
PHYSICAL REVIEW A, VOLUME 61, 062313
Distillability and partial transposition in bipartite systems
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We study the distillability of a certain class of bipartite density operators which can be obtained via
depolarization starting from an arbitrary one. Our results suggest that nonpositivity of the partial transpose of
a density operator is not a sufficient condition for distillability, when the dimension of both subsystems is
higher than 2.

PACS number~s!: 03.67.2a, 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

Maximally entangled states represent an essential ingr
ent in most applications of quantum information@1#. In par-
ticular, in quantum communication one can use them
transmitting secret messages between two locally separ
parties @2#. In practice, however, states are mixed due
interaction with the environment, and are not usable
those applications, even though they may be entangled.
solution to this problem was presented by Bennettet al.,
Deutschet al., and Gisin@3–5#, who gave a procedure t
‘‘distill’’ maximally entangled states of two qubits out of
set of pairs in certain~mixed! entangled states, by using on
local actions and classical communication@6,7#. Later on, the
Horodecki family showed that any even infinitesimally e
tangled state of two qubits~two-level systems! can be dis-
tilled into a singlet@8#. They also proved a necessary con
tion for the state of an arbitrary bipartite system to
distillable, namely, that the partial transpose of the cor
sponding density operator must be nonpositive@9#.

As shown by Peres@10#, the positivity of the partial trans
pose is a necessary condition for separability. In fact,
condition turns out to be a sufficient condition for separab
ity in cases of both qubits~two-level systems!, or one qubit
and one trit~a three-level system! @11#. A natural question
arises: is this condition also sufficient for separability
higher-dimensional systems? Horodecki recently show
@12# that there are in fact states in higher-dimensional s
tems which have a positive partial transpose, but are n
separable~see also Refs.@9,13–17#!. As a consequence, th
positivity of a partial transpose is, except for 232 and 2
33 systems, not sufficient for separability. Similarly, th
nonpositivity of a partial transpose is necessary for dis
ability, and is sufficient for 232 and 233 systems. How-
ever, the question remains open whether this condition
sufficient for distillability in higher-dimensional systems.

In this paper we investigate the distillability of high
dimensional systems shared by two parties, Alice and B
We introduce a depolarizing superoperator that allows on
reduce an arbitrary density operator with nonpositive par
transposition~NPPT! to one with the same property, but in
standard form that is characterized by a single parameter
analyze some properties of those operators, and show tha
any given finite number of copies there are density opera
r for which one can never find a subspace of dimension
1050-2947/2000/61~6!/062313~8!/$15.00 61 0623
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Alice and Bob’s Hilbert spaces, in whichr still has NPPT.
We also present some numerical evidence that indicates
this class of states is independent of the number of cop
All these results suggest that there exist states with NP
which are not distillable.

This work is organized as follows: In Sec. II we revie
some of the present knowledge concerning distillability a
entanglement, and we introduce the definitions and prop
ties that are needed in order to study the problem of dis
ability of general density operators. In Sec. III we conce
trate on the case in which Alice and Bob have three-le
systems, whereas in Sec. IV we generalize our results to
d-level system case. In Sec. V we show the basics of
numerical procedure used to study the distillability of tw
and three copies. Finally, we summarize our results.

II. ENTANGLEMENT AND DISTILLABILITY

We consider two parties, Alice and Bob, who share s
eral pairs of particles. Each pair is in a state described by
same density operatorr. We will assume that Alice’s
~Bob’s! particles aredA-level systems (dB); that is, the den-
sity operatorr acts on the Hilbert spaceCdA^ CdB. We will
denote by$u1&,u2&, . . . ,udA&% an orthonormal basis inCdA,
and analogously forCdB. We will also use the notation
u i , j &[u i &A^ u j &B .

We will assume that Alice and Bob are able to manipul
their particles by only using local actions~operators and
measurements! and classical communication. In this case, w
say that the density operatorr is distillable if they can pro-
duce a maximally entangled state

uFd&5
1

Ad
(
i 51

d

u i ,i &, ~1!

whered5min(dA ,dB). On the other hand, we say thatr is
separable if it can be prepared from a product state~e.g.,
u1,1&). In this section we will review some of the resul
derived by Peres and the Horodecki family concerning d
tillability and entanglement, and will introduce the defin
tions and properties that are needed in order to study
problem of distillability of general density operators.
©2000 The American Physical Society13-1
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W. DÜR, J. I. CIRAC, M. LEWENSTEIN, AND D. BRUß PHYSICAL REVIEW A61 062313
A. Partial transposition

As shown by Peres@10# and the Horodeckis@8,11,12#, the
partial transpose of a density operator plays an important
in establishing its distillability and entanglement properti
In general, given an operatorX acting onCdA^ CdB, we define
the partial transpose ofX with respect to the first subsyste
in the basis$u1&,u2&, . . . ,udA&%, XTA, as follows:

XTA[ (
i , j 51

dA

(
k,l 51

dB

^ i ,kuXu j ,l & u j ,k&^ i ,l u. ~2!

