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Distillability and partial transposition in bipartite systems
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We study the distillability of a certain class of bipartite density operators which can be obtained via
depolarization starting from an arbitrary one. Our results suggest that nonpositivity of the partial transpose of
a density operator is not a sufficient condition for distillability, when the dimension of both subsystems is
higher than 2.

PACS numbegps): 03.67—a, 03.65.Bz, 03.65.Ca

I. INTRODUCTION Alice and Bob’s Hilbert spaces, in whigh still has NPPT.
Maximall tanaled stat i tial dWe also present some numerical evidence that indicates that
aximally éntangled states represent an essential INgreédig,o 555 of states is independent of the number of copies.

gnt in most applications of qu.ant'um informatifd]. In par- All these results suggest that there exist states with NPPT
ticular, in quantum communication one can use them fof,i-n are not distillable.

transmitting secret messages between two locally separated Tnis work is organized as follows: In Sec. Il we review

parties[2]. In practice, however, states are mixed due togome of the present knowledge concerning distillability and
interaction with the enV|r0nment, and are not usable forentang|ement, and we introduce the definitions and proper-
those applications, even though they may be entangled. Thges that are needed in order to study the problem of distill-
solution to this problem was presented by Benredtal,  ability of general density operators. In Sec. Ill we concen-
Deutschet al, and Gisin[3-5], who gave a procedure to trate on the case in which Alice and Bob have three-level
“distill” maximally entangled states of two qubits out of a systems, whereas in Sec. IV we generalize our results to the
set of pairs in certaifmixed) entangled states, by using only d-level system case. In Sec. V we show the basics of the
local actions and classical communicat|[@7]. Later on, the numerical procedure used to study the distillability of two
Horodecki family showed that any even infinitesimally en-and three copies. Finally, we summarize our results.

tangled state of two qubitéwo-level systemscan be dis-

tilled into a singlet{8]. They also proved a necessary condi-

tion for the state of an arbitrary bipartite system to be [l. ENTANGLEMENT AND DISTILLABILITY

distillable, namely, that the partial transpose of the corre-

sponding density operator must be nonposifek We consider two parties, Alice and Bob, who share sev-

. . eral pairs of particles. Each pair is in a state described by the
As shown by Perefl0], the positivity of the partial trans same density operatop. We will assume that Alice’s

pose is a necessary condition for separability. In fact, thi X . i i . X
condition turns out to be a sufficient condition for separabiIiﬁ;boieﬁg{gflescgegﬁ lti\éeh?fgﬁn;;gg)éé/«tg%df’ws \(/jvﬁln
ity in cases of both qubitétwo-level systems or one qubit ¥ = by{|1ﬁ; |2), ... |da)} an orthonormal basis ifi%

and one ftrit(a three-level systep]11]. A natural question d . .
arises: is this condition also sufficient for separability inand analogously foC’s. We will also use the notation

higher-dimensional systems? Horodecki recently shower"JGVE|'>/|*l®|J>B' that Ali d Bob ble t ioulat
[12] that there are in fact states in higher-dimensional sys- € will assume that Alicé and BoD are able to manipulate

tems which have a positive partial transpose, but are nont—he'r particles by only using local actior®perators and

separabldsee also Refd9,13-17). As a consequence, the measuremenlsano! classical cpmr_nulnicatio_n. In this case, we
positivity of a partial transpose is, except fox2 and 2 say that the.densny operatpris distillable if they can pro-
X 3 systems, not sufficient for separability. Similarly, the duce a maximally entangled state
nonpositivity of a partial transpose is necessary for distill-
ability, and is sufficient for X2 and 2<3 systems. How- d
ever, the question remains open whether this condition is |¢,d>:i z li.i), 1)
sufficient for distillability in higher-dimensional systems. di=1

In this paper we investigate the distillability of high-
dimensional systems shared by two parties, Alice and Bob.
We introduce a depolarizing superoperator that allows one tavhered=min(d,,dg). On the other hand, we say thatis
reduce an arbitrary density operator with nonpositive partiaseparable if it can be prepared from a product statg.,
transpositio(NPPT) to one with the same property, butin a |1,1)). In this section we will review some of the results
standard form that is characterized by a single parameter. Wiberived by Peres and the Horodecki family concerning dis-
analyze some properties of those operators, and show that follability and entanglement, and will introduce the defini-
any given finite number of copies there are density operatorsons and properties that are needed in order to study the
p for which one can never find a subspace of dimension 2 iproblem of distillability of general density operators.

