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Information erasure

Barbara Piechocinska*
Los Alamos National Laboratory, T-6, Los Alamos, New Mexico 87544

~Received 27 September 1999; published 17 May 2000!

Landauer’s principle states that in erasing one bit of information, on average, at leastkBT ln(2) energy is
dissipated into the environment~wherekB is Boltzmann’s constant andT is the temperature of the environment
at which one erases!. Here, Landauer’s principle is microscopically derived without direct reference to the
second law of thermodynamics. This is done for a classical system with continuous space and time, with
discrete space and time, and for a quantum system. The assumption made in all three cases is that during
erasure the bit is in contact with a thermal reservoir.

PACS number~s!: 03.67.2a, 89.70.1c
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I. INTRODUCTION

The purpose of this paper is to show that Landauer’s p
ciple @1# @which states that in erasing one bit~binary digit! of
information one dissipates, on average, at leastkBT ln(2) of
energy into the environment, wherekB is Boltzmann’s con-
stant andT is the temperature at which one erases# can be
derived from microscopic considerations. The intention is
show this for classical and quantum systems without dir
reference to the second law of thermodynamics. This, h
ever, does not imply that we will be proving the second l
of thermodynamics. Since the beginning of this century
has been known that it is possible to derive many of
inequalities in thermodynamics from the canonical distrib
tion @2#.

The introductory part of the paper will try to give th
reader a clear picture of what we mean by erasure, w
Landauer’s principle is about, and what has been done in
field.

In Sec. II of this paper we will attempt to derive Landa
er’s principle from microscopic considerations for thr
separate cases: the classical continuous case, the cla
discrete case, and the quantum case. In Sec. III we will
cuss nondegenerate energy levels for the states of the
and probability distributions of the states of bits in ensemb
of bits.

A. Basic setup

The bit is a fundamental unit of information, the smalle
item capable of indicating a choice. We will assume that
information is physically representable, and therefore all b
representing it are encoded in the states of physical sys
@3#. The bits will have two distinguishable states that we w
call ‘‘zero’’ and ‘‘one.’’ They will be in contact with an
environment that we will be modeling as a heat reservoir
fixed temperatureT. There will also be an external paramet
that will let us do work on the bit. This external parame
will be the means with which we will erase the bit. In a
cases we will assume to have a large number of bits but
will be erased individually, one by one. We will view th
large number of bits as an ensemble. To have a clearer
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ture of the entire process one could for instance think of
bit as being a spin-1/2 particle and of the external param
as being a magnetic field that we can alter. This shows
that all we need is one heat reservoir and one external
rameter for erasure. We do not need additional heat re
voirs or additional external parameters. Erasure is a re
operation. It can be defined either as ‘‘restore to one’’ or
‘‘restore to zero.’’ In either case we are going from tw
possible states of the bit to one possible state.

B. Landauer’s argument

The relationship between physical entropy and inform
tion may have been mentioned first by Szilard@4,5#. Based
on the second law of thermodynamics Szilard introduced
idea that a measurement, information gain, should at so
point be accompanied by an increase in entropy. This
been further discussed in terms of quantum mechanics
Zurek @6# and Lloyd @7#.

In his original paper from 1961@1#, Landauer argues tha
since erasure is a logical function that does not have a sin
valued inverse it must be associated with physical irreve
ibility and therefore require heat dissipation. He argues th
bit has one degree of freedom and the heat dissipation sh
be of orderkBT. More precisely, that since before erasure
bit can be in any of the two possible states and after era
it can only be in one state this implies a change in inform
tion entropy of2k ln(2). Since entropy cannot decrease
must appear, Landauer argues, somewhere else as hea
plicit in this argument is the crucial assumption that info
mation entropy translates into physical entropy.

C. Later work on erasure

Bennett built on Landauer’s principle in a paper on r
versible computation@8# ~see also@9#!. He showed that every
step in computation can be made reversible except for
sure ~which also includes error correction!. After these pa-
pers were published many other scientists wrote papers
Szilard’s engines@10#, different variations on Maxwell’s de-
mons@11,12#, and on computations which all used Landa
er’s principle. In fact, their arguments often strongly d
pended on Landauer’s principle. Later, papers w
published which criticized Landauer’s paper claiming th
his proof is not rigorous enough. The reason for these ob
tions was that Landauer’s proof is only based on the sec
law of thermodynamics@10,13# and that it is not clear wha
©2000 The American Physical Society14-1
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BARBARA PIECHOCINSKA PHYSICAL REVIEW A61 062314
the connection between information and thermodynamic
tropy is @14#. In response to the criticism Shizume show
that Landauer’s principle holds for a model in which a p
ticle having Brownian motion in a time-dependent doub
potential well in which a white and Gaussian force is act
on the particle@15#. This was shown using the Fokke
Planck equation. His derivation is restricted to a spec
model and only works in classical mechanics. Therefore,
not as general as Landauer’s principle.