In the following we will use a property of this operation
namely, tr(YXTA)5tr(YTAX).

We say that a self-adjoint operatorX has a nonpositive
partial transpose ifXTA is not positive; that is, if there exist
some uC& such that^CuXTAuC&,0. The positivity of the
operatorrTA gives necessary criteria for the separability a
nondistillability of a density operatorr. In particular,~1! if r
is separable, thenrTA>0 @10#; and ~2! if rTA>0, thenr is
not distillable@12#. These two necessary conditions turn o
to be sufficient fordA52 and dB<3 @8#. However, it has
been shown that the first condition is not sufficient for se
rability for the rest of the cases (dA52 and dB.3, and
dA ,dB.2) @12#. On the other hand, nothing is known abo
whether the second condition is also sufficient for nondis
ability in these cases.

B. Distillability

The problem of distillability of general density operato
acting onCdA^ CdB can be expressed in a simpler form@9#. A
density operator is distillable iff, for a certain positive integ
N, we can find a state of the form

uC&5aue1&Au f 1&B1bue2&Au f 2&B , ~3!

such that

^Cu~r ^ N!TAuC&,0. ~4!

Here$ue1&A ,ue2&A% are two orthonormal vectors in (CdA) ^ N,
and $u f 1&B ,u f 2&B% are two orthonormal vectors in (CdB) ^ N.
This condition basically means that if Alice and Bob shareN
pairs, one just has to find a two-dimensional subspace in
whole Hilbert space of Alice, and another in Bob’s such th
the projection ofr ^ N in such subspaces has NPPT. The r
son for this is that if one finds such a subspace, then acc
ing to what was exposed in Sec. II A one can distill a ma
mally entangled state inC2

^ C2, which can be converted into
a maximally entangled state inCdA^ CdB. Conversely, if one
can create one of those states, then one can also produc
in C2

^ C2, and therefore this ensures that Eq.~4! must be
fulfilled.

Thus, in practice, one can analyze for each numbe
copiesN51,2, . . . whether condition~4! is fulfilled. In or-
der to facilitate this task, we will use the following defin
tions: If for a givenN condition ~4! is fulfilled, we will say
that r is N-distillable. On the other hand, if for a certainN
theredoes not exist any uC& satisfying Eq.~4!, then we will
say thatr is N-undistillable. Thusr is distillable iff there
06231
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exists anN for which it is N-distillable. Conversely,r is
nondistillable iff it is N-undistillable,;N.

C. Distillability in C2‹Cd

With the properties and definitions given above, one c
very easily prove that whendA52 anddB>2 and ifr has a
NPPT thenr is 1-distillable. The reason for this is that the
exists someuC& such that^CurTAuC&,0. On the other
hand, sincedA52, then the Schmidt decomposition ofuC&
has at most two terms, and therefore can be written in
form of Eq.~3!. Thus in this case a nonpositive partial tran
pose ofr is a necessary and sufficient condition for disti
ability.

D. Depolarization in Cd‹Cd

In this subsection we will introduce some superoperat
which will be useful to study if a given density operator
N-distillable. We will also show that given a density operat
one can reduce it to a standard form which is characteri
by a single parameter@18#, and that preserves the distillabi
ity properties of the original state. This standard form w
already introduced in Ref.@19#.

Let us first define some useful projector operators. Giv
two quantum systems with corresponding Hilbert spacesCd,
we denote the permutation operator byPd , and by

Ad5~12Pd!/2, Sd512Ad5~11Pd!/2, ~5!

the projector operators onto the antisymmetric and symm
ric subspaces ofCd

^ Cd, respectively. Note that tr(Sd)
5d(d11)/2 and tr(Ad)5d(d21)/2. We also define the
projector operators

Pd5ufd&^fdu, Qd512Pd , ~6!

where ufd& is the maximally entangled state defined in E
~1!. One can easily check that

Pd
TA5

1

d
~122Ad!, Ad

TA5
1

2
~12dPd!. ~7!