1050-2947/2000/686)/0623138)/$15.00 61062313-1 ©2000 The American Physical Society



W. DUR, J. I. CIRAC, M. LEWENSTEIN, AND D. BRUR PHYSICAL REVIEW 41 062313

A. Partial transposition exists anN for which it is N-distillable. Converselyp is

As shown by Perefl0] and the Horodeckii8,11,19, the nondistillable iff it is N-undistillable,V N.
partial transpose of a density operator plays an important role
in establishing its distillability and entanglement properties. C. Distillability in (2@
In general, given an operatiracting onC%A (%, we define

With the properties and definitions given above, one can
the partial transpose of with respect to the first subsystem prop g

very easily prove that whed,=2 anddg=2 and ifp has a

in the basig{|1),[2), ....[da)}, X", as follows: NPPT therp is 1-distillable. The reason for this is that there
da  dg exists some|¥) such that(¥|p'2¥)<0. On the other
XTa= > GLKIX[GLDY 17K (2)  hand, sinceda=2, then the Schmidt decomposition [oF )
j=1kl=1 has at most two terms, and therefore can be written in the

form of Eq.(3). Thus in this case a nonpositive partial trans-
' pose ofp is a necessary and sufficient condition for distill-
ability.

In the following we will use a property of this operation
namely, try X'a) =tr(YTAX).

We say that a self-adjoint operat®r has a nonpositive
partial transpose iK'A is not positive; that is, if there exists
some|¥) such that{W|X"A|¥)<0. The positivity of the
operatorp'A gives necessary criteria for the separability and  In this subsection we will introduce some superoperators
nondistillability of a density operatgr. In particular,(1) if p ~ Which will be useful to study if a given density operator is
is separable, thep"™=0 [10]; and (2) if p"A=0, thenp is N-distillable. We will also show that given a density operator
not distillable[12]. These two necessary conditions turn outone can reduce it to a standard form which is characterized
to be sufficient fordy=2 anddg=<3 [8]. However, it has by a single paramet¢f.8], and that preserves the distillabil-
been shown that the first condition is not sufficient for sepaity properties of the original state. This standard form was
rability for the rest of the casesd{=2 anddg>3, and already introduced in Ref19].
da,dg>2) [12]. On the other hand, nothing is known about ~ Letus first define some useful projector operators. Given

whether the second condition is also sufficient for nondistill-two quantum systems with corresponding Hilbert spaces
ability in these cases. we denote the permutation operator y, and by

D. Depolarization in (9@ (¢

B. Distillability Ag=(1=11g)12, S=1-Aq=(1+11g)/2, (5
The problem of distillability of general density operators the projector operators onto the antisymmetric and symmet-

acting onC%® (% can be expressed in a simpler fofi. A ric subspaces oft?®CY, respectively. Note that t&;)

density operator is distillable iff, for a certain positive integer =d(d+1)/2 and tr@y)=d(d—1)/2. We also define the

N, we can find a state of the form projector operators

[¥)=alegallyatblezalTze, @ Pa=|da)( @, Qu=1-Py, ©
such that where|¢y) is the maximally entangled state defined in Eq.
(V|(p=N)Ta|W)<O0. (4)  (1). One can easily check that

Here{|e;)a,|€,) ) are two orthonormal vectors irtfa)®N, o1 o1

and{|f,)g,|f,)g} are two orthonormal vectors inCfe)®N, Py=g(1=2Aq), A=5(1=dPy). (7)

This condition basically means that if Alice and Bob shidre

pairs, one just has to find a two-dimensional subspace in t . T :

whole Hilbert space of Alice, and another in Bob’s such thar;\%:"\-/e define the depolarlzatpn superoperdmyracting on any

