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Evidence for bound entangled states with negative partial transpose
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We exhibit a two-parameter family of bipartite mixed statesrbc , in ad^ d Hilbert space, which are negative
under partial transposition~NPT!, but for which we conjecture that no maximally entangled pure states in 2
^ 2 can be distilled by local quantum operations and classical communication~LQ1CC!. Evidence for this
undistillability is provided by the result that, for certain states in this family, we cannot extract entanglement
from any arbitrarily large number of copies ofrbc using a projection on 2̂ 2. These states are canonical NPT
states in the sense that any bipartite mixed state in any dimension with NPT can be reduced by LQ1CC
operations to a NPT state of therbc form. We show that the main question about the distillability of mixed
states can be formulated as an open mathematical question about the properties of composed positive linear
maps.

PACS number~s!: 03.67.Hk, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Maximally entangled quantum states, when their t
halves are shared between two parties, are a uniquely v
able resource for various information-processing tasks. U
in conjunction with a quantum communications chann
they can increase the classical data-carrying capacity of
channel, in some cases by an arbitrarily large factor@1#. Pos-
session of maximally entangled states can ensure perfec
vacy of communication between the two parties by the us
quantum cryptography@2#. These states can facilitate th
rapid performance of certain forms of distributed compu
tions @3#. Of course, maximally entangled states are the
resource in quantum teleportation@4#. On the other hand, the
surreptitious establishment of entanglement between
parties can thwart the establishment of trust between pa
via bit commitment@5#.

How can two parties come into the possession of a sha
maximally entangled state? If the storage and transporta
of quantum particles were perfect, then the state could h
been synthesized in some laboratory long in the past
given to Alice and Bob~our personified parties! for storage
until needed. In practice no such perfect infrastructure ex
Since the most interesting scenarios for the use of quan
entanglement are in cases where Alice and Bob are rem
from one another, we will consider the long-distance tra
portation of quantum states needed to establish the sh
entanglement to be difficult and imperfect, while the loc
processing of quantum information~unitary transformations
measurement! we will assume, for the sake of analysis, to
essentially perfect.

Under these assumptions, when we wish to ass
whether a given physical setup is or is not useful
entanglement-assisted information processing, our ana
focuses on the mixed quantum stater in the hands of Alice
and Bob after the difficult transportation step. We enqu
whetherr ^ n can be transformed, by local quantum ope
tions and classical communication~LQ1CC! operations, to a
supply of maximally entangled states. Here the^ n notation
1050-2947/2000/61~6!/062312~13!/$15.00 61 0623
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indicates thatn copies of the stater are available, and we
will be concerned with asymptotic results asn is taken to
infinity. LQ1CC operations~sometimes called LOCC in the
literature! are obtained by any arbitrary sequence oflocal
quantum operations~appending ancillae, performing unitar
operations, discarding ancillae! supplemented byclassical
communicationbetween Alice and Bob.

An interesting fact about this possibility for thedistilla-
tion of entanglement is that it is neither rare nor ubiquitou
a finite fraction of the set of all possible bipartite mixe
statesr can be successfully distilled@6#, and a finite fraction
cannot@7#. Much work has been focused on whetherr falls
into a distillable or undistillable class, and this paper is p
marily a contribution to this classification task. Before d
scribing our contributions, we will give a brief review o
previous results on classifying states according to their
tillability.

Multipartite density matricesr are consideredunen-
tangledif there exists a decomposition ofr into an ensemble
of pure product states; for the bipartite case this means
we can write

r5(
i

pi ua i&^a i u ^ ub i&^b i u. ~1.1!

These are also referred to as separable states. It is clea
separable states are never distillable. However, the conv
proposition, that entangled states are always distillable
false in general, although true for density matrices in 2^2
and 2̂ 3 Hilbert spaces@8#. This became clear shortly afte
the introduction by Peres@9# of a computationally simple
criterion for separability, thepartial transpositiontest. The
partial-transpose operation, denoted asI ^ T when the trans-
pose is applied to Bob’s Hilbert space, is specified by
action

^ i j u~ I ^ T!~r!ukl&5^ i l u r uk j&. ~1.2!
©2000 The American Physical Society12-1
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While application ofT to Alice’s Hilbert space will lead to
identical results, we will always apply it to Bob’s space
this paper. Hereu i & anduk& indicate an orthonormal basis o
Alice’s Hilbert space, andu j & andu l & the same for Bob. It is
easy to show that separable states are positive under p
transpose, that is, that the matrix

~ I ^ T!~r!5rPT ~1.3!

is a positive semidefinite operator, denoted byrPT>0.
@Equation~1.3! introduces the partial transposition~PT! no-
tation that we will use throughout this paper.# This positivity
property is abbreviated as PPT; states for whichrPT>” 0 are
called NPT states. It was soon recognized@10# that the set of
PPT density operatorsr is larger than the set of unentangle
states~except in 2̂ 2 and 2̂ 3); see Fig. 1. It was also
discovered that all PPT states, even those which are ins
rable, are not distillable. The existence of such states
which entanglement is present~since entanglement is re
quired to synthesize the states! but cannot be reextracted i
pure form, was a surprising observation, indicating the p
sibility of a fundamentally new form of irreversibility in
physics. States having this property are said to possessbound
entanglement.

The introduction of the PPT-NPT classification sugges
a conjecture about distillability, namely, that all states w
NPT would possess distillable entanglement, and it is
purpose of the present paper to explore this conject
While no rigorous results have been obtained concerning
conjecture, we will introduce a two-parameter family of NP
states for which we obtain evidence that the conjecture
false. That is, we consider it likely that the family of stat
we introduce below has only bound entanglement, des
being NPT.

We have been able to recast the question about the di
ability property of therbc states, or of any NPT states, as
question about the 2-positivity properties of certain posit
linear maps@11#. These maps arise because there is a o
to-one correspondence between mixed states ond^ d and
completely positive linear mapsS on d dimensions which,

FIG. 1. Layout of the set of all mixed states.~a! General case for
arbitrary Hilbert space dimensionm^ n. The ‘‘?’’ region, that of
bound or undistillable NPT states, is the subject of this paper. T
region is known to contain no states for 2^ n. ~b! Simplified situ-
ation for a dimension of 2̂2 and 2̂ 3 for which it is known that
all PPT states are separable and all NPT states are distillable.
06231
tial

a-
in

-

d

e
e.
is

is

te

ill-

e
e-

when applied to half a maximally entangled stateuC1&, pro-
duces the mixed stater. Then, the NPT property is related t
the mapT+S, and its compositions (T+S) ^ n. The open ques-
tion about distillability can be posed compactly as a quest
concerning the mathematical properties of these maps.
approach also permits us to consider the question of whe
distillability is an additive property, that is, whether th
amount of distillable entanglement ofr1^ r2 is just the sum
of the two separately. Horodeckiet al. @12# gave some evi-
dence of a kind of undistillability involving single copies o
PPT bound entangled states. In the positive-map langu
the most general questions about nonadditivity can be c
pactly framed. This shows that further developments of
theory of positive maps will be very desirable in settlin
some of the fundamental questions about the entanglem
properties of quantum states.

This paper develops in the following way: Section II in
troduces the canonical statesrbc , and shows the LQ1CC
mapping that produces them. Section III considers the dis
ability of any stater by application of the basic criterion o
whether it remains entangled when projected into 2^ 2. Sec-
tion III A considers a single copy of therbc state, establish-
ing therbc for which there exist such projections into 2^ 2.
Section III B takes up the much harder case of multiple c
ies, with Sec. IV proving the result that, for somerbc

^ n states,
no entanglement remains upon projection into 2^ 2 even for
arbitrarily largen. Section V recasts the question about d
tillability in terms of the 2 positivity of linear maps isomor
phic to the mixed states.

