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Amount of information obtained by a quantum measurement
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In this paper we address the problem of how much can be learned about an unknown quantum state by a
measurement. To this end we consider optimal measurements for the state estimation problem, that is mea-
surements that maximize the expectation of a fidelity function. We then enlarge the class of optimal measure-
ments to measurements that act collectively on blocks of input states, and in addition we only require that the
fidelity of the measurement be arbitrarily close to the optimal fidelity. We then consider the Shannon infor-
mation of the outputs of optimal measurements, which is the amount of data produced by the measurements.
We show that in the enlarged class of optimal measurements described above one can always construct an
optimal measurement so that the Shannon information of its outputs equals the von Neumann entropy of the
unknown states. Since this result is valid for all choices of fidelity functions and all distributions of input states,
it provides a model independent answer to the question of how much can be learned about a quantum state by
a measurement. Namely, this result shows that a measurement can extract at most one meaningful bit from
every qubit carried by the unknown state.

PACS number~s!: 03.67.2a, 03.65.Bz, 03.67.Hk
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I. INTRODUCTION

Quantum mechanics has at its core a fundamental st
tical aspect. Suppose you are given a single quantum par
in a stateuC& unknown to you. There is no way to find wha
uC& is—to find it out you need an infinite ensemble of qua
tum particles, all prepared in the same state. Indeed, the
ferent properties that characterize the state are, in gen
complementary to one another; measuring one disturbs
rest. Only if an infinite ensemble is given can one find o
the state. But infinite ensembles do not exist in pract
Given a finite ensemble of identically prepared particl
how well can one estimate the state? The problem is a
damental one for understanding the very basis of quan
mechanics. It has been investigated by many authors, se
instance@1,2#, and it constitutes probably the oldest proble
in what is at present called ‘‘quantum information.’’ Here w
approach this problem from a different point of view whic
we think, leads to a deeper understanding.

What is the optimal way to estimate the quantum st
given a finite ensemble? As such the question is not w
posed. Indeed, since we cannot completely determine
state, i.e., completely determine all its properties, we m
decide which particular property we want to determine. F
an ensemble of spins, for example, estimating as wel
possible the mean value of thez spin component is, obvi-
ously, a different question than estimating as well as poss
the mean value of thex spin component.

But things are in fact even more complicated. The app
ent benign words ‘‘as well as possible’’ in the previous pa
graph are not well defined. Indeed, ‘‘as well as possib
actually means ‘‘as well as possible given a specific meas
of what ‘well’ means.’’ Obviously, one can imagine man
different measures. For example, suppose that a source e
statesuc i& with probability pi . The problem is to design a
measurement at the end of which we must guess which s
1050-2947/2000/61~6!/062303~10!/$15.00 61 0623
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was emitted. Let the guess beufg&, and let the measure o
success~fidelity! be

f ~ i ,g!5 z^fguc i& z2, ~1!

i.e., the absolute value square of the scalar product in
tween the true stateuc i& and the guessufg&. The goal is to
optimize the measurement such that it yields the highest
erage fidelity

F5(
i , j

pi f „i ,g~ j !…p~ j u i !, ~2!

wherep( j u i ) is the probability for the measurement to ha
outcomej if the state isuc i& andg( j ) is the guessed value i
the outcome of the measurement isj. On the other hand, one
can imagine another fidelity function, such as

f 8~ i ,g!5 z^fguc i& z4. ~3!

Or one could try to optimize the mutual information

I 52(
i

pi log2 pi1(
j

pj(
i

p~ i u j !log2 p~ i u j ! ~4!

or any other measure.
The important point to notice about the above differe

problems is that the different fidelities~2!–~4! not only de-
fine different scales according to which we measure the
gree of success in estimating the state, but also, implic
define which property of the state we are actually estimati
If all the different fidelities were to lead to the same optim
measurements, we could say that we learn the same prop
about the state but just expressed in a different way. Ho
ever, the different fidelities will in general lead to differe
optimal measurements which means that in each case
learn a different property about the system.
©2000 The American Physical Society03-1
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To summarize, in general each particular estimation pr
lem is completely different from the other; they measure d
ferent properties and their degree of success is measure
different scales, with the scales also defining implicitly wh
exactly is the property we estimate.

