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Intermediate Hamiltonian formulation of the valence-universal coupled-cluster method for atoms
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A formulation of the valence-universal coupled-clugt-CC) method for atoms is presented. The method
is based on Lindgren’s normal-ordered exponential expansion, in which the cluster operator is restricted to its
one- and two-body components represented in terms of radial amplitudes defined by the configurational
excitations. The approach employs an intermediate Hamiltonian technique which replaces the effective Hamil-
tonian formalism used in the standard VU-CC formulation. The modified version introduces many simplifica-
tions in comparison with the standard one and, in particular, offers an efficient way of solving coupled-cluster
equations. The advantages of the approach are illustrated in a calculation for the Be atom, representing one of
the basic yet very challenging applications for VU-CC methods.

PACS numbgs): 31.15.Dv, 31.25.Eb, 31.25.Jf

[. INTRODUCTION extent depends on their clear separation meaning, that the
model space should be properly selected to ensure that the
In recent years, single-reference coupled-cluge€)  wave operator is truly responsible for generating the dynami-
methods[1] have been demonstrated to be among the mostal part of the correlation only. In practice this may be dif-
promising tools for the treatment of electron correlation ef-ficult to achieve. First, the effective Hamiltonian formalism
fects[2,3]. The success of the single-reference BR-CQ  assumes a description of several states at a [f#né], and
methods in describing closed-shell systems has inspired irthe requirement should be fulfilled for all of them. Second, in
tensive research activity towards a generalization of the C@arly formulations of multireference CC theories only com-
scheme to multireference cases which would enable an aplete reference spaces were admitted, which seriously limited
plication of CC methods to open-shell or quasidegeneratéheir applicability[14]. The incomplete reference space ver-
states. These states are characterized by a large componensiins formulated latef15—17 increased flexibility with re-
nondynamical correlation that is usually difficult or even im- spect to the reference space choice while still preserving the
possible to handle by the SR-CC approaches. The idea thgize extensivity of the methods. The possibility of having a
multireference CGMR-CC) theories are based on is to in- general model space allows multireference CC schemes to
troduce different types of descriptions for dynamical anddeal efficiently with more demanding systems reducing the
nondynamical electron correlation effects. The zero-ordemtruder statg 18] or convergence problenjd4]. The latter
picture provided by independent-particle models can be useghay, however, also depend on the iterative procedures em-
to divide the functional space into the referengeode)  ployed[19].
space and its orthogonal complement. The reference space is In order to define cluster operators in a second-quantized
spanned by zero-order functioteeterminantswhich domi-  form, one has to make a suitable choice of a Fermi vacuum.
nate in the target state eigenvectors, whereas excitation oMl operators can then be expressed in a normal product form
erators in the so-called wave operator generate contributionsith respect to the selected vacuum, and many-body tech-
from outer space while acting on the reference functionsniques based on the generalized Wick’s theorem can be used
Hence the wave operator is assumed to give us informatiof20]. For SR-CC methods the reference functiarostly the
about dynamical correlation, whereas the reference space liartree-Fock determinanis usually considered as a natural
associated with nondynamical correlation effects. The wavehoice for the vacuum. In the case of multireference formu-
operator must be determined in a self-consistent manner imations there is no such obvious choice, because we have
posed by the iterative character of the equations, and is theseveral reference functions which span the model space. Ba-
used to construct an effective Hamiltonian whose action isically two strategies can be followed in the MR case. The
restricted to the reference spage-6]. Its diagonalization first one is to have one Fermi vacuum for all operators en-
within this space gives the final contribution of nondynami-tering MR-CC equations independently of the reference
cal correlation to the target state functions. function they can be associated with. The next possibility is
The distinction between descriptions of dynamical andto introduce several different vacuua. Here, for each CC
nondynamical correlations, made by the effective Hamil-equation corresponding to a particular reference function,
tonian approach, may be seen as an efficient and safe way tifis function is used as a vacuum. The first strategy, which
providing information about dominant and less importanthas its origin in Brandow's MR perturbation expansid@j,
components of the wave functions. For the latter, differenfeads to the so-called valence-univergal Fock-spaceCC
approximate schemes can be considered as truncated pertthieories(VU-CC or FS-CQ [8—10,16. The second one fol-
bation[6,7] or CC[8-13] expansion. However, both types of lows the idea introduced in Hose-Kaldor perturbation theory
correlation effects are coupled together through the equd¥] and it is used in the state-univergal Hilbert-spacgCC
tions, and the success of this kind of formulation to a largemethods(SU-CC or HS-C@ [11-13. In the following we
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concentrate on the VU-CC methods, which, due to the fact ofractive is to reformulate them by employing intermediate
having one vacuum, are more suitable for space and spiHamiltonian technique$36,5. Such attempts have been
symmetry adaptations, and thus for the specific case ohade within both VU-C(37-40 and SU-CC approaches
atomic calculations. [41-43. The idea underlying the intermediate Hamiltonian
The use of one Fermi vacuum, that is assumed in VU-C@pproach is to divide the functional space into three sub-
methods, does not mean that there is one preferable choice &paces instead of tw36,5. The additional intermediate
vacuum. In fact, several possibilities can be considered deSPace plays the role of a buffer between the model space and
pending on the system and property we want to describdn€ remaining external space. The contribution from the in-
Two basic options are the core for describing the ground€Mmediate space, which is generated by the wave operator in
state and low-lying excited states in the presence of quasidd€ effective Hamiltonian formulation, is now given in a pro-
generacy8,9,21; and the Slater determinant for the neutral €€SS of diagonalization of the intermediate Hamiltonian

system for a direct calculation of excitation energies from the 36,9 That provides more effective computational schemes.

closed-shell ground state to quasidegenerate excited statés"CC approaches are especially suitable for the intermedi-

[22—27. In this paper we will focus on the first version of ate Hamiltonian reformulatiof88]. While general consider-

the VU-CC method. The cluster operator is defined as Ations of possible implementations of the intermediate
second-quantized normal-ordered excitation operator froniiamiltonian technique within VU-CC schemes can be found
the reference functions to the outer space. Because we ha{fe Ref- [38], and preliminary results of the intermediate
one Fermi vacuum, the excitation operators can contain ndi@miltonian VU-CCSD method designated for calculation of

only particle-hole creation operators but also particle-holé?XCitation energies in Ref39), in this paper we present an
annihilation operator§8—10,21. The reason for this is that Ntermediate Hamiltonian VU-CC scheme especially de-
the reference functions are generated from the vacuuriigned for a specific case of atomic calculations. In spite of

through the action of a sequence of particle creation operd'® fact that most of the existing general purpose methods
tors, and then particle-hole annihilation operators are nece£2n /S0 be applied to atoms, their accuracy is relatively low

sary in the excitation operators to create orthogonal spacko™ the pomt.of view of the requirements of atomic physics.
functions. There are two important consequences of this. The© fully exploit the power of CC methods one should take
first one is that contractions between cluster operators in thE'€ @dvantage of the simplifications afforded by the spherical
exponential expansion are possible. Second, the same ouffMMmetry of the problem. Whereas the single-reference CC

