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We exhibit a two-parameter family of bipartite mixed staigs, in ad® d Hilbert space, which are negative
under partial transpositioNPT), but for which we conjecture that no maximally entangled pure states in 2
®2 can be distilled by local quantum operations and classical communig&i@i CC). Evidence for this
undistillability is provided by the result that, for certain states in this family, we cannot extract entanglement
from any arbitrarily large number of copies @f. using a projection on 2. These states are canonical NPT
states in the sense that any bipartite mixed state in any dimension with NPT can be reduced-6¢ LQ
operations to a NPT state of thg, form. We show that the main question about the distillability of mixed
states can be formulated as an open mathematical question about the properties of composed positive linear
maps.

PACS numbd(s): 03.67.Hk, 03.65.Bz, 89.76c

I. INTRODUCTION indicates thain copies of the state are available, and we
will be concerned with asymptotic results ads taken to
Maximally entangled quantum states, when their twoinfinity. LQ+CC operationgsometimes called LOCC in the
halves are shared between two parties, are a uniquely valliterature are obtained by any arbitrary sequencelafal
able resource for various information-processing tasks. Useduantum operationG@ppending ancillae, performing unitary
in conjunction with a quantum communications channel,0perations, discarding ancillpsupplemented bylassical
they can increase the classical data-carrying capacity of th&ommunicatiorbetween Alice and Bob.
channel, in some cases by an arbitrarily large fagtgrPos- An interesting fact about this possibility for thistilla-
session of maximally entangled states can ensure perfect ption of entanglement is that it is neither rare nor ubiquitous;
vacy of communication between the two parties by the use of finite fraction of the set of all possible bipartite mixed
quantum cryptography2]. These states can facilitate the Statesp can be successfully distill@], and a finite fraction
rapid performance of certain forms of distributed computa-cannot[7]. Much work has been focused on whethefalls
tions [3]. Of course, maximally entangled states are the keynto a distillable or undistillable class, and this paper is pri-
resource in guantum te|eportatibm]_ On the other hand, the marily a contribution to this classification task. Before de-
surreptitious establishment of entanglement between twgcribing our contributions, we will give a brief review of
parties can thwart the establishment of trust between partigd/evious results on classifying states according to their dis-
via bit commitmen{5]. tillability.
How can two parties come into the possession of a shared Multipartite density matricesp are consideredunen-
maximally entangled state? If the storage and transportatiof@ngledif there exists a decomposition pfinto an ensemble
of quantum particles were perfect, then the state could havef pure product states; for the bipartite case this means that
been synthesized in some laboratory long in the past an¢€ can write
given to Alice and Bol(our personified partigsfor storage
until needed. In practice no such perfect infrastructure exists.
Since the most interesting scenarios for the use of quantum p=2 pilai)ai|®|B)Bil. (1.7
entanglement are in cases where Alice and Bob are remote !
from one another, we will consider the long-distance trans-
portation of quantum states needed to establish the shar
entanglement to be difficult and imperfect, while the local
processing of quantum informatiganitary transformations,
measurementve will assume, for the sake of analysis, to be

eSSJzn(';ially Eerfect. . h ish and 2»3 Hilbert space$8]. This became clear shortly after
h r;] er these as?]umptllons, when we wis tofals?es[ﬁe introduction by Peref9] of a computationally simple
whether a given physical setup is or is not useful Torierion for separability, thgartial transpositiontest. The

entanglement-assjsted information .processing, our a.nalysﬁartial—transpose operation, denoted asl' when the trans-
focuses on the m|xegl guantum staten _the hands of AI|ce_ pose is applied to Bob’s Hilbert space, is specified by the
and Bob after the difficult transportation step. We enquire

action
whetherp®" can be transformed, by local quantum opera-
tions and classical communicatiéloQ +CC) operations, to a
supply of maximally entangled states. Here tha notation (jlaeT)(p)|khy=(il| p|kj). (1.2

elqlese are also referred to as separable states. It is clear that
separable states are never distillable. However, the converse
proposition, that entangled states are always distillable, is
false in general, although true for density matrices @22
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when applied to half a maximally entangled stgle"), pro-
duces the mixed staje Then, the NPT property is related to
the mapT-S, and its compositionsTeS) “". The open ques-
tion about distillability can be posed compactly as a question
concerning the mathematical properties of these maps. This
approach also permits us to consider the question of whether
distillability is an additive property, that is, whether the
amount of distillable entanglement pf® p, is just the sum
of the two separately. Horodeckt al. [12] gave some evi-
dence of a kind of undistillability involving single copies of
PPT bound entangled states. In the positive-map language,
@® ®) the most general questions about nonadditivity can be com-
FIG. 1. Layout of the set of all mixed statéa) General case for pactly framed._ _This shows _that further deyelopm_ents Of. the
arbitrary Hilbert space dimensiom@n. The “?” region, that of theory of positive maps will be' very desirable in settling
bound or undistillable NPT states, is the subject of this paper. Thi§ome of the fundamental questions about the entanglement
region is known to contain no states foed. (b) Simplified situ- ~ Properties of quantum states. _ _ _
ation for a dimension of 2 and 23 for which it is known that This paper develops in the following way: Section Il in-
all PPT states are separable and all NPT states are distillable. ~ troduces the canonical statpg., and shows the LCC
mapping that produces them. Section Il considers the distill-
While application ofT to Alice’s Hilbert space will lead to ability of any statep by application of the basic criterion of
identical results, we will always apply it to Bob’s space in Whether it remains entangled when projected into22 Sec-
this paper. Her¢i) and|k) indicate an orthonormal basis on tion Il A considers a single copy of the, state, establish-
Alice’s Hilbert space, angj) and|l) the same for Bob. Itis Ing the py, for which there exist such projections int@2.
easy to show that separable states are positive under part@ection Il B takes up the much harder case of multiple cop-

distillable

NPT=distillable

PPT=separable

transpose, that is, that the matrix ies, with Sec. IV proving the result that, for som?c” states,
no entanglement remains upon projection into2 even for
(1eT)(p)=p"T (1.3 arbitrarily largen. Section V recasts the question about dis-

tillability in terms of the 2 positivity of linear maps isomor-
is a positive semidefinite operator, denoted py'=0.  phic to the mixed states.
[Equation(1.3) introduces the partial transpositi¢RT) no-
tation that we will use throughout this papeFhis positivity
property is abbreviated as PPT; states for whi€i#0 are Il. A CANONICAL SET OF NPT DENSITY MATRICES
called NPT states. It was soon recogniz#d] that the set of

PPT density operatoysis larger than the set of unentangled S : X
states(except in 292 and 223); see Fig. 1. It was also sess the distillability of all NPT states. We will attempt this

discovered that all PPT states, even those which are insepgsriiﬁ;%ngoqxof%; f\ﬂ?ﬁg'ecrssu_?sgt SOJJSheet wiTIT r?ésvtg\slepr)a-
rable, are not distillable. The existence of such states, i y : ’ '

which entanglement is presefsince entanglement is re- _have a specific relation to the set of NPT states, in that there

quired to synthesize the statdsut cannot be reextracted in is a LQ+CC operation that will map the general NPT state

pure form, was a surprising observation, indicating the posQnto one parameter in our two-parameter family. This

sibility of a fundamentally new form of irreversibility in LQ+CC operation preserves the NPT property. Thus, if we