Even though computation can be made reversible,
therefore not generate heat~at least in theory!, it is still de-
sirable to have a rigorous derivation of Landauer’s princi
for demonic reasons and because computers always
error-correction. Error-correction is not a reversible ope
tion for a cyclic process with a finite amount of memory a
just like erasure it requires heat generation.

II. MICROSCOPIC DERIVATION
OF LANDAUER’S PRINCIPLE

In this section we will show the validity of Landauer
principle in three cases: for a classical system in continu
space and time, for a classical system in discrete space
time, and for a quantum system. In all three cases we
assume that the bits which are to be erased are in con
with a heat reservoir whose initial microstate is chosen fr
a canonical distribution. To make the microscopic derivat
as general as possible we will not be using specific and
tailed models of the bits and erasure. Instead we will
treating erasure as a thermodynamic process during w
we can change an external parameter while the bit is in c
tact with a heat reservoir. To show Landauer’s principle
will be using an ensemble of bits and averaging over
microscopic realizations of this process.

We will assume that the two states of the bit, the ‘‘zero
state and the ‘‘one’’ state, have equal energy. We make
assumption because it has been shown that for these sys
all computational operations~except for erasure! can be
made reversible and can, at least in theory, be perform
using an arbitrarily small amount of work. In Sec. III B o
this paper, we will generalize Landauer’s principle to inclu
the case where the two energy-states defining the ‘‘ze
and the ‘‘one’’ state are nondegenerate.

A. The continuous classical case

We will be making the following assumptions:

~i! Our system is classical.
~ii ! The memory state is a symmetric double poten

well where the states ‘‘zero’’ and ‘‘one’’ have the same e
ergy before and after the erasure.

~iii ! The input is randomly distributed~the number of
‘‘zeros’’ and ‘‘ones’’ is equal and there are no correlatio
between the bits!.

~iv! During erasure the system is in contact with a therm
reservoir with initial states chosen from a canonical distrib
tion.

~v! The interaction term in the Hamiltonian is negligib
small.
06231
n-

-

c
is

d

e
ed
-

s
nd

ill
ct

n
e-
e
ch
n-
e
e

is
ms

d

’’

l
-

l
-

We have an infinite ensemble of bits which we ea
model as a system with one continuous degree of freedomx,
subject to a symmetric double-well potential energyE, as
shown in Fig. 1. The position of the particle in the doub
well potential will determine the state of the bit. If the pa
ticle is found on the left-hand side of the potential (x,0),
then we will say that the bit is in the state ‘‘zero.’’ If it is
found on the right-hand side of the well (x.0), then we will
say that the bit is in the state ‘‘one.’’ For it to be consider
a useful bit one should also add that the energy barrier s
rating the two wells is much greater thankBT. This way the
bit is stable enough to store information for a longer per
of time. If the energy barrier andkBT were comparable in
size then the particle in the potential well would have enou
energy to jump between the two distinct states and the in
information would not be stored. This is not a desirable si
ation for computational purposes. This assumption, howe
is not necessary for the purpose of showing Landauer’s p
ciple.

If we were given a bit like the one described above a
wanted to erase it by putting it into the ‘‘one’’ state it shou
be clear that this could be done by coupling it to a h
reservoir and changing an external parameter.

To show that erasure implies heat dissipation we will u
some of the results presented by Jarzynski in his pape
Clausius-Duhem processes@16#. Before the erasure we wan
half of the bits to be in the ‘‘one’’ state and the other half
be in the ‘‘zero’’ state. We assume that the ensemble of
is in contact with a thermal reservoir where the temperat
of the reservoir is low enough not to change the state of
bits (kBT<DU). The system will instead reach a ‘‘local’
thermal equilibrium in one of the half-wells. We therefo
assume that the initial statistical state is described by
following distribution function for the bits before erasure:

r init~x,p!5
1

Z
expH 2bFU~x!1

p2

2mG J ~1!

and the statistical state after erasure can be described a

FIG. 1. Double potential well described by the functionU(x),
where the state ‘‘one’’ isx.0 and the state ‘‘zero’’ isx,0. E ~in
J) is the energy andx ~in m) is a distance.
4-2
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INFORMATION ERASURE PHYSICAL REVIEW A61 062314
r f inal~x,p!5H 2

Z
expS 2bFU~x!1

p2

2mG D for x.0

0 for x,0,
~2!

where x is the position,m the mass,p the momentum,b
51/(kBT), andZ5*exp$2@U(x)1p2/2m#/kBT%dx dp is the
partition function.