space function can be obtained from a particular reference géprmulation for atoms was put forward by Adams and Paldus
several different excitation operators, which leads to the sol44): the multi reference CC formalism was proposed by the

called VU-CC redundancy problem. The first problem hasGateborg groug21]. Here the cluster amplitudes are repre-

been resolved by defining a normal-ordered cluster exparpented in terms of products of radial, angular, and spin fac-
sion in which the normal form of the wave operator preventd©rs: allowing us to obtain a set of equations for the radial
contractions between cluster operat@s10. The redun- Part only [21]. While the Gdeborg group’s approach is
dancy can be removed by introducing a valence-universal@S€d on the use of numerical one- and two-electron radial-
strategy which assumes that cluster operators have to satisinction contributions to the wave function, an algebraic
the CC equations with zero, one, etc. up to the final numbefin@!0g of this method was proposed by Jankowski and Ma-
of valence electrong8,9,28,29. This provides additional NOWSki [45-48,19. The latter is the basis for the interme-
equations for cluster amplitudes, and additional informatiorf/iat¢ Hamiltonian reformulation we would like to propose.
about the system under consideration. The equations have 8 S€C- I we present a brief description the VU-CC expan-
be solved hierarchically, starting with the zero-valence probSIoN: and details of the effective and intermediate Hamil-
lem. Valence-universal strategy gives the method a Focklonian formulations employing this kind of representation for
space charactéd6,29. the wave operator.
Because of their formal complexity, and problems that the
use of an effective Hamiltonian technique brings, MR-CC
methods have not been very widely used in routine calcula- A. Effective Hamiltonian formulation
tions. This has been the reason for turning back to single- : . L . -
reference CC formulations to make them mgore applicablg to While considering the Schdinger equation describing a
guasidegeneraf80—-33 and open-shell systemi84]. Some many-electron system,
attempts along this line introduced two-step appro_aches in HY=EW, 1)
which the main part of the nondynamical correlation was
determined within a conceptually simple and numericallywe assume that we have to deal with a quasidegenerate situ-
stable MR configuration interactiofCl), scheme while a ation in which more than one determinant is necessary to
subsequent single-reference CC calculation provided us witbbtain a reliable zero-order description of the state. Let us
a more adequate description of dynamical correlation effectdefine the referencémode) spaceM as spanned by several
[32,33. One may also replace the CC calculation by a non-determinants(reference functionswhich dominate in the
iterative correction to the MR-CI enerdB5]. However, it  W-function expansion. The orbitals can then be divided into
seems that these approaches have their limitations, so a fuihree classes: col€) orbitals which are doubly occupied in
ther development of MR-CC schemes is highly desirableall reference determinants, valen€®) or active orbitals
One possible way of making the MR-CC methods more atwhich are occupied in some determinants but not in all of

IIl. METHOD
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them, and eXCite(ﬂE) orbitals which are UnOCCUpied in the Requiring the transformed Hamiitonigm to Satisfy
reference functions. The spin orbitals will be labeled accord-

ing to the conventions,b,ceC,i,j,keV,r,s,teE,a,B,y QHP=0, 7)

e CUV,p,o,7e VUE, and \,x,ue CUVUE. In the fol-

lowing we assume that the model space is complete, whiclve can divide the eigenvalue problem lgfinto two sub-
means that all possible distributions of valence electronproblems. Now all eigenvalues bf can be obtained by sepa-

among valence Spin orbitals are included in the rEferenCﬁate diagonaiizations dPT—]P and QFiQ Since usua”y we
space functions. However, an incomplete model space vegre not interested in all eigenvalues but only in a small subset
sion can also be considered if necessary. The Fermi vacuugt them diagonalization ofPHP in a relatively low-
® is defined as a determinant constructed from the core SpiHimensional model space is the final goal. One can view this

orbitals. Hence the core spir_l orbitals Wi." be referred to 3%orocedure as a way of extracting a subproblem correspond-
holes, and all other spin orbitals as particles. The referenciﬁg tom=dimM eigenvalues from the complete eigenvalue
functions®, can then be expressed using creation operator§yaplem, Contributions from orthogonal and model spaces to

+
(X) as those eigenvalues are given Byand a diagonalization of
O =X, .. . XD (,<---<i), 2 PHP, respectively. There are many operators satisfying_

N NG W @ Eq. (7) [5], but we assume that by using a suitable starting

. oint in an iterative procedure foX based on Eq(7) we
where L is the number of valence electrons. Second—p P an

. o . would be able to converge at the desired solution i.e., that
guantized normal-ordered excitation operators acting on the ~

reference functions can be classified into operators leading HdP Iglves elgenvi;aluei of icnteresit]. A proper s;zleciion .Of the
the model spacéinterna) and operators leading to its or- maodel space can be a key factor here, since the efiectiveness

thogonal complemer(externa). A general form of the exci- of Fhe scheme may depend to a Iar_ge extent on a clear sepa-
tation operators can written as ration of dynamical and nondynamical correlation effects. It

is usually assumed that the dominant part of the eigenfunc-
p po tions of allm states under consideration should be included
N[ea]!N[eaﬁ]! R (3) . . .
in the model space. TheKX can be viewed as relatively
small, and easy to determine in a self-consistent manner. The
solution that satisfies the condition is called the princijoal
eZ'ﬁll'.:XIXI' CX Xy (4) standard one, whereas all othe~rs are considered as alterna-
tive (or nonstandand 48]. The PHP part of the transformed
andN[ - - -] means the normal product form with respect to Hamiltonian can be called the effective Hamiltonian:
®. The internal excitations are those having exclusively va- ~
lence spin orbital labels, whereas all others constitute exter- Hetr=PHP=PH(1+X)P. (8)
nal excitations. ) ) ) _
Internal excitations are responsible for a description ofJSing this notation, Eq(7) can be expressed in a more stan-
nondynamical electron correlation, whereas external ones afé"d way[4.6] as
associated with the dynamical correlation. One possible way _
of describing the dynamical part is a coupled-cluster-type QH(1+X)P=XHe=0. ©)

expansion, which has.proven so successful in the single rei‘—n order to introduce the exponential expansion for-(4), a
erence case. Truncation of the cluster operator allows n

. L . I Uyitable definition of the cluster operator must be introduced.
only an effective approximation of higher-level excitations |, o, case the cluster operatsris defined by associating
via products of lower excitation rank operators, but aISchuster amplitudes with the external part of excitation opera-

guarantees the_ size extensi_vity of the method, which '§0r5(3). In the following we restrict our consideration to the
nowadays considered a very important feature. However, th@ase of systems having two valence electrdns 2) andS

nondynamical effects should be treated exactly, meaning th%tpproximated by one- and two-body components
coefficients associated with the internal excitations are deter-

mined by diagonalization. These different treatments of both S~S,+S,, (10)
types of correlation can be realized within the effective

Hamiltonian schemg4]. The concept of the effective Hamil- where

tonian can be introduced by considering simple similarity .

