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Landauer’s principle states that in erasing one bit of information, on average, akjddsi(2) energy is
dissipated into the environmetwherekg is Boltzmann’s constant anflis the temperature of the environment
at which one erasgésHere, Landauer’s principle is microscopically derived without direct reference to the
second law of thermodynamics. This is done for a classical system with continuous space and time, with
discrete space and time, and for a quantum system. The assumption made in all three cases is that during
erasure the bit is in contact with a thermal reservoir.

PACS numbegs): 03.67—a, 89.70+c

[. INTRODUCTION ture of the entire process one could for instance think of the
bit as being a spin-1/2 particle and of the external parameter
The purpose of this paper is to show that Landauer’s prinas being a magnetic field that we can alter. This shows us
ciple [1] [which states that in erasing one Hiinary digit of ~ that all we need is one heat reservoir and one external pa-
information one dissipates, on average, at lé&adtin(2) of ~ rameter for erasure. We do not need additional h_eat reser-
energy into the environment, whekg is Boltzmann's con- VOIS or additional extemal parameters. Erasure is a reset
stant andT is the temperature at which one erdsesn be ~ OPeration. It can Pe defined either as “restore to one” or as
derived from microscopic considerations. The intention is to '€SIOre t0 zero.” In either case we are going from two
show this for classical and quantum systems without direcPOSSiPIe states of the bit to one possible state.
reference to the second law of thermodynamics. This, how-
ever, does not imply that we will be proving the second law B. Landauer’s argument
of thermodynamics. Since the beginning of this century it The relationship between physical entropy and informa-
has been known that it is possible to derive many of theion may have been mentioned first by Szilg#d5]. Based
inequalities in thermodynamics from the canonical distribu-on the second law of thermodynamics Szilard introduced the
tion [2]. idea that a measurement, information gain, should at some
The introductory part of the paper will try to give the point be accompanied by an increase in entropy. This has
reader a clear picture of what we mean by erasure, whateen further discussed in terms of quantum mechanics by
Landauer’s principle is about, and what has been done in thidurek[6] and Lloyd[7].
field. In his original paper from 196{1], Landauer argues that
In Sec. Il of this paper we will attempt to derive Landau- SINce erasure is a logical function that does not have a single-
er's principle from microscopic considerations for threevalued inverse it must be associated with physical irrevers-
separate cases: the classical continuous case, the classitiity and therefore require heat dissipation. He argues that a
discrete case, and the quantum case. In Sec. Il we will disPit has one degree of freed_om and the_heat dissipation should
cuss nondegenerate energy levels for the states of the bif§ ©f orderkgT. More precisely, that since before erasure a

and probability distributions of the states of bits in ensembled!t ¢an be in any of the two possible states and after erasure
of bits. it can only be in one state this implies a change in informa-

tion entropy of —kIn(2). Since entropy cannot decrease it
must appear, Landauer argues, somewhere else as heat. Im-
A. Basic setup plicit in this argument is the crucial assumption that infor-

The bit is a fundamental unit of information, the smaIIestmatlon entropy translates into physical entropy.

item capable of indicating a choice. We will assume that all
information is physically representable, and therefore all bits C. Later work on erasure
representing it are encoded in the states of physical systems Bennett built on Landauer’s principle in a paper on re-
[3]. The bits will have two distinguishable states that we will versible computatiofi8] (see alsd9]). He showed that every
call “zero” and “one.” They will be in contact with an  step in computation can be made reversible except for era-
environment that we will be modeling as a heat reservoir at &ure (which also includes error correctiprAfter these pa-
fixed temperaturd@. There will also be an external parameter pers were published many other scientists wrote papers on
that will let us do work on the bit. This external parameter Szilard’s engine$10], different variations on Maxwell’s de-
will be the means with which we will erase the bit. In all mons[11,12, and on computations which all used Landau-
cases we will assume to have a large number of bits but thegr's principle. In fact, their arguments often strongly de-
will be erased individually, one by one. We will view the pended on Landauer's principle. Later, papers were
large number of bits as an ensemble. To have a clearer pigublished which criticized Landauer’s paper claiming that
his proof is not rigorous enough. The reason for these objec-
tions was that Landauer’s proof is only based on the second
*Electronic address: bpiechocinska@hotmail.com law of thermodynamic$10,13 and that it is not clear what
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the connection between information and thermodynamic en- E
tropy is[14]. In response to the criticism Shizume showed

that Landauer’s principle holds for a model in which a par- U(x)
ticle having Brownian motion in a time-dependent double
potential well in which a white and Gaussian force is acting
on the particle[15]. This was shown using the Fokker-
Planck equation. His derivation is restricted to a specific
model and only works in classical mechanics. Therefore, it is
not as general as Landauer’s principle.