Since the total system~the bit and the heat reservoir! is a
classical and isolated system it will evolve according to
following Hamiltonian:

H~x,p,xT ,pT ,t !5H~x,p!1HT~xT ,pT!1Hint~x,p,xT ,pT!,

~3!

whereH(x,p) is the Hamiltonian of the system,HT(xT ,pT)
is the Hamiltonian of the heat reservoir, andHint is the
Hamiltonian of interaction which we assume to be negligi
in comparison with the other terms of the Hamiltonian. T
xT and pT are the positions and momenta of the degrees
freedom that describe the heat reservoir. For easier nota
let us usez5(x,p,xT ,pT). Then the trajectoryz(t), wheret
is time, will describe the evolution of all degrees of freedo
for one realization of the erasure process. Let us assume
the erasure process takes a timet and use the shorthandz0

5z(0) andzt5z(t).
Following @16# let us now define a function,G(z0,zt). G

is defined for a given microscopic realization in the follow
ing way:

G~z0,zt!52 ln@r f inal~xt,pt!#1 ln@r init~x0,p0!#

1bDE~xT
0 ,pT

0 ,xT
t ,pT

t !, ~4!

whereDE5HT(xT
t ,pT

t )2HT(xT
0 ,pT

0) is the change in the in
ternal energy of the heat reservoir andb is as defined previ-
ously using the temperature of the heat reservoir.G is de-
fined in this particular way because it has proven usefu
the kind of calculations we want to perform.G is explicitly a
function of the initial and final microstates of the system a
reservoir during the course of one realization. Howev
since the final statezt can be viewed as a function of th
initial statez0 @because the evolutionz(t) is deterministic#,
G can be viewed as a function ofz0 alone:

G~z0,zt!5G„z0,zt~z0!…. ~5!

For the purpose of Landauer’s principle, which is a sta
ment about the average heat released into the environm
we will be interested in averaging over the statistical e
semble of realizations. We will also be interested in findi
an inequality relating these averages. For these purpose
will now compute ^exp(2G)&, where the angular bracket
denote the average over the statistical ensemble of rea
tions. Since the evolution@governed by the Hamiltonian
written in Eq.~3!# is deterministiĉ exp(2G)& can be written
as an integral over initial conditionsz0:
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^exp~2G!&5
1

ZT
E r init~x0,p0!expS 2

HT~xT
0 ,pT

0!

kBT D
3exp~2G!dz0 ~6!

5
1

ZT
E r init~x0,p0!

r f inal~xt,pt!

r init~x0,p0!

3expS 2
HT~xT

0 ,pT
0!

kBT D
3expS HT~xT

0 ,pT
0!

kBT
2

HT~xT
t ,pT

t !

kBT Ddz0 ~7!

5
1

ZT
E r f inal~xt,pt!expS 2

HT~xT
t ,pT

t !

kBT Ddzt

5
ZT

ZT
51, ~8!

whereZT5*exp$2@HT(xT ,pT)/kBT#%dxTdpT . In the equa-
tions above we have changed the integration variables f
dz0 to dzt. Since the evolution of our system is Hamiltonia
the Jacobian associated with this change of variables is e
to 1. We thus havêexp@2G(z0,zt)#&51, where the brackets
indicated an average over an ensemble of realizations of
erasure process. Note that the equations above do not in
way imply that the final distribution is a canonical one. T
functionG is just a function ofz0 andzt and it happens to be
chosen in such as way that the terms involvingz0 in the
equations above cancel.

By the convexity of the exponential function2^G&<0.
Written explicitly the inequality becomes

^ ln@r f inal~xt,pt!#&2^ ln@r init~x0,p0!#&<^bDE&. ~9!

Written even more explicitly, using the distribution function
in Eqs.~1! and~2! and the fact that for any functionA(x,p),

^A~x0,p0!&5E r init~x,p!A~x,p!dx dp ~10!

as well as

^A~xt,pt!&5E r f inal~x,p!A~x,p!dx dp, ~11!

the left-hand side of the inequality above becomes a sum
two contributions.

For x.0

E
0

`2

Z
exp~2bH !ln@~2/Z!exp~2bH !#dx dp

2E
0

`1

Z
exp~2bH !ln@~1/Z!exp~2bH !#dx dp

~12!

5E
0

`

2a ln~2a!dx dp2E
0

`

a ln~a!dx dp, ~13!

wherea5(1/Z)exp(2bH). For x,0
4-3
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BARBARA PIECHOCINSKA PHYSICAL REVIEW A61 062314
0 ln~0!2E
2`

0

~1/Z!exp~2bH !ln~1/Z!exp~2bH !dx dp

52E
2`

0

a ln~a! dx dp. ~14!

The term 0 ln(0) is equal to 0 by l’Hoˆpital’s rule. Since the
initial distribution function is symmetric with respect tox
50, we have

E
0

`

a ln~a!dx dp5E
2`

0

a ln~a!dx dp. ~15!

