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Entangling dipole-dipole interactions for quantum logic with neutral atoms
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We study a means of creating multiparticle entanglement of neutral atoms using pairwise controlled dipole-
dipole interactions. For tightly trapped atoms the dipolar interaction energy can be much larger than the photon
scattering rate and substantial coherent evolution of the two-atom state can be achieved before decoherence
occurs. Excitation of the dipoles can be made conditional on the atomic states, allowing for deterministic
generation of entanglement. We derive selection rules and a figure of merit for the dipole-dipole interaction
matrix elements, for alkali atoms with hyperfine structure and trapped in localized center of mass states.
Different protocols are presented for implementing two-qubit quantum logic gates such as the controlled-phase
and swap gates. We analyze the error probability of our gate designs, finite due to decoherence from coopera-
tive spontaneous emission and coherent couplings outside the logical basis. Outlines for extending our model
to include the full molecular interactions potentials are discussed.

PACS number~s!: 03.67.Lx, 32.80.Qk, 32.80.Lg, 32.80.Pj
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I. INTRODUCTION

The ability to coherently manipulate multiparticle e
tanglement represents the ultimate quantum control o
physical system and opens the door to a wide variety
fundamental studies and applications, ranging from impro
ments in precision measurement@1# to quantum simulation
@2,3# and quantum computation@4#. Several physical realiza
tions have been proposed in quantum optics, including
traps @5# and cavity QED@6#, and ‘‘engineered’’ entangle
ment has been demonstrated in the laboratory for both
these systems@7,8#. Entangling unitary transformations hav
been implemented in liquid-state NMR on pseudopure st
of nuclear spins in small organic molecules@9#, though true
entanglement has not yet been produced in these the
samples@10#. Proposals have been made also for a numbe
condensed-matter implementations, such as quantum
@11#, superconducting quantum interference devic
~SQUIDs! @12#, and coupled spin resonance of dopants i
silicon lattice@13#. All these implementations must conten
with the conflict inherent to open quantum systems. Ent
gling unitary operations must provide strong coherent c
pling of the atoms or spins with each other and also with
external driving field, while shielding the system from th
noisy environment that leads to decoherence.

Recently we identified a new method for producing m
tiparticle entangled states of cold trapped neutral atoms@14#
~see also@15–17#!. This system offers several advantages
quantum information processing. In general, neutral atom
their electronic ground state couple extremely weakly both
each other and to the environment. Interatomic coupli
can, however, be createdon demandby external fields,
which excite two-atom resonances such as those arising
electric dipole-dipole interactions@14#, by ground-state col-
lisions @15#, or by real photon exchange@16,17#. The ability
to turn interactions ‘‘on’’ only when needed is highly adva
tageous because it reduces coupling to the environment
1050-2947/2000/61~6!/062309~10!/$15.00 61 0623
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the spread of errors among atoms. To create entanglem
one must accurately control both the atomic internal and
ternal degrees of freedom so that the interatomic coup
can be applied in a coherent manner and with high fideli

In this paper we consider the creation of entanglement
resonantly induced dipole-dipole interactions between ato
in tightly confining traps, such as those produced by opti
lattices@18# or magnetic traps@19#. Our goal is to establish
some general features that can be applied in a variety
settings. Experimental details will be omitted except to g
order of magnitude estimates where appropriate—a m
complete description of our proposal will be published el
where @20#. We begin with a discussion in Sec. II of th
dipole-dipole interaction, establishing the ‘‘figure of merit
for entangling interactions and the selection rules for tran
tions between internal and external states for two atoms
confining trap. In Sec. III we demonstrate the flexibili
available for implementing quantum logic in this system
presenting three different two-qubit logic protocols and e
mate the figure of merit for each due to spontaneous em
sion. A major deficit in the present analysis is the omiss
of inelastic collision channels from the model@21#. Such a
task has considerable challenges, especially when one
cludes the complex internal structure of the atoms in
molecular potentials@22#. In Sec. IV we give an outlook
toward this and other future research.

II. THE DIPOLE-DIPOLE INTERACTION

The dipole-dipole interaction depends both on the inter
electronic states of the atoms as dictated by the tensor na
of the interaction, and the external motional states that de
mine the relative coordinate probability distribution of th
dipoles. We consider a system of two atoms trapped in se
rate harmonic potentials, interacting coherently with a cl
sical field and with each other via the dipole-dipole intera
tion. Decoherence may occur via cooperative spontane
©2000 The American Physical Society09-1
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emission. We will begin with a discussion of the simple
case, two two-level atoms. This will establish the basic f
tures we will exploit for entangling neutral atoms. We th
consider a more realistic multilevel structure associated w
alkali atoms, the most readily cooled and trapped ato
species. We seek expressions for the interaction matrix
ments and the resulting selection rules.

A. Two-level atoms

Consider two two-level atoms at fixed points separated
distancer, with ground and excited statesug&, ue&, interacting
with a laser field at frequencyvL . After tracing over the
vacuum modes in the Born-Markov approximation, the
fective non-Hermitian Hamiltonian is@23#

Heff5HA1HAL1Hdd , ~1!

where the atomic Hamiltonian and the atom-laser interac
are

HA5S 2\D2 i
G

2 D ~D1
†D11D2

†D2!, ~2!

HAL52
\V

2
~D1

†1D2
†1H.c.!. ~3!

Here, D5vL2veg is the laser detuning,G is the excited
state decay rate,V is the Rabi frequency, andD†5ue&^gu is
the dimensionless dipole raising operator for each atom.
dipole-dipole coupling interaction Hamiltonian is of the for

Hdd5S Vc2 i
\Gc

2 D ~D1
†D21D2

†D1!, ~4!

whereVc is the coupling strength that depends explicitly
r, andGc is the collective contribution to the decay rate.