That one can learn different properties is a fact of li
inherent to quantum mechanics. But there is no reason no
use the same scale to gauge how successful we have be
learning the property we decided to measure. The aim of
paper is to propose such a universal scale, and in the pro
to introduce a unique approach to quantum state estimat

II. MAIN IDEA

The central point of our approach starts from a simple b
fundamental question: what do we actually learn from a m
surement on a state? Let us illustrate this question by
example. We shall contrast two situations. Consider a sou
which emits spin-1/2 particles. In the first case the partic
are polarized with equal probability along either the1z
(u↑z&) or 2z (u↓z&) directions. In the second case the stat
are polarized along random directions uniformly distribut
on the sphere. Suppose we want to identify the states as
as possible according to the fidelity equation~2!. In the first
case it is obvious that a measurement alongsz perfectly
identifies the state, hence the fidelity isF51. In the second
case, it has been shown@3# that the measurement alongsz is
also optimal. But in this case the states cannot be identi
perfectly, and the fidelity is onlyF52/3. On the other hand,
what actually happened is that in both cases before we p
form the measurement we know that the outcomes of
measurement are either11 or 21, and thea priori prob-
abilities of the two outcomes are equal. When we perfo
the measurement this uncertainty is resolved. Hence in b
cases the measurement yields 1 bit of information. Our m
idea is to interpret this quantity as the information we extra
from the state.

This idea might seem paradoxical at first sight because
one case we completely recognize the state whereas in
other case we recognize it badly. To understand let us in
duce a classical source that decides which quantum sta
emitted from the quantum source~see Fig. 1!. In the first
case the classical source must only specify one bit~either1z
or 2z) to determine which state is emitted. In the seco
case it must provide a directionnin ~i.e., an infinite number
of bits! in order to specify the stateu↑nin

&. In both cases one
extracts one bit of information. In the first case this mea
that the classical information supplied by the source is co

FIG. 1. Chain of events leading to a quantum state estimat
problem. The classical source specifies which state should be s
The quantum source then emits the corresponding state. Finally
measuring device tries to identify the emitted state.
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pletely recovered. In the second case information is lo
However, it is now clear that the loss does not occur dur
the measurement, but during the first step, where class
information is converted into quantum information.

To summarize, the quantum state estimation problem
presented in Fig. 1 consists of a chain of events that st
with a classical source which tells the quantum source w
state to emit, and ends with the measurement. The fide
measures the overall performance of the chain since i
proportional to the scalar productnin•nguess. On the other
hand, the number of bits in the output characterizes h
much information is extracted by the measurement. The
fore in this paper we shall focus on the latter quantity.

III. QUALITATIVE STATEMENT OF THE MAIN RESULT

The preceding discussion suggests that the Shannon in
mation of the outcomes

I output
S 52(

j
pj log2 pj , ~5!

wherepj5( i p( j u i ) is the probability of outcomej, measures
how much information is extracted from the state. This id
however, has to be refined.

The main problem is that there may be redundancies
the outputs of the measurement. As a trivial example, a m
surement could be accompanied by the flip of a coin, and
outcomes of the measurement would consist of both the
comes of the measurement proper and the outcomes o
coin flip. This adds one bit to the entropy of the outpu
without telling anything about the system. In less trivial e
amples involving positive operator valued measu
~POVMs! and ancillas, redundancies can arise in a less
vious way, and it is not immediate how they can be identifi
and eliminated.

Our main result is that no matter what property of t
system one wants to measure, when the redundancy is e
nated, the remaining Shannon information of the outputs
a universal upper bound which is the von Neumann entr
of the quantum source,

I output
S ~no redundancy!<I input

VN , ~6!

whereI input
VN 52Tr r log2 r is the Shannon information of th

quantum source andr is the density matrix of the quantum
sourcer5( i pi uc i&^c i u. A more precise formulation of Eq
~6! will be given in Sec. V.

One does not always attain equality in Eq.~6!. Indeed
some questions are more informative about the system
others. Less informative questions can be answered by m
surements whose output entropy is smaller. More inform
tive questions require measurements with more entropy.
the most detailed questions can always be answered inI input

VN

bits.