Totally, for all x, the left-hand side of Eq.~9! becomes

E
0

`

2a ln~2a!dx dp22E
0

`

a ln~a!dx dp

5E
0

`

2a lnS 2a

a Ddx dp5E
0

`

2a ln~2!dx dp.

~16!

Since the distribution function is normalized to unity Eq.~9!
becomes

ln~2!<b^DE&. ~17!

In defining G we definedDE as the change in the interna
energy of the heat reservoir. We recognize that the inte
tion term in the Hamiltonian is necessary for the heat res
voir and the system to be able to exchange energy. The
of this term depends on the nature of the heat reservoi
well as the nature of the bit. We will now use the appro
mation that the interaction term in the Hamiltonian of syst
and heat reservoir is negligible. To determine how good
approximation this is one would need to specify the phys
systems. If we write the equation of conservation of ene
for the system and the heat reservoir it gives:

W5DE1DEsystem, ~18!

whereW is the work done on the system and heat reserv
while DEsystem is the change in the internal energy of th
system. Due to the symmetry ofr init and r f inal DEsystem
disappears when averaged over (^DEsystem&50). So, Eqs.
~17! and ~18! taken together give us

kBT ln~2!<^W&. ~19!

This means that to erase one bit of information, on avera
the work performed on the system has to be equal to
greater thankBT ln(2),1 or, equivalently, that the heat diss

1Note that this is an approximation because we neglected the
teraction term in the Hamiltonian.
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pation by the system into the heat reservoir has to be gre
than or equal tokBT ln(2).2

B. The discrete classical case

We will now consider a case in which the evolution of th
system~or bit! is modeled as a Markov process. In som
sense the stochastic dynamics which we use here is less
damental than the Hamiltonian evolution considered in
preceding section, or the quantum evolution studied in
next section. Nevertheless, Markov evolution is very oft
used to model a system in contact with a heat reservoir,
it is instructive to see that using this approach, we obt
exactly the same result~Landauer’s principle! as when using
more fundamental equations of motion. Both the discr
classical case and the quantum case are closely related t
information theoretic treatment of classical Markovian a
quantum versions of Maxwell’s demon presented by Llo
@17#.

Let us model our bit as a system with two classical sta
analogous to quantum energy levels. One of the levels
responds to the state ‘‘one’’ and the other is the state ‘‘zer
~see Fig. 2!. We will use a discrete rather than a continuo
time parameter: at each time step the system can either
in its current state, or ‘‘jump’’ to the other state. In oth
words both our time and space will be discrete. To calcul
the heat dissipation into the environment during erasure
will use the method of Crook described in@18#.

We assume that in the beginning the energy differe
between these levels,l, is zero, and that half of the bits ar
in the state ‘‘one’’ while the other half are in the sta
‘‘zero.’’ Then, during the erasure procedure, we change
value ofl in discrete steps, thus performing work on the b
During the time of erasure we couple the two-state system
a heat reservoir with a certain temperature,T. We could for
instance imagine that we separate the energy levels in su
way as to make one of the energy levels have a much hig
energy thankBT. This would guarantee that the transitio
from the lower energy level to the higher energy level

n-

2This, however, is a precise statement. We do not need to neg
the interaction term in the Hamiltonian for this to be true. It follow
from the microscopic definition of ‘‘heat dissipated,’’ which w
have used.

FIG. 2. Two-state system where the left state describes
‘‘zero’’ state and the right state describes the ‘‘one’’ state. T
difference in energy between the states isl, which we treat as an
external parameter.
4-4
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highly improbable. If we wait for a sufficiently long perio
of time the probability of finding the system~bit! in the
higher energy state will be extremely small. This is one w
of seeing how erasure could work in this particular ca
Note, however, that the discrete two-state system descr
in this section is not restricted to this particular scheme
erasure. After erasure the energy difference between the
levels is again set to zero. We will assume that during e
sure every step in the process is independent of the o
steps ~the Markov approximation!, and therefore we can
write the probability of going from statei 0 to statei N with all
the intermediate states andl ’s as:

P~ i 0→
l1

i 1→
l2

•••→
lN

i N!

5P~ i 0→
l1

i 1!P~ i 1→
l2

i 2!•••P~ i N21→
lN

i N! ~20!

using the notation of@18#. Every step in the erasure proce
can be divided into two parts. The first part consists
changingl from l t to l t11. The subscriptt indicates the
discrete time step. In changingl, we perform external work
on the bit, for instance, in the first time stepWork
5E( i 0 ,l1)2E( i 0 ,l0), whereE() is the energy of the sys
tem. During the second part of the step in the erasure pro
a

d
o

06231
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the bit evolves from one state,i t , to the next state,i t11. The
corresponding heat absorbed by the system can be writte
Heat5E( i 1 ,l1)2E( i 0 ,l1) for the first time step. Looking
at the entire process we can calculate the total work p
formed on the system,W, and the total heat absorbed by th
system,Q,

W5 (
t50

N21

E~ i t ,l t11!2E~ i t ,l t!, ~21!