transformation$5]. Let us denote the projection operator on S, = sf;N[eg]+ SIN[ef], (11
the reference spac® by P, and that on its orthogonal
complementM, by Q. Introducing the operator

where

1 b po 1 ia po 1 i po

2 po a 4 po
X=QXP, 6)
The Einstein summation convention is used here, and cluster
we can consider the following similarity transformation:  amplitudes having exclusively valence spin orbital labels are
5 excluded so only external excitations are permitted in the
H=e *HeX=(1-X)H(1+X). (6) cluster operator. The cluster amplitudes are antisymmetric in
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their lower and upper indices, except f8f,,, which is anti- XW=QWN[eSM+5P P = gWp®), (20)

symmetric in its lower indices only. Due to Egd.l) and

(12) the S; and S, operators can be additionally classified The explicit form of the CC equations can be obtained by

according to the number of active labels of the annihilationemploying diagrammatic techniques which allow us to rep-

operators: resent basic second-quantized normal-ordered operators by
diagrams. Then a graphical representation of the CC equa-

S =5P+sP, 5,=5P+sMN+5P. (13)  tions can be constructed using simple rules of operating with

diagrams based on the generalized Wick’s theorem. An ad-

Due to Lindgren[10], the cluster expansion can be intro- ditional simplification is introduced by the linked diagram

duced in the normal-ordered forms theorem(LDT) that can be proven for the VU-CC method
©) 1), «(2) [10,16]. This states it that disconnected terms are canceled
N[e®]=e5 N[e® 5], (14  outin the equations, so that only connected diagrams have to

be considered. Also, the linked diagram theorem guarantees
SO=g0+80 sh=gl+sh) s@=g?) (15  the size extensivity of the method. Using E¢E9) and(20),
and taking advantage of the LDT, the hierarchy of the VU-
The normal-ordered form prevents contractions betweef©CSD equations can be expressed in the forms
cluster operators in the expansion which are, in general, pos-

sible since the cluster operators can contain particle-hole an- POHP=0,

nihilation operators. The exception 8, which is ex- -

pressed by particle-hole creation operators only. Hesiee (DIHE| D) =E ore=(P|H|D), (21)
cannot be contracted with the remaini8@perators, and its

exponential expansion is already in normal-ordered form. POIH(1+ Sy —sWHy pM=0,

We have taken advantage of this in E434). Because of

specific form of the cluster expansigh4), we can replace HY=POH(1+SD)pM), (22)

transformation(6) with a double transformation satisfying

— - — = 1
P@)(1—X@)H(1+X®)P@=0, (16) P(Z)[HNN 1+sW+ §s<1>2+s<2>}
o oSO, .s© 1
H=e"""He™", (17) —N[S‘l)+§S(1)2+S(2) H(ezf)f] P@ =0,
c,2
X@)=Q@N[eS'V+ 5 1p@), (18)

— 1

where the first transformation has a many-body character. Hézf)f: PEH\N| 1+ S0+ ES(l)Z“L s®IP®), (23
The superscript2) indicates that we are concerned with a

two-valence-electron probler®(?) denotes a projection onto Where subscripts and 2 mean connected and two-body dia-
a subspace of1(? that is reached by excitations generated9rams, respectively, and

by S?) while acting onM(?), so the number of equations I _

equals the number of th8 amplitudes. The remaining Hy=H—(®[H|®). (24)
amplitudes associated with® and S*) must be obtained . - , ,
from separate calculations. This is a consequence of the cludhe use ?11')"N |nst?2:;1d ofH means that the effective Hamil-

ter operator definitiong11) and (12), which allows several toniansHgy; andH¢f; are redefined to give energies relative
operators to generate the same orthogonal space determindatthe core energg ... P> andP) are defined in a way
while acting on the reference functions. The additional equaanalogous toP@ . It is worth noting that the hierarchical
tions for S© andS™) are provided by the valence-universal strategy is indeed possible because of separation of valence
strategy of solving the CC equatio[t$,28,16,29. The strat-  problems, meaning that the CC equations in a particular va-
egy assumes a hierarchical way of solving problems with afence sector do not depend on the higher sector cluster am-
increasing number of valence particles, starting with theplitudes. As mentioned, the VU-CCSD equations are ex-
zero-valence-particle problem, so that the number of equgressed through connected terms, however, only in the cases
tions becomes equal to the number cluster amplitudes. Nowhere disconnected contributions can be constructed has the
the notation introduced in Eq15) is consistent with that of necessity of eliminating them been explicitly indicated.

Egs. (16)—(18), as S can be really associated with tie  The cluster operator definitidiEgs.(11) and(12)] can be
valence problem. It must be mentioned that while solvingused to obtain a general purpose version of the VU-CCSD
problems with a lower number of valence particles, we ob-method; however, to take advantage of the high symmetry of

tain an additional information of the system. atomic systems, one should follow a strategy similar to that
For the zero- and one-valence sectors which must be comfescribed by Lindgren and Morris¢g@1] for separating out
sidered in our VU-CCSD scheme, we have the angular and spin dependences from the diagrams. We
assume that the one- and two-electron cluster amplitudes are
X©=QON[ S +5?1p©@ =0, (19  expressed as
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nplpmemy nplp lomp mg
nalamamg Nala lama mg FIG. 1. Graphical representa-
tion of the radial-angular-spin
repl gy S ol nle Lo L lme 1ms sepgration of the one- and two-
L v ee oie e a1 v particle cluster amplitudes.
k k
= 3 _ N
k

nalamamy, nﬁlﬁmﬁmé Nala nglg lama lgmgImg mg

NalaMamy — nil, _ where[46,48, and we refer to these papers for the derivation

n,l,m,m? - RnplpGl(a'P)’ 25 and a more complete discussion.

Nyl ,m,mS ,nBIBmBmZ: B. Intermediate Hamiltonian formulation

> RGP (B por), - .
k pprioo There are several characteristic features of the effective
(26) Hamiltonian VU-CC formulation which one can consider as
important drawbacks of the method. First of all, this is a
with two-step approach. In the first step cluster amplitudes are
calculated, allowing us to construct the effective Hamil-
Gl(a;p):5(|a!|p)5(mavmp)5(mzvmz) (27) tonian anq its diagonalization in the second step. Second,
several eigenvalue problems are coupled together through
the equations, so that we have to consider all of them at a

S S
nplpmpmp ,nal(rm[,mg

G(zk)(aB;PG) time. Moreover, numerical experience shows that effective
| Ko iterative .schemes are requ_ired to solve thg equations for clus-

ZE (_1)Ipmp+l(,mg+kq( P a ) ter amplitudeg19,47]. In this section we will show how the
q -m, q m, intermediate Hamiltonian formulation can change the situa-

tion introducing many simplifications and offering an effi-
cient way of solving the VU-CC equations.