: : . . I | could exhibit a protocol for the distillation of our two-
gggasrgsl.erits:\(tes having this property are said to po parameter family, this would suffice to show that all NPT

The introduction of the PPT-NPT classification suggested'States were .d|st|llable. ngever, our ca.no_nlcfal tWQ'
a conjecture about distillability, namely, that all states with parameter family has properties which make distillation quite

NPT would possess distillable entanglement, and it is thé1ard for certain ranges of parameters, suggesting that in fact

. . Some portion of the full set of NPT statesrist distillable.
purpose of the present paper to explore this conjecture. Our canonical states, with real parametbrand ¢, are

While no rigorous results have been obtained concerning thi\‘?vritten
conjecture, we will introduce a two-parameter family of NPT
states for which we obtain evidence that the conjecture is

The desired, but too-ambitious, program would be to as-

false. That is, we consider it likely that the family of states d-1 d-1
we introduce below has only bound entanglement, despite pbc:az lii )(ii|+b 2 R
being NPT. i=0 i,j=0i<]
We have been able to recast the question about the distill- d-1
ability property of thep, states, or of any NPT states, as a T
question about the 2-positivity properties of certain positive +Ci,j:20,i<j i (i @

linear mapg11]. These maps arise because there is a one-
to-one correspondence between mixed statesi®ua and
completely positive linear mapS on d dimensions which, Here
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same. Here is the sequence of £+QC operations that will
=5 reduce the general NPT stgi€o py..
(i) Rotation to the Schmidt basi8ve write |¢) of Eq.

1 (2.4 as
(-1
d-1
)= 2 Wila)els). (25
1 Hered<=min(n,m). Let U a;)=]i) andUg|B;)=]i), or
d(d+1)
[4)=UAeUg|9), 2.6
c where
d-1
|4)=2, Wili)eli). @7
A
We definepV=U,®Ugp U@ UL . Equation(2.4) can be
dd-1) d@3d-2) d(2d-1) d(d-1) rewritten as
FIG. 2. The relevant region of thiec parameter space for the (¢| (1® TV (pM) |$)<0, (2.9

statesp,.. All NPT states can be brought by LLQCC action into

the region NPT, triangle BFK. For general dimension, region where TV is transposition in a rotated basis determined by
CFKGiis distillable by projection on one copy, and regBE&GKis Ug. The negativity of the expressidiEq. (2.8)] does not
pseudo-one-copy undistillable. I®3 we have strong evidence that depend on the basis in whichis performed; therefore, we
regionBCGK s pseudo-two-copy undistillable. We conjecture that will replaceTU by T again in the remainder.

the entire regiolBCGK s undistillable by any means. All states in " T . T
the PPT regiorABKJ are separable; that is, there are no bound PPTas (i) Local filtering (see Ref. [)We define the Statkgl) >

states among thg, set.
1 d-1
[vij =5 (1D =Ciil). 2.2 @) ﬁ;o liyeli) 2.9

The states live in @®d Hilbert space. The parametarin ;Lk;egg'f;ti%p:qeratlorvv on Alice’s Hilbert space is defined by

Eq. (2.1) is not independent, because of the unit trace condi-
tion it is related tob andc by We1d*)=|4). (2.10

da+(b+cyd(d-1)2=1. 23 We apply this local filter to the statel”) to obtainp(":
The range of interest for the parametbrandc is shown M) (it

in Fig. 2. As we will show in Sec. lll, the state is NPT in two (”)_(W® 1) p™ (W®1) (2.11)

triangular regions of parameter space; one of these regions, P Tr(Wwe 1) p )

NPT,, which will not be of much interest to u&ll these

states are distillabje lies above the straight linkkJ, and is  Equation(2.4) implies that

defined by the inequalitg>2/d?+b(d—2)/2. The region

NPT,, about which we will have much more to say, lies in (®*] (18T)(p) |[®")=Tr|d " d*| (1eT)(p)<O0.

the regionBFK and is defined byo>1/d(d—1)]. Region (2.12

ABKJ contains PPT states; in Sec. Ill B we prove that all : - .
these states are also separable. We now use that TrA" T(B) ]=Tr[T'(A") B] andT'=T to

To show thatpy, represents a canonical set, we will ex- rewrite this NPT condition in a form which will be conve-

hibit a procedure involving only L@CC operations that nient below:

will convert any NPT density matrig, that is, one satisfying (i)
the condition TrHpY <0, (2.13

(¢ (1®T)(p) [)<0 (2.4  with

for some statey), to one of thep,. form having NPT. We H=(12T)(|® D). (2.14
will take the Hilbert space dimension to bem; that is, we
will not restrict Alice’s and Bob’s dimensions to be the This Hermitian operatoH can be written in its eigenbasis,
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1 d-1 1 d-1 d-1 c+b d-1
H== 2 fiGil=5 2 )| pW=a2 fii)il+—— 2> [ij)iil
d i=0 d i,j=0/<]j =0 2 i,j=0j#]j
d-1 d-1
1 c—b
= 2 sl (2.15 = S i)l 221
d i,j=0i<j 2 i,j=0j#]
where But comparing with Eq(2.1), we note that we have arrived
at the desired canonical form
. 1 . W=p . (2.22
|¢ij>zﬁ(|”>i<“|)- (2.19 P~ Pbe

As the Hermitian matribH of Egs.(2.14) and(2.15 is again
invariant under this symmetrization, we note that the NPT

L . .
(iii) Project into d®d. Since|® ™), andH, have support I_property is again preserved:

only ad®d-dimensional subspace of the Hilbert space, A

ice and Bob can project locally onto this subspace and leave TrHp® =TrHp,<O0. (2.23
the NPT condition[Eq. (2.12], or Eq. (2.14), unchanged. ¢
We call the resulting NPT density matrix thod p("). We may summarize the foregoing line of argument as a theo-

(iv) Diagonal twirl. Alice and Bob perform a equal mix- rem.

ture of identical unitary operations, which are diagonal inthe  Theorem 1Let p be a bipartite density matrix on®@m
Schmidt basis given by the vectofis, giving statep™.  with the property thap#0. The density matrixp can be