Q5(
t51

N

E~ i t ,l t!2E~ i t21 ,l t!. ~22!

We assume that the transition probabilities obey detailed
ance. Detailed balance in general can be written as~ @19,20#!

P~ i 0→
l1

i 1!

P~ i 0←
l1

i 1!

5exp$2b@E~ i 1 ,l1!2E~ i 0 ,l1!#%, ~23!

where P( i t→
l

i t11) is the probability of transition from the
statei t to the statei t11 with the external parameterl. Using
this definition for our particular case we can write
P~ i 0→
l1

i 1!P~ i 1→
l2

i 2!•••P~ i N21→
lN

i N!

P~ i 0←
l1

i 1!P~ i 1←
l2

i 2!•••P~ i N21←
lN

i N!

~24!

5
exp@2bE~ i 1 ,l1!#exp@2bE~ i 2 ,l2!#•••exp@2bE~ i N ,lN!#

exp@2bE~ i 0 ,l1!#exp@2bE~ i 1 ,l2!#•••exp@2bE~ i N21 ,lN!#
~25!

5expS 2b (
t51

N21

@E~ i t ,l t!2E~ i t21 ,l t!# D 5exp~2bQ!. ~26!
ate
on

en
Let us now also take into consideration the initial and fin
probabilities and write

P0~ i 0!P~ i 0→ i N!

PN~ i N!P~ i 0← i N!
5

P0~ i 0!

PN~ i N!
exp~2bQ!5exp$ ln@P0~ i 0!#

2 ln@PN~ i N!#2bQ%. ~27!

Just like in the classical continuous case, we are intereste
the average over all realizations. If the probabilities are n
malized we can see that

^exp$2 ln@P0~ i 0!#1 ln@PN~ i N!#1bQ%& ~28!

5 (
i 0 , . . . i N

P0~ i 0!P~ i 0→ i N!exp$2 ln@P0~ i 0!#

1 ln@PN~ i N!#1bQ% ~29!
l

in
r-

5 (
i 0 , . . . i N

P0~ i 0!P~ i 0→ i N!
PN~ i N!P~ i 0← i N!

P0~ i 0!P~ i 0→ i N!
~30!

5 (
i 0 , . . . i N

PN~ i N!P~ i 0← i N!51, ~31!

where^ & denote the average value. To find the appropri
inequality we use the convexity of the exponential functi
and we write

2^ ln@P0~ i 0!#&1^ ln@PN~ i N!#&1^bQ&<0. ~32!

In the case of erasure, if we erase by restoring to ‘‘one’’ th
the initial probability will be P0(0)5P0(1)51/2 and the
final probabilities will bePN(1)51 andPN(0)50. Putting
these values into Eq.~32! and using the fact that for an
arbitrary functionA( i ), ^A( i 0)&5( i P0( i )A( i ) and ^A( i N)&
4-5
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BARBARA PIECHOCINSKA PHYSICAL REVIEW A61 062314
5(iPN(i)A(i), and keeping in mind that the probabilities a
normalized gives us the following inequality:

2 ln~1/2!1 ln~1!1^bQ&<0 ~33!

or just

ln~2!<2b^Q&. ~34!

In Eq. ~21! we definedQ as heat absorbed by the syste
This means that2Q is the heat dissipated into the heat re
ervoir by the system. We know that the total average w
done on the system can be written as

^W&5^DE&2^Q&, ~35!

whereDE is the change in the energy of the system. Sin
we start withl050 and end withlN50 the change in the
energy will be zero. This leaves us with^W&52^Q&. Com-
bining this with the inequality~34! give us

kBT ln~2!<^W&, ~36!

which tells us that the average work we have to do on
system to erase one bit has to be greater than or equ
kBT ln(2). Or, again, equivalently, we could say that the h
dissipated into the heat reservoir has to be equal to or gre
thankBT ln(2).

C. The quantum case

First let us give a concrete example of what systems co
be involved in erasure of a quantum system. The bit could
a two-level atom that initially has two degenerate ene
states. The heat reservoir could be described as a ph
reservoir with harmonic oscillators. We would couple it
the atom in the beginning of the erasure procedure and
couple it at the end. The external parameter could be a m
netic field that we can alter as we please. The field would
switched on in the beginning and, during erasure, it wo
split up the two initially degenerate energy states into t
different energy states. If the energy difference between
two states became large enough so that the photon rese
would not be able to excite the atom into the higher ene
state, after a while the atom would find itself in the low
energy state. Then the field would be switched off and
energy levels of the two-state atom would become dege
ate again. At this point the erasure would be complete.
other way to imagine ‘‘quantum erasure’’ could be to use
spin-1/2 particle as a quantum bit.