The intermediate Hamiltonian technique was introduced
and primarily used in the context of multireference perturba-
tion theory[36]. The idea was to divide the functional space
into three subspaces instead of two. The additional interme-
where (---) denotes the 3- Wigner coefficient, andR  diate space plays the role of a buffer between the model
stands for radial one- and two-particle cluster amplitudesspace and the remaining external spgg#. Its contribution
The spin orbital indices are used as orbital ones. The strugp the eigenvalues given by the effective Hamiltonian in the
ture of GY(a; po) restricts the possiblk values to those  standard formulation is not provided via perturbation expan-
simultaneously satisfying the triangular conditions forsion but by diagonalization. In this way small denominators
(I4.k,1,) and (z.k,1,). The radial-angular-spin ansatz of in the expansion can be avoided in cases of the occurrence of
the cluster amplitudes defined by E485) and (26) can be intruder states. Very soon nonperturbative schemes also
represented graphically in the form shown in Fig. 1. On thestarted using this kind of techniqy&7—-43. However, it
right-hand side of the graphical representation, the horizontaleems that application of the intermediate Hamiltonian
double-line vertices denote the radial cluster amplitudes, angdcheme is especially advantageous with respect to the
the remaining ones stand for the angular-momentum graphgU-CC method[37—40. This follows from the fact that, in
(G1(a;p) andG(Zk)(aﬁ;pa')) [21]. Let us note that to apply spite of its generally nonlinear character, the VU-CC expan-
the separation one has to label the spin-orbital amplitudesion is linear in the unknown cluster amplitudes in each va-
explicitly in terms of all orbital and spin indices, and that the lence sector beyond the zero sedtsee Eqs(22) and(23)].
indices of theR amplitudes are labeled by atomic-shell indi- All nonlinear terms inS in the expansion are products of
ces only. One of the great advantages of the separation is tlwduster operators from the lower valence sectors, which, due
enormous reduction of the number of unknown cluster amto valence-universal strategy, asepriori determined. As a
plitudes[21,46. consequence the eigenvalue problem can be solved via di-

The VU-CCSD method for atoms has been referred to asgonalization of some operator which depends only on the
VU-CCSDI/R, where R stands for indicating the reduction tolower sector cluster amplitudes. The operator can be easily
radial-type equations. An explicit diagrammatic form of theidentified as an intermediate Hamiltonian.

VU-CCSD/R equations, in which an additional restriction to ~ As mentioned, our intermediate Hamiltonian formulation
quadratic terms irS has been imposed, can be found else-of the VU-CCSD method concerns valence sectors of a rank

l, ko
g ’

S S S S

(28)
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higher than zero. The zero-valence sector represents the stan-
dard single-reference CCSD method for the core. For higher
sectors the intermediate space is extracted from the orthogo-
nal complement of the model spad" (i=1 and 3, and

can be defined in a simple way as that associated with the is also easy to see that for the one- and two-valence sectors
projection operatoP(!). For the projection on the remaining we have

part of theM{ space we us®". Hence

HO =P{(1- YD) Hy(1+YD)PY

int

=PPHN(1+ YD) P, (39

P, (39

1
Mg y@=n| st gDy = g2
Qi) =P 1 g, 29 Y=0, Y N[Sz +S17S7+ 58

The starting point in our derivation is again a similarity and the intermediate Hamiltonians for these sectors can be

transformed Hamiltonian for one- and two-valence sectord'ritten as
satisfying equations analogous to Ef6): _

Hi =P HWPEY, (40
POL-XD)H\(1+XD)p=0, (30) L
HE)_ PO, PR+ ngﬂNN{ S+ s+ 55(2”2} p2)

)= oWN[feSY+sPp) (=
XO=QON[e 1PY (i=1,2). (31) (41)

Let us now introduce the operators Let us now discuss the advantages of dealing with the

intermediate Hamiltonian approach instead of the effective

YO=QWx®M,  zO=phix®, Hamiltonian one. First of all the two-step effective Hamil-
. . . (32 tonian formalism is replaced with a one-step procedure
X0 =704 y0), which is a diagonalization of the intermediate Hamiltonian.

With this notation Eq(30) can be written as

The diagonalization provides eigenvalues and eigenstates at
the same time. The intermediate Hamiltoni&A6) and (41)

are constructed from cluster operators from the lower sectors

which are known due to the hierarchical strategy of solving
(33)  the equations. Hence there is no dependence of the interme-
diate Hamiltonian matrix on its eigenvector or eigenvalue,
which is frequently the case in many other implementations
of the intermediate Hamiltonian technique. Moreover, since
the coupling term between different eigenstate problems dis-
appears, then the eigenvalues can be obtained one by one

Condition (33) leads to separation of a problem correspond-With a properly selected diagonalization procedure. It must
ing to several eigenvalues which are now provided by diagobe stressed, however, that a set of cluster amplitudes can be
nalization of theP®"-P(® part of the transformed Hamil- determined when all eigenvectors Kf,, corresponding to
tonian (the effective Hamiltonian However, the same the model space under consideration are at our disposal.

eigenvalues can be obtained as a subset of eigenvalues of théce the cluster amplitudes are only necessary to construct
operator the higher-valence-sector intermediate Hamiltonians, they

are not required in the final sector. In our case the two-
valence sector is the final one so, for example, if we are
interested only in the ground-state energy we can concentrate
on obtaining this single eigenvalue without the necessity of
considering the others. On the other hand, the complete set
of eigenvalues oH;,; also contains energies which are given
by the so-called alternative solutions of the effective Hamil-

) o ) ) tonian approach. The important feature of these eigenvalues
is a projection operator on the model and intermediate spacg; that they have to be the same in all solutions they appear
Since operatof35) and the operator in. This is not so obvious when the effective Hamiltonian
formulation is discussed, and it has not been detected in the
numerical studies made so far because of the additional ap-
proximations imposed on the VU-CCSD equati¢48]. Let

are related by similarity transformation, they have the samais finally state that the intermediate Hamiltonian technique,
eigenvalues. So the eigenvalues obtained within the effectivapplied to the VU-CCSD method, offers a very dependable
Hamiltonian formulation are among those given by diagonalway of solving the equations because of the existence of
ization of operato37). Operator(37) can be recognized as efficient diagonalization procedures. Perturbation-expansion-
an intermediate Hamiltonian. To obtain its more explicitbased iterative techniques that have been mostly used to
form let us first note that, due to definitigB2), we have solve the standard VU-CCSD equations can be seen to be

PO1-z0) (21— YO)H(1+ YD) (1+2zD)ph =0,

since

14+ XD = (14 YD) (1+20). (34

PO1-z2M)1-YD)H(1+ YD) (1+2D) P, (35)
where

P =p0 4 p) (36)

PP(1-YD)Hy(1+YD)PJ (37)
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much less effective and fail to reach convergence in soméor, cluster amplitudes are not given directly but must be
cases, even in those instances for which the intruder statalculated, if necessary, according to E@l) and (32):
problem does not seem to be too sevéid, 19. The
Newton-Raphson scheme, just recently introduced, and suc-
cessfully employed in VU-CCSD calculations, is numeri-
cally demanding, and depends much on quality of the start-
ing vector. Therefore, its applicability is rather limited to
relatively small systems.