This unitary operation is converted by local operations and classical communication
_ to a density matrixp,. on d®d with d<min(n,m) character-
(Uap({8)))i ;= &€ (217 ized by two real parametetsandc such thatp,.#0. This

density matrixpy, is
The phase®,; are chosen randomly over a uniform distribu-

. . . d-1 d-1 d-1
tion from 0 to 2, independently for each This leaves the o o
operators Pbc:aigo |” ><” |+ bi j2i<j |'r/fij ><‘r/fij |+ Ci jEi<i |l/f|4]—><‘//|4]—|1
T . (2.29
DRSURDMOIRIRUY (2.18
with
invariant. This operation therefore leaves the eigenvectors of
H and thusH itself invariant. Thus it follows that da+(b+c)d(d—1)/2=1. (2.29
_ It is easy to see from the form &f that these transforma-
Ter('”)=TrJ d{auT{eHeUT{aHHU{E}) tions carry all NPT statep into a py, sitting in the NPT
region of Fig. 2. This is why the NRTregion will not be of
U pM=TrHplN<0. (2.19 concern to us. We note that it is possible to follow the five-
step reduction above with another BE@C operation, result-
The “twirled” density matrix p{*) has the form ing in a canonical NPT density operator characterized by just
a single real parameter.
d-1 d-1 (vi) Full twirl. Alice and Bob perform an equal mixture of
pliv)= E ailii yii |+ E ‘ ﬁmij)(i” identical unitary opergtions drawn un.iformﬁyvith the Haar
i=0 ij=0i#] measurgfrom the entire grouf (d). It is straightforward to
a1 show that the resulting density matrp{*") has the same
+ _;0:.#_ ’Biz}“j Wiil. (2.20 form as abovéEq. (2.24)]:
R d-1 d-1
(i) =g’ i Vii ! NS
Note that the coefficients in these sums are all in general pro=a i:zo [ii)ii[+b i,j,2i<j |9 i |
distinct, with 8j; not necessarily equal t8;; and similarly o
for Bﬁ : ! + +
(v) Symmetrize by permutatioAlice and Bob carry out +c i'jziq i i | (2.26

identical, randomly chosen, unitary transformations which
are drawn uniformly from all possible permutation opera-with
tions over the elements of the Schmidt bdsjs This ensures

that in the new density matrig®) the «; coefficients, for all b'=b, (2.27)
i, become equal to a single number all the ,Bilj become

equal[we call this constantq+b)/2], and all theg}; be- o= 2 d__lb (2.28
come equalcall this constantd—b)2]. So weobtain d(d+1) d+17 '
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and d given by the same constraint as in Eg.25. Thus However, all the stateg,. remain positive under the ac-
p" depends only on the single paramelteiit is the same  tion of A, so long as the dimensiod>2, because ¥
Werner density matrix studied recently by Horodecki and® A.)(ppc) *pp/er» Whereb’=(c+b)/2—b/(d—1) andc’
Horodecki[ 6], =(c+b)/2—c/(d—1). (Positivity under the action of\.
was already known fopyy [6].) Thus, the simple distillation
1 procedure studied in Ref6] will not work for these states.
szm[(d_@lﬂdd’_l)d"']? (229 Thys, to study the distillability of these states, we need to
consider the more general necessary and sufficient condition

note thatH of Eq. (2.14 is proportional to the “swap” op- developed by Horodeclet al.

erator Lemma 1(Horodeckiet al. [13]): A density matrix p
e my®mg is distillable if and only if there exists a finite
dHliY®|j)=]j)®]i). (2.30 and projectionsPA:H;?]:—>H2 and PB:H;?];HHZ such that
o=(Pa®Pg) p®" (PA®P}) is entangled.
This “full twirl” carries all the states in theBFK region of In 2®2, a density matrixr is entangled if and only if it is
Fig. 2 onto the liné=H, without changing the value df. NPT. Lemma 1 requires the examinations of projection of

Of course, if it were possible to prove that all the NPT the density matrixor n copies of the density matrix The
states of the one-parameter fopryy were distillable, then all  following lemma gives a convenient recasting of these prop-
NPT states would be distillable through the reductions weerties of projections in terms of properties of the original
have developed above. In fact we conjecture, as Horodecklensity matrix itself.
and Horodecki did previousl{Sec. VIII, Ref.[6]), that some Lemma 2.Let p be a density matrix omma®mg. Let
of these NPT states are undistillable. Under these circumPA:HmAHHz be a projection and ald®g : Hp, — H,. There
stances, it is desirable to provide evidence for the undistillayist p, and Py such thatPx® Py p Pl® P} is entangled if
ability for the widest class of states possible, and in thisyq only if
paper we will concentrate on providing such evidence for the

two-parameter family of canonical stateg., more particu- +
. . A = 1 3.2
larly, for those lying near the line segmeBK in Fig. 2. All P2emg=Pa®1epPa®ls 3.2
of the results we develop will, of course, also apply to the
restricted one-parameter famityy as well. has the property that
PT
lll. TOOLS FOR THE STUDY OF DISTILLABILITY P2omg# 0- 33

. In this section we will ex_plqre 6.".' the known tools at our Equation(3.3) is equivalent to the condition that there exists
disposal for analyzing the distillability of states. For some of .
- 2 .~ a state|¢) that has Schmidt rank 2 and
the py States we believe that no distillation protocol exists;
evidence of this is provided by the last result of this section,
that for somep,, states, any successful distillation protocol, (8] (10T)(p) [¢)<0. 3.4
if it exists, must act on some very large numipeof copies . ) ) N
of the state; we show that must diverge along an entire ~ Proof. If the density matrix pyem, is not positive
boundaryBK in Fig. 2. semidefinite under partial transposition, then there exists a
Much of the discussion of distillation strategies will need Schmidt rank-2 vectof), written in its Schmidt basis as
the notion of theSchmidt ranlof a pure state in an ensemble
decom_pp_sition of (_jens_ity matrix We first define Fhis term. )= \/)\—1| ag,bo) + \/)\—2| a;,by), (3.5
Definition 1.A bipartite pure statéy) has Schmidt rank k

if the state can be written in the Schmidt polar form as such that

k
|<ﬂ>=21 Wilaye|by), (3.1) (] pram, ) <0. (3.6)

. [The state{¢) cannot be a product vector since, if it were,
with (aila;) = 6i; and (bi|b;) =5 . . (W] Podmgl ) =TIl podmg =Tr()(¥) " p2emy=01]
The distillation of thep,. states(or more particularly, of We nclJate that the projecth?B in Eq.(3.2), consistent with
. . A . . )
the py, subset of these stajesas already considered in Ref. gq. (3.5), has the formP,=|ag)(ag| - |a;)(a,|. Note also

[6]. There, a distillation protocol was developed based on th . ) : C
positive linear map\.:p—Trpl—p. In Sec. V we will dis- that the statgy) is invariant under the projectdPs=Pg

cuss other aspects of the relation between the theory of posf|bo><bO| +[b1)(by:
tive maps and the distillability of mixed states. For all states

p for which (1&A.)(p)#0, it was shown how to distill (La@PH)[y)y=|1). (3.7
them by converting these states to a different canonical
density-matrix form introduced by Werner. Plugging Eq¥3.7) and(3.2) into Eqg.(3.6),
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(Y(1a®Pe)[(PA® 1) p (PA® 15)1PT(1@ PL)| 1)
=(4|[(Pa®PE) p (PR PRIPTI )

<0. (3.9

Therefore, the stateP(,® PE)p(PL@ PE) on 282 is en-
tangled.
Conversely, if the density matrixoz@mB is positive

semidefinite under partial transposition for BI\, meaning

that P2omg is either separable or has bound entanglement,

then there does not exist Bg such that Po® PB)p(PI\
® P;g) is entangled, because then it could be distilled.
Finally, by rewriting Eq.(3.8) as

(Y| (Pa®Pg) pPT(PA®PL)| 1) <0, (3.9

PHYSICAL REVIEW A 61 062312
deod having a “dit"(log,d bits) of entanglement. Corre-

spondingly, we refer to thgj ) states with #j as the “prod-
uct eigenstates.” The eigenvalugsare given by

)\0=(d—1)(ﬁ—b) (<0 in NPT,),

(3.13
1 d d-2 :
M=g~5¢-—5—b (>0 InNPT), (314
1
)\2=E(C+b)>0. (3.15

—(pTept :
we note that|p)=(Pa®Pg)|y) is the state needed for The negative eigenvalug, is independent o, showing

Eq. (3.4). ]

Note that an easy consequence of lemma 2 is that all NP

states in Zn for any n are distillable.