- N given operatoiX, as follows:

the projection ofp®" in such subspaces has NPPT. The rea-

son for this is that if one finds such a subspace, then accord-

ing to what was exposed in Sec. Il A one can distill a maxi- D(X)=Ay tr(AaX) + dtr(SdX) _

mally entangled state if?® C2, which can be converted into tr(Aq) tr(Sq)

a maximally entangled state iifa® (%, Conversely, if one _ _ _ _ _

can create one of those states, then one can also produce offdS Superoperator is a projector, is self-adjojoh the

in (2@ (2, and therefore this ensures that Ed4) must be Hilbert—Schmidt space of operators acting ¢t ), and

fulfilled. preserves the trace. In Appendix A, we show that we can
Thus, in practice, one can analyze for each number oyvrite [19]

copiesN=1,2, ... whether condition4) is fulfilled. In or-

der to facilitate this task, we will use the following defini-

tions: If for a givenN condition (4) is fulfilled, we will say

that p is N-distillable. On the other hand, if for a certalh

theredoes not exisany | V) satisfying Eq.(4), then we will  where the integral is extended to all unitary operators acting

say thatp is N-undistillable. Thusp is distillable iff there on % and fduy=1 [du represents the standard invariant

®

D(X):f duy(UeU)X(UeU)T, 9
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Haar measure on the group SU{. We will later use the
partial transpose of>(X), and to this aim we define the
superoperator

P Qu£(10,2)(0,1)), (17

which is obviously positive and separable, in which case the
same holds fopao. For B<0 (< agp) we can always obtain

5(X)E[D(XTA)]TAZJ duy(Ur@U)X(U*eu)' p. by adding the identity operataiwhich is separableto

(109  Pa, [this is due to the fact that t8) >tr(Aq)].
Thus, for >0 (a>ayp), p, IS nonseparable. One can
tr(QaX) easily check that this condition is equivalent to
=Patr(PX) + Qa5 3+ (10b) Y a

tr(Agp.)>1/2. (18)

whereU* denotes complex conjugation in the basis in which

the partial transposition is defined. This superoperator is alsghis last form allows us to show that for any given density
a projector, self-adjoint, and preserves the trace. Note that f§peratorp with NPPT, one can always transform it, using
any unitary operato¥ acting on(* we have local actions, to the form of Eq12), such that it still has
NPPT[18]. Let us show this. Suppose that for a given),
(¥|pTA|W)<0. We can write|¥)=3="=I¢;|u; ,v;) where
lup)?_, and|v;); form an orthonormal basis. The operator
p can be transformed by local operations pax (A"

Form (9) shows that the superoperatdPsand £ can be  ©B")p(A®B), with tr(p,"P,)<0 (by simply taking A
implemented by means of local operations. In particular, it=3",[uf )(i|/c;+ =, Ju* )i and B=32 ., 1|vi)il).
shows that any density operatercan be transformed, using Using that 0>tr(p:APn)=tr(pSP:A), and Eq.(7), we imme-
local operations, to the form diately obtain that tps)=tr(A,p)=1/2. SinceD con-
serves this quantity, we obtain th@t(ps) has a negative
partial transpose.

As pointed out by Horodecki and Horodecki8], the
problem of distillability can be reduced to a study of density
wherea is such that trf\qp) =tr(Agp,), andN(a) =tr(Sy)  operators of the form of Eq12). If we find that all those
+atr(Ag) is a normalization constant. That is, one can de-pperators with NPPT are distillable, we will have shown that
polarize any density operator to the one-parameter famiWWPPT is a necessary and sufficient condition for distillabil-
[Eq. (12], while keeping the weight in the antisymmetric jty. Conversely, if we find that there exists an operator of the
subspace. We will be more interested in the partial transposgrm of Eq. (12) which has NPPT, but is not distillable, we
of p,, which is given by will have shown that such a condition is not sufficient. In the
following sections we will show that there are density opera-
tors of the standard form with NPPT which are not
N-distillable for certain values dfl. As we have seen in Sec.

Il B, we can study this by checking whether there exist vec-
tors of the form of Eq(3) fulfilling condition (4).