Structure of the intermediate Hamiltoniat0) and (41) It can be seen that, contrary to the effective Hamiltonian
is very simple comparing to the equations of the effectiveVU-CCSD equations, a graphical representatiorh-l{ﬁt) can
Hamiltonian approachEgs. (22) and (23)]. For the one- contain disconnected diagrams. This is because of the inter-

valence sector this is a matrix representatiorHgf in the ~ mediate Hamiltonian specific formulation, which does not
space spanned @(;@,x;xzxa@}_ Sincep and o are in-  allow us to eliminate the disconneqted part. This do_es not
dices of unoccupied spin orbitals i, anda represents oc- Mean that the method generates disconnected contributions
cupied ones, then the eigenvalue problentdf) does not and, hence, is not size extensive. The approach is fully size
depend on the selection made for valence orbitals. Hence #X{€nsive; however, cancellation of the disconnected terms is
follows immediately that the effective Hamiltonian approachp‘g)er numerical, and takes place during diagonalization of
for the one-valence sector is also invariant with respect to thélini - One may say that the disconnected part is essential for
choice of valence orbitals as far as eigenvalues are corfiZ€ extensivity, since it cancels out all disconnected terms
cerned. However, for cluster amplitudes this is not the casélénerated by the diagonalization. The disconnected terms
The cluster amplitudes must be obtained frofd) (the num- which must be mcludeg are simple, and do not make the
ber of valence spin orbitals, and the dimension of knd)  explicit expression foH ) more complicated. However, one

model spaceeigenvectors oH (! corresponding to selected has to be very careful when introducing approximations
eigenvalues of interest. Let us denote By an m™)x m(®) other than those imposed on tlSeoperator.ZIn such cases
matrix consisting of coefficients of the reference functions incancellation of the disconnected terms iy}, and those
thesem(® eigenvectors, and by a matrix containing coef- generated by the diagonalization, may not be complete, lead-

ficients of the excited determinants in the eigenvectors. AciNg to a size-extensivity error. The simple structure of the

1
S@p@)=z7(2)— N{ sH+ 58(11)2} p®, (45)

cording to Eq.(32) we have intermediate Hamiltonians enables us to base construction of
their matrix elements on diagrams appearing in the effective
Z(1):§(1)N[es<1>]P(1):S(l)P(l) (42) Hamiltonian approach. Many of them are not required in the

formulation, including some quite troublesome ones likes
those arising from the renormalization term. As mentioned
above only a few disconnected simple diagrams must be
added.

In order to describe specific features of the atomic version
of the VU-CCSD method, let us note that it is essential for
the intermediate Hamiltonian formulation to have the model

I Vo - d int diate space uniquely defined by internal excita-

_ VAR (43 ~ and interme pace uniquely de Y

Z V tions and external excitations associated with the cluster op-

erator in a given sector. This means that the same space

wherel is anm®xm®) unit matrix. We assume that, is  should be generated by the excitation operators indepen-
invertible (nonsingulay. The cluster amplitudes are then dently of the particular reference function they act on. In the

given by the matrix spin-orbital version this is the case, because the intermediate
space functions can be associated with spin-orbital indices of

Z=VWV, 1, (44) particle-hole creation operators in the excitation operators.

The reference functions can be related to all possible distri-

and the number of them as well as their values depend on tHeutions of valence electrons among valence orbitals. That
choice of the active orbital levels. The structureHff) [Eq. ~ Makes the labeling of matrix elements of the intermediate
(41)], is more complicated. In addition to tHe®H,P® Hamiltonian well defined. In case of the VU-CCSD/R
hat is analodous to the ex ressionl-féj) it contains me;hod, where cluster operators are represer_lted in terms of
part, t 9 press t radial amplitudes, the problem is more complicated. This is
a second term that is constructed fréfy andS™ operators  pecause of the angular-momentum coupling present iSthe
obtained in the previous one-valence sector. $ti¢ opera-  definition[Eq. (26)], which can involve active orbital indices
tors transfer the information about active orbital levels to thegf the annihilation operators. The coupling makes two-
two-valence sector, so th¢{Z) eigenvalues are not indepen- particle radial amplitude labeling dependent on a particular
dent of the active orbital selection. As in the one-valencepccupation of valence orbitals in the model space. Therefore,
sector, a matrix representation 8f?) can be obtained from  a direct use of radial amplitude labels for matrix elements of
m®=dimM® eigenvectors oH{?) by imposing the inter- the intermediate Hamiltonian is not possible. The problem
mediate normalization. However, unlike the one-valence secan be overcome by specifying one of the possible occupan-

which means that matrix representation of theoperator
containsS™") amplitudes. MatrixZ can be easily obtained by
imposing the intermediate normalization on selecte@
eigenvectors oH (Y,
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— FIG. 2. Graphical representa-
tion of H{)

int -

g v e R A P P

cies of valence orbitals in the model space as a basic onstates may not be provided for some selections. A diagram-
and then defining all internal and external radial amplitudesnatic representation dﬂ,(,ft) is shown in Fig. 2. The dashed
with respect to that choice. and double lines are designated for one- and two-particle
For the one-valence sector the possibility of making dif-vertices ofH andR, respectively46]. The rectangle contains
ferent choices for the basic occupancy does not lead to arlyasic graphs oﬂ—|i(§t) which must be contracted with the
ambiguity, since symmetry blocks are entirely defined by theingular-momenturrG(zk)(m,n;p,a) diagram for which the
symmetry of occupied valence orbital, thuﬁt) can be in- wavy line is used. One may compare the diagrammatic rep-
dividually constructed for each active orbital symmetry andresentation oH{3) with that of the standard VU-CCSD equa-
then diagonalized. However, in case of the two-valence sedions shown in Ref[46]. In Sec. Il we present a more de-
tor we do not have this property. Here the intermediate@iled discussion of the intermediate Hamiltonian VU-
Hamiltonian matrix representation does depend on the s€cCSD/R method, as well as results of our preliminary
lected occupancy for valence electrons, and the number &@lculation for the beryllium atom.
radial amplitudes associated with one occupancy can, in gen-
eral, be different from that corresponding to another one.
Therefore, while constructing matrix representationHjf) While applying the VU-CC theory, various researchers
we should be aware of the fact that a description of certairencountered serious solvability problems. The first docu-

[ll. COMPUTATIONAL DETAILS AND RESULTS
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mented and best known example of such a problem is due to