We define the depolarization superoperatorD, acting on any
given operatorX, as follows:

D~X!5Ad

tr~AdX!

tr~Ad!
1Sd

tr~SdX!

tr~Sd!
. ~8!

This superoperator is a projector, is self–adjoint~on the
Hilbert–Schmidt space of operators acting onCd

^ Cd), and
preserves the trace. In Appendix A, we show that we c
write @19#

D~X!5E dmU~U ^ U !X~U ^ U !†, ~9!

where the integral is extended to all unitary operators ac
on Cd and *dmU51 @dm represents the standard invaria
3-2
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DISTILLABILITY AND PARTIAL TRANSPOSITION IN . . . PHYSICAL REVIEW A 61 062313
Haar measure on the group SU(d)]. We will later use the
partial transpose ofD(X), and to this aim we define th
superoperator

E~X![@D~XTA!#TA5E dmU~U* ^ U !X~U* ^ U !†

~10a!

5Pdtr~PdX!1Qd

tr~QdX!

tr~Qd!
, ~10b!

whereU* denotes complex conjugation in the basis in wh
the partial transposition is defined. This superoperator is
a projector, self-adjoint, and preserves the trace. Note tha
any unitary operatorV acting onCd we have

~V^ V!D~X!~V^ V!†5D~X!, ~11a!

~V* ^ V!E~X!~V* ^ V!†5E~X!. ~11b!

Form ~9! shows that the superoperatorsD and E can be
implemented by means of local operations. In particular
shows that any density operatorr can be transformed, usin
local operations, to the form

D~r!5ra5
1

N~a!
~Sd1aAd!, ~12!

wherea is such that tr(Adr)5tr(Adra), andN(a)5tr(Sd)
1a tr(Ad) is a normalization constant. That is, one can d
polarize any density operator to the one-parameter fam
@Eq. ~12!#, while keeping the weight in the antisymmetr
subspace. We will be more interested in the partial transp
of ra , which is given by

@D~r!#TA5E~rTA!5
1

M ~b!
~Qd2bPd!, ~13!

where M (b)5tr(Qd)2b is a normalization constant, an
the relationship betweena and b is b5@(a21)(d21)
22#/(a11),d21. Note that since

ra5D~ra!, ra
TA5E~ra

TA!, ~14!

we have that

~U ^ U !ra~U ^ U !†5ra , ~15a!

~U* ^ U !ra
TA~U* ^ U !†5ra

TA ~15b!

for any unitary operatorU.
Using the properties derived above, one can easily ch

that

ra is separable⇔ra
TA>0⇔b<0. ~16!

The last equivalence follows directly from Eq.~13!. For the
first one we have (⇒): see Sec. II A; (⇐). We have that, for
b50 @i.e., a5a0[(d11)/(d21)5tr(Sd)/tr(Ad)],
06231
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ra0

TA}Qd}E~ u0,1&^0,1u!, ~17!

which is obviously positive and separable, in which case
same holds forra0

. Forb,0 (a,a0) we can always obtain

ra by adding the identity operator~which is separable! to
ra0

@this is due to the fact that tr(Sd).tr(Ad)].

Thus, for b.0 (a.a0), ra is nonseparable. One ca
easily check that this condition is equivalent to

tr~Adra!.1/2. ~18!

This last form allows us to show that for any given dens
operatorr with NPPT, one can always transform it, usin
local actions, to the form of Eq.~12!, such that it still has
NPPT@18#. Let us show this. Suppose that for a givenuC&,
^CurTAuC&,0. We can writeuC&5( i 51

n<dci uui ,v i& where
uui& i 51

d and uv i& i 51
d form an orthonormal basis. The operat

r can be transformed by local operations tors}(A†

^ B†)r(A^ B), with tr(rs
TAPn),0 ~by simply taking A

5( i 51
n uui* &^ i u/ci1( i 5n11

d uui* &^ i u and B5( i 5n11
d uv i&^ i u).

Using that 0.tr(rs
TAPn)5tr(rsPn

TA), and Eq.~7!, we imme-
diately obtain that tr(Adrs)>tr(Anrs)>1/2. SinceD con-
serves this quantity, we obtain thatD(rs) has a negative
partial transpose.