II. A CANONICAL SET OF NPT DENSITY MATRICES

The desired, but too-ambitious, program would be to
sess the distillability of all NPT states. We will attempt th
assessment only for a specific subset of the NPT states
rametrized by two real numbers. This subset will, howev
have a specific relation to the set of NPT states, in that th
is a LQ1CC operation that will map the general NPT sta
onto one parameter in our two-parameter family. Th
LQ1CC operation preserves the NPT property. Thus, if
could exhibit a protocol for the distillation of our two
parameter family, this would suffice to show that all NP
states were distillable. However, our canonical tw
parameter family has properties which make distillation qu
hard for certain ranges of parameters, suggesting that in
some portion of the full set of NPT states isnot distillable.

Our canonical states, with real parametersb and c, are
written

rbc5a(
i 50

d21

u i i &^ i i u1b (
i , j 50,i , j

d21

uc i j
2&^c i j

2u

1c (
i , j 50,i , j

d21

uc i j
1&^c i j

1u. ~2.1!

Here

is
2-2
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EVIDENCE FOR BOUND ENTANGLED STATES WITH . . . PHYSICAL REVIEW A61 062312
uc i j
6&5

1

A2
~ u i j &6^ j i u!. ~2.2!

The states live in ad^ d Hilbert space. The parametera in
Eq. ~2.1! is not independent, because of the unit trace con
tion it is related tob andc by

da1~b1c!d~d21!/251. ~2.3!

The range of interest for the parametersb andc is shown
in Fig. 2. As we will show in Sec. III, the state is NPT in tw
triangular regions of parameter space; one of these regi
NPT2, which will not be of much interest to us~all these
states are distillable!, lies above the straight lineKJ, and is
defined by the inequalityc.2/d21b(d22)/2. The region
NPT1, about which we will have much more to say, lies
the regionBFK and is defined byb.1/@d(d21)#. Region
ABKJ contains PPT states; in Sec. III B we prove that
these states are also separable.

To show thatrbc represents a canonical set, we will e
hibit a procedure involving only LQ1CC operations tha
will convert any NPT density matrixr, that is, one satisfying
the condition

^cu ~1^ T!~r! uc&,0 ~2.4!

for some stateuc&, to one of therbc form having NPT. We
will take the Hilbert space dimension to ben^ m; that is, we
will not restrict Alice’s and Bob’s dimensions to be th

FIG. 2. The relevant region of thebc parameter space for th
statesrbc . All NPT states can be brought by LQ1CC action into
the region NPT1, triangle BFK. For general dimension, regio
CFKG is distillable by projection on one copy, and regionBCGK is
pseudo-one-copy undistillable. In 3^3 we have strong evidence tha
regionBCGK is pseudo-two-copy undistillable. We conjecture th
the entire regionBCGK is undistillable by any means. All states i
the PPT regionABKJare separable; that is, there are no bound P
states among therbc set.
06231
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same. Here is the sequence of LQ1CC operations that will
reduce the general NPT stater to rbc .

~i! Rotation to the Schmidt basis.We write uc& of Eq.
~2.4! as

uc&5 (
i 50

d21

Al i ua i& ^ ub i&. ~2.5!

Hered<min(n,m). Let UAua i&5u i & andUBub i&5u i &, or

uc&5UA
†

^ UB
† uf&, ~2.6!

where

uf&5 (
i 50

d21

Al i u i & ^ u i &. ~2.7!

We definer ( i )5UA^ UB r UA
†

^ UB
† . Equation~2.4! can be

rewritten as

^fu ~1^ TU!~r ( i )! uf&,0, ~2.8!

whereTU is transposition in a rotated basis determined
UB . The negativity of the expression@Eq. ~2.8!# does not
depend on the basis in whichT is performed; therefore, we
will replaceTU by T again in the remainder.

~ii ! Local filtering (see Ref. [6]).We define the stateuF1&
as

uF1&5
1

Ad
(
i 50

d21

u i & ^ u i &. ~2.9!

The filter operationW on Alice’s Hilbert space is defined b
the equation

W†
^ 1uF1&5uf&. ~2.10!

We apply this local filter to the stater ( i ) to obtainr ( i i ):

r ( i i )5
~W^ 1! r ( i ) ~W†

^ 1!

Tr ~W†W^ 1! r ( i ) . ~2.11!

Equation~2.4! implies that

^F1u ~1^ T!~r ( i i )! uF1&5Tr uF1&^F1u ~1^ T!~r ( i i )!,0.
~2.12!

We now use that Tr@A† T(B)#5Tr@T†(A†) B# andT†5T to
rewrite this NPT condition in a form which will be conve
nient below:

Tr Hr ( i i ),0, ~2.13!

with

H5~1^ T!~ uF1&^F1u!. ~2.14!

This Hermitian operatorH can be written in its eigenbasis,

t

T

2-3
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H5
1

d (
i 50

d21

u i i &^ i i u2
1

d (
i , j 50,i , j

d21

uc i j
2&^c i j

2u

1
1

d (
i , j 50,i , j

d21

uc i j
1&^c i j

1u, ~2.15!

where

uc i j
6&5

1

A2
~ u i j &6^ j i u!. ~2.16!

~iii ! Project into d̂ d. SinceuF1&, andH, have support
only a d^ d-dimensional subspace of the Hilbert space, A
ice and Bob can project locally onto this subspace and le
the NPT condition@Eq. ~2.12!#, or Eq. ~2.14!, unchanged.
We call the resulting NPT density matrix ind^ d r ( i i i ).

~iv! Diagonal twirl. Alice and Bob perform a equal mix
ture of identical unitary operations, which are diagonal in
Schmidt basis given by the vectorsu i &, giving stater ( iv).
This unitary operation is

„UA,B~$u%!…i , j5d i j e
iu i. ~2.17!

The phasesu i are chosen randomly over a uniform distrib
tion from 0 to 2p, independently for eachi. This leaves the
operators

u i j &^ j i u,u i j &^ i j u,u i i &^ i i u ~2.18!

invariant. This operation therefore leaves the eigenvector
H and thusH itself invariant. Thus it follows that

Tr Hr ( iv)5Tr E d$u%U†~$u%! ^ U†~$u%!HU~$u%!

^ U~$u%!r ( i i i )5Tr Hr ( i i i ),0. ~2.19!

The ‘‘twirled’’ density matrix r ( iv) has the form

r ( iv)5 (
i 50

d21

a i u i i &^ i i u1 (
i , j 50,iÞ j

d21

b i j
1 u i j &^ i j u

1 (
i , j 50,iÞ j

d21

b i j
2 u i j &^ j i u. ~2.20!

Note that the coefficients in these sums are all in gen
distinct, with b i j

1 not necessarily equal tob j i
1 and similarly

for b i j
2 .

~v! Symmetrize by permutation.Alice and Bob carry out
identical, randomly chosen, unitary transformations wh
are drawn uniformly from all possible permutation ope
tions over the elements of the Schmidt basisu i &. This ensures
that in the new density matrixr (v) thea i coefficients, for all
i, become equal to a single numbera, all the b i j

1 become
equal @we call this constant (c1b)/2], and all theb i j

2 be-
come equal@call this constant (c2b)2]. So weobtain
06231
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r (v)5a(
i 50

d21

u i i &^ i i u1
c1b

2 (
i , j 50,iÞ j

d21

u i j &^ i j u

1
c2b

2 (
i , j 50,iÞ j

d21

u i j &^ j i u. ~2.21!