We will assume that once the erasure itself is comple
the reservoir becomes weakly coupled to some unspec
environment, causing it~the reservoir! to decohere. We will
furthermore assume that this coupling is such that the en
eigenstates of the reservoir form the so-called preferred b
states@21#, so that, once decoherence has set in, we can v
the reservoir to be in a definite energy eigenstate. Eff
tively, the role of the environment in this situation is that
an ‘‘outside observer,’’ who measures the final energy of
reservoir. Such a measurement is necessary if the hea
sorbed by the reservoir is to be a well-defined quantity.
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In our derivation we will be using a two-state quantu
system, not necessarily in a pure state. Therefore we will
a density matrix,r̂, to describe its statistical state. In the ca
where we have a 232 density matrix we can always write
as

r̂2325ar̂a1br̂b . ~37!

In other words we could say that the density matrix is dia
onal in some basis~that does not have to be the energy b
sis!. We can interpret the statistical state described by
density matrix of Eq.~37! as follows: the system is either i
state ua& or in stateub&, with probability a and b, respec-
tively. The statistical state of any two-state system can
described by a density matrix with the properties outlin
above.

We will also be using a heat reservoir. As usual we
sume it to be initially in thermal equilibrium. This allows u
to write its density matrix as

r̂ Ĥ5
exp~2bĤ !

tr @exp~2bĤ !#
, ~38!

where Ĥ is the Hamiltonian of the heat reservoir. We ca
interpret ther̂ Ĥ by imagining the reservoir to be in a definit
energy eigenstate. The probability of finding the heat res
voir in its energy eigenstateuEn& with the eigenvalueEn is

Prob~ uEn&)5Pn5
exp~2bEn!

(
m

exp~2bEm!

5
exp~2bEn!

Z
.

~39!

We also have an external parameter,l(t). This parameter
serves the purpose of splitting up the two degenerate ene
eigenstates of the two-state system.

Let us imagine the erasure procedure as follows.

~1! At time t50 the bit begins in some statistical sta
described by the 232 density matrix

r̂ init5S 1/2 0

0 1/2D ~40!

in the energy eigenstate basis.~Therefore it can be viewed a
starting in either the ‘‘zero’’ or the ‘‘one’’ state, with equa
probability.! The reservoir begins in a definite eigenstate
Ĥ, of energyEn , with a thermal probability distribution@Eq.
~39!#. The initial value ofl is zero.

~2! At time t501 we couple the bit to the reservoir.
~3! Between timest501 andt5t we change the value o

the external parameter in some way which we believe w
cause the bit to get erased. At the end,t5t, we make sure
that the value ofl is once again zero.

~4! At time t5t1 we decouple the bit from the reservoi

Assuming that the erasure was successful, the bit will n
~with excellent probability! be in the pure state correspon
ing to ‘‘one.’’ The reservoir will be in some statistical stat
4-6
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INFORMATION ERASURE PHYSICAL REVIEW A61 062314
typically described by a density matrix which is not diagon
in the energy eigenbasis. This is where we invoke our
sumption about the reservoir being weakly coupled to
external environment which causes it to decohere: the ef
of the decoherence is to cause the off-diagonal element
the density matrix to vanish, without changing the diago
ones. Thus, at the end, the reservoir will again be in one
the energy eigenstates, with a probability determined by
diagonal density matrix elements.

We can therefore say that the bit begins in either
‘‘zero’’ or the ‘‘one’’ state, and ends in the ‘‘one’’ state
whereas the reservoir begins in some stateun& and ends in a
stateum&. Then we can define

Q5En2Em ~41!

as being the heat lost by the heat reservoir. Furthermore
u i & and u f & denote the initial and final states of the bits, a
let Pinit( i )5Pi andPf inal( f )5Pf denote the probability dis
tributions of these bits. Then, by assumption, we have

Pinit~ i !51/2 for i 50,1, ~42!

Pf inal~ f !5H 0 for f 50,

1 for f 51.
~43!

Finally, let us define an observableG, as

G5 ln~Pi !2 ln~Pf !2b~En2Em!. ~44!

We can now calculatêexp(2G)& where the angled bracket
denote the average of the function written between them

^exp~2G!&5 (
n,m,i , f

Pi PnuU f ,m,i ,nu2

3exp@2 ln~Pi !1 ln~Pf !1b~En2Em!# ~45!

5 (
n,m,i , f

Pi uU f ,m,i ,nu2
Pf

Pi

exp~2bEn!