Even though computation can be made reversible, and -
therefore not generate he@t least in theory it is still de-
sirable to have a rigorous derivation of Landauer’s principle
for demonic reasons and because computers always need

error-correction. Error-correction is not a reversible opera- e
tion for a cyclic process with a finite amount of memory and ' ' ' 5 ' ' ' X
just like erasure it requires heat generation. ZERO ONE

FIG. 1. Double potential well described by the functioifx),
where the state “one” ix>0 and the state “zero” ix<0. E (in
J) is the energy and (in m) is a distance.

II. MICROSCOPIC DERIVATION
OF LANDAUER’S PRINCIPLE

In this section we will show the validity of Landauer’s o . .
principle in three cases: for a classical system in continuous W€ have an infinite ensemble of bits which we each
space and time, for a classical system in discrete space afgPdel as a system with one continuous degree of freesiom,
time, and for a quantum system. In all three cases we wilfuPject to a symmetric double-well potential eneigyas
assume that the bits which are to be erased are in contagfoWn in Fig. 1. The position of the particle in the double-
with a heat reservoir whose initial microstate is chosen fromyvell potential will determine the state of the bit. If the par-
a canonical distribution. To make the microscopic derivationficle is found on the left-hand side of the potentiak(0),
as general as possible we will not be using specific and déhen we will say that the bit is in the state “zero.” If it is
tailed models of the bits and erasure. Instead we will bdound on the right-hand side of the wek% 0), then we will
treating erasure as a thermodynamic process during whick@y that the bit is in the state “one.” For it to be considered
we can change an external parameter while the bit is in cor Useful bit one should also add that the energy barrier sepa-
tact with a heat reservoir. To show Landauer's principle we'ating the two wells is much greater thagT. This way the
will be using an ensemble of bits and averaging over thit is stable enough to store information for a longer period
microscopic realizations of this process. of time. If the energy barrier ankzT were comparable in

We will assume that the two states of the bit, the “zero” Size then the particle in the potential well would have enough
state and the “one” state, have equal energy. We make thi§nergy to jump between the two distinct states and the initial
assumption because it has been shown that for these systefiformation would not be stored. This is not a desirable situ-
all computational operationgexcept for erasujecan be ation for computational purposes. This assumption, however,
made reversible and can, at least in theory, be performel$ not necessary for the purpose of showing Landauer’s prin-
using an arbitrarily small amount of work. In Sec. Il B of Ciple. . o .
this paper, we will generalize Landauer’s principle to include  |f we were given a bit like the one described above and

the case where the two energy_states defining the “Zero'Wanted to erase |t by puttlng it into the “One”- Sta.te it should
and the “one’” state are nondegenerate. be clear that this could be done by COUpllng it to a heat

reservoir and changing an external parameter.
To show that erasure implies heat dissipation we will use

A. The continuous classical case some of the results presented by Jarzynski in his paper on
We will be making the following assumptions: Clausius-Duhem processgks]. Before the erasure we want
half of the bits to be in the “one” state and the other half to

(i) Our system is classical. be in the “zero” state. We assume that the ensemble of bits

(i) The memory state is a symmetric double potentialis in contact with a thermal reservoir where the temperature
well where the states “zero” and “one” have the same en-of the reservoir is low enough not to change the state of the
ergy before and after the erasure. bits (ksT<AU). The system will instead reach a “local”

(i) The input is randomly distributedthe number of  thermal equilibrium in one of the half-wells. We therefore
“zeros” and “ones” is equal and there are no correlations agssume that the initial statistical state is described by the

between the bits o _ following distribution function for the bits before erasure:
(iv) During erasure the system is in contact with a thermal

reservoir with initial states chosen from a canonical distribu- 1 p2

tion. Pinit(Xap):zeX _ﬁ U(X)—'—ﬁ (1)
(v) The interaction term in the Hamiltonian is negligibly