A. Single copy

The real difficulty in applying lemma 1 is that it requires

an examination of an arbitrary number of copief the

state to be distilled. We will therefore first develop a set of

strong results for the special casencf 1, then we will move

why the PPT-NPT boundary is a vertical linBK in Fig. 2).

-l(lotice that the eigenvectors gof;cT are independent of pa-

rametersh andc.
We now specialize to the state for which the positive ei-
genvalues are all equal,;=\,, and therefore

2 d-1
c=———

dd+1) dari® (318

on to obtain some results for the much more difficult case of

arbitraryn. We begin with some terminology.

Definition 2.We say that density matrip is pseudo one-
copy undistillableif, for all Schmidt rank-2 statege),
(| pPT|#)=0. Then, by lemma 2, there exists n@2 pro-
jection of p that is inseparable. We sayis pseudo-n-copy

undistillableif and only if p®" is pseudo-one-copy undistill-

able.

We will establish which statep,. are pseudo-one-copy

These are precisely the Werner stajgg of Eq. (2.29
above, the states along the likéd in Fig. 2. We take ad-
vantage of the fact that lemma 2 does not require normalized
states to write the partial transpose of these states in the
simple unnormalized form

oPT(N) =N = (A +1)| Do) Do|, (3.17

undistillable and which are distillable. The partial transpose

of ppc reads

d-1 c—p 42
pET=a3, fiiyils oo > il
i=0 1,j=0;i#]
c+b 47 o
+—— 2 liiiil. (3.10
1,j=0;i#]
The eigendecomposition @f, is
d-1 d-1
Pklch=7\o|(Do><(Do|+)\121 |(I)i)(CI>i|+)\2i j=§O:i#j i) il
(3.1)
with
1 91
o )= — ei271'jk/d i , 3.1

with N=N1/(—\g). We will show that forA=2/(d—2),
min(y? o [y#)=0 and that for A<2/(d-2),
min2(y? o T|¢#)<0, with the minimum taken over all
Schmidt rank-2 vectors. Thus=2/(d—2), corresponding to
b=3/(d(2d—1)) andc=1/(d(2d—1)) (the pointG in Fig.

2) is the transition point separating distillable Werner states
(line segment=G) from those which are pseudo-one-copy
undistillable (line segmentGH). To establish this we first
need to prove the following lemma.

Lemma 3In d®d, the overlap of a Schmidt rank-2 state
with a maximally entangled state is at ma&/d. In other
words, if [v) has Schmidt rank 2 anfl’) is a maximally
entangled state, then

(W[o)|< V2. (3.18

Proof. In its Schmidt basis|¥)= (2% }|ii))/\/d. Since
|v) is Schmidt rank 2, it may be written in its Schmidt de-

which we refer to as the é-dit eigenstates” in analogy with composition as|v)=vu1|e;)|es)+ Viusles)|es), with uq
“ebit,” because they are the maximally entangled states i+ u,=1. The overlap then is
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s d-1 /,U«z d-1 Here pET is the partial transpose of the normalized state at
(Wloy=—"> > (ilel)ile)+——= > (iles)(iles) point G, and II;; is the normalized projectofl; = (|ii
Vd = Jd = )
=0 =0 — N =j f). The expectation value of the first term

d-1 N d-1 on the right-hand side of E§3.22) is positive by theorem 2,
AL T ley)(ek i)+ ALCI) T ENCAD and that of the second term is positive because it is a projec-
Jd =0 Jd =0 tor. All other states are distillable.
o Vi Proposition 2.The stateg,,. are distillable in the region
_ Ml(e*|e )+ M(e*|e ) (3.19 of parameter spac8FKG in Fig. 2[14].
g2t Jd at=sl ' Proof. In the regionEFK the partial transpose has a nega-

tive expectation value with respect to the Schmidt rank-2
where|ef) is the vector obtained by complex conjugation of state|00)+|11), and in the regiorCEG with respect to the
the components d;) in the Schmidt basis of the stdt#).  state
Thus we have

d-1 d-1 d-1
; 2mijld;
Jot i, (ZIJ) o 2 k) |+| 2 e |J>)
(¥lo)|< ——=—. (320 e =0 =
Va 4

Maximizing with constraintu;+ u,=1 gives the desired ® kzo ezmk/d|k>)- (3.23
result. [ |

Now we are ready for the main result. _ _

Theorem 2Givena(\) whose partial transpose is given in B. Multiple copies
Eq.(3.17, we have(i) if A=2/(d—2), theno is not pseudo- It has proved to be much harder to obtain definitive results
one-copy distillable; andii) if N<2/(d—2), theno is  concering the pseudo-copy undistillability of the py.
pseudo-one-copy dI.Stl”abE- _ states. But we have accumulated various pieces of evidence,

Proof. We start with the first part. Ldv) be any Schmidt  which we will present here, all indicating the likelihood that
rank-2 vector. Then many of the NPT states are undistillable.

- ) Our attention will focus here on a particular subset of the
(vle"o)=x=(A+1)|(v[Do)| puc States labeled by and a small parameter which sit just
>\—2(\+1)/d to the right of the line segme®K in Fig. 2:
d-1
d—-2 2 1 d-1
BT()\—d_—Z), (321) p(C,E):(E_T(C'f‘E) ;o |||><|||

where we have used lemma 3. This is greater than or equal to N PR
zero forn=2/(d— 2), showing the first part of the result. For +(d(d—1) te ;l |‘”ii ><¢ij |+Ci2<j |¢ii ><¢ij B

the second part, considén)=(|00)+|11))/\2. We have

(v]olv)=((d—2)/2)(\— 2/(d— 2)), which is less than zero (3.249

for A <2/(d—2), proving the second part of the result. From e gigenvectors of the partial transpose of this state
this it is a simple matter to completely characterize the One; (¢, )PT are given in Eqs(3.11) and(3.12), since these are

copy undistillability of thep, states. common to allp,. states. The eigenvalues axg= —(d
Proposition 1.The statesp,. are pseudo-one-copy un- —1)e

distillable in the region of parameter spaBEGK in Fig. 2

[14]. 1 d—-2 d
Proof. Since any state in the region is a convex linear >\1=m— 5 € EC’

combination of the stateB, C, G, andK, it suffices to show

that the partial transpose of each of these four states hasgg

positive expectation value with respect to any Schmidt

rank-2 vector(lemma 2. This is obviously true for the PPT 1 1 d d

statesB and K, and it is true for stat& by theorem 2. To A=y er €t 5¢).