Salomonsoret al. [50], who studied the € 'S and 2?'S aﬁfZ bijtj+2k Cijktjtk=0, (46)
states in the beryllium atom. These authors were also the first =

to explain the failure in reaching a convergence of their it-where indices, j, andk run over all cluster amplitudes which
erative procedure of solving equations in the presence afust be determined in a given sector. For the one-valence
intruder states. The intruder state problem of VU-CC methsector theB(=[b;;]) matrix contains a matrix representation

ods was related by many authors to the requirement of compt E(l)ﬁNﬁ(l) [see Eq(22)]. Now it is sufficient to extend
pleteness of the model space present in the early formulahe set of amplitudes by admitting internal excitations when
tions of the theory14,51). A formulation of the incomplete  constructing this contribution tB to obtain, according to Eq.
model space version of the VU-CC methfith,16,22-2%  (40), the H{%) matrix. After selecting one of several possible
was then considered the best remedy to the proljlefit  occupancies of valence orbitals of a given symmetry
However, in spite of the indisputable progress that has bee p,d, ...) andgenerating internal and external radial am-

made in solving the intruQer state proble_m by introducingp”tude labels corresponding to this symmetry,raﬁt) ma-
incomplete model spaces into the calculation, one cannot by ~an be constructed for each symmetry block

sure that the problem has been truly overcome. As beepzs 2p,2p, . ..) separately.
shown by Jankowski and MalinowskL9], the solvability After renormalization of chosen eigenvectorsj-tfﬁt) cor-

problem of the VU-CC equations can also be related to th?esponding to selected valence orbithE). (43)], one can

efficiency of various iterative schemes used for solving theobtain R@_cluster amplitudes from th&®) matrix,

equations. It was demonstrated that use of the Newton-

Raphson(NR) method, which belongs to a category very Zi[1=R., (47)

effective quadratically convergent procedures enables one to ™ '

reach convergence in several iterations in cases when the bd a(k)[{]=R‘a(k) (i=1 L) (48)
po po LR | 1

standard Jacobi method or most commonly used reduced lin- N _ _

ear equatiofi52] methods either do not converge, diverge, orwhere Z[!] (ZLa(K)[11) should be understood as a matrix
are at most very slowly convergeft9]. Moreover, it has element ofZ(!) taken from a row numbered by the external
been emphasized that the power of a method used for solvingmplitude label ] ([ Li(k)])v and a column numbered by
the equations can also be illustrated by showing its ability tQne internal amplitude Iab@l{]. Indexj is related to the basic
provide along with a standard solution, so-called ”OnStand(')ccupancy selected for a given symmetry block.

ard solutions in which the role of the model space determi- In the two-valence sector the situation is a bit more com-
nants in not so dominaifi#9,19. Again the NR scheme has jicated. Unlike the one-valence sector, the dimension of the

proven its effectiveness in attaining many physically meany ) matrix, whose rows and columns are labeled by internal

@ngful nonstandard solutions while employing different start—ar'%‘ external radial amplitude indices, is different for differ-
ing vectors[49,53. ’

The Jankowski-Malinowski results indicated the impor- ent occupations of valence orbitals. For example, if in the Be

tance of the effectiveness of iterative schemes used for Solvc_alculation one selectss2and 2p orbitals as active in the
round-state calculation, then, due to the definition of the

ing the equations. Unfortunately, the NR method, that prove luster amplitudedEq. (26)], we have two internal radial

so efficient, is not feasible for larger systefas least in its labels when 3 is doubly occupied ([%2 %2(0)] and

most straightforward forpnbecause of large core demands. 5 ¢ K
The use of the scheme in realistic non model calculations2 p2 Sl)]), andzioz%r of them for doub-le.occupatlon fop2
was basically possible within the VU-CCSD/R method be-({2s 25 (1)] and[3, 55(k) ] (k=0,1,2)). Similarly, the number
cause of the significant reduction of the dimension of thePf external amplitudes differs in both cases. Hence the di-
problem caused by the use of configurational cluster amplimension ofH{Z) and the number of its eigenvalues can be
tudes. In this context the intermediate Hamiltonian formula-different depending on the selected basic occupancy. How-
tion of the VU-CC method offers not only a dependable ancEVer the eigenvalues are not affected by the choice, and a
numerically stable way of solving the equations, but it candescription of the same state is always identical in all cases
also be easily applied in large-scale calculations; this is nowhile some eigenvalues may not be given byHff). As-
to mention many other advantages of the approach, discussédming that the selection is made and internal and external
in Sec. Il B. amplitudes are defined by that choice, a matrix representa-
Motivated by the special importance of the Be atom in thetion of the principal part oH{Z), meaning the first term in
history of VU-CC applications, we will illustrate the advan- Eg. (41), can be obtained from the two-valenBematrix as
tages of the intermediate Hamiltonian formulation on thisin the one-valence sector. Construction of a matrix represen-
system. The intermediate Hamiltonian version of the VU-tation of the second term is less straightforward, but again
CCSD/R program can be easily obtained from the NR VU-diagrams used to build th&(=[a;]) matrix in the NR VU-
CCSDI/R code. The zero-valence sector calculation remain€CSD version[Eq. (46)] can be utilized. In fact we need
unchanged, representing the standard SR-CCSD approachdaly some of them, i.e., those which do not represent the
the core. For higher sectors let us note that the NR schemenormalization term and involve at least one two-b&)
requires the construction of matrices of coefficients of lineadiagram[see Eqg.(41)]. Since only connected diagrams can
and nonlinear terms. The general structure of the cluster anbe obtained from the standard version, we have to supple-
plitude equations looks likp46] ment them with disconnected diagrams which must be in-
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cluded in the intermediate Hamiltonian formulation. In addi- +1)(2;+1), andm andn are indices of valence orbitals se-

t|or21, all the diagrams must be connected with thejected for the basic occupancy in the reference space. The
G®)(k)(m,n; p,0) diagram, as shown in Fig. 2. For the prin- rejation holds for a given pair of andj valence indices.
cipal part of the intermediate Hamiltonian theand o indi-  Generally, relatiorf49) is a small system of linear equations
ces run over all unoccupied orbital labels, whereas for thgyhich does not always give’® radial amplitudes as they
second term in Eq41) they are restricted to valence labels e defined by Eq(26). This depends on the pair ofandj
because the second operator acts on the model space.  jndices, and the choice made flarandn. When excitations

The numerical cancellation of disconnected contributiongom 152252 are considered.e., when one is interested only
taking place in the intermediate Hamiltonian formulation ba’in 1S statef only stzi(l) and R? 2p(1) cluster ampli-

sically requires the inclusion of all terms in the equations ninYl L SIS T

that approximatior(10) leads to. Any additional simplifica- tudes can be obtained via relatiofd). That is,

tions may generate irreducible disconnected components. 2525 /|\1252s _ 2s2s 25525

The reason for this is that diagonalization of the intermediate Zoi w1 (D125 250 ]=Raran (D + RorRy (50
Hamiltonian gives disconnected contributions, and they must
have their counterparts in the matrix elementsHyf; to
cancel them out. Moreover, any approximation made in the 2p2p , )
one-valence sector can affect the cancellation of discon! "€ Ryiqi/(ki) amplitudes [ or 1">0) cannot be deter-
nected terms in the two-valence sector. Thus the best way t@ined this way because there are Zl,?(;fﬁ,s,,(k) (for I#1")
guarantee a complete cancellation of disconnected contribnd not enough equations of typ49) which link zifﬁ?l(n

ZE B (O[S 5(D]=REZ(1). (51)

t@ons is to utilize the f{;lct that without additional simplifica- 4, Rﬁ?fff(kl) (for 1=1"), namely,
tions both schemes give the same result. Let us recall here
that in the NR implementation of the VU-CCSD/R method I+1