Z

3exp~2bEm!exp~bEn! ~46!

5
1

Z (
f ,m

Pfexp~2bEm!(
i ,n

uU f ,m,i ,nu2, ~47!

whereU f ,m,i ,n corresponds tô f ,muU(t)u i ,n& and it is the
time evolution operator. At the same time it is a unita
matrix and therefore has the property that the sum of
absolute value squared of the elements in a column or a
is equal to 1.uU f ,m,i ,nu2 is the probability for finding the bit
and reservoir in final statesu f & andum& given initial statesu i &
and un&. We then see that

^exp~2G!&51. ~48!

Just like in the classical continuous case, Eqs.~45!–~47! do
not in any way imply that the final distribution of reservo
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states is canonical. The convexity of the exponential funct
gives us2^G&<0, which written more explicitly using Eq
~44! is

2^ ln~Pi !&1^ ln~Pf !&1^bQ&<0. ~49!

Putting in the assumed values ofPinit( i ) and Pf inal( f ), we
get

kBT ln~2!<2^Q&. ~50!

From Eq.~41! we can deduce that2Q is the heat dissipated
into the heat reservoir.

Looking at both the system and heat reservoir we c
define work the way it is defined in the classical ca
namely,

W5DEheat1DEsystem. ~51!

Just like in the classical continuous case the above equa
is valid under the assumption that the interaction energy
tween the heat reservoir and the two-state system is ne
gible. Again, the validity of this approximation depends
the physical systems used. As an example of a physical
tem we could look at nuclear magnetic resonance exp
ments for quantum computation where trichloroethylene w
dissolved in chloroform. We will see that the interaction co
stant between the qubits and the chlorine is smaller tha
Hz. This makes the interaction term negligible. Since the t
energy-eigenstates of the two-state system are degen
both before and after erasure we can say that the total ch
in its energyDEsystem50. The change in the internal energ
of the heat reservoir can be defined asDEheat5Em2En
52Q. Putting these values into Eq.~51! gives usW52Q.
Putting them into Eq.~50! we see that

kBT ln~2!<^W&. ~52!

This means that we can equally well3 say that the work we
have to do on the system in order for it to erase has to b
leastkBT ln(2).

III. DISCUSSION

A. Probability distributions

In all three cases we have assumed that the initial pr
ability distributions have been 1/2. This is equivalent to sa
ing that in the string of bits about to be erased half of the b
are in the ‘‘zero’’ state and half in the ‘‘one’’ state. Thi
distribution happens to correspond to thermalized bits. Ho
ever, in general, the initial string of bits can have any pro
ability distribution. The amount of heat dissipated into t
environment will then depend on that distribution. As
example we can take the case where all bits are alread
one state only. The equations in the derivations of Land

3Again, just like in the classical continuous case, this is not
exact statement but an approximation because the interaction
in the Hamiltonian is neglected.
4-7
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er’s principle tell us that this kind of ‘‘erasure’’ can be don
without any dissipation of heat. All other initial distribution
will require some heat dissipation and the one which w
require the largest dissipation will be the one where half
the states are in one state. More specifically, for both
classical cases considered above~Secs. II A and II B!, we
found that

^W&>TDS, ~53!

whereDS is equal to minuskB times the change in the in
formation entropy between the initial and final statistic
states of the bit. In Fig. 3 we plot this lower bound on^W&,
as a function of the probability to find the bit initially in sta
‘‘one.’’ 4 We see that the distribution that requires the gre
est amount of work~or heat dissipation! is the caseP1
51/2, in which the initial states are distributed equally b
tween ‘‘zero’’ and ‘‘one.’’

In the quantum case we could have assumed that the
tial density matrix for the bit, written in its energy eigenb
sis, is some arbitrary matrix

r̂5S c d

d* eD . ~54!

This would give us a different initial distribution from th
case we considered (c5e51/2, d50). To see what the
minimal heat dissipation would be for a particular dens
matrix we would have to diagonalize it first,

r̂5S a 0

0 bD . ~55!

4There is no particular reason for us having chosen the s
‘‘one’’ here. We could just as easily have chosen to write the s
‘‘zero.’’

