudes~whereas in the effec
tive Hamiltonian formulation one has to use 684R-type am-

TABLE I. Number of one- and two-electronZ amplitudes of the
VU-CCSD/R method for the 9s9p7d7 f 5g basis set.

Model one-valence two-valence

space Zr
i Zrs

a i(k) Zrs
i j (k)

i a i i j

2s 7 ~11!a 1s 2s 268 2s 2s 150 ~12!a

(2s,2p) 2p 8 ~11!a 1s 2p 438 2p 2p 534 ~14!a

2s 2p 436 ~12!a

aThe number in parentheses denotes the number of internal am
tudes.
06251
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plitudes!. If one is also interested in the other even-par
states ~of 1D and 3P symmetry! which come from the
(2s,2p) model space, then it is necessary to consider 5
radial amplitudes corresponding to excitations from 2s22p2.
The degree of the reduction depends on the angular struc
and the size of the model space used, and is especially
nificant when more valence orbitals of the same symme
are included in the model space.

Values of the energies of the lowest states of even-
odd-parity are collected in Tables II and III. The states a

li-

TABLE III. Energies of odd-parity states for Be calculated wi
the VU-CCSD/R method based on the intermediate Hamilton
formulation ~in hartree!.

No State Present work Previous work Other work

1’ 2s2p 3P 214.567 133 214.567 146a 214.533 624b

2’ 2s2p 1P 214.471 649 214.471 686a 214.438 003b

3’ 2s3p 3P 214.346 542
4’ 2s3p 1P 214.340 974
5’ 3s2p 3P 214.240 547 214.245 493a,c

6’ 3s2p 1P 214.216 832 214.221 221a,c

aMalinowski and Jankowski, CC equations limited to quadra
terms@48#.
bKaldor, CCSD method withspd Gaussian-type orbital basis se
@14#.
cWithin the (2s,3s,2p) model space.
n the
TABLE II. Energies of even-parity states for Be calculated with the VU-CCSD/R method based o
intermediate Hamiltonian formulation~in hartree!.

No State Present work Previous work Other work

1 2s2 1S 214.667 098 214.667 109a,b 214.667 133a,c 214.667 328d 214.633 618e

214.667 111a,c 214.667 033a,c 214.667 373f 214.667 2g

2 2p2 1D 214.402 151 214.402 179a,b 214.373 619e

3 2p2 3P 214.395 297 214.395 306a,b 214.361 565e

4 2s3s1S 214.375 318 214.376 036a,c 214.372 991a,c 214.385 011e,h 214.417 8g,i

214.372 909a,c

5 2p2 1S 214.316 673 214.316 671a,b 214.319 313a,c 214.283 768e,h 214.319 9g,j

214.316 592a,c

6 2s3d 1D 214.270 227
7 2p3p 3P 214.182 709
8 2p3p 1D 214.175 995
9 2p3p 1S 214.121 836 214.126 188a,c 214.121 815a,c

214.121 685a,c

10 3s2 1S 214.040 489 214.038 628a,c

aMalinowski and Jankowski, CC equations limited to quadratic terms@48#.
bJankowski and Malinowski, standard solution in (2s,2p) model space@53#.
cJankowski and Malinowski, nonstandard solution in (2s,2p) model space@53#.
dBunge, CI method@54#.
eKaldor, CCSD method withspdGaussian-type orbital basis set@14#.
fLindroth et al., extensive multiconfiguration Hartree-Fock calculations@55#.
gLindroth and Måartensson-Pendrill, CCSD calculations with a special choice of potential@56#.
hWith the 2s3s configuration added to the model space.
iWithin the (2s,3s,2p) model space.
jThe method of complex rotation used to describe the autoionizing property of this state.
0-11
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numbered 1,2,3, . . . ~for even-parity states, see Table II! and
18,28,38, . . . ~for odd-parity states, see Table III! according
to increasing value of the energy. As emphasized, a se
cluster amplitudes cannot by associated with a single eig
value but with a subset of eigenvalues and correspond
eigenvectors. These subsets are labeled byi - j -k- l or i 8- j 8
wherei , . . . ,i 8, . . . are the state numbers. For example,
standard solution for the two-valenceR amplitudes will be
denoted by 1-2-3-5 and 18-28 within the two subproblems o
the complete (2s,2p) model space problem. Comparing r
sults of the present work with previous results of the eff
tive Hamiltonian approach, where coupled-cluster equati
~22! and ~23! were limited to quadratic terms@48#, one can
see that for the standard solution the omission of higher n
linear terms has a minor influence on the final results
energies~as it should be expected!. Inclusion of these terms
into equations usually slightly raises energies~from 9 m har-

TABLE IV. Magnitudes of the most significant two-valence r
dial amplitudesRrs

i j (k) for nonstandard solutions corresponding
even-parity states.