But comparing with Eq.~2.1!, we note that we have arrive
at the desired canonical form

r (v)5rbc . ~2.22!

As the Hermitian matrixH of Eqs.~2.14! and~2.15! is again
invariant under this symmetrization, we note that the N
property is again preserved:

Tr Hr (v)5Tr Hrbc,0. ~2.23!

We may summarize the foregoing line of argument as a th
rem.

Theorem 1.Let r be a bipartite density matrix onn^ m
with the property thatr>” 0. The density matrixr can be
converted by local operations and classical communica
to a density matrixrbc on d^ d with d<min(n,m) character-
ized by two real parametersb andc such thatrbc>” 0. This
density matrixrbc is

rbc5a(
i 50

d21

u i i &^ i i u1b (
i , j ,i , j

d21

uc i j
2&^c i j

2u1c (
i , j ,i , j

d21

uc i j
1&^c i j

1u,

~2.24!

with

da1~b1c!d~d21!/251. ~2.25!

It is easy to see from the form ofH that these transforma
tions carry all NPT statesr into a rbc sitting in the NPT1
region of Fig. 2. This is why the NPT2 region will not be of
concern to us. We note that it is possible to follow the fiv
step reduction above with another LQ1CC operation, result-
ing in a canonical NPT density operator characterized by
a single real parameter.

~vi! Full twirl. Alice and Bob perform an equal mixture o
identical unitary operations drawn uniformly~with the Haar
measure! from the entire groupU(d). It is straightforward to
show that the resulting density matrixr (v i ) has the same
form as above@Eq. ~2.24!#:

r (v i )5a8(
i 50

d21

u i i &^ i i u1b8 (
i , j ,i , j

d21

uc i j
2&^c i j

2u

1c8 (
i , j ,i , j

d21

uc i j
1&^c i j

1u, ~2.26!

with

b85b, ~2.27!

c85
2

d~d11!
2

d21

d11
b, ~2.28!
2-4
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EVIDENCE FOR BOUND ENTANGLED STATES WITH . . . PHYSICAL REVIEW A61 062312
and a8 given by the same constraint as in Eq.~2.25!. Thus
r (v i ) depends only on the single parameterb; it is the same
Werner density matrix studied recently by Horodecki a
Horodecki@6#,

rW5
1

d32d
@~d2f!11~df21!dH#; ~2.29!

note thatH of Eq. ~2.14! is proportional to the ‘‘swap’’ op-
erator

dHu i & ^ u j &5u j & ^ u i &. ~2.30!

This ‘‘full twirl’’ carries all the states in theBFK region of
Fig. 2 onto the lineFH, without changing the value ofb.

Of course, if it were possible to prove that all the NP
states of the one-parameter formrW were distillable, then all
NPT states would be distillable through the reductions
have developed above. In fact we conjecture, as Horod
and Horodecki did previously~Sec. VIII, Ref.@6#!, that some
of these NPT states are undistillable. Under these circ
stances, it is desirable to provide evidence for the undis
ability for the widest class of states possible, and in t
paper we will concentrate on providing such evidence for
two-parameter family of canonical statesrbc , more particu-
larly, for those lying near the line segmentBK in Fig. 2. All
of the results we develop will, of course, also apply to t
restricted one-parameter familyrW as well.

III. TOOLS FOR THE STUDY OF DISTILLABILITY

In this section we will explore all the known tools at o
disposal for analyzing the distillability of states. For some
the rbc states we believe that no distillation protocol exis
evidence of this is provided by the last result of this secti
that for somerbc states, any successful distillation protoc
if it exists, must act on some very large numbern of copies
of the state; we show thatn must diverge along an entir
boundaryBK in Fig. 2.

Much of the discussion of distillation strategies will ne
the notion of theSchmidt rankof a pure state in an ensemb
decomposition of density matrixr. We first define this term

Definition 1.A bipartite pure stateuc& has Schmidt rank k
if the state can be written in the Schmidt polar form as

uc&5(
i 51

k

Al i uai& ^ ubi&, ~3.1!

with ^ai uaj&5d i j and ^bi ubj&5d i j .
The distillation of therbc states~or more particularly, of

therW subset of these states! was already considered in Re
@6#. There, a distillation protocol was developed based on
positive linear mapLc :r→Tr r12r. In Sec. V we will dis-
cuss other aspects of the relation between the theory of p
tive maps and the distillability of mixed states. For all sta
r for which (1^ Lc)(r)>” 0, it was shown how to distill
them by converting these states to a different canon
density-matrix form introduced by Werner.
06231
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However, all the statesrbc remain positive under the ac
tion of Lc , so long as the dimensiond.2, because (1
^ Lc)(rbc)}rb8c8 , whereb85(c1b)/22b/(d21) andc8
5(c1b)/22c/(d21). ~Positivity under the action ofLc
was already known forrW @6#.! Thus, the simple distillation
procedure studied in Ref.@6# will not work for these states
Thus, to study the distillability of these states, we need
consider the more general necessary and sufficient cond
developed by Horodeckiet al.

Lemma 1~Horodecki et al. @13#!: A density matrix r
PmA^ mB is distillable if and only if there exists a finiten
and projectionsPA :HmA

^ n→H2 and PB :HmB

^ n→H2 such that

s5(PA^ PB) r ^ n (PA
†

^ PB
†) is entangled.

In 2^2, a density matrixs is entangled if and only if it is
NPT. Lemma 1 requires the examinations of projection
the density matrix~or n copies of the density matrix!. The
following lemma gives a convenient recasting of these pr
erties of projections in terms of properties of the origin
density matrix itself.

Lemma 2.Let r be a density matrix onmA^ mB . Let
PA :HmA

→H2 be a projection and alsoPB :HmB
→H2. There

exist PA andPB such thatPA^ PB r PA
†

^ PB
† is entangled if

and only if

r2^ mB
5PA^ 1BrPA

†
^ 1B ~3.2!

has the property that

r2^ mB

PT >” 0. ~3.3!

Equation~3.3! is equivalent to the condition that there exis
a stateuf& that has Schmidt rank 2 and

^fu ~1^ T!~r! uf&,0. ~3.4!

Proof. If the density matrix r2^ mB
is not positive

semidefinite under partial transposition, then there exis
Schmidt rank-2 vectoruc&, written in its Schmidt basis as

uc&5Al1ua0 ,b0&1Al2ua1 ,b1&, ~3.5!

such that

^cu r2^ mB

PT uc&,0. ~3.6!

@The stateuc& cannot be a product vector since, if it wer
^cu r2^ mB

PT uc& 5Truc&^cur2^ mB

PT 5Tr(uc&^cu)PTr2^ mB
>0.#

We note that the projectorPA in Eq. ~3.2!, consistent with
Eq. ~3.5!, has the formPA5ua0&^a0u1ua1&^a1u. Note also
that the stateuc& is invariant under the projectorPB5PB

†

5ub0&^b0u1ub1&^b1u:

~1A^ PB
† !uc&5uc&. ~3.7!

Plugging Eqs~3.7! and ~3.2! into Eq. ~3.6!,
2-5
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^cu~1A^ PB!@~PA^ 1B! r ~PA
†

^ 1B!#PT~1^ PB
† !uc&

5^cu@~PA^ PB* ! r ~PA
†

^ PB
T!#PTuc&

,0. ~3.8!