FIG. 3. Graph showing the average minimal amount of wo
Pf inalln Pfinal2Pinitial ln Pinitial5^W&, required to erase a bit given th
initial probability, Pinitial (1), of finding the bit in the state ‘‘one.’’
W ~in J) is the work andP1 is the probability to find the bit initially
in state ‘‘one.’’
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The diagonal density matrix is expressed using basis st
ua& andub&. We now interpreta andb as initial probabilities:

Pinit~ i 8!5H a for i 85a,

b for i 85b,
~56!

where the prime indicates that we are using a basis diffe
from the energy eigenstate basis. For the final state of the
we still have

Pf inal~ f !5H 0 for f 50,

1 for f 51
~57!

in the energy basis. Desipite the difference in the basis
used to describe the initial state of the bit, the calculation
Eqs.~45!–~47! goes through as before but withi→ i 8 and we
end with

b^W&>2(
i 8

Pinit~ i 8!ln Pinit~ i 8!52a ln a2b ln b,

~58!

assuming perfect erasure. This result tells us that^W& is
bounded from below by minus the change in the von N
mann entropy of the bit. As in the classical case, the grea
value of this lower bound occurs whena5b51/2, in which
case^W&>kBT ln 2.

Note, however, that if we are using an algorithm for e
sure where we assume to receive a string with a rand
distribution and the string we actually receive has a differ
distribution, for instance, all ‘‘ones,’’ this does not mean th
we will automatically be erasing without heat dissipation.
do this we will need to change the algorithm used for e
sure.

B. Nondegenerate energy levels

All along we have assumed that the energy levels of
two states of the bits are equal before and after erasure.
what happens if we omit this assumption? Based on Land
er’s argument one would have to say that his princi
should apply in this case as well. To see in what form it s
applies let us imagine the following system. We have
infinite ensemble of bits with degenerate energy values,
in the classical case with discrete space and time. We ass
them to be populated so that half of them are in the ‘‘zer
state and half in the ‘‘one’’ state. We then use some exter
parameter to lower the energy of the ‘‘zero’’ state byDE.
This is our point of departure (a in Fig. 4!.

To do the erasure, which we will assume to be defined
restore to ‘‘zero,’’ we start by raising state ‘‘zero’’ in all o
the bits to the energy of state ‘‘one’’ (b in Fig. 4!. To do this
we will on average have to do 1/2DE work. Then we go
through with the erasure procedure which we have show
requirekBT ln(2) of work (c in Fig. 4!. Assuming that the
erasure was perfect all the bits will be in the state ‘‘zero’’d
in Fig. 4!. To go back to the original state we lower th
energy of the state ‘‘zero’’ byDE (e in Fig. 4!. This will on
average return the energyDE. Summing up the energy put in
and gotten out of the system, on average, we have

te
e

,
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Wout521/2DE2kBT ln~2!1DE51/2DE2kBT ln~2!.
~59!

This means that in a system with a ground state and
excited state, where erasure is equivalent to restore
‘‘zero,’’ with ‘‘zero’’ being the ground state, we can on av
erage only hope to recover as much as 1/2DE2kBT ln(2) of
useful energy,DE being the difference in energies betwe
the two states. The term ‘‘useful energy’’ is here used
denote energy that is not necessarily heat. We could h
decided to define erasure as restore to ‘‘one’’. That, howe
would not have given us any extra energy. We would ha
had to add as much as 1/2DE1kBT ln(2) to the system in
that procedure.

One could argue that it is not always physically possi
to change the difference in energy between the levels so
one will have degeneracy. To show that even in this case
cannot get any more ‘‘usable’’ energy out of the system th
1/2DE2kBT ln(2) we can use any of the above discuss
models~the continuous classical case, the discrete class

FIG. 4. Schematic picture of erasure for an ensemble of
with different energy values for the ‘‘zero’’ state and the ‘‘one
state. The numbers above the lines showing the energy levels s
the probability of finding the bit in that state. In going from a to
we need to add 1/2DE amount of work on average. In c we ar
erasing the bit which requireskBT ln(2) amount of work. In going
from d to e we can recoverDE of work. The average total amoun
of work we can recover in this kind of erasure isDE2kBT ln(2).
s
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case, or the quantum case! and perform the necessary calc
lations. The calculations will give us the same result as
thought experiment above.

In summary, we can say that for a system with eq
energy levels the work required for erasure is equal to
heat dissipated into the environment,kBT ln(2). For a system
with different energy levels as the ‘‘zero’’ and ‘‘one’’ state
we do not have that equality. At best we can get out half
the energy difference between the states minus the heat
sipated into the environment which will still bekBT ln(2).

C. Suggestions for future research

The microscopic derivation of Landauer’s principle cou
perhaps be made more general if we could drop the assu
tion that the states of the thermal reservoir, with which t
bits are in contact, are chosen from a canonical distribut
Perhaps it is enough to assume that the states of the the
reservoir are chosen form a microcanonical distribution. T
microcanonical ensemble would still provide us with a w
defined temperature.

Landauer’s principle gives us a fundamental lower bou
on the amount of heat dissipated into the environment in
process of erasure. It would be interesting to see if this low
bound can actually be reached physically. One can certa
imagine a process where erasure is done on an infinite
scale where one reaches the lower bound. But is it physic
realizable? If so, would it be practical for computational pu
poses?
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