IV. STRATEGY

The main problem we face in deriving Eq.~6! is to elimi-
nate the redundancy. In order to do this we shall procee
several steps.

n
nt.
he
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~1! The first step is to decide which property we are
terested in. We may fix the property directly~for instance
decide to measure the average ofsz) or implicitly by choos-
ing a fidelity. In the rest of this paper we shall adopt t
second approach.

~2! We then look at optimal measurements, that is m
surements that maximize the fidelity. In general there is
entire class of such measurements.

~3! We perform a second optimization. Namely amo
the optimal measurements we look for the measurem
which minimizeI output

S .

This double optimization strategy has already been c
sidered for some particular cases in@4,5#.

One expects that this strategy yields measurements
have no spurious redundancy. However, as we will sh
below through some examples, redundancies cannot be c
pletely eliminated by the above procedure and we will ha
to further modify it.

These further modifications are motivated by the class
and quantum theory of information@6,7# which suggest the
idea of performing measurements on blocks of quant
states, rather than on individual particles. Thus we shall
low the measuring device to accumulate a large numberL of
input states before making a collective measurement on tL
states simultaneously. It is in the context of these collec
measurements that we make the two optimizations@points
~2! and~3! above# and thereby eliminate the spurious redu
dancies.

We want to emphasize that this procedure cannot incre
the fidelity since the subsequent particles are completely
correlated. However, by considering measurements on l
blocks we can hope to reduce the redundancy of the m
surement, i.e., the entropy of the outcomes, by making ‘‘b
ter use’’ of each outcome.

Two technicalities have to be taken into account. First
all we must take care not to modify the definition of fidelit
That is, the fidelity must still be the fidelity of each sta
individually, rather than the fidelity for the whole block. Se
ond we should not require the measurement to absolu
maximize the fidelity, since then using block measureme
does not help to reduce the entropy~this follows once more
from the fact that the subsequent states are completely
correlated!. However, following the ideas of informatio
theory, we shall only require that the measurement ha
fidelity approaching arbitrarily closely the optimum. In th
framework we shall prove Eq.~6!.

In Sec. V we show how to formulate mathematically t
above strategy, and in particular the two technical points
mentioned.

V. PRECISE STATEMENT OF THE MAIN RESULT

Consider the general setup of Fig. 1. The states emitte
the quantum sourceuc i& belong to a Hilbert space of dimen
siond. They occur with probabilitypi . Their density matrix
is r5( i pi uc i&^c i u with Tr r51. The most general measur
ment on the input states is a POVM withM element:aj

>0, ( j 51
M aj5I d .
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We define a general fidelity as follows. To each outco
j of the measurement we associate a guessed valueg through
a functiong( j ). g may be a quantum stateufg& as in Eq.~1!,
but it can also be something completely different. In additi
we are given a fidelityf „i ,g… which measures how goodg is
for the inputi. The fidelity f could be the function defined in
Eqs. ~1! or ~3!, but it could also be something complete
different. The fidelityF of the measurement$aj% is the av-
erage value off ( i ,g):

F~$aj%!5(
i

pi(
j

p~ j u i ! f „i ,g~ j !…, ~7!

wherep( j u i ) is the probability that the outcome of the me
surement isj if the input state isuc i&

p~ j u i !5^c i uaj uc i&. ~8!

We will be particularly interested in the optimal measur
ments for whichF is maximal. DenoteFmax the maximum of
F,

Fmax5max
$aj %

F~$aj%!. ~9!

Suppose now that the source emits large blocks ofL input
statesuc i 1

•••c i L
&. The successive states of the block a

distributed independently with the same distributionpi .
Consider a measurementAj acting on the whole block ofL
input states. To each outcomej we can associateL values of
g, one for each input state, throughL functions
g1( j ), . . . ,gL( j ). The fidelity for outcomej, averaged over
the L input states, is (1/L)(k51

L f „i k ,gk( j )…. We therefore
define the fidelityFL of a measurement$Aj% acting on large
blocks as the average over the outcomes of the measure
and over theL input states off ( i ,g),

FL~$Aj%!

5 (
i 1 , . . . ,i L

pi 1
•••pi L(j

^c i 1
•••c i L

uAj uc i 1
•••c i L

&

3
1

L (
k51

L

f „i k ,gk~ j !…. ~10!

The key property ofFL which justifies this definition is
obtained by a rewriting of Eq.~10!. To this end we define the
operatorsAj

(k) as the operatorsAj restricted to the space o
particlek,

Aj
(k)5Trk8ÞkS )

l 8Þk

r l 8DAj . ~11!