Therefore, the state (PA^ PB* ) r (PA
†

^ PB
T) on 2̂ 2 is en-

tangled.
Conversely, if the density matrixr2^ mB

is positive

semidefinite under partial transposition for allPA , meaning
that r2^ mB

is either separable or has bound entanglem

then there does not exist aPB such that (PA^ PB) r (PA
†

^ PB
†) is entangled, because then it could be distilled.

Finally, by rewriting Eq.~3.8! as

^cu~PA^ PB! rPT ~PA
†

^ PB
† !uc&,0, ~3.9!

we note thatuf&5(PA
†

^ PB
†)uc& is the state needed fo

Eq. ~3.4!. j
Note that an easy consequence of lemma 2 is that all N

states in 2̂ n for any n are distillable.

A. Single copy

The real difficulty in applying lemma 1 is that it require
an examination of an arbitrary number of copiesn of the
state to be distilled. We will therefore first develop a set
strong results for the special case ofn51, then we will move
on to obtain some results for the much more difficult case
arbitraryn. We begin with some terminology.

Definition 2.We say that density matrixr is pseudo one-
copy undistillable if, for all Schmidt rank-2 statesuf&,
^fu rPT uf&>0. Then, by lemma 2, there exists no 2^2 pro-
jection of r that is inseparable. We sayr is pseudo-n-copy
undistillable if and only if r ^ n is pseudo-one-copy undistill
able.

We will establish which statesrbc are pseudo-one-cop
undistillable and which are distillable. The partial transpo
of rbc reads

rbc
PT5a(

i 50

d21

u i i &^ i i u1
c2b

2 (
i , j 50;iÞ j

d21

u i i &^ j j u

1
c1b

2 (
i , j 50;iÞ j

d21

u i j &^ i j u. ~3.10!

The eigendecomposition ofrbc
PT is

rbc
PT5l0uF0&^F0u1l1(

i 51

d21

uF i&^F i u1l2 (
i , j 50;iÞ j

d21

u i j &^ i j u,

~3.11!

with

uFk&5
1

Ad
(
j 50

d21

ei2p jk/du j j &, ~3.12!

which we refer to as the ‘‘e-dit eigenstates’’ in analogy with
‘‘ebit,’’ because they are the maximally entangled states
06231
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d^ d having a ‘‘dit’’( log2d bits! of entanglement. Corre
spondingly, we refer to theu i j & states withiÞ j as the ‘‘prod-
uct eigenstates.’’ The eigenvaluesl i are given by

l05~d21!S 1

d~d21!
2bD ~,0 in NPT1!,

~3.13!

l15
1

d
2

d

2
c2

d22

2
b ~.0 in NPT1!, ~3.14!

l25
1

2
~c1b!>0. ~3.15!

The negative eigenvaluel0 is independent ofc, showing
why the PPT-NPT boundary is a vertical line (BK in Fig. 2!.
Notice that the eigenvectors ofrbc

PT are independent of pa
rametersb andc.

We now specialize to the state for which the positive
genvalues are all equal,l15l2, and therefore

c5
2

d~d11!
2

d21

d11
b. ~3.16!

These are precisely the Werner statesrW of Eq. ~2.29!
above, the states along the lineFH in Fig. 2. We take ad-
vantage of the fact that lemma 2 does not require normali
states to write the partial transpose of these states in
simple unnormalized form

sPT~l!5lI 2~l11!uF0&^F0u, ~3.17!

with l5l1 /(2l0). We will show that forl>2/(d22),
minuc2&^c

2u sPT uc2&>0 and that for l,2/(d22),
minuc2&^c

2u sPT uc2&,0, with the minimum taken over al
Schmidt rank-2 vectors. Thusl52/(d22), corresponding to
b53/„d(2d21)… andc51/„d(2d21)… ~the pointG in Fig.
2! is the transition point separating distillable Werner sta
~line segmentFG) from those which are pseudo-one-cop
undistillable ~line segmentGH). To establish this we first
need to prove the following lemma.

Lemma 3.In d^ d, the overlap of a Schmidt rank-2 sta
with a maximally entangled state is at mostA2/d. In other
words, if uv& has Schmidt rank 2 anduC& is a maximally
entangled state, then

u^Cuv&u<A2/d . ~3.18!

Proof. In its Schmidt basis,uC&5(( i 50
d21u i i &)/Ad. Since

uv& is Schmidt rank 2, it may be written in its Schmidt d
composition asuv&5Am1ue1&ue2&1Am2ue3&ue4&, with m1
1m251. The overlap then is
2-6
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^Cuv&5
Am1

Ad
(
i 50

d21

^ i ue1&^ i ue2&1
Am2

Ad
(
i 50

d21

^ i ue3&^ i ue4&

5
Am1

Ad
(
i 50

d21

^ i ue1&^e2* u i &1
Am2

Ad
(
i 50

d21

^ i ue3&^e4* u i &

5
Am1

Ad
^e2* ue1&1

Am2

Ad
^e4* ue3&, ~3.19!

whereuei* & is the vector obtained by complex conjugation
the components ofuei& in the Schmidt basis of the stateuC&.
Thus we have

u^Cuv&u<
Am11Am2

Ad
. ~3.20!

Maximizing with constraintm11m251 gives the desired
result. j

Now we are ready for the main result.
Theorem 2.Givens~l! whose partial transpose is given

Eq. ~3.17!, we have~i! if l>2/(d22), thens is not pseudo-
one-copy distillable; and~ii ! if l,2/(d22), then s is
pseudo-one-copy distillable.

Proof.We start with the first part. Letuv& be any Schmidt
rank-2 vector. Then

^vusPTuv&5l2~l11!u^vuF0&u2

>l22~l11!/d

>
d22

d S l2
2

d22D , ~3.21!

where we have used lemma 3. This is greater than or equ
zero forl>2/(d22), showing the first part of the result. Fo
the second part, consideruv&5(u00&1u11&)/A2. We have
^vusuv&5„(d22)/2)(l22/(d22)…, which is less than zero
for l,2/(d22), proving the second part of the result. Fro
this it is a simple matter to completely characterize the o
copy undistillability of therbc states.

Proposition 1.The statesrbc are pseudo-one-copy un
distillable in the region of parameter spaceBCGK in Fig. 2
@14#.

Proof. Since any state in the region is a convex line
combination of the statesB, C, G, andK, it suffices to show
that the partial transpose of each of these four states h
positive expectation value with respect to any Schm
rank-2 vector~lemma 2!. This is obviously true for the PPT
statesB and K, and it is true for stateG by theorem 2. To
show it for C, which has parametersb54/„d(3d22)…, c
50, we note that the partial transpose of the stateC can be
written

rPTS b5
4

d~3d22!
,c50D

5
2d21

3d22
rG

PT1
2

d~3d22! (
i , j 50,i , j

d21

P i j . ~3.22!
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Here rG
PT is the partial transpose of the normalized state

point G, and P i j is the normalized projectorP i j 5
1
2 (u i i &

2u j j &)(^ i i u2^ j j u). The expectation value of the first term
on the right-hand side of Eq.~3.22! is positive by theorem 2,
and that of the second term is positive because it is a pro
tor. All other states are distillable.

Proposition 2.The statesrbc are distillable in the region
of parameter spaceCFKG in Fig. 2 @14#.

Proof. In the regionEFK the partial transpose has a neg
tive expectation value with respect to the Schmidt ran
stateu00&1u11&, and in the regionCEG with respect to the
state

S (
j 50

d21

u j & D ^ S (
k50

d21

uk& D 1S (
j 50

d21

e2p i j /du j & D
^ S (

k50

d21

e2p ik/duk& D . ~3.23!