Rrs
i j (k)

Indices

Replacement Solution i j r s k Value

2s 2s 2s 3s 0 23.521
1→4 2-3-4-5 2s 2s 2p 3p 1 1.936

2p 2p 2s 3s 1 21.934

2p 2p 2s 3s 1 28.175
5→4 1-2-3-4 2p 2p 2p 3p 2 1.856

2p 2p 2s 4s 1 1.664

2s 2s 2p 3p 1 271.856
1→9 2-3-5-9 2s 2s 2p 4p 1 223.894

2p 2p 2p 3p 2 222.533

2p 2p 2p 3p 2 2.264
5→9 1-2-3-9 2p 2p 2p 3d 1 21.453

2p 2p 2p 3p 1 1.407

2s 2s 3s 3s 0 255.866
1→10 2-3-5-10 2s 2s 3p 3p 1 241.682

2p 2p 3s 3s 1 230.890

2p 2p 3s 3s 1 40.804
5→10 1-2-3-10 2p 2p 3p 3p 2 16.870

2p 2p 3p 3p 1 10.123

2p 2p 2s 3d 1 6.029
2→6 1-3-5-6 2p 2p 2s 4d 1 1.173

2p 2p 2p 4 f 2 21.114

2p 2p 2p 3p 2 26.417
3→7 1-2-5-7 2p 2p 2p 3p 1 3.519

2p 2p 3p 3p 0 1.633

2p 2p 2p 3p 1 25.845
2→8 1-3-5-8 2p 2p 2p 3p 0 2.995

2p 2p 2p 3p 2 1.585
06251
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tree for the 2p2 3P state to 37m hartree for the 2s2p 1P
state!. The only exception is the 2p2 1S state, where higher
nonlinear terms lower the energy by 2m hartree. However,
the omission of higher than quadratic terms causes sig
cant differences of energies obtained for a given state
different solutions. As can be seen from the entries of Ta
II, the energies for 2s2 1S, 2s3s1S, 2p2 1S, and 2p3p 1S
states are within the range of 100, 3127, 2721, and 4
m hartree, respectively. Of course, the complete version
the VU-CCSD/R effective Hamiltonian method yields th
same energies. The trouble is that there is no simple pres
tion as to how to obtain nonstandard solutions within t
effective Hamiltonian approach. This depends on the star
vector of R cluster amplitudes, which must be guessed
some way. The problem can be resolved by employing
intermediate Hamiltonian scheme presented in this pa
which gives the possibility of calculating R amplitudes co
responding to any selected set of the eigenvalues via rela
~49!. Using these as a starting point in the effective Ham
tonian iterative procedure we have obtained all multiple
lutions presented in Tables IV and V, each time obtained
same energy for a given state~Tables II and III!. This is a
numerical confirmation of our previous theoretical consid
ations @38#. Tables IV and V give values of the leading
cluster amplitudes for some nonstandard solutions. The s
tions correspond to set of eigenvalues which can be obta
from the standard solution sets 1-2-3-5 and 1’-2’ by cha
ing one of the eigenvalues. The first column in the tab
specifies the substitution. One can note that in such ca
cluster amplitudes can be significantly larger than 1.

IV. CONCLUSIONS

We have presented an intermediate Hamiltonian formu
tion of the VU-CCSD method for atoms. The method us

TABLE V. Magnitudes of the most significant two-valence r
dial amplitudesRrs

i j (k) for nonstandard solutions corresponding
odd-parity states.

Rrs
i j (k)

Indices

Replacement Solution i j r s k Value

2s 2p 3p 2s 1 28.171
1’→3’ 2’-3’ 2 p 2p 2p 3p 0 3.916

2p 2p 4p 2p 1 21.632

2s 2p 3p 2s 1 4.340
2’→ 4’ 1’-4’ 2 s 2p 2s 3p 0 2.152

2s 2p 2p 3s 1 1.867

2s 2p 2p 3s 1 16.343
1’→5’ 2’-5’ 2 s 2p 3s 2p 0 29.201

2s 2p 2p 4s 1 22.554

2s 2p 2p 3s 1 26.022
2’→6’ 1’-6’ 2 s 2p 3s 2p 0 23.256

2s 2p 3p 2s 1 2.245
0-12
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the core as a vacuum, and is designated for a descriptio
the ground and low-lying excited states. The formalism ta
advantage of the simplifications afforded by the spher
symmetry of atomic systems representing cluster operato
terms of radial amplitudes defined by configurational exc
tions. The necessity of using radial amplitude labels ma
the intermediate Hamiltonian reformulation of the VU
CCSD/R method not completely straightforward. In order
obtain a matrix representation of the intermediate Ham
tonian we specify one of the possible occupancies of vale
electrons in the model space as a basic one, and defin
internal and external radial amplitudes with respect to t
choice. The rows and columns of the intermediate Ham
tonian matrix are numbered by these radial amplitude lab
The method is not uniquely defined in this way because
number of radial amplitudes, and thus the dimension of
intermediate Hamiltonian and the number of its eigenvalu
can be different for the different valence orbital occupanc
s

na

um

ys
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The energy values are not affected by this, however, a
scription of certain states may not be available in some ca

The most important advantages of the intermedi
Hamiltonian formulation in comparison with the effectiv
Hamiltonian one are:~i! the relatively simple structure of th
intermediate Hamiltonian matrix;~ii ! the one-step procedur
for solving the equations instead of a two-step procedu
~iii ! the decoupling of the eigenvalue problems;~iv! the
simple and effective way of solving the equations via diag
nalization; and~v! easily obtainable alternative solutions. W
have shown the simplicity and effectiveness of the appro
in a calculation for the Be atom, where all the above featu
of the intermediate Hamiltonian approach have been
cussed.
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