show it for C, which has parameteris=4/(d(3d—2)), c

=0, we note that the partial transpose of the s@iean be  The only properties of these eigenvalues that we will use is
written that for small, positivee and O<c<1/(d(d—1)), A, is
negative and goes to zero &s:0, and\; and\ , are strictly
4 o
= ¢=0 positive.
d(3d-2) Although we will not need any more properties of the
d—1 density matricesp(c,e=0), we can at this point note the
:Zd_ 1 or 2 E . 32 interesting fact that they are all separable; in fatitthe PPT
_5> PG + _ . . ij - ( . 2’ . . .
3d-2 d(3d—2) i jGi<j states of the fornpy, (the regionABKJ in Fig. 2) are sepa-

pPT b
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rable [Eqg. (1.1)]. This is established by showing that the pose of all states in this region can be written as a convex
density matrices at the extremal poinks B, K, andJ are  combination[using notation from Eq(3.22)]
separable; all other states in this region are convex combina-
tions of these. The state Atis proportional ta¥;|ii ), and the PT_ . PT
one atK is proportional toX;.|ij), so these are both obvi- N +§ Aalla, (3.28
ously separable.
We can also create the stagiéc=0,6=0) at pointB us- where II,, are product projectors and,=0. Applying
ing separable states. It is easiest to construct this ensemd@mma 2, we consider the expectation valuenafopies of
for the partial transpose of this stdgee Eq(3.10], which this state with respect to any Schmidt rank-2 ve¢tor[14]:

is done by equally mixing the states on

lv). (3.29

(—[iy+e2 3o (i) +e 23 (3.25 (vl| 206"+ 2 @I,

for all pairsi#j, andk=0, 1, and 2. By mixing these states we need to show that this is non-negative; we show this by
with equal probabilities, all terms of the forml&i)(ij|,  demonstrating that each term in the tensor product, when
lij)(ii| and|ij)(ji| for j#i cancel out; each of these will expanded out, is not negative. Consider a term contaiking
come with a facto;_,e *" =0 or £§_,e"?"¥=0. A pPT factors andn—k factors involving the projectorsl,,.
term such ag00)(0Q will occur d—1 times as much as a We can apply then—k projectors to|v); since they are all
term |00X11], which is indeed the correct ratio fos(c  product projectors, the projected vectds’) still has
=0,6=0)"". The statep(c=0,e=0) itself at pointB is ob-  Schmidt rank Zor 1). So the matrix element of E¢3.29 is

tained from mixing the states proportional to
(—[)+e*™ e (i)+e*™Fj))  (3.26 ' [(pRNH"). (3.30
with equal probabilities. But if G is pseuddk-copy undistillable, this matrix element
The partial transpose of the state at palritas a simple s non-negative. |

form[\;=0 in Eq.(3.1D]; it is straightforward to show that ~ Note that this analysis does not apply to st@febecause
p"T atJ is realized by an equal mixture of the separablethe projectorsll;; of Eq. (3.22 are not product projectors;
states therefore, they can increase the Schmidt rankvof
41 For d=3 we have pe.rformed extensi\(e numerical st_udit—;s
S e-2uikiyy (3.27 to search for states distillable by projection on two copies in
<5 7] : the regionBCGK. We find none, reinforcing the indication
of lemma 4 that an entire region inside the NPJet will

where each integek,, Kk, ..., kg_; runs independently prove to be undistillable. Section IV will provide further evi-
over 0, 1, and 2. This is clearly not a separable decomposHence for this idea.
tion with the minimal possible number of states.

A few notes about the decomposition for poBit for d IV. UNDISTILLABILITY FOR MULTIPLE COPIES

=3 the state" " at pointB has rank 8. This implies that the h _ il obtai it which
optimal decomposition of°T, and therefore ofp itself, In this section we will obtain our strongest result, whic

needs at least eight states in its decomposition; this despi%‘gge,Sts that some of the NPT staigs are not distillaple.
the fact that the rank op is only 6 (see lemma 1 of Ref. We will be able to conclude that for any finitethere exists

[15]). Thus we have a new example of a state for which the® € Such thaip(c,€)“" [Eq. (3.24] is not entangled on any
number of states in its minimal decomposition exceeds it€®2 subspace, and is therefore one-copy undistillable. This

rank: however see Ref16]. For general, the number of result can have only one of two further implicatiois} For

states in our separable ensembl8a83, which is more than Somec, this e asymptotes to some finite valugc) asn
the dimensiorl? for d>3. There are no known prior explicit —c. In this case, the NPT statggc,e<e(c)) are abso-
examples in which the number of members of the optimalutely undistillable.(2) For all ¢, this e goes to zero as
ensemble is greater than the dimension; it would be interest—oc. In this case all states immediately to the right of line
ing to prove that Eq(3.26) constitutes a minimal optimal BK are distillable; thus alpy. states with NPT would be
ensemble. The separability of the PPT states permits us tistillable, since all such states can be first mixed with some
give an extension of proposition 1 indicating that the undis-separablep,,. state(a LQ+CC operatioh to bring it to the
tillability of states in this region is linked. BK line. However, one might say that the states ri¢idrare
Lemma 4.If the statepy,. at point G is pseudaa-copy  “barely” distillable: an arbitrarily large number of copies of
undistillable, then all states in the regi@GK are pseudo- the state are required before there is any sign of undistillabil-

®

d-1
( Jzo e277|kj/3|j>

n-copy undistillable. ity of the state. It would be fair to say that these states would
Proof. First, note that if the state at poi@ is pseudo- still be undistillable in any practical sense.
n-copy undistillable, then it is also pseu#tezopy undistill- First, we establish the significance of the null-space

able for I=<k=n. Since the two extremal poin& andK of properties ofp(c,e=0) for the argument. We consider the
the convex set of statd&GK are separable, the partial trans- function
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f(c,e,n)=min( J|[pPT(c,e)]®n |¢2>, 4.1 Lemma 5The null space of the partial transpose of den-
142 sity matrix p(c,e=0)®", for all ¢, d=3 andn=1, does not
contain any nonzero vectors with Schmidt rank less than 3 of

Here the minimum is taken over all Schmidt rank-2 stated"® form

|2 in the full d"® d" Hilbert space. By lemmas 1 and 2, we d-1

know that the sign of(c,e,n) determines whethex(c, €) is ee...e\_ Iry _ _
pseudon-copy undistillable. Fore=0 the state is separable v )= ;) 8| Piy) ©[Cip) @ - B[P ). (49
and thereford (c,e=0,n)=0 for all n. The question is, does

the state become pseudecopy undistilable ag—0? The Proof. Forn=1 the result is obvious sincg is the only
answer is provided by the result whose proof we outline in avector in the null space and it has Schmidt rat# 3. For
moment, that there is no Schmidt rank-2 vector in the nullh=2, we first note that the partial trace of the state in Eq.
space ofp"T(c,e=0)®" for anyn. In other words, for aln  (4.4) is

andc,
d-1
_ ee...e ee...e|— 21215\ /i
f(c,e=0,n)>0. (4.2) Py TrB|‘/’ ><¢ | ;} |al| ||><||7 (4.5
Sincef is a continuous function oé, there must therefore Where the coefficients
exist aneg(c,n)>0 such that 41
- 1 o
a=— 2 a, el271'(|<k)/d (46)
f(c,0<e<ey(c,n),n)=0. 4.3 ' g2 o

are then-dimensional discrete Fourier transforms of #is.
Herei-k=ik,+ik,+---+ik,. Note thatp, is already
diagonalized. Since the Schmidt rank of a pure state equals
the rank of the partial trace, we require that the rank pbe

less than 3. Thus at most two coefficietds? are nonzero,
ie.