small. and the statistical state after erasure can be described as
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2 p( p* 1 H104.pd)
—exp — B U(x)+—D for x>0 exp —T :_j o (x0,p0 ex;{——
Prinal(X,p) = 7 m < o )> Z: Pinit(X°,P") keT
0 for x<0, (2) Xexq_]‘*)dgo (6)
: . 1 o —oPfinal(X",p")
where x is the position,m the massp the momentumg =7 Pinit(X",p )ﬁ
= 1/(KksT), andZ= [exp{—[U(x)+ p¥2m]/ksT}dx dpis the T Pinit(X7,P7)
partition function. HT(X'(I)' ,pg)
Since the total systertihe bit and the heat reservpis a Xexp( — ?)
: ; L . B
classical and isolated system it will evolve according to the
following Hamiltonian: HT(X%D(%) H+(X7,p7) 0
X ex - d (7)
kgT kgT
H(leixT 1pT vt) = H(X,p) + HT(XT !pT) + Hint(xi p!XT !pT)l
3 1 Hr(x7,p7)
® =Z—Tf Pfinal(XT,pT)eXF< T eT d¢r
whereH(x,p) is the Hamiltonian of the systeri (X1 ,pt)
is the Hamiltonian of the heat reservoir, akl,; is the _ﬁ_l )
Hamiltonian of interaction which we assume to be negligible S Z:

in comparison with the other terms of the Hamiltonian. The

xr andp; are the positions and momenta of the degrees of’

freedom that describe the heat reservoir. For easier notatiotr, ; - : Lo
d{” to d{". Since the evolution of our system is Hamiltonian

let us uset=(x,p,xr,pr). Then the trajectory (t), wheret the Jacobian associated with this change of variables is equal

is time, will describe the evolution of all degrees of freedom B _
for one realization of the erasure process. Let us assume thE’?t L. We thus havéexi] —T'(¢¢)])=1, where the brackets

the erasure process takes a timand use the shorthari? iNdicated an average over an ensemble of realizations of the
P erasure process. Note that the equations above do not in any

=¢(0) and{™={(7). . e e :
. ' . 0 .7 way imply that the final distribution is a canonical one. The
Following [16] let us now define a functior, (£7,¢7). I functionT is just a function of® and/™ and it happens to be

is defined for a given microscopic realization in the follow- chosen in such as way that the terms involviehyin the

here Z= [exp{—[H(X7,p71)/kgT]}dx;dpr. In the equa-
ns above we have changed the integration variables from

Ing way. equations above cancel.
o e o o 0 By the convexity of the exponential function(I")=<0.
L(Z.¢0==In[ptinai(X7,p7) 1+ IN[ pinit(X”, p7) ] Written explicitly the inequality becomes

+BAEOS PT,XT P, ) (IN[psinai(X",p7) 1) = (IN[pinit(x°,pO) 1)< (BAE). (9)

Written even more explicitly, using the distribution functions

—_ T T\ _ 0 0y ; : A
whereAE=H+(xy,pr) ~Hr(x,py) is the change in the in in Egs.(1) and(2) and the fact that for any functioA(x,p),

ternal energy of the heat reservoir gfds as defined previ-
ously using the temperature of the heat reserVoiis de- 00

fined in this particular way because it has proven useful in (A(X",p ))ZJ pinit(X, P)A(X,p)dx dp (10
the kind of calculations we want to perforiii.is explicitly a

function of the initial and final microstates of the system andas well as

reservoir during the course of one realization. However,

since the final stat€” can be viewed as a function of the <A(x",p")>=f Prinal( X, P)A(X,p)dx dp, (12)
initial state £° [because the evolutiof(t) is deterministid,
I' can be viewed as a function ¢f alone: the left-hand side of the inequality above becomes a sum of
two contributions.
I =T, 5 For x>0
For the purpose of Landauer’s principle, which is a state- f Eexp(—,BH)In[(Z/Z)exp(—,BH)]dx dp
ment about the average heat released into the environment, 0Z
we will be interested in averaging over the statistical en- w1
semble of realizations. We will also be interested in finding —f —exp(—BH)In[(1/Z)exp(— BH)]dx dp
an inequality relating these averages. For these purposes we 0Z
will now compute(exp(-TI)), where the angular brackets (12)
denote the average over the statistical ensemble of realiza- o %
tions. Since the evolutiogoverned by the Hamiltonian :fo 2aIn(2a)dx dp- fo aln(a)dxdp, (13

written in Eq.(3)] is deterministig{exp(—T")) can be written
as an integral over initial conditions: where o= (1/Z)exp(—BH). Forx<0
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OIn(O)—JO (1/Z)exp(— BH)In(1/Z)exp(— BH)dx dp

0 A
=—J’ aln(a)dxdp. (14
o °
The term 0 In(0) is equal to O by I'Hutal’s rule. Since the
initial distribution function is symmetric with respect to ONE ZERO
=0, we have

FIG. 2. Two-state system where the left state describes the
. o “zero” state and the right state describes the “one” state. The
j aIn(a)dx dp= J' aln(a)dx dp. (15) difference in energy between the statea jswhich we treat as an
0 ® external parameter.