(VeV)D(X)(VeV)T=D(X), (11a

(V*@V)EX)(V* @ V) T=&(X). (11b

1
D(p)=pa=y - (Sat @Ag),

N(a) (12

1
[D(p)]T4=E(p™») :W(Qd_ BPq),

where M(B) =tr(Qq) — B is a normalization constant, and
the relationship betweem and B8 is B=[(a—1)(d—1)
—2]/(a+1)<d—1. Note that since

13

ll. N-DISTILLABILITY IN (3®C3

p.=D(p,), pZA=5(pZA), (14 We consider the cas#,=dg=3, and a density operator
of the form
we have that
1
(UeU)p(UsU)'=p,, (153 PQZW(SJFCYA). (19
(U*@U)p AU*@U)T=plA (15b)

where we have omitted the superindicgs 3, and N(«)
=6+3a. According to the discussion in Sec. Il D, we just
ave to considetr= ay=2, since otherwise,, is separable.
or the partial transpose we also have

for any unitary operatot).
Using the properties derived above, one can easily checE
that

paisseparabI@plAzm:,BsO. (16 TAZL _
Ps= i QAP (20)

The last equivalence follows directly from E(@.3). For the

first one we have=): see Sec. Il A; &). We have that, for
B=0[i.e,a=ap=(d+1)/(d—1)=tr(Sg)/tr(Ag)],

where 8=(2a—4)/(a+1), with 2=8=0 and M(B)=8
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A. 1-distillability

We look for a vector of the form of Eq3), such that Eq.
(4) is fulfilled. ChoosingU such thatU|e; ,)=|1,2), and

using property(15b), we see that we can restrict ourselves to

the subspace spanned fiit),|2)} in Alice’s Hilbert space.

Defining byl, the projection operator into this subspace and

by 15 the identity operator i, we obtain, after projecting
p;A onto such a subspace,

T

2(1+B)
ﬂ’;pﬁAﬂg\ulfg@J@——( £

3 P2,

(21)

which is positive iff 8<1/2. Thus, we obtain thap, is
1-distillable iff 3>1/2 (or, equivalently,a>3).
B. 2-distillability

Let us now consider two pairs, in a stagte. We will
show that forB=<1/4 the statey, is 2-undistillable. For any
state| V) of the form of Eq.(3) we have

(V|QWe (Q®—pP@)2)| W)
=tr[ tr (W) (P|QM)(QP—-PP)2)], (22)
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tive operatorsX. Relation(iii) can be obtained by using)
and the separability of in a similar way as in Sec. IlI B.
Combining(ii) and (iii ) we find

(V]aQ®N- 2>, Q®N kP w)=0,

perm

(29

with ak=2([2')3’\“k, and the sum runs over all possible per-
mutations of the pairs. By summing E®5) for all odd k

and using tha, ,qa,=4"—2N=3", one finds, forBy

<PBn,

O=(¥|Q*N-By 2 X Q°N*PoK W)

k odd perm
<(V|Q*N- 2> BL > QNP W)

k odd perm
<(V[(Q—BxP)*N V). (26)

We used that maxBy)<By (for By<Bn=1) to obtain the
first inequality (line 2), while we added all positive terms

where the superscripts 1 and 2 refer to the first and secori@/€nk) in the second stefline 3). This is already the de-

pair, respectively. Using the fact th&§ is separable, and
therefore that it can be written a®=2;c;|a;,b;)}{a;,bj]
with ¢;>0, we have

tr1(|\1’)<‘I’|Q(1)):2i il W)W, (23)

where|W;)=(a; ,b;|¥) is a state acting on the second pair

which itself has the form of Eq9). Thus, according to the
results of Sec. llIA we have that¥;|(Q®—P2)/2)| ;)
=0 and thereforg ¥'|Q®e (Q—P()/2)|¥)=0. In the
same way we have thgt¥|(QM—P®)/2)e Q@ |W¥)=0,
ie.,

p(2) p(2)
2 | _pN)g——
7 ) PP o= |¥).

(29)

(1)
Os(\PI(Q(l)— PT)®(Q

Using the fact thaPM & P(?=0 we obtain the desired re-
sult. Note that our results do not imply that for &4
<1/2 p, is 2-distillable. In fact, as shown in Sec. V, numeri-
cal calculations indicate that it is 2-undistillable.