In order to analyze this system we must choose an ap
priate basis of states. There are two natural choices:
atomic and molecular bases. In the atomic case one cons
product states of internal dynamics and center of mass
tion. In the molecular case one considers eigenstates o
dipole-coupled two-atom HamiltonianHA1Hdd in the Born-
Oppenheimer approximation. Both bases form a complete
of states and thus allow for a full description of the physi
though the transparency of the model may be greater w
one or the other, depending on the nature of the problem.
low atomic densities the atomic basis is convenient~see, for
example,@24#!, whereas at high densities where collisio
play a dominate role the molecular basis is more natural~see,
for example,@21#!. For the simple example of two two-leve
atoms the relation between these bases is seen immed
by a diagonalization ofHA1Hdd , yielding ‘‘molecular
eigenstates’’~see also@25#!

ug1 ,g2&,uc6&5
ue1g2&6ug1e2&

&
,ue1e2&. ~5!

In this basis the Hamiltonian isHeff5H01HAL , with
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H052\~D1 iG/2!$2ue1e2&^e1e2u1uc1&^c1u1uc2&^c2u%

1~Vc2 i\Gc/2!$uc1&^c1u2uc2&^c2u%, ~6a!

HAL5
\V

&
~ ug1g2&^c1u1ue1e2&^c1u1H.c.!. ~6b!

The symmetric stateuc1& is super-radiant with linewidthG
1Gc , and couples toug1g2& andue1e2& with Rabi frequency
&V. The stateuc2& is subradiant with linewidthG2Gc .
The statesuc6& may be denoted by molecular spectrosco
notation with eigenvaluesS, P, etc., depending on the ori
entation of the dipoles with respect to the direction of t
internuclear axis@25#. This is implicit in the definition of the
coupling constantVc ,

Given this Hamiltonian we can calculate the dresse
ground-state energy by treatingHAL as a perturbation to sec
ond order. We find

Egg5
\V2/2

~D2Vc /\!1 i ~G1Gc!/2
. ~7!

WhenD@Vc ,G the saturation isindependentof the dipole-
dipole interaction, which is equivalent to a separation b
tween the internal state dynamics and the external degree
freedom. In this limit

Egg's~\D2 i\G/2!1s~Vc2\Gc/2!, ~8!

wheres'V2/(2D2) is the single atom saturation paramete
The first term in Eq.~8! represents the sum of the sing
atom light shifts and the photon scattering rate. The sec
term, Hdd[s(Vc2 i\Gc/2), is the two-atom cooperative
dipole-dipole effect on the ground-state perturbation, w
sVc giving the coherent level-shift andsGc the cooperative
contribution to the spontaneous emission rate. The le
shifts of the molecular eigenstates in this perturbative lim
are shown in Fig. 1. We define afigure of meritk for the
dipole-dipole interaction as

k[
Re~Hdd!

2uIm~Egg!u
5

Vc

\~G1Gc!
[

Vc

\G tol
. ~9!

FIG. 1. Internal energy levels for two atoms.~a! The bare en-
ergy eigenbasis showing degenerate states with one photon ex
tion. ~b! The two-atom picture in the rotating frame at field detuni
D with dipole-dipole splitting of the symmetric and antisymmetr
states. The primed states to the right are the dressed atomic s
including the sum of the light shift and dipole-dipole potentials~not
to scale!.
9-2
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This represents the rate at which the cooperative phase
is accumulated compared to the total rate of decay du
spontaneous emissionG tot and is the central parameter th
measures the quality of the interaction. Note that in the h
detuning limit this figure isindependentof the saturation of
the atomic populations.

A simple scaling argument shows the plausibility of usi
atomic dipole-dipole interactions to construct entangling u
taries. In the near fieldVc;d2/r 3, whered is the mean in-
duced dipole moment per atom. In contrast, the total spo
neous emission rate can be no larger than the Dicke su
radiant rate equal to twice the single atom decay rate,\G
;k3d2, wherek is the photon wave number. Thus, the figu
of merit scales ask;(kr)23, which is potentially quite large
for tight traps, deep in the Lamb-Dicke regime. In order
evaluate the proportionality constant, we must conside
more realistic model for the system as discussed in the
section.

B. Multilevel atoms

Consider now two alkali atoms with nuclear spinI, center
of mass positionsr1 , r2 , and excited on theD2 transition,
uS1/2(F)&↔uP3/2(F8)&, where F and F8 belong to the
ground- and excited-state hyperfine manifolds. The ato
interact with the vacuum field and a classical monochrom
laser fieldE5Re„EL«L(x)e2 ivLt

…, with amplitudeEL and
local polarization given by«L(x). The multilevel generaliza-
tion of Eqs.~1!–~4! for the effective atom-laser Hamiltonian
together with a dipole-dipole interaction between atoms
@26#,

HAL52\S D1 i
G

2 D ~D1
†
•D11D2

†
•D2! ~10a!

2
\V

2
@D1

†
•«L~r1!1D2

†
•«L~r2!1H.c.#,

~10b!

Hdd5Vdd2 i
\Gdd

2

52
\G

2
@D2

†
•TI~kLr !•D11D1

†
•TI~kLr !•D2#,

~10c!

where the relevant Rabi frequency is given byV5
^J85 3

2 idiJ5 1
2 &EL /\, having used the Condon and Shortl

@27# convention for reduced dipole matrix elements, and
dimensionless vector dipole raising operator is defined a

D†5(
F8

PF8dPF

^J8idiJ&

5(
F8

oF8F (
q521

1

(
MF

eq* CMF ,q,MF1q
F,1,F8 uF8,MF1q&^F,MFu,

~11a!
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oF8F5A~2J811!~2F11! H F8 I J8

J I F J . ~11b!