Totally, for all x, the left-hand side of Eq9) becomes pation by the system into the heat reservoir has to be greater
than or equal tkgT In(2).2

f 2aIn(2a)dx dp—zf aln(a)dxdp _ i
0 0 B. The discrete classical case
% 2u - We will now consider a case in which the evolution of the
=f 2a|n(—)dx dpzf 2ain(2)dx dp. system(or bit) is modeled as a Markov process. In some
0 @ 0 sense the stochastic dynamics which we use here is less fun-
(16) damental than the Hamiltonian evolution considered in the
preceding section, or the quantum evolution studied in the
Since the distribution function is normalized to unity Eg)y ~ Next section. Nevertheless, Markov evolution is very often
becomes used to model a system in contact with a heat reservoir, and
it is instructive to see that using this approach, we obtain
exactly the same resultandauer’s principlpas when using
IN(2)<A(AE). (9 more fundamental equations of motion. Both the discrete
In definingI" we definedAE as the change in the internal plassica[ case and t_he quantum case are closely relqted o the
dnformation theoretic treatment of classical Markovian and

energy of the heat reservoir. We recognize that the intera . ‘M s d d by Liovd
tion term in the Hamiltonian is necessary for the heat reserduantum versions of Maxwell's demon presented by Lloy

voir and the system to be able to exchange energy. The si 7. . . .

of this term depends on the nature of the heat reservoir as -6t US model our bit as a system with two classical states,
well as the nature of the bit. We will now use the approxi-21@l0gous to quantum energy levels. One of the levels cor-
mation that the interaction term in the Hamiltonian of systemres‘)on_ds to the state “one _and the other Is the state “zero
and heat reservoir is negligible. To determine how good aﬁsee Fig. 2 We will use a discrete rather than a continuous

approximation this is one would need to specify the physicafime parameter: at each time step the system can either stay

systems. If we write the equation of conservation of energ)}n 'tg Ctl)”rﬁnt state, or djump to_ltlhs o(;[_her statglz_. n ?thler
for the system and the heat reservoir it gives: words both our time and space will be discrete. To calculate

the heat dissipation into the environment during erasure we
will use the method of Crook described [ib8].

We assume that in the beginning the energy difference
whereW is the work done on the system and heat reservoirbetween these levelk, i.S zero, and that half of _the bits are
while AE is the change in the internal energy of the in the state “one_” while the other half are in the state
oystem I:S))Sée?o the symmetry @t and pr., AE “zero.” Th_en,_durlng the erasure proced_ure, we change t_he
disappéars when averaged ovcéAm(IEt ra:f'”oa)' SOSVE‘ag valu_e ofA m_dlscrete steps, thus performing work on the bit.
(17) and (18) taken together give ussyS‘e T " During the time of erasure we couple the two-state system to

a heat reservoir with a certain temperature\We could for
instance imagine that we separate the energy levels in such a
kgT In(2)<(W). (19 way as to make one of the energy levels have a much higher

. . . . energy thankgT. This would guarantee that the transition
This means that to erase one bit of information, on averagg,om the lower energy level to the higher energy level is
the work performed on the system has to be equal to or

greater tharkgT In(2),! or, equivalently, that the heat dissi-

W=AE+AEqgiem (18)

2This, however, is a precise statement. We do not need to neglect
the interaction term in the Hamiltonian for this to be true. It follows
INote that this is an approximation because we neglected the ifrom the microscopic definition of “heat dissipated,” which we
teraction term in the Hamiltonian. have used.
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highly improbable. If we wait for a sufficiently long period the bit evolves from one statg,, to the next statd,, ;. The

of time the probability of finding the systertbit) in the  corresponding heat absorbed by the system can be written as
higher energy state will be extremely small. This is one wayHeat=E(i;,\1) —E(ip,\1) for the first time step. Looking

of seeing how erasure could work in this particular caseat the entire process we can calculate the total work per-
Note, however, that the discrete two-state system describ€drmed on the systenVy, and the total heat absorbed by the

in this section is not restricted to this particular scheme okystem,Q,
erasure. After erasure the energy difference between the two