As pointed out by Horodecki and Horodecki@18#, the
problem of distillability can be reduced to a study of dens
operators of the form of Eq.~12!. If we find that all those
operators with NPPT are distillable, we will have shown th
NPPT is a necessary and sufficient condition for distillab
ity. Conversely, if we find that there exists an operator of
form of Eq. ~12! which has NPPT, but is not distillable, w
will have shown that such a condition is not sufficient. In t
following sections we will show that there are density ope
tors of the standard form with NPPT which are n
N-distillable for certain values ofN. As we have seen in Sec
II B, we can study this by checking whether there exist ve
tors of the form of Eq.~3! fulfilling condition ~4!.

III. N-DISTILLABILITY IN C3‹C3

We consider the casedA5dB53, and a density operato
of the form

ra5
1

N~a!
~S1aA!, ~19!

where we have omitted the superindicesd53, and N(a)
5613a. According to the discussion in Sec. II D, we ju
have to considera>a052, since otherwisera is separable.
For the partial transpose we also have

rb
TA5

1

M ~b!
~Q2bP!, ~20!

where b5(2a24)/(a11), with 2>b>0 and M (b)58
2b.
3-3
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A. 1-distillability

We look for a vector of the form of Eq.~3!, such that Eq.
~4! is fulfilled. ChoosingU such thatUue1,2&5u1,2&, and
using property~15b!, we see that we can restrict ourselves
the subspace spanned by$u1&,u2&% in Alice’s Hilbert space.
Defining by12 the projection operator into this subspace a
by 13 the identity operator inC3, we obtain, after projecting
rb

TA onto such a subspace,

12
Arb

TA12
A}12

A
^ 13

B2
2~11b!

3
P2 , ~21!

which is positive iff b<1/2. Thus, we obtain thatra is
1-distillable iff b.1/2 ~or, equivalently,a.3).

B. 2-distillability

Let us now consider two pairs, in a statera . We will
show that forb<1/4 the statera is 2-undistillable. For any
stateuC& of the form of Eq.~3! we have

^CuQ(1)
^ ~Q(2)2P(2)/2!uC&

5tr2@ tr1~ uC&^CuQ(1)!~Q(2)2P(2)/2!#, ~22!

where the superscripts 1 and 2 refer to the first and sec
pair, respectively. Using the fact thatQ is separable, and
therefore that it can be written asQ5( ici uai ,bi&^ai ,bi u
with ci.0, we have

tr1~ uC&^CuQ(1)!5(
i

ci uC i&^C i u, ~23!

whereuC i&5^ai ,bi uC& is a state acting on the second pa
which itself has the form of Eq.~9!. Thus, according to the
results of Sec. III A we have that̂C i u(Q(2)2P(2)/2)uC i&
>0 and thereforê CuQ(1)

^ (Q(2)2P(2)/2)uC&>0. In the
same way we have that̂Cu(Q(1)2P(1)/2)^ Q(2)uC&>0,
i.e.,

0<^CuS Q(1)2
P(1)

4 D ^ S Q(2)2
P(2)

4 D2P(1)
^

P(2)

16
uC&.

~24!

Using the fact thatP(1)
^ P(2)>0 we obtain the desired re

sult. Note that our results do not imply that for 1/4<b
,1/2 ra is 2-distillable. In fact, as shown in Sec. V, nume
cal calculations indicate that it is 2-undistillable.

C. N-distillability

We consider nowN pairs, in a statera . We will show
that forb<42N the statera is N-undistillable. For any state
uC& of the form of Eq.~3!, one can check the following
relations: ~i! ^CuP^ kuC&<2/3k, ~ii ! ^CuQ^ N2kP^ kuC&
<2/3k, and ~iii ! ^CuQ^ NuC&>1/3N. To show~i!, one uses
Pd

^ k5Pdk and property~15b!, from which it follows that the
projection into the subspace spanned by$u1&,u2&% gives the
maximum value for̂ CuP^ kuC&. From ~i! we immediately
obtain~ii ! by using that̂ CuQXuC&<^Cu1XuC& for all posi-
06231
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tive operatorsX. Relation~iii ! can be obtained by using~i!
and the separability ofQ in a similar way as in Sec. III B.
Combining~ii ! and ~iii ! we find

^CuakQ
^ N2 (

perm
Q^ N2kP^ kuC&>0, ~25!

with ak52(k
N)3N2k, and the sum runs over all possible pe

mutations of the pairs. By summing Eq.~25! for all odd k

and using that(k oddak54N22N[b̃N
21 , one finds, forbN

<b̃N ,

0<^CuQ^ N2b̃N (
k odd

(
perm

Q^ N2kP^ kuC&

<^CuQ^ N2 (
k odd

bN
k (

perm
Q^ N2kP^ kuC&

<^Cu~Q2bNP! ^ NuC&. ~26!