Here PF8,F are projectors on the excited and ground ma

folds, eq are the spherical basis vectors,cMF ,q,MF1q
F,l ,F8 is the

Clebsch-Gordan coefficient for the electric dipole transiti
uF,MF&→uF8,MF1q&, and oF8F is the relative oscillator
strength of each hyperfine transition as set by the 6j symbol.
The second rank tensor,TI5 fI1 i gI, describes the strength o
the two-atom interaction as a function of atomic separat
r 5ur12r2u,

fI~kLr !5
2

3 F ~1I2 r̂ r̂ !
cos~kLr !

kLr
2~1I23r̂ r̂ !

3S sin~kLr !

~kLr !2 1
cos~kLr !

~kLr !3 D G , ~12a!

gI~kLr !5
3

2 F ~1I2 r̂ r̂ !
sin~kLr !

kLr
1~1I23r̂ r̂ !

3S cos~kLr !

~kLr !2 2
sin~kLr !

~kLr !3 D G . ~12b!

The Hermitian part of the effective interaction Hamiltonia
Vdd determines the dipole-dipole energy level shift. The an
Hermitian partGdd gives rise to cooperative spontaneo
emission so that the total decay rate is given by the expe
tion value of G tot5G(D1

†
•D11D2

†
•D2)1Gdd . In the near

field ~the limit kLr→0) one finds that the real and imagina
parts of the dipole-dipole Hamiltonian areVdd→@d1•d2
23(r̂•d1)( r̂•d2)#/r 3, the quasistatic dipole-dipole interac
tion, and Gdd→G(D1•D2

†1D2•D1
†), the Dicke super-~or

sub! radiant interference term for in~or out of! phase dipoles.
As in the two-level case described in Sec. II A, we mu

choose an appropriate basis. For atoms with both fine
hyperfine structure the molecular basis has a very comp
description@22#. To develop some intuitive understandin
we will restrict our attention to the atomic basis, and de
discussion of the more general problem to Sec. IV. Cons
then a product state with the two atoms in the same inte
state,uC&5uc int&1ufext&1^ uc int&2ujext&2 , each with its mean
dipole moment vector oscillating along the spherical ba
vector eq . Under this circumstance the figure of merit fo
coherent dipole-dipole level shift defined in Eq.~9! can be
generalized to the multilevel case through Eq.~10!,

k5
^Vdd&

^\G tot&

5
2\G^Dq

†Dq& int^ f qq&ext

2\G^Dq
†Dq& int~11^gqq&ext!

5
2^ f qq&ext

2~11^gqq&ext!
. ~13!

This factor depends only ongeometry: the external states an
the direction of polarization of the oscillating dipoles. It
9-3
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independent of the strength of the dipole, since the sa
matrix element for the atoms’ internal states appears bot
the numerator and denominator. The average over the e
nal state is carried out with respect to the relative coordin
probability density, having traced over the center of mass
the two-atom system.

We will focus here on weak excitation of the dipoles. A
in Sec. II A, adiabatic elimination of the excited states f
lows from second-order perturbation theory in the limit
small saturation of the atomic transitions. We will furth
assume that the detuning is large compared to the exc
state level shifts over theentire rangeof the relative coordi-
nate probability distribution. This is exactly the approxim
tion used to obtain Eq.~8!. In that case, the light shift con
tribution to the level shift factors out as in Eq.~8!, and the
effective cooperative dipole-dipole Hamiltonian on t
ground-state manifold is@24#

Hdd5Vdd2 i
\Gdd

2

52s
\G

2 (
q,q8521

1

~ f qq81 igqq8!$@D1•«L* ~r1!#~D1
†
•eq!

3~D2•eq8
* !@D2

†
•«L~r2!#1H.c.%. ~14!

The interaction tensor is written here in the spherical bas

f qq8~kLr !5@n0~kLr !dqq81~21!qn2~kLr !

3Y2
q82q~u2f!A6p/5c2q,q8,2q1q8

1,1,2
#,

gqq8~kLr !5@ j 0~kLr !dqq81~21!qj 2~kLr !

3Y2
q82q~u2f!A6p/5c2q,q8,2q1q8

1,1,2
#, ~15!

wherej m(nm) are themth-order spherical Bessel~Neumann!
functions andYl

ln ~u, f! are the spherical angles of the rel
tive coordinater . The zeroth-order Bessel and Neuma
functions account for retardation in the dipole-dipole int
action and will be neglected below.

Physically, Eq.~14! represents a four-photon process: a
sorption of a laser photon by one atom followed by coher
exchange of the excitation between the atoms via a vir
photon emission and absorption, and finally stimulated em
sion of a laser photon returning both atoms to the grou
state. Because the virtual photon can be emitted in any
rection it is not an eigenstate of angular momentum w
respect to the space-fixed quantization axis of the atoms.
quantum numbersq and q8 represent two of the possibl
projections of its angular momentum on that axis. Examp
of these fundamental photon exchange processes are s
in Fig. 2.