. . . . N—1
levels is again set to zero. We will assume that during era-

sure every step in the process is independent of the other W= t:EO E(it, A1) —E(ie, M), (21)
steps (the Markov approximation and therefore we can
write the probability of going from stafig to statei y with all N
the intermediate states ands as: Q=2 E(iy M) —E(i{_1,\p). (22)
IS AN ot
Plig—iy—---—in) We assume that the transition probabilities obey detailed bal-
Ry R _ AN ance. Detailed balance in general can be writte[49,20)
=P(io—iy)P(iy—iz) - -Plin-1—in) (20 N
1
using the notation of18]. Every step in the erasure process P(ig—i1) _ B . e
can be divided into two parts. The first part consists of p(i Mo )—exp[ ALE(L M)~ Bl M) (29
IOHll

changing\ from \; to A, 4. The subscript indicates the
discrete time step. In changing we perform external work N
on the bit, for instance, in the first time steyork  whereP(i;—i..,) is the probability of transition from the
=E(ig,N1) —E(ig,\g), whereE() is the energy of the sys- statei, to the state,, ; with the external parametar. Using
tem. During the second part of the step in the erasure procedisis definition for our particular case we can write

A Ao AN
Bl VP iy e Pl i
('o)\lll) ('1)\2|2) (in l)\NlN) (24)
P(ige—ig)P(iqe—ip)- - - Pin_q1¢in)
_ exd — BE(i1,Ny)]exd —BE(iz,Ap)]- - -exd — BE(in,An) ] (25
exf — BE(ig,N1)]exd — BE(i1,N2)]- - -exd — BE(in-1,An)]
N—-1
:eXF{ _,321 [E(i¢,A) —E(it-1,M)] | =exp(— BQ). (26)
|
Let us now also take into consideration the initial and final Pun(in)P(ig—in)
probabilities and write = > PoligP(io—in) 5+ —
P Po(ig)P(ip—in)
. . . (30
Po(ig)P(ig—iyn)  Polig) .
P i Q) =SHHIP(o)
, = 2 Pu(in)Plig—in)=1, (31)
—In[Py(in)]—BQ}. 27 '0r - IN

mhere() denote the average value. To find the appropriate

Just like in the classical continuous case, we are interested N quality we use the convexity of the exponential function
the average over all realizations. If the probabilities are nor- 9 y y P

. nd we writ
malized we can see that and we €

—(In[Po(ig) ) +(IN[Pn(in) 1) +(BQ)<0. (32

(exp{—In[Po(io) ]+ In[Py(in) ]+ BQ}) (28)
In the case of erasure, if we erase by restoring to “one” then
i . ) the initial probability will be Po(0)=Py(1)=1/2 and the
= Ei Po(io)P(io—in)exp{—IN[Po(io)] final probabilities will bePy(1)=1 andPy(0)=0. Putting
o these values into Eq(32) and using the fact that for an
+In[Py(in) ]+ BQ} (290 arbitrary functionA(i), (A(ig))==;Po(i)A(i) and{A(in))
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=2;Py()A(), and keeping in mind that the probabilities are  In our derivation we will be using a two-state quantum
normalized gives us the following inequality: system, not necessarily in a pure state. Therefore we will use
a density matrixp, to describe its statistical state. In the case
where we have a2 2 density matrix we can always write it
as

—In(1/2) +In(1)+(BQ)<0 (33
or just
In(2)< - B(Q). (34) Pax2=apa+bpy. (37)

In Eq. (21) we definedQ as heat absorbed by the system.'” other words we could say that the density matrix is diag-
This means that- Q is the heat dissipated into the heat res-Onal in some basigthat does not have to be the energy ba-

ervoir by the system. We know that the total average worlslS- We can interpret the statistical state described by the
done on the system can be written as density matrix of Eq(37) as follows: the system is either in

state|a) or in state|b), with probability a and b, respec-
(Wy=(AE)—(Q), (35)  tively. The statistical state of any two-state system can be
described by a density matrix with the properties outlined
where AE is the change in the energy of the system. Sinceabove.
we start withA;=0 and end withA\ =0 the change in the We will also be using a heat reservoir. As usual we as-
energy will be zero. This leaves us witliV) = —(Q). Com-  sume it to be initially in thermal equilibrium. This allows us

bining this with the inequality34) give us to write its density matrix as
kgT In(2)<(W), (36) R exp(— BH) 38
pH=———,
which tells us that the average work we have to do on the trlexp(—pH)]

system to erase one bit has to be greater than or equal to . o )

kgT In(2). Or, again, equivalently, we could say that the heatvhereH is Ehe Hamiltonian of the heat reservoir. We can

dissipated into the heat reservoir has to be equal to or greatéterpret thepy; by imagining the reservoir to be in a definite

thankgT In(2). energy eigenstate. The probability of finding the heat reser-
voir in its energy eigenstat,,) with the eigenvalué,, is

exp( - ﬂEn) eXp( _BEn)