[45-48,53, such additional simplifications have been intro- z2°2° (1)[2525 (1)]= = ; RaraA (ka)+ (1L DREFRY,
duced. That is terms only up to and including quadratic terms 3k, =T-1]
in Shave been taken into account in the equations for cluster (52)

amplitudes and in the expression for the effective Hamil- L . .
b P |f one is interested in even-parity states®¥ and 'D sym-

tonian at each level of valence rank. It must be emphasize trv. in addition to th ofs v th litud
the distinction between this and the general form of the yy-metry, in addition to those symmetry, then ampiitudes

CCSD equation$46) which are quadratic in the unknown Which des(czr)|be excitations froms#2p® must be used. This
cluster amplitudesS®) at eachi-valence level beyond the UMe a;'p |§p r621d|2aI Cluster azrpggltudeg can be determined
zero level. For the reasons given above, reproduction of thB0m Zy i (K)[2€28(1)] andZ P Y (K)[5p 2p() ] matrix el-
quadratic version within the intermediate Hamiltonian for-éments.
mulation is not simple. So we have supplemented the NR In the present calculationssi defines the Fermi vacuum
VU-CCSD/R equations with the remaining ternisigher ~and 2 and 2o orbitals are used as valence ones. This deter-
than quadratic that should be present in the full VU- mines the complete model spaces(2p) both at one- and
CCSD/R scheme at the one- and two-valence level, leavingvo-valence levels because the knowledge of the active or-
the zero-valence sector unchanged. Having the new NR VUbital set specifies the relevant complete model spaces consid-
CCSDI/R version implemented, we could use a more comered at both valence levels. We have employed the
plete set of diagrams to build the intermediate Hamiltonian®s 9p 7d 7f 5g Slater-type basis set introduced in our previ-
in addition, we were able to check the code, since resultus calculationg48] (which was denoted there as tig
provided by both schemes should be the same. basis set The computations were performed when using our
Although there is no need to construct two-valence clusteprogram package to solve the system of nonlinear equations
amplitudegthe two-valence sector is the final 9rvee give a  at the zero-valence levéby means of the effective Newton-
prescription of how to obtain them from th&?® matrix. = Raphson iterative procedyreand the eigenvalue problem of
Since thez® radial amplitudes are defined with respect tothe intermediate Hamiltonian at one- and two-valences levels
some selected valence orbital occupancy, one has to considd@y diagonalization of non-HermitiaH ") matrices.
the angular coupling between different occupancies while For symmetry reasons the eigenvalue problenigf at
trying to calculate cluster radial amplitudes. As a consethe one-valence level can be separated into two subproblems
quence the relation between tR&) cluster amplitudes and corresponding to two possible occupancies in the,2p)
matrix elements ofZ(?) is more complicated, and can be model space: 2s and 1s2p. At the two-valence level the

written in the form problem can be split into a subproblem associated with
. o 1 double occupancy ofand 2 (1s?2s? and 1s?2p?) and a
MmN emn _ Kk Ky Kk K subproblem corresponding tas®2s2p. Therefore, different

EK: Z,e (KL (")]_[k]gk:l {|p Im L [1e 1o 1 types of radial amplitudes can be obtained within each sub-

B o problem. For the one-valence sector those WiIIZfé and
X[Ry(ky) + 8(ky, 001, 1;T2R,RL ], Z157%(k) for 2s andz? andZ}3*"(k) for 2p. In Table | we
(49) collect the numbers of one- and two-particle radiampli-
tudes to be considered. As written in Sec. Il, the eigenvalues
where {---} denotes the G- coefficients, [I;,l;]=(2I;  of H() do not depend on the choice of valence orbitals.
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TABLE I. Number of one- and two-electrahamplitudes of the TABLE Ill. Energies of odd-parity states for Be calculated with
VU-CCSD/R method for the 8®p7d7f5g basis set. the VU-CCSD/R method based on the intermediate Hamiltonian
formulation (in hartree.
Model one-valence two-valence
, : — No State Present work  Previous work Other work
space zZ, Z2 5 (k) Z,! (k)

: : — 1’ 2s2p®P 14567133 -14.567148 —14.533624
: a | o 2 2s2p'P  —14.471649 —14.471688 —14.438008
2s 7(+1)* 1s 2s 268 2 2s 150(+27 3 2s3p°P —14.346542
(2s,2p) 2p 8(+1)2 1s 2p 438 2p 2p 534(+4)7° 4 2s3p'P  —14.340974
25 2p 436(+27 5 3s2p3P —14.240547 —14.245498°
6 3s2plP —14.216832 —14.221223°¢

&The number in parentheses denotes the number of internal ampk
tudes. Malinowski and Jankowski, CC equations limited to quadratic

terms[48].
Therefore, it is sufficient to construd:‘ﬂi(r}t) using a radial PKaldor, CCSD method wittspd Gaussian-type orbital basis set
amplitude labeling which corresponds to excitations from[l"'_]- _
any symmetry-representative of valence orbitals. Increasing/Vithin the (2s,3s,2p) model space.
the number of valence orbitals of the same symmetry does
not changeH %), whereas in the case of an effective Hamil- plitudes. If one is also interested in the other even-parity
tonian approach the size of the set of nonlinear equations tstates (of 'D and 3P symmetry which come from the
be solved increases according to the growing number of ong2s,2p) model space, then it is necessary to consider 538
valence cluster amplitudes. radial amplitudes corresponding to excitations frosd2p?.

At the two-valence level one can consider two possibleThe degree of the reduction depends on the angular structure
occupancies in the &2p) model space for even-parity and the size of the model space used, and is especially sig-
states. In order to calculate energies'& states it is suffi- nificant when more valence orbitals of the same symmetry
cient to take into account only excitations frors®2s?, i.e.,  are included in the model space.
to consider only 152 radial amplitudéshereas in the effec- Values of the energies of the lowest states of even- and
tive Hamiltonian formulation one has to use 684ype am-  odd-parity are collected in Tables Il and IIl. The states are

TABLE Il. Energies of even-parity states for Be calculated with the VU-CCSD/R method based on the
intermediate Hamiltonian formulatiofin hartree.

No State Present work Previous work Other work
1 2s%'s —~14.667098 —14.667109° —14.667133° -14.667328 —14.633618
—-14.66711%° -14.667033° —14.667373 —14.6672
2 2p?D —14.402151 —14.402179" —14.373619
3 2p?%P —14.395297 —14.395308° —14.361 565
4  2s3s's —14.375318 —14.376038° —14.3729931° —14.38501%" —14.4178"
—14.372909°¢
5 2p?'s —14.316673 —14.316671" —14.319318° -14.283768" -14.3199/
—14.316 592°¢
6 2s3d'D  —14.270227
7  2p3pdP  —14.182709
8 2p3p!D —14.175995
9 2p3p!lS —14.121836 —14.126188° —14.121818°
—14.121 688°¢
10 3s?!s —14.040489 —14.038628°

aMalinowski and Jankowski, CC equations limited to quadratic tedgs

®Jankowski and Malinowski, standard solution ins(2p) model spacé53].

€Jankowski and Malinowski, nonstandard solution irs,2p) model spac¢53].