We are left to consider the geometry of the trapping p
tentials, resulting external coordinate wave functions, and
polarization of the oscillating dipoles. For deep traps we c
approximate the motional states as harmonic oscillators.
the particular case of an isotropic trap, the spherical sym
try allows explicit evaluation of the interaction matrix el
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ments. Consider two atoms in a common well, each
scribed by a set of radial and angular momentum vibratio
quantum numbersun,l,m& @28#, with energy Enl52n1 l
13/2, degeneracygnl5(2n1 l 11)(2n1 l 12)/2, and an in-
ternal state denoting one of the ground magnetic subleve
a given hyperfine stateuF,MF&. One can decompose th
product state of the two isotropic harmonic oscillators in
relative and center of mass states, which then can be use
find analytic expressions for the matrix elements with a g
eral tensor coupling. Given dipoles excited with polarizati
el , we can evaluate the matrix element with respect to
internal degree of freedom,

^F,MF1 ;n1l 1m1u ^ ^F,MF2 ;n2l 2m2uVdduF,MF18 ;n18l 18m18&

^ uF,MF28 ;n28l 28m28&

5 (
q,q8521

1

~21!qc2q,q8,2q1q8
1,1,2 A6p/5

3^n1l 1m1u ^ ^n2l 2m2uV~r !Y2
q82q~u,f!un18l 18m18&

^ un28l 28m28&(cM
F28 ,l,M

F28 1l

F,1,F8 cM
F28 1l,2q8,MF2

F8,1,F

3cM
F18 ,q,MF11q

F,1,F8 cM
F18 1q,2l,MF1

F8,1,F

1cM
F18 ,l,M

F18 1l

F,1,F8 cM
F18 1l,2q8,MF1

F8,1,F

3cM
F28 ,q,M

F28 1q
F,1,F8 cM

F28 1q,2l,MF2

F8,1,F
), ~16!

whereV(r )52s\Gn2(kLr )/2;1/h3, having neglected the
radiation termn0(kLr );1/h for h!1.

The Clebsch-Gordan coefficients of the four-photon p
cess in Eq.~16! dictate selection rules for the internal state

MF11MF25~MF18 1MF28 !1~q2q8!. ~17!

We see that neitherMF1 , MF2 , nor the totalMF11MF2 is a
conserved quantity. The fact that these are not good quan

FIG. 2. Fundamental photon exchange processes allowed in
dipole-dipole interaction. Solid lines indicate stimulated emiss
and absorption of a laser photon; wavy lines indicate emission
absorption of a virtual photon responsible for the exchange inte
tion. The contributing component of the dipole-dipole interacti
tensor,f qq , from Eq.~15! is indicated above. The black and whit
dots represent the initial state of the two interacting atoms; the g
and striped dots represent the final states, respectively.~a! With
degenerate ground states, transitions that conserve neitherMF1 ,
MF2 nor totalMF are allowed.~b! Under a linear Zeeman shift only
processes conserving totalMF are resonant.~c! A nonlinear Zee-
man or ac-Stark shift will constrain the interaction to return bo
atoms to their initial states.
9-4
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numbers can be seen immediately from the form of the
teraction Hamiltonian, Eq.~10b!, which is neither a scala
with respect to rotations by hyperfine operatorsF̂1 , F̂2 , nor
F̂11F̂2 . Classically this is reflected in the fact that th
dipole-dipole interaction isnot a central force, and therefore
the angular momentum of two classical dipoles about th
center of mass is not a conserved quantity. Generally, in
nal angular momentum can be converted to rotational ene
of the molecule if the atoms have multiply degenerate ene
levels. An example of a quantum mechanical process
does not conserveMF11MF2 in shown in Fig. 2~a!. Tech-
niques to conserve the total and individual atomic inter
quantum numbers by, e.g., breaking ground-state degene
@Figs. 2~b! and 2~c!#, are discussed in Sec. III.

To evaluate the external-state matrix element in Eq.~16!
we first expand the uncoupled angular momentum basis
the motional statesu l 1m1& ^ u l 2m2& in terms of the coupled
statesul, m& for total angular momentuml and projectionm
according to the usual vector addition rules, so that

^n1l 1m1u ^ ^n2l 2m2uV~r !Y2
mr~u,f!un18l 18m18& ^ un28l 28m28&

5 (
l,l8

(
m,m8

cm1 ,m2 ,m
l 1 ,l 2 ,l c

m
18 ,m

28 ,m8

l 18 ,l 28 ,l8
^n1l 1n2l 2 ;lmuV~r !

3Y2
mr~u,f!un18l 18n28l 28 ;l8m8&. ~18!

Borrowing a technique from nuclear physics due to Mosh
sky @29# we express coupled isotropic harmonic oscilla
wave functions for the two atoms in the product basis
center of mass oscillator statesuNL& and relative coordinate
oscillator statesunl& as summarized in@30#. The matrix ele-
ment in Eq.~18! can then be written

^n1l 1n2l 2 ;lmuV~r !Y2
mr~u,f!un18l 18n28l 28 ;l8m8&

5 (
nNlLl8

^n1l 1n2l 2 ,lunl,NL,l&

3^n8l 8,NL,l8un18l 18n28l 28 ,l8&

3~21!L1l81 lA5~2l811!~2l 11!

~4p!

3cm8,mr ,m
l8,2,l c0,0,0

l ,2,l 8H l l L

l8 l 8 2J
3 (

p5~ l 1 l 8!/2

~ l 1 l 8!/21n1n8

B~nl,n8l 8,p!I p@V~r !#, ~19!

with restrictions on the quantum numbers to conserve
total mechanical energy,

Etot5E11E25E181E285ECM1Erel5ECM8 1Erel8 ~20a!