First let us give a concrete example of what systems could ~ Prol|Ey))=P,= = -
be involved in erasure of a quantum system. The bit could be > exp— BEn)
a two-level atom that initially has two degenerate energy m
states. The heat reservoir could be described as a photon
reservoir with harmonic oscillators. We would couple it to
the atom in the beginning of the erasure procedure and d(3s'erves the purpose of splitting up the two degenerate energy-
cou_ple_ it at the end. The external parameter co_uld be a ma%"lgenstates of the two-state system.
net.|c field tha_t we can ajter as we pleas_e. The field V.VOU|d be Let us imagine the erasure procedure as follows.
switched on in the beginning and, during erasure, it would
split up the two initially degenerate energy states into two (1) At time t=0 the bit begins in some statistical state
different energy states. If the energy difference between theescribed by the 2 density matrix
two states became large enough so that the photon reservoir
would not be able to excite the atom into the higher energy - 12 0
state, after a while the atom would find itself in the lower Pinit=\ g 12
energy state. Then the field would be switched off and the
energy levels of the two-state atom would become degenein the energy eigenstate basiSherefore it can be viewed as
ate again. At this point the erasure would be complete. Anstarting in either the “zero” or the “one” state, with equal
other way to imagine “quantum erasure” could be to use aprobability) The reservoir begins in a definite eigenstate of
spin-1/2 particle as a quantum bit. o H, of energyE,, with a thermal probability distributiofEq.

We will assume that once the erasure itself is completeégg)]_ The initial value of\ is zero.
the reservoir becomes weakly coupled to some unspecified (2) At time t=0" we couple the bit to the reservoir.
environment, causing ithe reservoirto decohere. We will (3) Between times=0" andt=r we change the value of
furthermore assume that this coupling is such that the energy,o external parameter in some way which we believe will
eigenstates of the reservoir form the so-called preferred basis, ;se the bit to get erased. At the ebd,r, we make sure
stated 21], so that, once decoherence has set in, we can vie\ﬁ!1at the value of is once again zero.
the reservoir to be in a definite energy eigenstate. Effec- (4) At time t=7* we decouple the bit from the reservoir.
tively, the role of the environment in this situation is that of
an “outside observer,” who measures the final energy of theAssuming that the erasure was successful, the bit will now
reservoir. Such a measurement is necessary if the heat atwith excellent probability be in the pure state correspond-
sorbed by the reservoir is to be a well-defined quantity.  ing to “one.” The reservoir will be in some statistical state,

C. The quantum case

(39

We also have an external parametet). This parameter

(40)
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typically described by a density matrix which is not diagonalstates is canonical. The convexity of the exponential function
in the energy eigenbasis. This is where we invoke our asgives us—(I")=<0, which written more explicitly using Eq.
sumption about the reservoir being weakly coupled to an44) is
external environment which causes it to decohere: the effect
of the decoherence is to cause the off-diagonal elements of —(In(P;)) +(In(P¢))+(BQ)=0. (49)
the density matrix to vanish, without changing the diagonal . =~ . )
ones. Thus, at the end, the reservoir will again be in one ofUtting in the assumed values Bfy;(i) andPrina(f), we
the energy eigenstates, with a probability determined by th8€t
diagonal density matrix elements.

We can therefore say that the bit begins in either the
“zero” or the “one” state, and ends in the “one” state,
whereas the reservoir begins in some stajeand ends in a

keT In(2)<—(Q). (50)

From Eq.(41) we can deduce that Q is the heat dissipated
into the heat reservoir.

state[m). Then we can define Looking at both the system and heat reservoir we can
define work the way it is defined in the classical case,
Q: En_ Em (41) name'y,
as being the heat lost by the heat reservoir. Furthermore, let W=AEpeart AEsystem (51)

li) and|f) denote the initial and final states of the bits, and
let Pinit (i) =P; andPy;hq () = P denote the probability dis- Just like in the classical continuous case the above equation

tributions of these bits. Then, by assumption, we have is valid under the assumption that the interaction energy be-
tween the heat reservoir and the two-state system is negli-
Pinit(i)=1/2 for i=0,1, (42)  gible. Again, the validity of this approximation depends on
the physical systems used. As an example of a physical sys-
0 for f=0, tem we could look at nuclear magnetic resonance experi-
Pfinai(f) = 1 for f=1 (43)  ments for quantum computation where trichloroethylene was

dissolved in chloroform. We will see that the interaction con-

stant between the qubits and the chlorine is smaller than 1

Hz. This makes the interaction term negligible. Since the two
_ _ _ _ energy-eigenstates of the two-state system are degenerate

[=In(P)=In(Py) = B(En—Em). (44 both before and after erasure we can say that the total change

in its energyAEgysieni= 0. The change in the internal energy

of the heat reservoir can be defined a&y.,=E,—E,

= —Q. Putting these values into E(p1) gives usW=—Q.