Thus there is a finite range @f>0 for everyn [and for allc
such that Bsc<1/(d(d—1))] such thatp(c,¢) is pseudo-
n-copy undistillable.

The only knowledge lacking at this point for a complete
demonstration of the undistillability ofp(c,e) is the
asymptotic behavior oéy(c,n) asn—o. If €5(n)—0 asn
—oo, then NPT undistillability would not be established; we - . .
would merely have shown that distillation becomes difficult a=|ale'%d +|Bl €8, 4.7
ase—0, requiring more and more copies of the state in the
distillation protocol. If eo(c,n) remains larger than some Whereé =i x i, x, - -6 x.-
positive e(c) for all n and for somee, then we would know Solving for thea;s by doing an inverse Fourier transform,

that all statesp(c,0<e<e(c)) are absolutely undistillable. W& have

Since the signs from our few-copy work are that indeed this

threshold remains positive we are led to the conjecture: 1 i b, a—i2mi-x/d i a—i2mi-yid
Conjecture.Statesp(c,€) of Eq. (3.24), for sufficiently a‘_d(n/z)(|a| e «e +|plevee ). (4.8

small positivee, are undistillable.

We can further speculate that the undistillable region will  gjrg¢ suppose the Schmidt rank of the vector is exactly 2,
correspond exactly to regioBCGK, in which the state is i, which case botHa| and |8 must be nonzero ang+y.
pseudo-one-copy and, apparently, pseudo-two-copy undigqow we start putting constraints on thes such that the
tillable. It may well be that pseudo one-copy undistillability ctor |°%--¢) is in the null space opPT(c,e=0). The
and absolute undistillability are equivalent. Now we Presentecor ¢ ¢ belongs to the null space only é;; ,=0,

our result about th_e nuII_—spa_lce pI’OpertIESp(Qf:,e=O) 0N pecause the corresponding eigenvalids positive ate=0.
which the above discussion is based: its null space does Rlow we impose the null space constraig ;=0 (since
contain any non-zero vectors of Schmidt rank less than 3. the corresponding eigenvalue,\?~® is pos'iﬁ'vle ate=0)
First we set up some notation. Plain roman indices take d h —v. Similarl tr11 \ h b "t
values from 0 tod— 1 unless otherwise stated. Let indices 2N° W& Nav&=ys. Similarly, ofhera’s, Whose Subscripts

: . N . are obtained by permutingl . . . 1, may be constrained to
with superscripip represen.t cgmpos_lte indices, _e.gf.,rep— zero givingx=y. However this implies that the vector is of
resents I(1m1|l 17 My). _Let !ndlces with superscrlpﬁrepre— Schmidt rank 1 if it is to satisfy these null space constraints.
sent plain indices, e.gij=i;. Label the eigenvectorsEq. Thus no Schmidt rank-2 vector of the for#fe € belongs
(3.11)] as |i§>=|fbik> and [if)=|lymy) with IL,#m,. The {5 the null space 0pPT(c,e=0).

label e stands for ‘e-dit eigenstate” and the labed stands Next we consider the case of Schmidt rank-1 vectors,
for “product eigenstate.” Let us denotetuples of indices where without loss of generality we may assufys=0.
such as i(y,iy, ... ,i,) by letters in bold font such asin  Then, the null space constrairt;; ;=0 implies that
sums overi, eachi, runs independently between 0 add |«|=0, thus proving the result. |
—1. Next we prove an important lemma. Now we are ready for the main result:
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Theorem 3The null space ofp”T(c,e=0))®" for d=3  Again, theyPP P term is zero if the vector is to be in the
andn=1 does not contain any vector of Schmidt rank lessnull space, because the corresponding eigenveluis posi-
than 3. tive at e=0. Definey, by

Proof. For n=1 the result is obvious, because the null
space consists of the span of the vedtdr) which has m
Schmidt rankd=3. For purpose of illustrating the proof |¢m>=2 | ). (4.12
technique, we next prove the result for two copies, ie., 1=0 sePi
=2. Then we will show how the proof generalizesntocop-
ies.

Recalling Eq.(3.11) and the fact that the eigenvectors
form a basis for the one-copy Hilbert spacedsfd, a gen-
eral vector|) in the Hilbert space of two copies can be

Then to prove the result we show that there is no vector with
Schmidt rank less than 3 of the forf,) for all m<n-—1.
This we show by induction om. For m=0, the result im-
mediately follows from lemma 5. For the induction step, we

written as write
[y =19°%) + 14+ P9 +] 9PP), (4.9 ) =l¥m-0)+ 2 199 (4.13
€ m
with  [4°)=Zie jeare;eli®)@1i), [P =Ziejpaipli®  Now if Alice and Bob locally projecty,,) onto [rP) of the
®[jP), [P =Zp jeaty oliP)®]j®),  and  [¢PP)  ith copy, fori=1...m, the result is
=Zp joafp pli?)®|jP). Here thea’s are complex coeffi-
cients for the vectors. ThePP term must be zero if the riHelrfe---o[rf)
vector is to belong to the null space, because the correspond-
ing eigenvalue\5 is positive ate=0. Now assumingy has ® D app. pre elKeL )@ oK),
Schmidt rank less than 3, we will show that the coefficients KS,,...ke BEommerm
a®P's andaP®s are zero. To show this we repeatedly use the
fact that local projections cannot increase the Schmidt rank (4.14

of a vector. Alice and Bob can project locally on the vector _. L . .
|kP), for any kP of the first copy, which results in a vector Since local projection cannot increase the Schmidt rank, by
' ' lemma 5 the vector inside the sum above must be zero. Do-

. p ) pe e .
proport|onal_to|k >®EJeakF’ieIJ )- By Iemma} 5 this vector i|ng this for all the different values of the’’s we see that
has a Schmidt rank greater than 2 unless it is zero. Thus a PPP..-Pee...e_ () \here the superscript contaimsp's and

the aP®s are zero. Similarly applying this argument to the (n—m) e's. Similarly we can prove thdis) is zero for any

P term, with the projection now done on a product vector . . :
b ' permutation stringe Py,. This shows thati,,) has to be of
|0an> ?[;:rr;]eéfetcr?gd CSOE{)%/ "ZE tf;ﬁqth;tr mﬁcshifmzni?;:e. the form|¢,_1), for which the result is true by the induction
y WIS they ' whi P hypothesis. |

plies and gives us the result.