The operatorsAj
(k) are positive and sum to the identity on th

space of particlek, hence they constitute a POVM acting o
the space of particlek. We can then rewriteFL as
3-3
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FL~$Ak%!5
1

L (
l 51

L

(
k

(
i l

pi l
^c i l

uAj
(k)uc i l

& f „i l , j l~k!…

5
1

L (
l 51

L

F~$Aj
(k)%!. ~12!

ThusFL is just the average of the fidelities for the restrict
measurementsAj

(k) . From this it follows thatFL is less or
equal toFmax:

FL<Fmax. ~13!

Equality can be attained by a measurement which is
product of optimal measurements on each input state,

Aj5aj 1
^ •••^ aj L

, ~14!

where$aj% is a measurement withM outcomes which maxi-
mize Eq.~7!. Note that this optimal measurement$Aj% has
ML outcomes.

It is these properties that justify our definition ofFL .
Indeed they guarantee that one can compare in a meanin
way the fidelity for measurements on individual input sta
and measurements on large blocks.

We are now in a position to formulate our main res
with precision. We state it as a theorem.

Theorem. Consider a state estimation problem in whi
the unknown state uc i& have density matrix r
5( i pi uc i&^c i u and von Neumann entropyI input

VN 5
2Tr r log2 r. Consider a bounded fidelity functionf ( i ,g)
and the corresponding optimal fidelityFmax given by Eq.~9!.
Given anye.0 andh.0, then there existsL0 such that for

any L>L0, and anyN larger than 2L(I input
VN

1h), there exists a
measurement on sequences ofL input states which hasN
outcomes and attains a fidelityFL>Fmax2e where FL is
defined in Eq.~10!.

To summarize, there is no best way of estimating an
known quantum state. Different measurements will le
about different properties of the state, and it is up to us
choose which property we want to learn about. Howev
once we fix the property we want to learn about, one can
learn more thanI input

VN 52Tr r log2 r bits about this property
That is, a measurement can extract at most one meanin
bit from each qubit coming from the source.

Before presenting the proof of this result, we discuss
generalization to other fidelities, its connection with oth
aspects of quantum information theory, and we present
examples that show the nontrivial character of the result

VI. OTHER FIDELITIES

Our main result, as stated with precision at the end of
preceding section, applies to fidelities in the form of Eq.~7!.
This is very general since the fidelity functionf ( i ,g) is ar-
bitrary. Nevertheless one can consider other more gen
fidelities.

As a first generalization, we consider fidelities in the fo
Eq. ~1!, but for which both the POVM elements and th
06230
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guessed states are undetermined and both must be vari
find the optimum estimation strategy. That is, whereas
Sec. V the specification of an estimation strategy consis
only of the POVM elements$aj%, it now consists of the se
$aj ,fg( j )% which comprises both the POVM elements a
the guessed states. An example of such a fidelity was c
sidered in@3#. The unknown statesuc i& were taken to ben
spin-1/2 particles all polarized along the same directionV
and the fidelity was taken to be the scalar product of one s
polarized alongV with one spin polarized along the guess
direction f 5 z^↑Vu↑Vg

& z2.
It is easy to show that our main result Eq.~6! also applies

to such more general fidelities for which both the POV
elements and the guessing strategy can be optimized. In
allowing the guess to vary just corresponds to considerin
family of fidelities. Since our result holds for each fideli
separately, it applies to the optimal one of the family.

One can, however, construct even more general fideli
~for instance, by taking the fidelity to be non linear in th
POVM elements!. For such more general fidelities it is a
open question whether our claim also applies. One exam
of such more general fidelities is the mutual informati
equation~4!.

VII. RELATION TO THE CLASSICAL CAPACITY
OF A QUANTUM CHANNEL

The result presented here finds its origin in a reflexion
the recent developments of quantum information theory
particular on the classical capacity of a quantum chan
The two problems are related, as the following discuss
shows.