⇒n85n1n181n282n12n21~ l 181 l 282 l 12 l 21 l 2 l 8!/2.
~20b!
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In Eq. ~19! ^n1l 1n2l 2 ,lunl,NL,l& are ‘‘Moshinsky brack-
ets’’ that are tabulated real coefficients found using recurs
relations,B(nl,n8l 8,p) are radial function expansion coeffi
cients given in@31#, and I p@V(r )# are the Talmi integrals
given in @30#. The Moshinsky brackets satisfy conservati
of parity of the wave function, i.e., (21)l 11 l 2

5(21)l 1L,(21)l 181 l 285(21)l 81L and coupling with a rank-
two tensor restricts angular momentum quantum number
l 85 l , l 62. The Clebsch-Gordan coefficients in Eq.~18! im-
pose the constraintm5m11m2 , and m85m181m28 , while
Eq. ~19! requiresm2m85mr . Thus, the selection rule for a
tensor coupling between isotropic harmonic oscillator sta
is

m181m281mr5m11m2 . ~21!

This is the analog of Eq.~17!, now with respect to the atomic
motional states. The quantum numbermr can be interpreted
as the projection of the net angular momentum of the
changed virtual photons responsible for dipole-dipole int
actions@i.e.,mr56(q2q8)]. The deficitDq is converted to
mechanical rotation of the molecule, consistent with ove
energy conservation, Eq.~20!.

In addition to degenerate couplings resulting in change
internal states as described above, for atoms in excited vi
tional modes of a common spherical well there are furt
degeneracies and couplings allowed by the energy conse
tion law Eq.~20a! and selection rule Eq.~21!. For instance,
the product state of two atoms, each with one quanta
vibration alongz, can couple to the seven dimensional d
generate subspace of two quanta shared between the
atoms,

un1l 1m1& ^ un2l 2m2&5$u010& ^ u010&,u0121& ^ u011&,u011&

^ u0121&,u020& ^ u000&,u000&

^ u020&,u100& ^ 000&,u000& ^ 100&%.

~22!

All of these features must be accounted for if we are
utilize the dipole-dipole interaction for coherent quantu
state manipulation and logic gates, as we consider in the
section.

III. QUANTUM LOGIC GATES

A. General considerations

The dipole-dipole interaction discussed in Sec. II c
bring about coherent interactions between neutral atoms
useful paradigm to generate an arbitrary unitary evolution
a many-body system is the ‘‘quantum circuit’’ defined by
series of logic gates acting on a set of two-level quant
systems~qubits! @4#, here the trapped atoms with pure stat
identified as the logical-u0& and u1&. A crucial component is
the two-qubit logic gate whereby the state of one at
~called the target! is evolved conditional on the logical stat
of the other~called the control!. A familiar example is the
‘‘controlled-NOT’’ ~CNOT!, whereby the logical state of th
9-5
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target is flipped,u0&↔u1&, if the control qubit is in the
logical-u1&, and no change is made otherwise. Other
amples that have no classical analog include the ‘‘controll
phase’’~CPHASE! and ‘‘square-root of swap’’ (ASWAP) gates
@11#. In the former, the two-qubit state with both atoms in t
logical-u1& accumulates aphase shiftof p, u1& ^ u1&→2u1&
^ u1&, and other local basis states remain unchanged.
ASWAP if operated twice, exchanges the statesu1& and u0&;
operated once we have an equally weighted superpositio
no-swap and swap. These examples are entangling two-q
gates, which together with the ability to effect arbitra
single qubit transformations, can generate an arbitrary
tangled state of the many-body system through seque
pairwise application. In the language of quantum informat
processing, these logic gates form a universal set for qu
tum computation@32#.

We consider the design of these logic gates for neu
atoms in tight traps~i.e., well within the Lamb-Dicke limit!.
We have formulated such an implementation in optical
tices@14#, which offer avenues for pure quantum state pre
ration through resolved-sideband Raman cooling@33# and a
flexible geometry for coherent control@34#. The general fea-
tures apply to other traps as well, but will not be discuss
explicitly here. In summary, we defined two ‘‘species’’ o
atoms denoted~6!, those whose light shift is dominated b
the s6 standing wave of the lattice, respectively. Throu
dynamical variation of the optical lattice polarization, th
two species can be brought together to interact pairwise.
auxiliary field ~denoted as the ‘‘catalysis’’! excites the di-
poles for the duration necessary to achieve the two-q
logic gate. For the geometry considered in@14#, we defined
computational basis sets for the~6! species,

u1&65uF↑ ,MF561& ^ uc16&ext,
~23!

u0&65uF↓ ,MF571& ^ uc06&ext,

whereF↑,↓5I 61/2 are the two hyperfine levels associat
with the S1/2 ground state,MF is the magnetic sublevel, an
uc&ext are the external coordinate wave functions.

For a given choice ofuc&ext and the catalysis field, we ca
define protocols for different quantum logic operation
Single bit manipulations~e.g., rotations of the qubit state o
the Bloch sphere and readout of the qubit state! can be
implemented through conventional spectroscopy, such as
herent Raman pulses and fluorescence spectroscopy as
onstrated in ion traps@35#.

Two-qubit entanglement is achieved by inducing a con
tional dipole-dipole interaction. We will consider two kind
of gates in Sec. III B. ACPHASE gate can be implemente
with the following protocol. If the catalysis field is tune
near theuS1/2,F↑&→uP3/2& resonance with detuning sma
compared to the ground-state hyperfine splitting, then n
negligible dipoles are inducedonly for atoms in the logical-
u1& states. If there are no off-diagonal matrix elements of
dipole-dipole interaction in the chosen logical basis, and
suming the gate is performed on a time scale much fa
than the photon scattering rate, this causes a nonzerocoop-
erative level shift only of the logical basis stateu1&1
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^u1&2 , and zero cooperative level shift of all other logic
basis states@see Fig. 3~a!#. Of course single atom light-shif
interactions cause logical states to accumulate phase as
but these can be removed through appropriate lights-s
pulses acting on the separated individual atoms before
after they are made to interact. If the atomic pair is allow
to evolve in the presence of the catalysis field for a timet
5\p/^Vdd& we obtainu1&1 ^ u1&2→2u1&1 ^ u1&2 with no
change to the other logical basis states, as required f
CPHASE. A similar protocol can also be constructed to impl
ment aASWAP gate. Through an appropriate choice of logic
basis and catalysis field, one can induce dipole-dipole c
plings that are only off diagonal in the logical basis, of t
type u1&1 ^ u0&2↔u0&1 ^ u1&2 . Applying the interaction for
a time such that ap/2 rotation occurs in this subspace, w
obtain the desired gate@see Fig. 3~c!#. For a general initial
state of the two qubits, the result of the logic gate will be
entangled state.