We write the general proof far copies along the lines of
the two-copy proof, albeit with considerable notational com- V. DISTILLABILITY AND 2-POSITIVE LINEAR MAPS
plications. Generalizing the notation of E@.9), we define
P, to be the set of all distinct permutations lofo’'s and (n
—k) e’s. We also denote the strings representing permut
tions in P by bold font, e.g.s=s;S; . ..s¢, where thes;
are the characters in the permutation string, e.g., Sor
=pepe P,, thens;=p, s,=e€, ands;=p.

A general state in tha-copy Hilbert space can be written
in the form

In this section we find a formulation of the problem of
distillability of an arbitrary bipartite density matrig. This
Formulation uses the notion of 2-positive linear maps. We
will explicitly show how the problem of distillability of the
density matricespy,. that were discussed in the preceding
sections can be cast in the language of positive linear maps.
Let us first recall the definition of k-positive linear map
[17]. Let B(H,) denote the matrix algebra of operators on an
n-dimensional Hilbert space, and IB{*,) " denote the set
of positive semidefinite matrices. A linear mayp:B(H,,)
=2 S; |49, (410 _B(%,) is called positive whem :B(H,)" —B(Hy)",
K that is, the map preserves the set of positive semidefinite
. matrices. A linear mapA :B(H,)—B(H,) is called
with k-positive when the mapg,® A :B(H® Hp) — B(H & Hyy)
is positive. Note that 1-positivity is equivalent to positivity.
| %) =152 -5n) It is not hard to show that when a map: B(H,,) — B(H,,) is
n-positive, it is completely positive.
_ 2 @S isﬂ|ii1>®|i22>®' . .®|i§n>. We_ _ v_viII now give an alternative charactferization of
s 17277 k-positivity. The next lemma says that to test a linear map for
k-positivity we only need to apply it to pure states of at most
(4.11 Schmidt rankk.

n
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Lemma 6.A positive linear mapA :B(H,)—B(H,,) is
k-positive if and only if

(L@ M) () (¥)=0,

for all vectors|y) e H,® H,, which have a Schmidt rank of
at mostk.

Proof. If Eq. (5.1) holds for all statedy) of a Schmidt
rank of at most, then it follows that ,®A)(|#){¢|)=0
for all vectors |) e Hy®H,,. Therefore ,®A)(p)=0
for all pe B(Hy®H,)", and thusA is k-positive. On the
other hand, if there exists a vectp#) of at most Schmidt
rank k, for which (1,®A)(|#){y|)#0, then A cannot be
k-positive. |

We would like to make an additional simplification in

(5.2

. Lemma 7.A linear positive mapA :B(H,)—B(H,,) is
2-positive if and only if, for all|¥#)=1]0,8,)+|1,81) with

(Bol B1)=0, (Bol Boy=(B1lB1)=1,
(12®A)(|\I"B><‘I’B|)>0. (5.2

The proof of this lemma is given in the Appendix. It is
possible to formulate a similar lemma fipositive maps, in

which k-positivity or the lack thereof can be deduced from

PHYSICAL REVIEW /1 062312

The following main theorem expresses the connection be-
tween 2-positivity and distillability of a density matrjx
Theorem 4Let p be a bipartite density matrix od®d.
Let S:B(H4)— B(H4) be a completely positive map which
is uniquely determined by
p=(1308) (| KD *|). (5.7
Let A :B(H4)—B(Hg) be a linear positive map defined as
A=ToS, (5.9

whereT is matrix transposition in the basf$i)}*"}. There
exists no projections, :H 4—H, and Pg:H5—H, such
that (Pa® Pg) p (PL®PL) is entangled if and only if the

characterizing 2-positive maps. The next lemma says that irr]napA Is 2-positive. Let

order to test a linear map for 2-positivity we only need to
apply it to maximally entangled pure states of Schmidt rank

A®"=A® ...QA.
|

(5.9

The density matrixp is not distillable if and only if for all
n=1,2,... the map\®" is 2-positive.

Proof. We will prove the theorem in two parts. First we
will prove the relation between 2-positivity ok and the
nonexistence of a@2 subspace on which is entangled.
Then we prove the result relating undistillability to
2-positivity of A®",

Let us assume that there does not exisg& Bubspace on

applying the map on all maximally entangled vectors ofWhich the density matri is entangled. We can write any

Schmidt rankk.

With a Hermitian operatoH e B(Hy® Hy) we can al-
ways associate a hermiticity-preserving linear nman the
following way:

H=(14@A)(|2" K2 "]), (5.3

where

1 91
|D >:_di20 lii). (5.9

In the Appendix of Ref[6] it was proved that the operatbir
is positive semidefinite if and only the linear mapis com-

pletely positive. From this we conclude that any bipartite

density matrixp on d®d can always be written as
p= (L@ S)([i)iil]), (5.9

whereS :B(Hy) — B(Hy) is a completely positive map. Note
that S need not be trace preserving.

projectorP,: Hy—H, as

Pa=[0){aq| +[1){a], (5.10
where(ao|a;)=0. Lemma 2 implies that
(LED[(PA®1ly) p(PA®1)]=0  (5.11

for all projectorsP,. This expression, using Eq&.7) and
(5.9, is equal to

(L@ A) ([T} T|)=0, (5.12
with | ") e H,®Hy defined as
a* 1 * *
|w >:E(|0,ao>+|1'a1>)- (5.13

The vectors|ag,) are defined agafd )= ¢ (aq4li)]i).
Note that(ag | «7)=0. We now invoke the property of a
2-positive map as given in lemma 7; if E(.12 holds for
all |a),| a7 ) e H,, with (ag|ai)=0, thenA is a 2-positive

As an example, we derive the completely positive MaPmap. Conversely, invoking lemma 7, if is a 2-positive

Spe associated with the density matriceg. given in Eq.

(2.1). We can specifyS,. on the input states:

b+c
Soclli)(iD=ali)il+—— 2 1i)il.
J#Ii
(5.6
. C=b
Sbc(|'><]|):T|J><||1 i#].

linear map, then Eq(5.12 holds for all state$\lf“*>. This
implies that Eq.(5.11) holds for all projectorsP,, and
thus there does not exist a2 subspace on which is
entangled.

Now we turn to the second part of the proof. The neces-
sary and sufficient condition for distillability of a density
matrix was given in lemma 1. Lgi®*"=p®p®---®p on
d"®d". The density matrix is undistillable if and only if
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there exists no projection?A :HCAin_>H2 and PB :HCBin It ha.S been ShOWﬁlS] that this map’TW is 2-pOSitive in-
—H,, such that P,®Pg) p©" (PL@’PE) is entangled. Thus the region\=2/(d—2). This thus establishes an alternative

if a density matrix is undistillable, we have, similar to Eq. proof of theorem 2 in Sec. Il A.