We used that maxk(bN
k )<b̃N ~for bN<b̃N<1) to obtain the

first inequality ~line 2!, while we added all positive term
~evenk) in the second step~line 3!. This is already the de-
sired bound, i.e. for 0<b<42N<b̃N[1/(4N22N), the state
ra is N-undistillable. Again, this does not mean thatra is
N-distillable for 42N<b<1/2. In Appendix C we present a
better bound forb.

IV. N-DISTILLABILITY IN CD‹CD

We consider the casedA5dB5d, and a density operato
of the form of Eq.~12!, with the partial transposition given
by Eq. ~13!. Similar techniques as in thed53 case can also
be used to obtain bounds for arbitraryd. One finds for ex-
ample thatra is 1-distillable iff b.d/221. We also obtain
thatra is 2-undistillable forb<(d22)/4 andN-undistillable
for b<min(b̃N ,b̃N

1/N), with b̃N5(d22)N/@(d11)N2(d
21)N#. Note that the minimum is required here, since
differently from thed53 case—one can have thatb̃N>1. In
this case one has to chosebN<b̃1/N, which implies
maxk(bN

k )<b̃N to ensure that the first inequality in Eq.~26!
remains valid.

Furthermore, there is an interesting relation between
statesra for differentd. Imagine we would like to convert a
single copy of a statera in Cd

^ Cd to a state inCk
^ Ck (k

,d) in an optimal way, i.e., to obtain a newa which is as
large as possible. We show here that whenever we conv
statera to some lower dimension, there will always be som
states which lose the negativity of their partial transpositi
In order to prove this, we consider vectorsuCk& with k
Schmidt coefficients, and show that^Cdura

TAuCd&,0, while

^Ckura
TAuCk&.0 ; uCk&. Due to property~15b!, one can re-

strict oneself to the subspace spanned by$u1& . . . uk&%. Let us
denote the identity operator in this subspace by1k . One finds
after projectingra

TA onto 1k in A andB,
3-4
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1k
A

^ 1k
Bra

TA1k
A

^ 1k
B}1k

A
^ 1k

B2
k~11b!

d
Pk , ~27!

which is positive iffb<(d/k)21, while ra
TA before the pro-

jection was positive iffb<0. Thus all states with 0,b
<(d/k)21 lose the negativity of their partial transpositio
after the optimal projection onto ak-dimensional subspace
The newbk can be calculated frombd of the initial state by
bk5(k/d)(bd11)21.

Finally, let us considerN copies ofra of dimensiond,
which can be viewed as a state inC^ dN

^ C^ dN
. With

tr(Adra)[ld , one finds that the stateD(ra
^ N)[r̃a—the

state in the high-dimensional Hilbert space af
depolarization—has ldN[tr(AdNr̃a)5@12(122ld)N#/2.
One checks that forld.1/2 ~i.e., ra is inseparable! we have
ldN<ld;N, which simply means that the weight in the a
tisymmetric subspace decreases when going to more co
Note that using this notation, we have that the statera is
separable forl<1/2, while it is 1-distillable forl.@3(d
21)#/@2(2d21)#, which tends to3

4 for d→`.

V. NUMERICAL PROCEDURES

In general, we are interested in showing there exists auC&
of the form of Eq.~3! for which condition~4! is fulfilled, i.e.,

l[^CuRuC&,0, ~28!

where we have definedR5(Q2bP) ^ N, with 0,b<1/2. In
order to check this we can minimizel with respect toue1,2&,
u f 1,2&, anda while keeping the normalization and orthogona
ity relations. One can readily check that the minimizati
implies

^e1uRuC&5l0au f 1&, ~29a!

^e2uRuC&5l0bu f 2&, ~29b!

^ f 1uRuC&5l0aue1&, ~29c!

^ f 2uRuC&5l0bue2&. ~29d!