C. N-distillability

We consider nowN pairs, in a state,. We will show
that for B<4~N the statep,, is N-undistillable. For any state
|¥) of the form of Eq.(3), one can check the following
relations: (i) (W|P®K|W)<2/3, (i) (¥|Q®N kP W)
<2/3, and(iii) (¥|Q®N|W)=1/3". To show(i), one uses
P?kz P4k and property(15b), from which it follows that the
projection into the subspace spanned{t),|2)} gives the
maximum value fo{ W|P®X|W). From (i) we immediately
obtain(ii) by using tha{ ¥|QX| V)< (W¥|1X|¥) for all posi-

sired bound, i.e. for & <4"N<B=1/(4"-2"), the state
p. is N-undistillable. Again, this does not mean thgf is
N-distillable for 4 N<B=<1/2. In Appendix C we present a
better bound forB.

IV. N-DISTILLABILITY IN  CP®(P

We consider the casg,=dg=d, and a density operator
of the form of Eq.(12), with the partial transposition given
by Eq.(13). Similar techniques as in thie=3 case can also
be used to obtain bounds for arbitragly One finds for ex-
ample thatp, is 1-distillable iff 3>d/2— 1. We also obtain
thatp,, is 2-undistillable for3=(d—2)/4 andN-undistillable
for B=min(By.BY), with By=(d—2)N/[(d+1)N-(d
—1)N]. Note that the minimum is required here, since—
differently from thed=3 case—one can have thgg=1. In
this case one has to chosgy<p"N, which implies

ma&(ﬂ',ﬁ,)sf%N to ensure that the first inequality in E@6)
remains valid.

Furthermore, there is an interesting relation between the
statesp, for differentd. Imagine we would like to convert a
single copy of a state, in (Y@CY to a state inCke C* (k
<d) in an optimal way, i.e., to obtain a new which is as
large as possible. We show here that whenever we convert a
statep, to some lower dimension, there will always be some
states which lose the negativity of their partial transposition.
In order to prove this, we consider vectdrd,) with k
Schmidt coefficients, and show tr(alfd|pZA|\Pd><0, while
<\I’k|pZA|\I’k>>OV |¥,). Due to property(15b), one can re-
strict oneself to the subspace spanned|ty . . . |k)}. Let us
denote the identity operator in this subspacd,hyOne finds
after projectingplA ontol, in A andB,
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k(1+2)

ol Mo 11t 12— 5

Py (27)

which is positive iff =< (d/k) — 1, while pZA before the pro-
jection was positive iff3<0. Thus all states with €8
=<(d/k) —1 lose the negativity of their partial transposition
after the optimal projection onto ledimensional subspace.
The newp, can be calculated from3, of the initial state by
Bk=(k/d)(Bg+1)—1.

Finally, let us consideN copies ofp, of dimensiond,

which can be viewed as a state ¥ ©C®®". With

tr(Agp.)=\q, one finds that the stat®(p®N)=p,—the
state in the high-dimensional
depolarization—has A gn=tr(Agnp,) =[1—(1—2x4)"N]/2.
One checks that fax4>1/2 (i.e., p,, is inseparablewe have
Aan=<M\4VN, which simply means that the weight in the an-
tisymmetric subspace decreases when going to more copi
Note that using this notation, we have that the siateis
separable foin<1/2, while it is 1-distillable forA>[3(d
—1)]/[2(2d—1)], which tends to} for d—oe.

V. NUMERICAL PROCEDURES

In general, we are interested in showing there exi$t)a

of the form of Eq.(3) for which condition(4) is fulfilled, i.e.,
A=(T|R|¥)<0, (289

where we have defind@=(Q— BP)®N, with 0<B=<1/2. In

order to check this we can minimi2ewith respect tde; ,),
|f1 2, anda while keeping the normalization and orthogonal-

ity relations. One can readily check that the minimization

implies
(el RIW)=Noalf1), (29a
(€| R WY =N\gb|f,), (29b
(f1|RIW)=Npaley), (299
(f2|RI¥)=N\gb|ey). (290