B. Multiple copies

It has proved to be much harder to obtain definitive resu
concerning the pseudo-n-copy undistillability of the rbc
states. But we have accumulated various pieces of evide
which we will present here, all indicating the likelihood th
many of the NPT1 states are undistillable.

Our attention will focus here on a particular subset of t
rbc states labeled byc and a small parametere, which sit just
to the right of the line segmentBK in Fig. 2:

r~c,e!5S 1

2d
2

d21

2
~c1e! D (

i 50

d21

u i i &^ i i u

1S 1

d~d21!
1e D(

i , j
uc i j

2&^c i j
2u1c(

i , j
uc i j

1&^c i j
1u.

~3.24!

The eigenvectors of the partial transpose of this st
r(c,e)PT are given in Eqs.~3.11! and~3.12!, since these are
common to allrbc states. The eigenvalues arel052(d
21)e,

l15
1

2~d21!
2

d22

2
e2

d

2
c,

and

l25
1

d S 1

2~d21!
1

d

2
e1

d

2
cD .

The only properties of these eigenvalues that we will use
that for small, positivee and 0<c,1/(d(d21)), l0 is
negative and goes to zero ase→0, andl1 andl2 are strictly
positive.

Although we will not need any more properties of th
density matricesr(c,e50), we can at this point note th
interesting fact that they are all separable; in fact,all the PPT
states of the formrbc ~the regionABKJ in Fig. 2! are sepa-
2-7
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rable @Eq. ~1.1!#. This is established by showing that th
density matrices at the extremal pointsA, B, K, and J are
separable; all other states in this region are convex comb
tions of these. The state atA is proportional to( i u i i &, and the
one atK is proportional to( iÞ j u i j &, so these are both obvi
ously separable.

We can also create the stater(c50,e50) at pointB us-
ing separable states. It is easiest to construct this ense
for the partial transpose of this state@see Eq.~3.10!#, which
is done by equally mixing the states

~2u i &1e2p ik/3u j &) ^ ~ u i &1e22p ik/3u j &) ~3.25!

for all pairsiÞ j , andk50, 1, and 2. By mixing these state
with equal probabilities, all terms of the formsu i i &^ i j u,
u i j &^ i i u and u i j &^ j i u for j Þ i cancel out; each of these wi
come with a factor(k50

2 e64p ik/350 or (k50
2 e62p ik/350. A

term such asu00&^00u will occur d21 times as much as
term u00&^11u, which is indeed the correct ratio forr(c
50,e50)PT. The stater(c50,e50) itself at pointB is ob-
tained from mixing the states

~2u i &1e2p ik/3u j &) ^ ~ u i &1e2p ik/3u j &) ~3.26!

with equal probabilities.
The partial transpose of the state at pointJ has a simple

form @l150 in Eq.~3.11!#; it is straightforward to show tha
rPT at J is realized by an equal mixture of the separa
states

S (
j 50

d21

e2p ik j /3u j & D ^ S (
j 50

d21

e22p ik j /3u j & D , ~3.27!

where each integerk0 , k1, . . . , kd21 runs independently
over 0, 1, and 2. This is clearly not a separable decomp
tion with the minimal possible number of states.

A few notes about the decomposition for pointB: for d
53 the staterPT at pointB has rank 8. This implies that th
optimal decomposition ofrPT, and therefore ofr itself,
needs at least eight states in its decomposition; this des
the fact that the rank ofr is only 6 ~see lemma 1 of Ref
@15#!. Thus we have a new example of a state for which
number of states in its minimal decomposition exceeds
rank; however see Ref.@16#. For generald, the number of
states in our separable ensemble atB, 32

d , which is more than
the dimensiond2 for d.3. There are no known prior explici
examples in which the number of members of the optim
ensemble is greater than the dimension; it would be inter
ing to prove that Eq.~3.26! constitutes a minimal optima
ensemble. The separability of the PPT states permits u
give an extension of proposition 1 indicating that the und
tillability of states in this region is linked.

Lemma 4.If the staterbc at point G is pseudo-n-copy
undistillable, then all states in the regionBGK are pseudo-
n-copy undistillable.

Proof. First, note that if the state at pointG is pseudo-
n-copy undistillable, then it is also pseudo-k-copy undistill-
able for 1<k<n. Since the two extremal pointsB andK of
the convex set of statesBGK are separable, the partial tran
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combination@using notation from Eq.~3.22!#

rPT5a0rG
PT1(

a
aaPa , ~3.28!

where Pa are product projectors andaa>0. Applying
lemma 2, we consider the expectation value ofn copies of
this state with respect to any Schmidt rank-2 vectoruv& @14#:

^vuS a0rG
PT1(

a
aaPaD ^ n

uv&. ~3.29!

We need to show that this is non-negative; we show this
demonstrating that each term in the tensor product, w
expanded out, is not negative. Consider a term containink
rG

PT factors andn2k factors involving the projectorsPa .
We can apply then2k projectors touv&; since they are all
product projectors, the projected vectoruv8& still has
Schmidt rank 2~or 1!. So the matrix element of Eq.~3.29! is
proportional to

^v8u~rG
PT! ^ kuv8&. ~3.30!

But if G is pseudo-k-copy undistillable, this matrix elemen
is non-negative. j

Note that this analysis does not apply to stateC, because
the projectorsP i j of Eq. ~3.22! are not product projectors
therefore, they can increase the Schmidt rank ofuv&.

For d53 we have performed extensive numerical stud
to search for states distillable by projection on two copies
the regionBCGK. We find none, reinforcing the indicatio
of lemma 4 that an entire region inside the NPT1 set will
prove to be undistillable. Section IV will provide further ev
dence for this idea.

IV. UNDISTILLABILITY FOR MULTIPLE COPIES

In this section we will obtain our strongest result, whic
suggests that some of the NPT statesrbc are not distillable.
We will be able to conclude that for any finiten there exists
ane such thatr(c,e) ^ n @Eq. ~3.24!# is not entangled on any
2^2 subspace, and is therefore one-copy undistillable. T
result can have only one of two further implications:~1! For
somec, this e asymptotes to some finite valueē(c) as n

→`. In this case, the NPT statesr„c,e, ē(c)… are abso-
lutely undistillable.~2! For all c, this e goes to zero asn
→`. In this case all states immediately to the right of lin
BK are distillable; thus allrbc states with NPT would be
distillable, since all such states can be first mixed with so
separablerbc state~a LQ1CC operation! to bring it to the
BK line. However, one might say that the states nearBK are
‘‘barely’’ distillable: an arbitrarily large number of copies o
the state are required before there is any sign of undistilla
ity of the state. It would be fair to say that these states wo
still be undistillable in any practical sense.

First, we establish the significance of the null-spa
properties ofr(c,e50) for the argument. We consider th
function
2-8
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f ~c,e,n!5min
uc2&

^c2u@rPT~c,e!# ^ n uc2&. ~4.1!

Here the minimum is taken over all Schmidt rank-2 sta
uc2& in the full dn

^ dn Hilbert space. By lemmas 1 and 2, w
know that the sign off (c,e,n) determines whetherr(c,e) is
pseudo-n-copy undistillable. Fore50 the state is separabl
and thereforef (c,e50,n)>0 for all n. The question is, doe
the state become pseudo-n-copy undistilable ase→0? The
answer is provided by the result whose proof we outline i
moment, that there is no Schmidt rank-2 vector in the n
space ofrPT(c,e50)^ n for any n. In other words, for alln
andc,

f ~c,e50,n!.0. ~4.2!