Note that the operatorA^e1uRue1&A is strictly positive, and
therefore invertible. The reason for that is that for anyu f &B ,
we have^e, f uRue, f &5^e* , f uRTAue* , f &.0 since according
to Eq. ~12! we can always writeRTA5c11B ~whereB>0
andc.0). On the other hand,a,bÞ0 since otherwiseuC&
would be a product vector and thereforel>0. Thus we can
use Eq.~29a! to write

u f 1&5
b

a

1

l02^e1uRue1&
^e1uRue2& u f 2&, ~30!

which, after substituting in Eq.~29b!, gives

^e2uF~l0!ue2& u f 2&5l0u f 2&, ~31!

where we have defined
06231
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F~l0!5R2Rue1&
1

^e1uRue1&2l0
^e1uR. ~32!

The normalization ofu f 1& gives

UabU
2

5^e2 , f 2uF 1

^e1uRue1&2l0
G2

ue2 , f 2&. ~33!

Thus the problem is reduced to showing whether Eq.~31!
possesses solutions forl0,0. In that case, we can find
a,b,u f 1& using the other equations. On the other hand, if
have that

^e2uF~0!ue2&>0 ~34!

for all ue2&, then we will have that there exists no solutio
with l0,0. This is so sinceF(2ul0u)2F(0)>0.

We have made a systematic search of the statesue1,2&
which minimize the minimum eigenvalue of^e2uF(0)ue2&
>0 for d53 andN52 and 3. Note that forN52 copies we
can further simplify the numerical search by using the sy
metries of the problem, which imply that we can choo
ue1&5( i 51

3 ci u i ,i & with ci>0.
In both cases we have found that this minimum eige

value is>0 for b<1/2, which strongly indicates thatra is
3-undistillable ~and hence also 2-undistillable! for b<1/2.
This is exactly the same bound that we had obtained ana
cally for 1-undistillability.

VI. CONCLUSIONS

We have shown that in order to study the distillabili
properties of bipartited-level systems, it is sufficient to con
sider only the one-parameter class of statesra @Eq. ~12!#. By
investigating the distillability properties of this family o
states, we found strong indications that this family provid
examples for nondistillable states with nonpositive par
transposition. In particular, we found that for any given nu
ber of copiesN there existN-undistillable states which hav
NPPT. Guided by the results of the numerical investigatio
we conjecture that ford53 the statesra are nondistillable
for b<1/2, while they have NPPT forb.0 ~see also Fig. 1!.

Note added:Recently we became aware of the results
DiVincenzo et al. @20#, in which they also found evidence
for the existence of nondistillable states with NPPT.
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APPENDIX A: INTEGRAL REPRESENTATION OF D„X…

Here we show that the superoperatorD as defined in Eq.
~8! can also be written in the form of Eq.~9!. Here, for
convenience, we restrict ourselves to operatorsX, which are
density operatorsr, but exactly the same line of argumen
holds for arbitrary self adjoint-operatorsX. As shown in Ap-
pendix B, we have that the depolarization superoperatoD
can be implemented by a finite sequence of bilocal ope
tions@Eq. ~B1!# of the formU ^ U. Furthermore we have tha
the projector onto the antisymmetric subspace is invar
under unitary operations of the formU ^ U, i.e., U
^ UAdU†

^ U†5Ad , which can be easily seen by using th
Ad5(12Pd)/2. From this property automatically follow
that ra @Eq. ~12!# is also invariant under unitary operation
of the form U ^ U, sincera}(11ãAd). It is now straight-
forward to show Eq.~9! by using, for anyV,

E dmU~U ^ U !r~U ^ U !†

5E dmU8~U8^ U8!~V^ V!r~V^ V!†~U8^ U8!†,

~A1!

with U8V5U. Taking pk such that(kpk51, we can write

E dmU~U ^ U !r~U ^ U !†

5(
k

pkE dmU8~U8^ U8!~Uk^ Uk!

3r~Uk^ Uk!
†~U8^ U8!†

5E dmU8~U8^ U8!ra~U8^ U8!†5ra5D~r!,

~A2!

where we used Eq.~A1! in the first equality, while the sec
ond equality follows from Eq.~B1!, and we finally used the
invariance ofra under operations of the formU ^ U. This
already shows that Eq.~9! is fulfilled, i.e., D(r)5*dmU(U
^ U)r(U ^ U)†.