Consider the result@9# that the Holevo bound@10# for the
classical capacity of a pure state quantum channel can
attained. An important ingredient in this proof was to deri
certain properties of random sequences of statesuc i&, each
chosen with probabilitypi . Namely it was shown that if the
numberN of sequences of lengthL is less thanN,LI input

VN

52L Tr r log2 r, with r5( i pi uc i&^c i u, then each sequenc
is with high probability almost orthogonal to the other s
quences. It is this property that ensures that with high pr
ability such sequences constitute good code words that
be reliably distinguished by the receiver.

In the present case we consider random sequence
POVM elementsaj . We show that when the numberN of
such sequences of lengthL is greater thanN.LI input

VN ~where
I input

VN is the von Neumann entropy of the input states
which the measurement should act!, then the sequences~pro-
jected onto the probable subspace of the input states! almost
sum to the identity operator. Thus with minor tinkering o
can almost always transform this random sequence
POVM elements into a genuine POVM acting on sequen
of L input states.

In both cases the properties of the sequences change
matically when the number of sequences becomes equ
the von Neumann entropy of the statesN5LI input

VN . In the
first case the code words cease to be mutually orthogona
the second case the sequences of POVM elements cea
3-4
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AMOUNT OF INFORMATION OBTAINED BY A QUANTUM . . . PHYSICAL REVIEW A 61 062303
sum to the identity. But in one case the limit is approach
from below and in the other case from above. Thus
present analysis and that of@9# explore complementary prop
erties of random sequences of operators.

Nevertheless, even thought the limiting caseN5LI input
VN is

approached from different directions in@9# and in the presen
paper, the mathematical techniques that we use in this p
are related to the techniques used in@9#. These techniques
are the subject of Sec. XI.

VIII. EXAMPLES

Before embarking on a proof of our result, we give tw
examples which illustrate the main points that must be ta
into account in the proof.

In the first example there are two possible input sta
uc1&5au↑&1bu↓& anduc2&5au↑&2bu↓& which occur with
equal probability. The density matrix of the source isr
5a2u↑&^↑u1b2u↓&^↓u which is different from the identity
for aÞb. Therefore the von Neumann entropy of the inp
statesI input

VN ,1 qubit.
The fidelity is defined as follows: after each measurem

one must guess whether the state isuc1& or uc2&. In case of
a correct guess one receives a score of11, and for an in-
correct guess one receives a score of21. The aim is to
maximize the average score. The techniques of Sec. X ca
used to show that the optimal measurement is a von N
mann measurement ofsx , see Fig. 2. The two outcomes o
this measurement occur with equal probability, and he
I output

S 51.I input
VN .

In this example, a natural first step in eliminating the
dundancy is to project blocks of input states onto their pr
able subspace@7,8#. This projection succeeds with arbitraril
high probability, and affects the input states arbitrarily litt
But it reduces the dimensionality of the Hilbert space of

input states from 2N to 2NIinput
VN

. Hence if we can prove tha
there is a von Neumann measurement restricted to the p
able subspace that is optimal, we will have proved our cla
However, the construction of such a von Neumann meas
ment is nontrivial, as is illustrated in the next example.

In our second example there is no ‘‘most probable’’ su
space because the density matrix of the inputs is comple
random. In this example there are three input statesuc1&
5u↑&, c2&5 1

2 u↑&1A3/2u↓&, c3&5 1
2 u↑&2A3/2u↓&, each

occurring with equal probabilitypi51/3. The density matrix
of these states isr5I /2 and their entropy isI input

VN 51 qubit.
The fidelity is defined as above: after the measurement
must guess which was the input state. If the guess is cor
one scores11 point, if the guess is incorrect, one score
21 points. The aim is to maximize the average score~fidel-
ity!.

FIG. 2. The two input statesuc1&,uc2&5au↑&6bu↓&. The opti-
mal measurement is a measurement of the spin in thex direction.
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Using the techniques of Sec. X, one can show that
elements of an optimal POVM are necessarily proportio
to the three projectorsuc1&^c1u,uc2&^c2u,uc3&^c3u, see Fig.
3. Therefore the optimal POVM whose output entropy

minimum is $ 2
3 uc1&^c1u, 2

3 uc2&^c2u, 2
3 uc3&^c3u%. In this case

I output
S 5 log2 3.1 bits. Any other optimal measurements h

larger output entropyI output
S > log2 3 bits. One can also show

that there is no measurement on blocks ofL input states
whose fidelity is strictly equal to the optimum and who
output entropy is less thenL log2 3 bits. However, if one only
requires that the fidelity is arbitrarily close to the maximu
then in the asymptotic limit (L→`) the output entropy can
be made arbitrarily close toL bits, thereby attaining the
bound Eq.~6!. The main difficulty of the proof will be to
construct such a measurement on large blocks whose ou
entropy is equal toL bits and whose fidelity is arbitrarily
close to the optimal fidelity.