Since f is a continuous function ofe, there must therefore
exist ane0(c,n).0 such that

f „c,0<e<e0~c,n!,n…>0. ~4.3!

Thus there is a finite range ofe.0 for everyn @and for allc
such that 0<c,1/„d(d21)…] such thatr(c,e) is pseudo-
n-copy undistillable.

The only knowledge lacking at this point for a comple
demonstration of the undistillability ofr(c,e) is the
asymptotic behavior ofe0(c,n) asn→`. If e0(n)→0 asn
→`, then NPT undistillability would not be established; w
would merely have shown that distillation becomes diffic
ase→0, requiring more and more copies of the state in
distillation protocol. If e0(c,n) remains larger than som
positive ē(c) for all n and for somec, then we would know
that all statesr„c,0<e<ē(c)… are absolutely undistillable
Since the signs from our few-copy work are that indeed t
threshold remains positive we are led to the conjecture:

Conjecture.Statesr(c,e) of Eq. ~3.24!, for sufficiently
small positivee, are undistillable.

We can further speculate that the undistillable region w
correspond exactly to regionBCGK, in which the state is
pseudo-one-copy and, apparently, pseudo-two-copy un
tillable. It may well be that pseudo one-copy undistillabili
and absolute undistillability are equivalent. Now we pres
our result about the null-space properties ofr(c,e50) on
which the above discussion is based: its null space does
contain any non-zero vectors of Schmidt rank less than

First we set up some notation. Plain roman indices t
values from 0 tod21 unless otherwise stated. Let indic
with superscriptp represent composite indices, e.g.,i 1

p rep-
resents (l 1 ,m1u l 1Þm1). Let indices with superscripte repre-
sent plain indices, e.g.,i 1

e5 i 1. Label the eigenvectors@Eq.
~3.11!# as u i k

e&5uF i k
& and u i k

p&5u l kmk& with l kÞmk . The

label e stands for ‘‘e-dit eigenstate’’ and the labelp stands
for ‘‘product eigenstate.’’ Let us denoten-tuples of indices
such as (i 1 ,i 2 , . . . ,i n) by letters in bold font such asi; in
sums overi, each i k runs independently between 0 andd
21. Next we prove an important lemma.
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Lemma 5.The null space of the partial transpose of de
sity matrix r(c,e50)^ n, for all c, d>3 andn>1, does not
contain any nonzero vectors with Schmidt rank less than 3
the form

ucee . . . e&5 (
i50

d21

aiuF i 1
& ^ uF i 2

& ^ •••^ uF i n
&. ~4.4!

Proof. For n51 the result is obvious sinceF0 is the only
vector in the null space and it has Schmidt rankd>3. For
n>2, we first note that the partial trace of the state in E
~4.4! is

rc5TrBucee . . . e&^cee . . . eu5 (
i50

d21

uãiu2u i&^ iu, ~4.5!

where the coefficients

ãi5
1

d(n/2) (
k50

d21

ak ei2p( i•k)/d ~4.6!

are then-dimensional discrete Fourier transforms of thea’s.
Here i•k5 i 1k11 i 2k21•••1 i nkn . Note thatrc is already
diagonalized. Since the Schmidt rank of a pure state eq
the rank of the partial trace, we require that the rank ofrc be
less than 3. Thus at most two coefficientsuãiu2 are nonzero,
i.e.

ãi5uau eifadi,x1ubu eifbdi,y , ~4.7!

wheredi,x5d i 1 ,x1
d i 2 ,x2

. . . d i n ,xn
.

Solving for theais by doing an inverse Fourier transform
we have

ai5
1

d(n/2)
~ uau eifa e2 i2p i•x/d1ubu eifb e2 i2p i•y/d!. ~4.8!

First suppose the Schmidt rank of the vector is exactly
in which case bothuau and ubu must be nonzero andxÞy.
Now we start putting constraints on thea’s such that the
vector ucee . . . e& is in the null space ofrPT(c,e50). The
vectorcee . . . e belongs to the null space only ifa11 . . . 150,
because the corresponding eigenvaluel1

n is positive ate50.
Now we impose the null space constrainta21 . . . 150 ~since
the corresponding eigenvaluel2l1

n21 is positive ate50!,
and we havex15y1. Similarly, othera’s, whose subscripts
are obtained by permuting$21 . . . 1%, may be constrained to
zero givingx5y. However this implies that the vector is o
Schmidt rank 1 if it is to satisfy these null space constrain
Thus no Schmidt rank-2 vector of the formcee . . . e belongs
to the null space ofrPT(c,e50).

Next we consider the case of Schmidt rank-1 vecto
where without loss of generality we may assumeubu50.
Then, the null space constrainta11 . . . 150 implies that
uau50, thus proving the result. j

Now we are ready for the main result:
2-9



s

ul

f
,

rs

e

on

nt
th
an
to
r

s
e

to

f
m

t

r

n

e

ith

e

by
Do-

n

of

e

g
aps.

an

nite

y.

of
for
st

DIVINCENZO, SHOR, SMOLIN, TERHAL, AND THAPLIYAL PHYSICAL REVIEW A 61 062312
Theorem 3.The null space of„rPT(c,e50)…^ n for d>3
and n>1 does not contain any vector of Schmidt rank le
than 3.

Proof. For n51 the result is obvious, because the n
space consists of the span of the vectoruF0& which has
Schmidt rankd>3. For purpose of illustrating the proo
technique, we next prove the result for two copies, i.e.n
52. Then we will show how the proof generalizes ton cop-
ies.

Recalling Eq.~3.11! and the fact that the eigenvecto
form a basis for the one-copy Hilbert space ofd^ d, a gen-
eral vector uc& in the Hilbert space of two copies can b
written as

uc&5ucee&1ucep&1ucpe&1ucpp&, ~4.9!

with ucee&5( i e, j ea i e, j e
ee u i e& ^ u j e&, ucep&5( i e, j pa i e, j p

ep u i e&
^ u j p&, ucpe&5( i p, j ea i p, j e

pe u i p& ^ u j e&, and ucpp&
5( i p, j pa i p, j p

pp u i p& ^ u j p&. Here thea ’s are complex coeffi-
cients for the vectors. Thecpp term must be zero if the
vector is to belong to the null space, because the corresp
ing eigenvaluel2

2 is positive ate50. Now assumingc has
Schmidt rank less than 3, we will show that the coefficie
aep’s andape’s are zero. To show this we repeatedly use
fact that local projections cannot increase the Schmidt r
of a vector. Alice and Bob can project locally on the vec
ukp&, for any kp of the first copy, which results in a vecto
proportional toukp& ^ ( j eakpj e

pe u j e&. By lemma 5 this vector
has a Schmidt rank greater than 2 unless it is zero. Thu
the ape’s are zero. Similarly applying this argument to th
cep term, with the projection now done on a product vec
ukp& of the second copy, we see that theaep’s are zero. The
only term left now is thecee term, for which lemma 5 ap-
plies and gives us the result.

We write the general proof forn copies along the lines o
the two-copy proof, albeit with considerable notational co
plications. Generalizing the notation of Eq.~4.9!, we define
Pk to be the set of all distinct permutations ofk p’s and (n
2k) e’s. We also denote the strings representing permu
tions in Pk by bold font, e.g.,s5s1s2 . . . sk , where thesj
are the characters in the permutation string, e.g., fos
5pepPP2, thens15p, s25e, ands35p.