APPENDIX B: DEPOLARIZATION

We are going to show now that an arbitrary stater can be
depolarized to the standard form@Eq. ~12!# by a finite se-
quence of bilocal~random! operations without changing th
weight in the antisymmetric subspaceHa(d), i.e., we show
that there exist unitary operatorsUk and probabilitiespk such
that
06231
an

or

a-

nt

t

(
k

pkUk^ UkrUk
†

^ Uk
†5D~r!5ra ~B1!

with tr(Adr)5tr(Adra). We first introduce a basis ofCd

^ Cd,

uw i j
6&5

1

A2
~ u i &Au j &B6u j &Au i &B),

uxk&5uk&Auk&B , ~B2!

with i , j and (i , j ,k)P$1, . . . ,d%. Note thatuw i j
2& provides a

basis of the antisymmetric subspaceHa(d), while
$uw i j

1&,uxk&% is a basis of the symmetric subspaceHs(d). The
projectors into the symmetric-antisymmetric subspace
thus be written

Ad5 (
i , j 51(i , j )

d

uw i j
2&^w i j

2u,

Sd5 (
i , j 51(i , j )

d

uw i j
1&^w i j

1u1 (
k51

d

uxk&^xku. ~B3!

Let us writer in basis~B2!. In order to prove Eq.~B1!, we
divide the depolarization procedure into three steps.

~i! We show that one can maker diagonal in basis~B2!
without changing the diagonal elements.

~ii ! We prove that the antisymmetric subspaceHa(d) can
be mixed up, i.e., one can equalize the coefficients
uw i j

2&^w i j
2u without changing the weight inHa(d).

~iii ! Finally we show that the symmetric subspace c
also be completely mixed up without changing the weight
Hs(d).

These three steps together ensure thatr can be depolar-
ized to the standard formra .

1. Diagonalizing r

By mixing we understand in the following that a certa
operationU is ~randomly! performed with probabilityp by
Alice and Bob, while with probability 12p no operation is
performed. The resulting density operator after this mixi
operation reads

rnew5p~U ^ UrU†
^ U†!1~12p!r. ~B4!

We define the operationUl as

Ul uk&5eipdkluk&, ~B5!

i.e., the stateu l & picks up a minus sign while all others re
main unchanged. Let us perform a sequence ofd mixing
operations, using p5 1

2 and Ul with l 5$1, . . . ,d% respec-
tively. One can easiliy check that all diagonal elements
main unchanged, while all off-diagonal elements of the fo
uw i j

6&^xku and uw i j
6&^w i 8 j 8

6 u for ( iÞ i 8, j Þ j 8) are eliminated.

Let us now define the operationÛ l , which introduces a
phasei for stateu l & while it leaves all other states unchange
3-6
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Again performing the same sequence ofd mixing operations
as described above, but withUl replaced byÛ l , one can
check that all off-diagonal elements of the formux i&^x j u are
eliminated.

We finally define the operationUkl , which simply swaps
statesuk& and u l & while leaving all other states untouche
Now performing a sequence of mixing operations using
possible combinationsk, l P$1, . . . ,d% for Ukl andp51/2,
one gets rid of the remaining off-diagonal elements of
form uw i j

2&^w i j
1u without changing the diagonal ones. Thusr

can be made diagonal in basis~B2! by a sequence of biloca
operations.

2. Mixing of Ha„d…

Let Hi 0
be the subspace spanned by$uw i 0 j

2 &% for fixed i 0.

In a first step we will show that one can depolarize all su
spacesHi 0

independently, while in a second step we pro
that these subspaces can be mixed with each other.

To depolarizeH1, one just has to keep stateu1& and per-
form ~randomly! one of the cyclic permutations of state
$u2&, . . . ,ud&%, each with probabilityp51/(d21). Similary,
one depolarizesH2 by keeping states$u1&,u2&% and perform-
ing, with probabilityp51/(d22) one of the cyclic permu-
tations of the states$u3&, . . . ,ud&%. SinceH1 is already de-
polarized, it is not affected by this operation. One c
continue in the same way until one has depolarizedHd21. So
the antisymmetric part of the density operator now has
form

AdrAd5 (
i 51

d21

ai (
j 5 i 11

d

uw i j
2&^w i j

2u. ~B6!