Note that the operato(e;|R|e; ) is strictly positive, and
therefore invertible. The reason for that is that for &fs,
we have(e, f|R|e,f)=(e*,f|R™A|e*,f)>0 since according
to Eq. (12) we can always writeR"A=cl+B (whereB=0
andc>0). On the other handa,b# 0 since otherwis¢¥')
would be a product vector and therefore=0. Thus we can
use Eq.(299 to write

b
f1)= = ———=r—(ei|Rley) |f,), 30
)= v e miey (@lRle2) 12, (30
which, after substituting in Eq29b), gives
(e2lF(No)lez) [f2)=Nolf2), (3D

where we have defined

PHYSICAL REVIEW A 61 062313

pR>0 R*20
~(d+1) 0 (d/2-1) (d-1)
Ba
N —— —— N—
separable 1-distillable

FIG. 1. Separability and 1-distillability properties of, [Eq.
12].

1
F(Ng)=R—Rley) —=—— (&R 32
(No) | 1>(e1|R|e1>—)\0< 1l (32
Hilbert space after The normalization off,) gives
al? 1 2
= =(es,f)|| 5| |e2.T2). 33
b < 2 2| <91|R|91>—>\o | 2 2) ( )

®Phus the problem is reduced to showing whether &4)

possesses solutions farg<<0. In that case, we can find
a,b,|f1) using the other equations. On the other hand, if we
have that

(e,|F(0)|e;)=0 (34)
for all |e,), then we will have that there exists no solution
with Ay<<0. This is so sincé(—|\q|) —F(0)=0.

We have made a systematic search of the stptey
which minimize the minimum eigenvalue ¢&,|F(0)|e,)
=0 ford=3 andN=2 and 3. Note that foN=2 copies we
can further simplify the numerical search by using the sym-
metries of the problem, which imply that we can choose
le)) =32 ¢ii,i) with ¢;=0.

In both cases we have found that this minimum eigen-
value is=0 for B<1/2, which strongly indicates that, is
3-undistillable (and hence also 2-undistillabléor f=<1/2.
This is exactly the same bound that we had obtained analyti-
cally for 1-undistillability.

VI. CONCLUSIONS

We have shown that in order to study the distillability
properties of bipartitel-level systems, it is sufficient to con-
sider only the one-parameter class of statg$Eq. (12)]. By
investigating the distillability properties of this family of
states, we found strong indications that this family provides
examples for nondistillable states with nonpositive partial
transposition. In particular, we found that for any given num-
ber of copiesN there existN-undistillable states which have
NPPT. Guided by the results of the numerical investigations,
we conjecture that fod=3 the stateg, are nondistillable
for B<1/2, while they have NPPT fg8>0 (see also Fig. 1

Note addedRecently we became aware of the results of
DiVincenzoet al. [20], in which they also found evidences
for the existence of nondistillable states with NPPT.
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2 P U U@ Ui=D(p) =ps (B1)
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APPENDIX A: INTEGRAL REPRESENTATION OF D(X)

Here we show that the superoperaidas defined in Eq.

®C9,

|<o5>=%<|i>A|j>Br|j>A|i>B>,

(8) can also be written in the form of Eq9). Here, for

convenience, we restrict ourselves to opera¥ra/hich are Ix=1K)alk)g, (B2)

density operatorp, but exactly the same line of arguments

holds for arbitrary self adjoint-operato¥s As shown in Ap-  withi<j and (,j,k) €{1, ... d}. Note thaf @ij) provides a
pendix B, we have that the depolarization superoper®or basis of the antisymmetric subspacg(,(d), while

can be implemented by a finite sequence of bilocal opera{-lqof}),l)(@} is a basis of the symmetric subspae¢g(d). The
tions[Eq.(B1)] of the formU ® U. Furthermore we have that projectors into the symmetric-antisymmetric subspace can
the projector onto the antisymmetric subspace is invarianthus be written
under unitary operations of the formu®U, ie., U

®UAUT@UT=A,, which can be easily seen by using that d

Ay=(1—114)/2. From this property automatically follows Ad:i l.:lz(i<j) @iy X i

that p,, [EqQ. (12)] is also invariant under unitary operations '

of the formU®U, sincep,(1+aAy). It is now straight- d d

forward to show Eq(9) by using, for anyV, Si= 12( ) |cpf]f><<p§|+k21 x> xud - (B3)
i,j=1(i<j =