The value of the figure of meritk implies an absolute
lower limit on the error probability of the quantum gat
Ignoring for the moment inelastic collisions, dissipative e
fects in the atomic trap, or other technical errors, imperf
fidelity is due to scattering by the catalysis field. This lim
can be regarded as ‘‘fundamental,’’ in the sense that it
rives from a decoherence mechanism intrinsic to our sche
The catalysis field is present only during the entangling
eration, of durationt5\p/u^Vdd&u, where the expectation
value is taken in the logicalu1,1& state. It then follows from
the definition of the figure of merit, Eqs.~9! and ~13!, that
the maximum error probability by scattering a catalysis ph
ton is

FIG. 3. Energy level structure of the logical basis associa
with two-qubit logic gates. Basis states are denoted for~6! species
as described in the text.~a!, ~b! CPHASEconfiguration: The ‘‘cataly-
sis field’’ excites dipoles only in the logical-u1& states, chosen for
both species in the upper ground hyperfine manifoldF↑ . The
dipole-dipole interaction is diagonal in this basis and results so
in a level shift of theu1&1 ^ u1&2 state. Operation of this gate with
high fidelity requires this shift to be large compared to the coope
tive linewidth. ~c!, ~d! ASWAP configuration. The logical basis is
encoded in the vibrational degree of freedom as described in
III B. For an appropriate choice of geometry and pulse timing, th
is an off-diagonal coupling between the logical statesu1&1 ^ u0&2

and u0&1 ^ u1&2 , yielding aASWAP.
9-6
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Perror512exp~2G tott!

512expS 2p
\G tot

u^Vdd&u
D

512expS 2
p

uku D . ~24!

Assuming a large figure of merit, the error probability
approximatelyPerror'p/uku.

In all of the protocols, it is necessary to devise intera
tions that minimize loss of fidelity due to photon scatteri
and coherent coupling outside the logical basis~‘‘leakage’’!.
One leakage channel arising from the dipole-dipole poten
discussed in Sec. II originates from the coherent coup
between degenerate internal states. Generally, ne
MF1 , MF2 nor MF5MF11MF2 is conserved. From Eq
~17! we have the selection rule,DMF56uq82qu, whereDq
is the net projection of angular momentum of the exchan
virtual photon along the atomic quantization axis. As su
marized by selection rule Eq.~21!, any deficit in the angular
momentum of the exchanged photons must be balance
an excitation of mechanical rotation of the two-atom m
ecule. If such transitions are allowed by energy conservat
they can be suppressed through judicious choice of lat
geometry. Choosing the potential to have azimuthal sym
try ensures that only the terms withq85q survive in Eq.
~16!, and thusDMF50. Leakage channels can also be su
pressed by breaking the symmetry that leads to the de
eracy. A sufficient magnetic field can define the quantizat
axis, providing a linear Zeeman splitting of the ground-st
magnetic atomic sublevels greater than the cooperative
width of these states. Processes that do not conserve the
MF are thus detuned out of resonance@Fig. 2~b!#. Preserva-
tion of the individual quantum numbersMF1 , MF2 requires
a nonlinear Zeeman shift of ac-Stark shift in the ground-s
manifold to break the degeneracy@Fig. 2~c!#.

One final leakage channel we address is coherent coup
into the excited state manifold. We must ensure that
population returns to the ground states after the logic gat
completed. One means to achieve this is to adiabatically c
nect the ground-manifold to the field-dressed levels. C
sider the simplified basis of two two-level atoms conside
in Sec. II A. Adiabatic evolution is achieved when the lev
splitting between the two-atom ground and first excit
eigenstates,\D2Vc , is sufficiently large compared to off
diagonal coupling caused by the changing catalysis exc
tion. An alternative approach is to work in the opposite lim
and apply sudden pulses, fast compared toVdd /\. A real
excitation is then coherently exchanged between the ato
A similar protocol in the form of aCNOT has been propose
by Lukin and Hemmer@36# for dipole-dipole interacting
dopants in a solid-state host.

B. Logic-gate protocols

In the following we describe three examples that dem
strate the flexibility available for designing quantum log
gates. We will assign a logical basis set given in Eq.~23!.
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When the atoms are excited in phase byp-polarized catalysis
light, the figure of merit is given by Eq.~13!, with q50, and
the atoms are super-radiant,G tot52G. To complete our quan-
tum logic protocol, we must choose the external coordin
wave function for our qubits. Considerations include ma
mizing the dipole-dipole figure of merit and minimizing co
herent leakage due to degeneracies.

Let us first consider the case of two atoms in the vib
tional ground state sharing a common well. Though spher
wells maximize the radial overlap for atoms in their grou
state, the dominant term in the interaction tensor isf 00

5n2(kLr )Y2
0(u);Y2

0(u)/(kLr )3, which is orthogonal to the
isotropic relative coordinate Gaussian wave function. T
multipole component is nonzero, however, for nonspher
geometries and for higher motional states of the atoms
spherical wells.