The second step starts by mixing ofHd21 with Hd22, i.e.,
equalizing the coefficientsad21 and ad22. To achieve this,
both Alice and Bob swap statesud21& and ud22& with
probability ps5

2
3 , or both apply the identity operator wit

probability 12ps . If one now depolarizesHd21 andHd22
independently as described in step 1, one finds
uw (d21) j

2 &^w (d21) j
2 u and uw (d22) j

2 &^w (d22) j
2 u now all have the

same weight, i.e., the coefficients are equal. Thus the s
spaceHd21 is completely mixed withHd22. One now con-
tinues by mixing the subspacesHd23 with $Hd22 ,Hd21%
and so on, until one reachesH1.

We now investigate one particluar step in this procedu
namely, the mixing ofHk with $Hk11 ,Hk12 , . . . ,Hd21%.
Both Alice and Bob swap statesuk& and uk11& with prob-
ability ps5(d2k)/(d2k11), or both apply the identity op
erator with probability 12ps . After this one depolarizes
Hj ( j <k) independently, then mixesHd21 with Hd22 as de-
scribed above. Next one mixesHd23 with $Hd22 ,Hd21%,
and continues in this way until one has mixedHk and
$Hk11 ,Hk12 , . . . ,Hd21%. It can be checked that after th
procedure all weight factorsã j are equal for (j <k). Thus
once one has mixedH1 with $H2 ,H3 , . . . ,Hd21%, one has
achieved that the whole antisymmetric subspace is c
pletely depolarized, i.e. it can be written asadAd .
06231
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3. Mixing of Hs„d…

Note that the depolarization of the antisymmetric su
space also mixes the subspace spanned by$uw i j

1&% in a simi-
lar way. Here we now show that one can also depolarize
subspace spanned by$uxk%, and also finally that these two
subspaces together can be mixed up. To prove the first s
let us define the operationŨ l as follows:

Ũ l uk&5u~k1 l !mod~d!&. ~B7!

Now performingŨ l ^ Ũ l ,l 5$1, . . . ,d%, each with probabil-
ity p51/d, ensures that the subspace spanned by$uxk&% is
completely depolarized, i.e., thatr now has the form

r5aAd1b (
i , j 51(i , j )

d

uw i j
1&^w i j

1u1c(
k51

d

uxk&^xku. ~B8!

For the second step, we define the unitary operationT:

Tu j &5
1

Ad
(
k51

d

ei2p( j 21)(k21)/duk&. ~B9!

One can check that if we perform the operationT^ T with
probability pT5d/(d11), and the identity operation with
probability pI512pT , the diagonal elements of the sym
metric subspace will each be identical to@bd(d21)
12cd#/@d(d11)#. The introduced off-diagonal elemen
can be eliminated using the procedure explained above. N
that the antisymmetric subspace is not affected by this k
of operation, and will thus remain untouched. Thus, fina
we manage to show thatr can be converted to the standa
form @Eq. ~12!# by a sequence of local operations@Eq. ~B1!#.
The weight inHa(d) was not affected by any of the mixin
operations used, which ensures that tr(Adr)5tr(Adra).

APPENDIX C: BETTER BOUND FOR b

In this appendix we prove that for any vectoruC& of the
form of Eq. ~3!,

^Cu~Q2bP! ^ NuC&>
1

3N S 12
b

bN
D , ~C1!

for b<bN , where

bN5
xN

3N/3N1/3
, ~C2!

and xN5x* @12O(1/N)# as N→`, where x* 53(1
2321/3)1/3, and O(1/N) denotes a quantity of the order o
1/N.

The proof is by induction. ForN51, we haveb151/2.
Assuming that the statement holds forN21, we observe that

^CuQ~Q2bP! ^ N21uC&>
1

3N S 12
b

bN21
D , ~C3!
3-7
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and the same holds for all possible permutations with res
to the copies. Adding the left-hand sides, dividing the s
by N, and rearranging various terms, we find, for largeN,

^CuS Q2
N21

N
bPD ^ N

uC&>
1

3N S 12
b

bN21
D

2
Nb3

27
@11O~1/N!#2O~b5!.

~C4!

For b.O(bN), the last correction term in the above inequ
ity can be safely neglected. It is easy to check that the rig
hand side has zero atb5bN , i.e., that
J.

.

A

v

v

06231
ct

-
t-

^Cu~Q2bP! ^ NuC&>
1

3N S 12
b

bN
D ~C5!

for b<bN ; the statement thus holds for everyN. The above
result provides a better bound forN-undistillability: the
statesra such that

b<
x*

3N/3N1/3
@12O~1/N!# ~C6!

areN-undistillable.
A
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