9Bunge, CI method54].

€Kaldor, CCSD method witlspd Gaussian-type orbital basis ga#].

fLindroth et al, extensive multiconfiguration Hartree-Fock calculatifBs].

9Lindroth and Maartensson-Pendrill, CCSD calculations with a special choice of pofé&ial
PWith the 2s3s configuration added to the model space.

'Within the (25,3s,2p) model space.

IThe method of complex rotation used to describe the autoionizing property of this state.
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TABLE IV. Magnitudes of the most significant two-valence ra- ~ TABLE V. Magnitudes of the most significant two-valence ra-
dial amplitudesR'p{,(k) for nonstandard solutions corresponding to dial amplitudesR'p{,(k) for nonstandard solutions corresponding to

even-parity states. odd-parity states.
Ryo(K) R} (k)
Indices Indices
Replacement  Solution i j p o k Value Replacement  Solution i j p o k Value
2s 2s 2s 3s 0 —3521 2s 2p 3p 2s 1 -—-8.171
154 2345 X 2s 2p 3p 1 1.936 13 223 2p 2p 2p 3p O 3.916
2p 2p 2s 3s 1 —1934 2p 2p 4p 2p 1 -—-1.632
2p 2p 2s 3s 1 —8.175 2s 2p 3p 2s 1 4.340
54 1-2-34 2 2p 2p 3p 2 1.856 AL 14 2s 2p 2s 3p O 2.152
2p 2p 2s 4s 1 1.664 2s 2p 2p 3s 1 1.867
2s 2s 2p 3p 1 -—71.856 2s 2p 2p 3s 1 16.343
1—9 2-3-5-9 5 2s 2p 4p 1 -—23.894 1'-5 2'-5’ 2s 2p 3 2p 0 -—-9201
2p 2p 2p 3p 2 —22.533 2s 2p 2p 4s 1 —2554
2p 2p 2p 3p 2 2.264 2s 2p 2p 3s 1 -—6.022
59 1239 2 2p 2p 3d 1 —1.453 26 16 2s 2p 3s 2p 0 —3.256
2p 2p 2p 3p 1 1.407 2s 2p 3p 2s 1 2.245
2s 2s 3s 3s 0 —55.866
1-10 2-35-10 3 2s 3p 3p 1 -—41682  yee for the D23P state to 37 hartree for the 82plP
2p 2p 3s 3s 1 -—30.890  gia14 The only exception is the 1S state, where higher
2p 2p 3s 3s 1 40804 honlinear terms lower the energy by.2hartree. However,
510 12310 D 2p 3p 3p 2 16.870 the omission of higher thgn quad(atlc terms causes S|gn|f|-
op 2 cant differences of energies obtained for a given state in
p p 3p 3p 1 10.123 . . .
different solutions. As can be seen from the entries of Table
2p 2p 2s 3d 1 6.029 I, the energies for 81S, 2s3s'S, 2p?!S, and 3p'S
26 1-356 2 2p 2s 4d 1 1.173  states are within the range of 100, 3127, 2721, and 4503
2p 2p 2p 4f 2 —1.114  puhartree, respectively. Of course, the complete version of
the VU-CCSD/R effective Hamiltonian method vyields the
2p 2p 2p 3p 2 —6.417  g5me energies. The trouble is that there is no simple prescrip-
3=7 1-257 2 2p 2p 3p 1 3.519  tion as to how to obtain nonstandard solutions within the
2p 2p 3p 3p O 1.633  effective Hamiltonian approach. This depends on the starting
2p 2p 2p 3p 1 5845 vector of R cluster amplitudes, which must be gue;sed in
2.8 1358 2 2p 2p 3p O 5995  Some way. The problem can be resolved by employing the
poop P ' int diate Hamiltonian scheme presented in this paper
2p 2p 2p 3p 2 1585 Nerme P Paper,

which gives the possibility of calculating R amplitudes cor-
responding to any selected set of the eigenvalues via relation
numbered 1,2,3 . . (for even-parity states, see Tablgdind  (49). Using these as a starting point in the effective Hamil-
1,23, ... (for odd-parity states, see Table)lAccording tonian iterative procedure we have obtained all multiple so-
to increasing value of the energy. As emphasized, a set dfitions presented in Tables IV and V, each time obtained the
cluster amplitudes cannot by associated with a single eigersame energy for a given stat€ables Il and Il). This is a
value but with a subset of eigenvalues and correspondingumerical confirmation of our previous theoretical consider-
eigenvectors. These subsets are labeled-pyk-1 ori’-j’  ations[38]. Tables IV and V give values of the leading R
wherei, ... ,i’, ... are the state numbers. For example, thecluster amplitudes for some nonstandard solutions. The solu-
standard solution for the two-valen&amplitudes will be tions correspond to set of eigenvalues which can be obtained
denoted by 1-2-3-5 and'12’ within the two subproblems of from the standard solution sets 1-2-3-5 and 1'-2' by chang-
the complete (82p) model space problem. Comparing re- ing one of the eigenvalues. The first column in the tables
sults of the present work with previous results of the effec-specifies the substitution. One can note that in such cases
tive Hamiltonian approach, where coupled-cluster equation§luster amplitudes can be significantly larger than 1.

(22) and (23) were limited to quadratic term{g8], one can

see that for the standa_rd sqlution the omission of higher non- IV. CONCLUSIONS

linear terms has a minor influence on the final results of

energieqas it should be expectgdnclusion of these terms We have presented an intermediate Hamiltonian formula-
into equations usually slightly raises energiggem 9 har-  tion of the VU-CCSD method for atoms. The method uses
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the core as a vacuum, and is designated for a description dthe energy values are not affected by this, however, a de-
the ground and low-lying excited states. The formalism takescription of certain states may not be available in some cases.
advantage of the simplifications afforded by the spherical The most important advantages of the intermediate
symmetry of atomic systems representing cluster operators iHamiltonian formulation in comparison with the effective
terms of radial amplitudes defined by configurational excitaHamiltonian one are(i) the relatively simple structure of the
tions. The necessity of using radial amplitude labels makegtermediate Hamiltonian matriXji) the one-step procedure
the intermediate Hamiltonian reformulation of the VU- for solving the equations instead of a two-step procedures
CCSD/R method not completely straightforward. In order to(iii) the decoupling of the eigenvalue problen;) the
obtain a matrix representation of the intermediate Hamilsimple and effective way of solving the equations via diago-
tonian we specify one of the possible occupancies of valencealization; andv) easily obtainable alternative solutions. We
electrons in the model space as a basic one, and define &lhve shown the simplicity and effectiveness of the approach
internal and external radial amplitudes with respect to thatn a calculation for the Be atom, where all the above features
choice. The rows and columns of the intermediate Hamil-of the intermediate Hamiltonian approach have been dis-
tonian matrix are numbered by these radial amplitude labelsussed.
The method is not uniquely defined in this way because the
number of radial amplitudes, and thus the dimension of the
intermediate Hamiltonian and the number of its eigenvalues,

can be different for the different valence orbital occupancies. Financial support from KBN is gratefully acknowledged.
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