Putting them into Eq(50) we see that

Finally, let us define an observalle as

We can now calculatéexp(-T')) where the angled brackets
denote the average of the function written between them,

<exp(—l")>=n2 ‘ IDiPn|Uf,m,i,n|2

M1,

kT In(2) <(W). (52
xexd —In(P) +In(Pr)+ B(E,—Em)] (49  This means that we can equally wesiay that the work we
have to do on the system in order for it to erase has to be at

P exp(— BE,) leastkgT In(2).
= 2 Pi|Uf,m,i,n|2E 7 - B @
n,m,i,f i
I1l. DISCUSSION
Xexq_BEm)quBEn) (46)

A. Probability distributions

_ 2 In all three cases we have assumed that the initial prob-
V2 Z‘n Pfexq—ﬁEm)% Ut minl (47 ability distributions have been 1/2. This is equivalent to say-
ing that in the string of bits about to be erased half of the bits
whereUy ; , corresponds tqf,m|U(7)|i,n) and it is the &€ in the “zero” state and half in the “one” state. This
time evolution operator. At the same time it is a unitary distribution happens to correspond to thermalized bits. How-
matrix and therefore has the property that the sum of th&Ver, in general, the initial string of bits can have any prob-
absolute value squared of the elements in a column or a ro@pility distribution. The amount of heat dissipated into the
is equal to 1)U ;i »/2 is the probability for finding the bit €nvironment will then depend on that distribution. As an

and reservoir in final staté§) and|m) given initial stategi) ~ €xample we can take the case where all bits are already in
and|n). We then see that one state only. The equations in the derivations of Landau-

(exp(—T))=1. (48
3Again, just like in the classical continuous case, this is not an
Just like in the classical continuous case, Eg5)—(47) do  exact statement but an approximation because the interaction term
not in any way imply that the final distribution of reservoir in the Hamiltonian is neglected.
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w The diagonal density matrix is expressed using basis states
|a) and|b). We now interprets andb as initial probabilities:

0.7KT[ \
i . L ]a for i'=a,
Plnlt(l )_{b fOI’ i,:b, (56)
0.5KTf
where the prime indicates that we are using a basis different
from the energy eigenstate basis. For the final state of the bit,
we still have
0.3kTr
0 for f=0,
Pfinal(f)= 1 for f=1 (57)
) \ in the energy basis. Desipite the difference in the basis set
. . . . used to describe the initial state of the bit, the calculation in
0 0.2 04 0.6 0.8 1 p Eqgs.(45—(47) goes through as before but with-i’ and we
! end with

FIG. 3. Graph showing the average minimal amount of work,
Pfipalln Pﬁna|—“Pinitia|In Pinitia|=(M, rgquired to erase a bit given the B(W)= — 2 P,i(i")INP,(i")=—alna—blinb,
initial probability, P;nitiar (1), of finding the bit in the state “one.” i
W (in J) is the work andP is the probability to find the bit initially (58
in state “one.”
assuming perfect erasure. This result tells us (e} is
er's principle tell us that this kind of “erasure” can be done bounded from below by minus the change in the von Neu-
without any dissipation of heat. All other initial distributions mann entropy of the bit. As in the classical case, the greatest
will require some heat dissipation and the one which willvalue of this lower bound occurs wher=b=1/2, in which
require the largest dissipation will be the one where half ofcase(W)=kgT In 2.
the states are in one state. More specifically, for both the Note, however, that if we are using an algorithm for era-
classical cases considered abd®ecs. IIA and 1B, we  sure where we assume to receive a string with a random
found that distribution and the string we actually receive has a different
distribution, for instance, all “ones,” this does not mean that
(W)y=TAS, 53 we wil automatically be erasing without heat dissipation. To

whereAS is equal to minusg times the change in the in- do this we will need to change the algorithm used for era-

formation entropy between the initial and final statistical SUr¢:

states of the bit. In Fig. 3 we plot this lower bound @A),

as a function of the probability to find the bit initially in state B. Nondegenerate energy levels

“one.”* We see that the distribution that requires the great- A|l along we have assumed that the energy levels of the

est amount of work(or heat dissipationis the caseP;  two states of the bits are equal before and after erasure. But