J duy(UaU)p(UaU)T

= f duy (U'@U")(VaV)p(VeV)T(U'au")T,
(A1)

with U'V=U. Taking p, such thatz,p,=1, we can write
f duy(UsU)p(Usu)T

:g pkf duy (U'@U") (U@ Uy)
Xp(U@U (U eut

=f duy (U ®U")p,(U'@U")=p,=D(p),
(A2)

where we used EqA1) in the first equality, while the sec-
ond equality follows from Eq(B1), and we finally used the
invariance ofp, under operations of the forrd ®U. This
already shows that Eq9) is fulfilled, i.e., D(p)= [duy(U
@U)p(UaU)™.

APPENDIX B: DEPOLARIZATION

We are going to show now that an arbitrary statean be
depolarized to the standard forf&q. (12)] by a finite se-
quence of bilocalrandom operations without changing the
weight in the antisymmetric subspagg,(d), i.e., we show
that there exist unitary operatdds, and probabilitiegp, such
that

Let us writep in basis(B2). In order to prove Eq(B1), we
divide the depolarization procedure into three steps.

(i) We show that one can makediagonal in basisB2)
without changing the diagonal elements.

(i) We prove that the antisymmetric subspé¢gd) can
be mixed up, i.e., one can equalize the coefficients of
|¢ij ){¢ij | without changing the weight ift,(d).

(i) Finally we show that the symmetric subspace can
also be completely mixed up without changing the weight in
H(d).

These three steps together ensure thaain be depolar-
ized to the standard form,, .

1. Diagonalizing p

By mixing we understand in the following that a certain
operationU is (randomly performed with probabilityp by
Alice and Bob, while with probability +p no operation is
performed. The resulting density operator after this mixing
operation reads

PneW:p(U®UPUT®UT)+(1_p)P- (B4)
We define the operatiod, as
Uj[k)=e'"]k), (B5)

i.e., the statel) picks up a minus sign while all others re-
main unchanged. Let us perform a sequencel ghixing
operations, using $3 and U; with I={1, ... d} respec-
tively. One can easiliy check that all diagonal elements re-
main unchanged, while all off-diagonal elements of the form
leii Y xul andl@ﬁ)(@oﬁj,l for (i#i’,j#]’) are eliminated.

Let us now define the operatiddy, , which introduces a
phase for state|l) while it leaves all other states unchanged.
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Again performing the same sequencedahixing operations 3. Mixing of H(d)

as described above, but with, replaced byU,, one can Note that the depolarization of the antisymmetric sub-
check that all off-diagonal elements of the fofm)(x;| are  space also mixes the subspace spannef]dy)} in a simi-
eliminated. lar way. Here we now show that one can also depolarize the

We finally define the operatiod,, which simply swaps sybspace spanned Byy,}, and also finally that these two

states|k) and |I) while leaving all other states untouched. sybspaces together can be mixed up. To prove the first step,
Now performing a sequence of mixing operations using alle; s define the operatid, as follows:

possible combinationk<l {1, ... d} for U, andp=1/2,
one gets rid of the remaining off-diagonal elements of the U,|k)=|(k+|)moo(d)). (B7)
form |@;; ){e;;| without changing the diagonal ones. Thus
can be made diagonal in bagB2) by a sequence of bilocal

Now performingU,®U,,I={1, ... d}, each with probabil-
operations. P gu U, 1={ } p

ity p=1/d, ensures that the subspace spanned|Ry)} is
completely depolarized, i.e., thatnow has the form