One suitable design is to use ellipsoidal wells as discus
in @14#. Consider an axially symmetric harmonic potent
with two atoms in the vibrational ground state, each d
scribed by a Gaussian wave packet with widthsDx5Dy
5x0 andDz5z0 . The figure of merit can be calculated nu
merically including radiation terms, as a function ofh'

5kLx0 and h i5kLz0 as presented in@14#. An analytic ap-
proximation follows from Eq.~13!, taking into account only
the near field, yields

k'2 1
4 ^ f 00~r ,u!&ext

52
3

4 E d3xuc rel~r ,u!u2
P2~cosu!

~kLr !3

5
1

16Aph'
2 h i

F2223
h2

h'
2 13S h3

h'
3 1

h

h'
D tan21S h'

h D G ,
~25!

whereh225h i
222h'

22. Keepingh' fixed while maximiz-
ing with respect to the ratioh i /h' gives kmax'28.5
31023/h'

3 . As an example, given tight localizationsz0

5l/60, x05l/130, corresponding to Lamb-Dicke param
etersh i50.1,h'50.05, we havek'268.

The relatively small figure of merit for two atoms in
common prolate ellipsoidal well can be partially attributed
destructive interference between different dipole orien
tions. One hasVdd;22d2/r 3 when the internuclear axis i
along the polarization, andVdd;1d2/r 3 for perpendicular
separations. A possible solution is to use nonoverlapp
spherical wells, separated along the quantization axis byDz.
We have seen that as this separation goes to zero, the di
dipole interaction goes to zero. We also know thatVdd
;1/(kr)3 goes to zero as the separation goes to infin
Thus at some intermediary value of atomic separation,
interaction must be maximum. Given ground-state Gauss
wave packets of widthx0 in any direction in the isotropic
wells, the state is separable in center of mass and rela
coordinates. Since the wave function is azimuthally symm
ric, it is valid to consider only theY2

0 piece of the coupling
tensor as discussed in Sec. III A. The figure of merit follo
as in Eq.~25!,
9-7
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k5Fe2~D z̄/2!2

Ap
S 1

8
1

3

4D z̄2D2
3 erf~D z̄/2!

4D z̄3 G 1

h3 , ~26!

whereD z̄5Dz/x0 , andh5kLx0 . The form of Eq.~26! can
be verified in two limits. ForDz@x0 ,k→20.75(kLDz)23,
the expected figure of merit for two-point dipoles separa
by distanceDz, with dipole vectors aligned along the rela
tive coordinate vector. For Dz!x0 , we find k
→2(D z̄)2/(80Aph3), vanishing quadratically as the sep
ration between wells goes to zero. A plot ofk is shown in
Fig. 4. The figure of merit is maximized atDzmax/x0'2.5
where kmax'20.015/h3. For example, ath50.05,kmax'
2123. This is almost twice as good as the scheme us
overlapping ellipsoidal wells with the same minimum loca
ization.

Higher vibrational states of overlapping spherical we
can also be used to encode the qubit for controlled logic.
instance, one quanta of vibration alongz in each atom could
be considered to code for the logical-u1&. This is ill suited as
a logical basis, however, because of the problem of cohe
leakage. The couplings given by selection rules Eqs.~20! and
~21! connect the logical basis to a seven-dimensional deg
erate subspace of two vibrational quanta shared between
atoms as described in Eq.~22!. Many of these couplings ca
be avoided if instead we choose the so-called stretched s
of vibration. Consider the logical basis

u1&65uF↑ ,MF561& ^ un50,l 51,m51&,
~27!

u0&65uF↑ ,MF561& ^ un50,l 50,m50&.

We choose ap-polarized catalysis field applied to the tra
sition uS1/2,F↑&→uP3/2,F8& with detuninglarge compared to
the oscillation frequency. This induces nearly equal dipo
for atoms in logical-u1& and u0& states@see Fig. 3~b!#.

Matrix elements of the dipole-dipole operator can then
calculated using Eq.~19!. Unlike the previous cases dis
cussed, the interaction operator is not diagonal in the c
putational basis set, $u0&1 ^ u0&2 ,u0&1 ^ u1&2 ,u1&1

^ u0&2 ,u1&1 ^ u1&2 ,%, but instead has the form

FIG. 4. Dipole-dipole figure of meritk for spherically symmet-
ric Gaussian wave packets with widthx0 , normalized to the Lamb-
Dicke parameterh5kx0 , as a function of the normalized separ
tion D z̄5Dz/x0 . Maximum uku'0.015/h3 is achieved atD z̄
'2.5.
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7

4
\xS 0 0 0 0

0 1 21 0

0 21 1 0

0 0 0 4
7

D ,

x5
2~oF8Fc1,0,1

F↑,1,F8!4

70Aph3
sG. ~28!

In addition, as dictated by the selection rules of Sec. II,
dipole-dipole interaction couples the logical basis states
subspace of states with two shared quanta,un1m1l 1&
^ un2m2l 2&5$u011& ^ u011&,u022& ^ u000&,u000& ^ u022&%.
The matrix elements are

^022u ^ ^000uVddu011& ^ u011&

5^000u ^ ^022uVddu011& ^ u011&

52\x/&,
~29!

^022u ^ ^000uVddu022& ^ u000&

5^000u ^ ^022uVddu000& ^ u022&

59\x/4,

^022u ^ ^000uVddu000& ^ u022&525\x/4.