A general state in then-copy Hilbert space can be writte
in the form

uc&5 (
k50

n

(
sPP k

ucs&, ~4.10!

with

ucs&5ucs1s2 . . . sn&

5 (
i
1

s1 ,i
2

s2 , . . . ,i
n

sn

a i
1

s1 ,i
2

s2 , . . . ,i
n

snu i 1
s1& ^ u i 2

s2& ^ •••^ u i n
sn&.

~4.11!
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Again, thecpp . . . p term is zero if the vector is to be in th
null space, because the corresponding eigenvaluel2

n is posi-
tive at e50. Definecm by

ucm&5(
i 50

m

(
sPP i

ucs&. ~4.12!

Then to prove the result we show that there is no vector w
Schmidt rank less than 3 of the formuc l& for all m<n21.
This we show by induction onm. For m50, the result im-
mediately follows from lemma 5. For the induction step, w
write

ucm&5ucm21&1 (
sPP m

ucs&. ~4.13!

Now if Alice and Bob locally projectucm& onto ur i
p& of the

i th copy, for i 51 . . .m, the result is

ur 1
p& ^ ur 2

p& ^ •••^ ur m
p &

^ (
km11

e . . . kn
e

a r
1
pr

2
p . . . r

m
p k

m11
e . . . k

n
eukm11

e & ^ •••^ ukn
e&.

~4.14!

Since local projection cannot increase the Schmidt rank,
lemma 5 the vector inside the sum above must be zero.
ing this for all the different values of ther i

p’s we see that
cppp . . . pee. . . e50, where the superscript containsm p’s and
(n2m) e’s. Similarly we can prove thatucs& is zero for any
permutation stringsPPm . This shows thatucm& has to be of
the formucm21&, for which the result is true by the inductio
hypothesis. j

V. DISTILLABILITY AND 2-POSITIVE LINEAR MAPS

In this section we find a formulation of the problem
distillability of an arbitrary bipartite density matrixr. This
formulation uses the notion of 2-positive linear maps. W
will explicitly show how the problem of distillability of the
density matricesrbc that were discussed in the precedin
sections can be cast in the language of positive linear m

Let us first recall the definition of ak-positive linear map
@17#. Let B(Hn) denote the matrix algebra of operators on
n-dimensional Hilbert space, and letB(Hn)1 denote the set
of positive semidefinite matrices. A linear mapL :B(Hn)
→B(Hm) is called positive whenL :B(Hn)1→B(Hm)1,
that is, the map preserves the set of positive semidefi
matrices. A linear mapL :B(Hn)→B(Hm) is called
k-positive when the map1k^ L :B(Hk^ Hn)→B(Hk^ Hm)
is positive. Note that 1-positivity is equivalent to positivit
It is not hard to show that when a mapL :B(Hn)→B(Hm) is
n-positive, it is completely positive.

We will now give an alternative characterization
k-positivity. The next lemma says that to test a linear map
k-positivity we only need to apply it to pure states of at mo
Schmidt rankk.
2-10
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Lemma 6.A positive linear mapL :B(Hn)→B(Hm) is
k-positive if and only if

~1n^ L!~ uc&^cu!>0, ~5.1!

for all vectorsuc&PHn^ Hn which have a Schmidt rank o
at mostk.

Proof. If Eq. ~5.1! holds for all statesuc& of a Schmidt
rank of at mostk, then it follows that (1k^ L)(uc&^cu)>0
for all vectors uc&PHk^ Hn . Therefore (1k^ L)(r)>0
for all rPB(Hk^ Hn)1, and thusL is k-positive. On the
other hand, if there exists a vectoruc& of at most Schmidt
rank k, for which (1n^ L)(uc&^cu)>” 0, then L cannot be
k-positive. j

We would like to make an additional simplification i
characterizing 2-positive maps. The next lemma says tha
order to test a linear map for 2-positivity we only need
apply it to maximally entangled pure states of Schmidt ra
2.

Lemma 7.A linear positive mapL :B(Hn)→B(Hm) is
2-positive if and only if, for alluCb&5u0,b0&1u1,b1& with
^b0ub1&50, ^b0ub0&5^b1ub1&51,

~12^ L!~ uCb&^Cbu!>0. ~5.2!

The proof of this lemma is given in the Appendix. It
possible to formulate a similar lemma fork-positive maps, in
which k-positivity or the lack thereof can be deduced fro
applying the map on all maximally entangled vectors
Schmidt rankk.

With a Hermitian operatorHPB(Hd^ Hd) we can al-
ways associate a hermiticity-preserving linear mapL in the
following way:

H5~1d^ L!~ uF1&^F1u!, ~5.3!

where

uF1&5
1

Ad
(
i 50

d21

u i i &. ~5.4!

In the Appendix of Ref.@6# it was proved that the operatorH
is positive semidefinite if and only the linear mapL is com-
pletely positive. From this we conclude that any bipart
density matrixr on d^ d can always be written as

r5~1d^ S!~ u i &^ i i u!, ~5.5!

whereS :B(Hd)→B(Hd) is a completely positive map. Not
that S need not be trace preserving.

As an example, we derive the completely positive m
Sbc associated with the density matricesrbc given in Eq.
~2.1!. We can specifySbc on the input states:

Sbc~ u i &^ i u!5au i &^ i u1
b1c

2 (
j Þ i

u j &^ j u,

~5.6!

Sbc~ u i &^ j u!5
c2b

2
u j &^ i u, iÞ j .
06231
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The following main theorem expresses the connection
tween 2-positivity and distillability of a density matrixr.

Theorem 4.Let r be a bipartite density matrix ond^ d.
Let S :B(Hd)→B(Hd) be a completely positive map whic
is uniquely determined by

r5~1d^ S!~ uF1&^F1u!. ~5.7!

Let L :B(Hd)→B(Hd) be a linear positive map defined a

L5T+S, ~5.8!

whereT is matrix transposition in the basis$u i &% i 50
d21. There

exists no projectionsPA :H d
A→H2 and PB :H d

B→H2 such
that (PA^ PB) r (PA

†
^ PB

†) is entangled if and only if the
mapL is 2-positive. Let

~5.9!

The density matrixr is not distillable if and only if for all
n51,2, . . . the mapL ^ n is 2-positive.

Proof. We will prove the theorem in two parts. First w
will prove the relation between 2-positivity ofL and the
nonexistence of a 2̂2 subspace on whichr is entangled.
Then we prove the result relating undistillability t
2-positivity of L ^ n.

Let us assume that there does not exist a 2^2 subspace on
which the density matrixr is entangled. We can write an
projectorPA : Hd→H2 as

PA5u0&^a0u1u1&^a1u, ~5.10!

where^a0ua1&50. Lemma 2 implies that

~12^ T!@~PA^ 1d! r ~PA
†

^ 1d!#>0 ~5.11!

for all projectorsPA . This expression, using Eqs.~5.7! and
~5.8!, is equal to

~12^ L!~ uCa* &^Ca* u!>0, ~5.12!

with uCa* &PH2^ Hd defined as

uCa* &5
1

A2
~ u0,a0* &1u1,a1* &). ~5.13!

The vectorsua0,1* & are defined asua0,1* &5( i 50
d21^a0,1u i &u i &.

Note that^a0* u a1* &50. We now invoke the property of a
2-positive map as given in lemma 7; if Eq.~5.12! holds for
all ua0* &,ua1* &PHn with ^a0* ua1* &50, thenL is a 2-positive
map. Conversely, invoking lemma 7, ifL is a 2-positive
linear map, then Eq.~5.12! holds for all statesuCa* &. This
implies that Eq.~5.11! holds for all projectorsPA , and
thus there does not exist a 2^2 subspace on whichr is
entangled.