2. Mixing of H,(d) d

d
Let H;, be the subspace spanned{li)gpi’oj)} for fixed ig. p=aAg+hb > |(pi-}—><goi-}—|+c2 Ixi){xl. (B8)
) . . Li=T(<]) k=1
In a first step we will show that one can depolarize all sub-
spacesH; independently, while in a second step we prover, ihe second step

that these subspaces can be mixed with each other.
To depolarizeH,, one just has to keep statk) and per- 1 4

form (randomly one of the cyclic permutations of states Tj)=—= >, e27i-DlD/d|py, (B9)
{]2), ... |d)}, each with probabilityp=1/(d—1). Similary, Jd &

one depolarize®t, by keeping state§1),|2)} and perform-
ing, with probabilityp=1/(d—2) one of the cyclic permu- i : . . .
ta?ions ofpthe state)%p3), ( ,|d))}. SinceH, is )glrea‘()jy de- probab!l!ty pr=d/(d+1), an.d the identity operation with
polarized, it is not affected by this operation. One canProbability py=1—pr, the diagonal elements of the sym-

continue in the same way until one has depolarizad,. So ~ Metric subspace will each be identical {dd(d—1)

the antisymmetric part of the density operator now has the" 2¢dl/[d(d+1)]. The introduced off-diagonal elements

can be eliminated using the procedure explained above. Note

we define the unitary operation

One can check that if we perform the operatib® T with

form
that the antisymmetric subspace is not affected by this kind
d-1 d of operation, and will thus remain untouched. Thus, finally,
AgpAg= 21 a 2 ) leij e |- (B6)  we manage to show that can be converted to the standard
= j=i+

form [Eqg. (12)] by a sequence of local operatiditsy. (B1)].
The weight in,(d) was not affected by any of the mixing

The second step starts by mixing &f;,_; with H4_,, i.e.,  operations used, which ensures thahff) =tr(Agp,).
equalizing the coefficientay_, andagy_,. To achieve this,

both Alice and Bob swap statgsl—1) and |d—2) with APPENDIX C: BETTER BOUND FOR B
probability ps= 2, or both apply the identity operator with ) )
probability 1— ps. If one now depolarize$ty_; and Hy_» In this appendix we prove that for any vectdr) of the

independently as described in step 1, one finds thatorm of EQ.(3),

lo- 1 @@-vl and|eg-2)){@@-2);| now all have the 1 8

same weight, i.e., the coefficients are equal. Thus the sub- _ N . F

spaceHy 4 is completely mixed withHy_,. One now con- (¥|(Q- PN W)= 3N 1 Bn)’ (€D
tinues by mixing the subspacé$,_3 with {Hy_»,Hq_1}

and so on, until one reachés,. for B<pBy, Where
We now investigate one particluar step in this procedure,
namely, the mixing ofH, with {H, 1, Hiros - - - Hg_1}- X

Both Alice and Bob swap stateék) and |k+ 1) with prob- (C2
ability ps=(d—k)/(d—k+1), or both apply the identity op-
erator with probability +ps. After this one depolarizes
H;(j=<k) independently, then mixe¥y_, with Hy_, as de-
scribed above. Next one mixdsy_; with {Hy_», Hy_1},
and continues in this way until one has mixé&d, and

{Hy11,Hks2, - - - JHq_1}- It can be checked that after this

procedure all weight factoraj are equal for [<k). Thus
once one has mixe#{,; with {H,,Hs, ..., Hg_1}, one has 1
achieved that the whole antisymmetric subspace is com- <\I,|Q(Q_IBP)®N—1|\I,>2_(1_

pletely depolarized, i.e. it can be written agA . 3N B

Bn= YENES

and XN=X*[1-O(1/N)] as N—w, where x*=3(1
—37 Y313 and O(1/N) denotes a quantity of the order of
1/N.

The proof is by induction. FON=1, we haveB;=1/2.
Assuming that the statement holds for- 1, we observe that

B

) . (CY
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and the same holds for all possible permutations with respect 1 B
to the copies. Adding the left-hand sides, dividing the sum <\If|(Q—,8P)®N|\If>>3—N( 1——) (CH

by N, and rearranging various terms, we find, for laije Bn
_ ®N

<\p|(Q_ Eﬂp) |W)= iN( 1— B ) for B=<pBy; the statement thus holds for evd‘_ﬂyTh_e above
N 3 Bn-1 result provides a better bound fox-undistillability: the

NB3 statesp, such that
-7 [1+ O(1/N)]—0O(B®).
*

For B=0(By), the last correction term in the above inequal-
ity can be safely neglected. It is easy to check that the right-
hand side has zero #@= By, i.e., that are N-undistillable.
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