(5.13),
: VI. CONCLUSION
LOT)[(Pa®1gn) p©" (PpA®14n)]=0, 5.1
(LEDLPA® L) P72 (PA® Tan)] ®19 Our alternative formulation of the problem of distillability
for all projectorsPA:HﬁnHHz and alln=1,2, . .. . We use in terms of the 2-positivity property of linear maps has not

he f hatT - @n @ val yet led to a solution of the problem of NPT density matrices
the fact thatT :B(H g )_’gﬁHd ) is equivalent(up 10 &  {yhich are(likely to be) undistillable (see the conjecture at
unitary transformationto Ty, whereTg is a matrix trans-  he end of Sec. Iy, We present the formulation here, as it

position inHy. Then Eq.(5.14) can be rewritten as points to a new connection between the structure of positive
on linear maps and the classification of bipartite mixed state
(LA (|¥)(¥])=0 (5.19  entanglement. We expect that fruitful results will flow from

] understanding in more detail the classification schemes for
for all maximally entangled statd¥) e H,®H gn for all N these NPT states that are based directly on their 2-positivity

=1,2,.... This implies, with lemma 7, thatA®" is  properties.

2-positive for alln=1,2, ... .Conversely, whemd ®" is not In conclusion, we have shown that most of the distillabil-
2'905”“5 for somen, there will exist a 2 subspace on ity properties of NPT mixed states can be restricted to the
which p®" is entangled. B study of the canonical sgt,.. Many of the questions about

RemarksNote that the theorem also holds for entangledone-copy and few-copy distillability of these states are com-
density matricesp that have the PPT property or density pletely answered by our analysis. A final, general proof of
matrices which are separable. In this case, however, the poshe full undistillability of these states eludes us, but we have
tive map A is completely positive, and therefore the map shown that if they are distillable, it involves a much more
A" foralln=1.2,... is2-positive trivially. difficult protocol than any which has been needed up until

We note that theorem 4 can also be made to apply to agw.
situation in which one is given a large number of copies of, Note addedRecently, we became aware of closely related
say, two different density matricgs andp,. With each of  \ork by Dir et al. [19]. This paper studies the states along
these density matrices we associate a positive linearmap the line HGF in Fig. 2; for these states it provides an alter-
and A,. Distillability of p; and p, together can be formu- native proof to the one discussed here in Sec. IV that, ap-
lated as the problem of determining wheth‘e?”l(@/\f“z is  proaching pointH, the states are pseudecopy undistillable
2-positive. This provides a method for searching for nonadfor any n. Referencg¢19] also obtained the same theorem as
ditivity in the property of distillability[12]. We could en- here(our theorem Pabout the pseudo-one-copy distillability
counter a situation in which bothy andp, are undistillable, of these states, as well as obtaining additional numerical re-
but p, andp, taken together are distillable. sults indicating that the region of pseudo-two- and -three-

In general, given two 2-positive maps,; and A,, the  copy undistillability is the same as that for one-copy undis-
tensor product\;® A, is not necessarily 2-positive. As an tillability. All the results of Ref.[19] and the present work
example we take\; to be the identity mafy and A, a  are consistent.
2-positive map which is not@-positive. Then by definition,
1L,®13® A, is not positive. In the cases that we consider here ACKNOWLEDGMENTS
however, the maps are of a special form, namehky ToS,
where S is completely positive. For this special form, itis  D.P.D., J.A.S., and B.M.T. acknowledge support from the
possible that the composed maps are always 2-positive. Army Research Office under Contract No. DAAG55-98-C-

The positive mapA . of Eq. (5.9 corresponding to the 0041. A.V.T. acknowledges support from the Army Re-
example Eq(5.6) is search Office under Contract No. DAAG55-98-1-0366.

P.W.S. was supported in part by DARPA through Caltech’s

b+c Quantum Information and Computati@@UIC) project ad-
Apcl[iX(iD=ali)i|+—— > il ministered by the Army Research Office under Grant No.
I# DAAH04-96-1-0386. We are grateful to R. Jozsa and M.
(5.16 Jeng for permission to use several of their results in this
Ap([iXiD= ﬂ|i><j| i+, paper. We thank Charles Bennett, Michat Horodecki, Pawet
¢ 2 ' Horodecki, and Armin Uhimann for interesting discussions.

For the states on the lirfléH this corresponds to the positive

. APPENDIX: PROOF OF LEMMA 7
map 7y Which acts as

The proof is similar in structure to the proof of the lemma

Tw(X)=dA1TrX—(\+1)X, (5.17 in the Appendix of Ref[6]. By definition a linear positive
map A :B(H,)—B(H,, is 2-positive if and only if, forall
where\ is the parameter in Eq3.17). | ) e Ho®@H,,
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EVIDENCE FOR BOUND ENTANGLED STATES WITH . ..

(L@ A)(l¢){])=0. (A1)

We will show that we only need to consider statg$ that
are maximally entangled. Note that arynnormalized
maximally entangled state can be written |85°)=|0,8,)

+1,81) with (Bo| B1)=0, (Bol Bo)=(B1|B1)=1. We start
with the following observation: When we apply the mAp

on some maximally entangled state%y® H,,,
D= (1,0 A)(|PF(TF)), (A2)

the matrixD uniquely determines the action of the mampn

any input matrix that has support on the two-dimensional

space spanned by the vectdfy) and|B4).
For the first part of the lemma, =0 in Eq. (A2).

SinceD is Hermitian, we can write it in its eigendecompo-

sition,

D=Z wil di) il (A3)

with the eigenvalueg.;=0 and the eigenvectolish;) € H,
®H, . Each eigenstatfp;) can be written in a Schmidt de-
composition age;) = V\oj| g; , Bo;) + VA1l e, By;), with
(Boil B1j)=(aojla1;)=0, and all vectors normalized. Note
that the state$B,;) and|B;;) can span a different two-
dimensional subspace &f,, for eachi. There exists a local
filter W# [6] from which we can obtain the state;) from
the maximally entangled staj@#):

PHYSICAL REVIEW /1 062312

| i) (il = (L W) (| WA WA (Lo W),  (Ad)

Wiﬁ includes (1) a unitary transformation from the basis
,8(’0’1)'i to B(o,1); » wherep’ are the Schmidt vectors oF~
when it is written in the form [WA)=|aq;,B¢;)
+|ay;,B1;) (taking advantage of the degeneracy of the
Schmidt decomposition of the maximally entangled state
and (2) a diagonal filter which reduces the Schmidt coeffi-
cients to\ (g 1), -

Thus we may writeD as

D=2 ;i (L@W’) [WA(WA| (L,aW’).  (A5)

We see that sincB=0 by assumption, we are able to write
the action of the map\ on the inpuf¥#) in a “completely
positive form” with operation elements(EWiﬁ that depend

on B. We observed above that this input determines the ac-
tion of the map uniquely on the subspace spanned by the
vectors|By) and |B,). Therefore, the map acts as a com-
pletely positive map on any input that has support on a two-
dimensional space. This implies that E41) holds for any
state| ) e H,® H,,. Conversely, ifA is 2-positive then Eq.
(5.2 holds for any maximally entangled stgté#). |
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