Now we turn to the second part of the proof. The nec
sary and sufficient condition for distillability of a densit
matrix was given in lemma 1. Letr ^ n5r ^ r ^ •••^ r on
dn

^ dn. The density matrixr is undistillable if and only if
2-11
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there exists no projectionsPA :H dn
A →H2 and PB :H dn

B

→H2, such that (PA^ PB) r ^ n (PA
†

^ PB
†) is entangled. Thus

if a density matrix is undistillable, we have, similar to E
~5.11!,

~12^ T!@~PA^ 1dn! r ^ n ~PA
†

^ 1dn!#>0, ~5.14!

for all projectorsPA :H dn
A →H2 and alln51,2, . . . . We use

the fact thatT :B(H d
^ n)→B(H d

^ n) is equivalent~up to a
unitary transformation! to Td

^ n , whereTd is a matrix trans-
position inHd . Then Eq.~5.14! can be rewritten as

~12^ L ^ n!~ uC&^Cu!>0 ~5.15!

for all maximally entangled statesuC&PH2^ H dn for all n
51,2, . . . . This implies, with lemma 7, thatL ^ n is
2-positive for alln51,2, . . . .Conversely, whenL ^ n is not
2-positive for somen, there will exist a 2̂ 2 subspace on
which r ^ n is entangled. j

Remarks.Note that the theorem also holds for entang
density matricesr that have the PPT property or densi
matrices which are separable. In this case, however, the p
tive map L is completely positive, and therefore the m
L ^ n for all n51,2, . . . is2-positive trivially.

We note that theorem 4 can also be made to apply
situation in which one is given a large number of copies
say, two different density matricesr1 andr2. With each of
these density matrices we associate a positive linear mapL1
and L2. Distillability of r1 and r2 together can be formu
lated as the problem of determining whetherL1

^ n1^ L2
^ n2 is

2-positive. This provides a method for searching for non
ditivity in the property of distillability @12#. We could en-
counter a situation in which bothr1 andr2 are undistillable,
but r1 andr2 taken together are distillable.

In general, given two 2-positive mapsL1 and L2, the
tensor productL1^ L2 is not necessarily 2-positive. As a
example we takeL1 to be the identity map1d and L2 a
2-positive map which is not 2d-positive. Then by definition,
12^ 1d^ L2 is not positive. In the cases that we consider h
however, the maps are of a special form, namelyL5T+S,
whereS is completely positive. For this special form, it
possible that the composed maps are always 2-positive.

The positive mapLbc of Eq. ~5.9! corresponding to the
example Eq.~5.6! is

Lbc~ u i &^ i u!5au i &^ i u1
b1c

2 (
j Þ i

u j &^ j u,

~5.16!

Lbc~ u i &^ j u!5
c2b

2
u i &^ j u, iÞ j .

For the states on the lineFH this corresponds to the positiv
maptW which acts as

tW~X!5dl1Tr X2~l11!X, ~5.17!

wherel is the parameter in Eq.~3.17!.
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It has been shown@18# that this maptW is 2-positive in
the regionl>2/(d22). This thus establishes an alternati
proof of theorem 2 in Sec. III A.

VI. CONCLUSION

Our alternative formulation of the problem of distillabilit
in terms of the 2-positivity property of linear maps has n
yet led to a solution of the problem of NPT density matric
which are~likely to be! undistillable ~see the conjecture a
the end of Sec. IV!. We present the formulation here, as
points to a new connection between the structure of posi
linear maps and the classification of bipartite mixed st
entanglement. We expect that fruitful results will flow fro
understanding in more detail the classification schemes
these NPT states that are based directly on their 2-positi
properties.

In conclusion, we have shown that most of the distillab
ity properties of NPT mixed states can be restricted to
study of the canonical setrbc . Many of the questions abou
one-copy and few-copy distillability of these states are co
pletely answered by our analysis. A final, general proof
the full undistillability of these states eludes us, but we ha
shown that if they are distillable, it involves a much mo
difficult protocol than any which has been needed up u
now.

Note added.Recently, we became aware of closely relat
work by Dür et al. @19#. This paper studies the states alo
the lineHGF in Fig. 2; for these states it provides an alte
native proof to the one discussed here in Sec. IV that,
proaching pointH, the states are pseudon-copy undistillable
for anyn. Reference@19# also obtained the same theorem
here~our theorem 2! about the pseudo-one-copy distillabilit
of these states, as well as obtaining additional numerical
sults indicating that the region of pseudo-two- and -thr
copy undistillability is the same as that for one-copy und
tillability. All the results of Ref.@19# and the present work
are consistent.
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APPENDIX: PROOF OF LEMMA 7

The proof is similar in structure to the proof of the lemm
in the Appendix of Ref.@6#. By definition a linear positive
mapL :B(Hn)→B(Hm) is 2-positive if and only if, forall
uc&PH2^ Hn ,
2-12
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~12^ L!~ uc&^cu!>0. ~A1!

We will show that we only need to consider statesuc& that
are maximally entangled. Note that any~unnormalized!
maximally entangled state can be written asuCb&5u0,b0&
1u1,b1& with ^b0ub1&50, ^b0ub0&5^b1ub1&51. We start
with the following observation: When we apply the mapL
on some maximally entangled state inH2^ Hn ,

D5~12^ L!~ uCb&^Cbu!, ~A2!

the matrixD uniquely determines the action of the mapL on
any input matrix that has support on the two-dimensio
space spanned by the vectorsub0& and ub1&.

For the first part of the lemma, letD>0 in Eq. ~A2!.
SinceD is Hermitian, we can write it in its eigendecomp
sition,

D5(
i

m i uf i&^f i u, ~A3!

with the eigenvaluesm i>0 and the eigenvectorsuf i&PH2
^ Hn . Each eigenstateuf i& can be written in a Schmidt de
composition asuf i&5Al0,i ua0,i ,b0,i&1Al1,i ua1,i ,b1,i&, with
^b0,i ub1,i&5^a0,i ua1,i&50, and all vectors normalized. Not
that the statesub0,i& and ub1,i& can span a different two
dimensional subspace ofHn for eachi. There exists a loca
filter Wi

b @6# from which we can obtain the stateuf i& from
the maximally entangled stateuCb&:
l,

tin

s,

pe

06231
l

uf i&^f i u5~12^ Wi
b!~ uCb&^Cbu!~12^ Wi

b†!. ~A4!

Wi
b includes ~1! a unitary transformation from the bas

b (0,1),i8 to b (0,1),i , whereb8 are the Schmidt vectors ofCb

when it is written in the form uCb&5ua0,i ,b0,i8 &
1ua1,i ,b1,i8 & ~taking advantage of the degeneracy of t
Schmidt decomposition of the maximally entangled sta!;
and ~2! a diagonal filter which reduces the Schmidt coef
cients tol (0,1),i .

Thus we may writeD as

D5(
i

m i ~12^ Wi
b! uCb&^Cbu ~12^ Wi

b†!. ~A5!

We see that sinceD>0 by assumption, we are able to writ
the action of the mapL on the inputuCb& in a ‘‘completely
positive form’’ with operation elementsAm iWi

b that depend
on b. We observed above that this input determines the
tion of the map uniquely on the subspace spanned by
vectors ub0& and ub1&. Therefore, the map acts as a com
pletely positive map on any input that has support on a tw
dimensional space. This implies that Eq.~A1! holds for any
stateuc&PH2^ Hn . Conversely, ifL is 2-positive then Eq.
~5.2! holds for any maximally entangled stateuCb&. j
ys.
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