=1/2, in which the initial states are distributed equally be-what happens if we omit this assumption? Based on Landau-

tween “zero” and “one.” er's argument one would have to say that his principle
In the quantum case we could have assumed that the inshould apply in this case as well. To see in what form it still

tial density matrix for the bit, written in its energy eigenba- applies let us imagine the following system. We have an

sis, is some arbitrary matrix infinite ensemble of bits with degenerate energy values, like
c d in the classical case with discrete space and time. We assume
p= . ) (54)  them to be populated so that half of them are in the “zero”
da* e state and half in the “one” state. We then use some external

. . . — C parameter to lower the energy of the “zero” state M.
This would give us a different initial distribution from the This is our point of departurea(in Fig. 4).

case we conspler_edc_(z e=1/2, d=0). To see what the_ To do the erasure, which we will assume to be defined as
m|n|mal heat dissipation vyould bg fqr a particular dens'tyrestore to “zero,” we start by raising state “zero” in all of
matrix we would have to diagonalize it first, the bits to the energy of state “one’b(in Fig. 4). To do this

a 0) we will on average have to do KE work. Then we go

;,: (55) through with the erasure procedure which we have shown to

0 b requirekgT In(2) of work (c in Fig. 4). Assuming that the

erasure was perfect all the bits will be in the state “zerd” (

in Fig. 4). To go back to the original state we lower the
“There is no particular reason for us having chosen the stat@nergy of the state “zero” byAE (e in Fig. 4). This will on

“one” here. We could just as easily have chosen to write the stateverage return the energyE. Summing up the energy put in

“zero.” and gotten out of the system, on average, we have
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a b c d case, or the quantum casand perform the necessary calcu-
» . ERASURE Lo lations. The cglculations will give us the same result as the
— — —_— thought experiment above.

) In summary, we can say that for a system with equal

energy levels the work required for erasure is equal to the
heat dissipated into the environmekg,T In(2). For a system
with different energy levels as the “zero” and “one” states
— - - we do not have that equality. At best we can get out half of
+12AE oz -AE the energy difference between the states minus the heat dis-
FIG. 4. Schematic picture of erasure for an ensemble of bitssipated into the environment which will still deT In(2).
with different energy values for the “zero” state and the “one”
state. The numbers above the lines showing the energy levels show
the probability of finding the bit in that state. In going from a to b
we need to add 12F amount of work on average. In ¢ we are  The microscopic derivation of Landauer’s principle could
erasing the bit which requirdgsT In(2) amount of work. In going  perhaps be made more general if we could drop the assump-
from d to e we can recoveXE of work. The average total amount tjon that the states of the thermal reservoir, with which the

C. Suggestions for future research

of work we can recover in this kind of erasureA& —kgT In(2). bits are in contact, are chosen from a canonical distribution.
Perhaps it is enough to assume that the states of the thermal
Wout=—1/2AE—KgT In(2)+ AE=1/2AE—KkgT In(2). reservoir are chosen form a microcanonical distribution. The

(59 microcanonical ensemble would still provide us with a well
) ] ] defined temperature.

This means that in a system with a ground state and an | andauer's principle gives us a fundamental lower bound
excited state, where erasure is equivalent to restore tg, the amount of heat dissipated into the environment in the
“zero,” with “zero” being the ground state, we can on av- process of erasure. It would be interesting to see if this lower
erage only hope to recover as much asA\E2-kgTIn(2) of  hound can actually be reached physically. One can certainly
useful energyAE being the difference in energies betweenjmagine a process where erasure is done on an infinite time
the two states. The term “useful energy” is here used togcale where one reaches the lower bound. But is it physically

denote energy that is not necessarily heat. We could havigaizable? If so, would it be practical for computational pur-
decided to define erasure as restore to “one”. That, howevepgges?

would not have given us any extra energy. We would have
had to add as much as WE+kgT In(2) to the system in
that procedure.

One could argue that it is not always physically possible This paper was written at Los Alamos National Labora-
to change the difference in energy between the levels so thabry. | would like to to thank Wojciech H. Zurek, N. Balazs,
one will have degeneracy. To show that even in this case on€hristof Zalka, and Tanmoy Bhattacharya for new ideas and
cannot get any more “usable” energy out of the system tharvaluable and very interesting discussions about erasure. |
1/2AE—kgTIn(2) we can use any of the above discussedwould especially like to thank Chris Jarzynski for his guid-
models(the continuous classical case, the discrete classicance.
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