The couplings within the degenerate vibrational subspac
Eq. ~29! describe an effective two-level system with co
pling between the stateu011& ^ u011& and the symmetric state
(u022& ^ u000&1u000& ^ u022&)/&. The antisymmetric state
is uncoupled and ‘‘dark’’ to the interaction. The effectiv
Rabi frequency within the coupled subspace is exactlyx,
thus there is a recurrence timet5p/x for population in the
vibrational stateu011& ^ u011&. For this interaction time the
unitary operator in the logical basis is

U5exp~2 iVddt/\!5S 1 0 0 0

0 eip/4

&
S 1

2 i

2 i

1 D 0

0 0

0 0 1 1

D .

~30!

This is theASWAP gate universal to quantum logic@11#. The
figure of merit for this gate is

k'2 1
4 ^1112u f 00u1112&52

1

140Aph3
'2

4.0231023

h3 ,

~31!

which for h50.05 givesk'232.

IV. OUTLOOK

We have explored the possibility of creating multipartic
entanglement using induced dipole-dipole interactions
9-8
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tween pairs of alkali atoms in tight traps. This system off
good prospects for quantum control of both internal and
ternal degrees of freedom. By designing interactions that
be selectively turned on and off through an external con
field, coherent interactions between atoms can be indu
with high fidelity, opening possibilities for designing qua
tum logic gates to perform quantum information process
tasks.

The error probability of the two-qubit logic gate, finit
due to spontaneous emission, is sufficient to allow us to
ate entangled states of multiple atoms. This holds prom
for a variety of applications in precision measurement@1#
and quantum simulations@3#. Such applications are possib
in the short term, based on ensemble preparation and m
surement on the sparse, randomly filled lattices that
available in today’s laboratory experiments. In the mu
longer term, the promise of universal fault-tolerant quant
computing places very strong constraints on the physical
tem. Specifically, fault-tolerant quantum computation d
mands an extremely low error probability, e.g.,Perror
,1024 @37# or 1023 for some models@38#. Fortunately we
see possibilities for substantial improvements by extend
the theoretical analysis beyond the simplifying assumpti
considered up to this point.

Given the scaling arguments of Sec. II, the dipole-dip
figure of merit has the formk;ck /h3. One may consider
the ultimate limits on these parameters as determined
practical considerations. The localizationh depends on the
quality of the trap and possible implementations of wa
packet control, such as squeezing@39#. The parameterck is
specific to the details of the protocol and the approximati
of our analysis. Under the assumptions of our model,ck is
determined solely by geometry and might also benefit fr
wave packet engineering to maximize the relevant dipo
dipole multipole component of the relative coordinate pro
ability distribution. More importantly, we must address t
limitations of our model. For atoms separated by distan
on the order of an optical wavelength, it is appropriate
consider molecular rather than atomic resonances@21#. We
have avoided explicit calculation of the molecular potenti
by assuming a detuning that is large with respect to the s
ting of these potentials. Though this assumption greatly s
plifies the analysis, it is almost certainly not the optimal o
erating point for the system. Furthermore, at such a la
detuning approaching the hyperfine splitting of the grou
state, one cannot necessarily induce a dipole only for at
in the logical-u1& states as we have assumed for some pro
cols.

Extending our model to include molecular resonance m
have substantial impact on the dipole-dipole figure of me
For example, we have argued that for atoms in the vib
tional ground state of a common isotropic spherical well,
dipole-dipole coherent interaction is zero due to destruc
interference when integrating over all angles of the relat
coordinate vector. However, at finite detuning, e.g., red
atomic resonance, the catalysis field will preferentially exc
the attractive potential, leading to finite interaction, and
increase in the parameterck . Another example is the use o
subradiant states. We have implicitly assumed that our
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poles are excited in phase, leading to Dicke superradia
However, molecular resonances exist for dipoles oscillat
out of phase, which might be excited with a sufficiently i
tense catalysis field. This too would impact the maximu
possible value ofck in the figure of merit.

Finally, the assumption of large detuning is brought in
question when considering two atoms whose wells
closely overlapping. At some small internuclear separatio
the catalysis field~as well as the trapping field, if a light tra
is used! will be resonantwith the molecular potentials—the
so-called Condon point. Inelastic processes are highly pr
able in this case. Careful choice of the parameters may a
these resonances over the extent of the relative coordi
probability density. In this regime off-resonant excitatio
dominates with anr-dependent detuning from the excite
molecular eigenstates~see Fig. 5!. Furthermore, the internu
clear axis acquires a specific orientation with respect to
direction of the excited dipoles, and the different molecu
potentials must be weighted accordingly. This is a regi
not usually encountered in studies of photoassociative c
sions. One future task is to include the molecular potent
in a full analysis.

Consideration of collision phenomena for atoms in tigh
localized traps opens the door to a host of novel phenom
Examples include a breakdown of the scattering length
proximation for electronic ground-states-wave scattering
@40# and the production of bound molecules though photo
sociation, or a transition through a Feshbach resonance@41#.
Recent experiments have been performed in Bose-Eins
condensates in which colliding pairs of atoms were re
nantly transferred to a bound electronic ground-state mole
lar resonance via Raman laser pulses@42#. This molecular
bound state could act as an auxiliary level for performing
CPHASE gate by applying a 2p laser pulse between the fre
atom computational basis state and the molecular resona
Whichever protocol ultimately holds the greatest promi
the rich structure of the neutral-atom/optical-lattice syst
provides new avenues for explorations of quantum con
and information processing.

FIG. 5. Schematic ofS1P molecular potentials as a function o
the internuclear distancer. Excitation by a far-off resonance blu
detuned laser would normally be dominated by the repulsive po
tial at the Condon pointRC . For well localized but separated atom
~relative coordinate probability distribution sketched here! off-
resonant interaction with the attractive potential dominates. The
entation of the dipoles relative to the internuclear axis is indica
for each potential.
9-9
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