IX. PLAN OF THE PROOF

The next sections are devoted to proving the bound
~6!. In Sec. X we derive some properties of the optimal m
surements. In Sec. XI we show how to construct a meas
ment on large blocks which has little redundancy. In Sec.
we derive an intermediate result concerning the fidelity
the measurement constructed in Sec. XI. If the states
uniformly distributed in Hilbert space~i.e., the density ma-
trix is proportional to the identity,r5I /d), then this inter-
mediate result already proves our main claim Eq.~6!. When
the states are not uniformly distributed in Hilbert space,
must first project blocks of states onto the probable subsp
before using the intermediate result of Sec. XII. This is do
in Sec. XIII and completes the proof of Eq.~6!.

X. PROPERTIES OF OPTIMAL MEASUREMENTS

Consider a fidelity as defined in Sec. V. We summar
here the main properties of optimal measurements, i.e., th
that maximize the fidelity, see also@2,3#.

First of all note that we can always take the optim
POVM to consist of one-dimensional projectorsbj
5ubj&^bj u ~the bj are not normalized!. Indeed, refining a
POVM can only increase the fidelity. This can be seen f
mally in the following way: suppose theaj are an optimal
POVM, but not necessarily made out of one-dimensio
projectors. Then eachaj can always be decomposed asaj
5(kubjk&^bjku since it is a positive operator. Inserting th

FIG. 3. The three input statesc1 , c2 , c3 in the second ex-
ample. The optimal measurement is a POVM whose elements
projectors onto the three statesc1 , c2 , c3.
3-5
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into the expression forF one sees that thebjk @to which we
associate the same value ofg: g( jk)5g( j )# are also opti-
mal.

Thus we can optimizeF in the class of POVM’s whose
elements all have rank oneubj&^bj u. These elements are sub
ject to the unitarity condition( j ubj&^bj u5I d . This can be
implemented by introducingd2 Lagrange multiplierslmn

which we group into one operatorl̂:

F5(
i

pi(
j

^c i ubj&^bj uc i& f „i ,g~ j !…

2TrF l̂S (
j

ubj&^bj u2I dD G
5(

j
Tr@~ F̂ j2l̂ !ubj&^bj u#1Tr l̂, ~15!

where F̂ j5( i pi uc i&^c i u f „i ,g( j )…. If we vary this with re-
spect to^bj u, we obtain the equations

~ F̂ j2l̂ !ubj&50. ~16!

Inserting this into Eq.~15! shows thatFmax5Tr l̂.
Equation ~16! is the essential equation to find optim

measurements explicitly. For instance, consider the first
ample of Sec. VIII. There are two input statesc1 andc2 and
two guessed statesf1

guess5uc1& andf2
guess5uc2&. If the in-

put state isuc1& and one guessesf1
guess, then f 511,

whereas if the input state isuc2& and one guessesf1
guess,

then f 521, henceF̂15 1
2 (uc1&^c1u2uc2&^c2u)51absx .

Similarly F̂25 1
2 (uc2&^c2u2uc1&^c1u)52absx . The task

is then to find an operatorl̂ such that null eigenvectors o
F̂1,22l̂ can satisfy the completeness relation. The only p
sibility is l̂5abI . Therefore the optimal measurement
along thex axis, andFmax52ab. The second example o
Sec. VIII can be treated along similar lines.

An important consequence of Eq.~16! is an explicit ex-
pression for the value ofF if the measurement is not optima
Consider a measurementaj8 which is not optimal, but each
positive operatoraj8 is ‘‘close’’ to the corresponding operato
bj of the optimal measurement. We then decompose the
erator aj8 in terms of its components alongubj&: aj8
5Xj ubj&^bj u1Yj ubj&^bj

'u1Yj* ubj
'&^bj u1zj where the state

ubj
'& is orthogonal toubj& and the operatorzj obeyszj ubj&

50, ^bj uzj50. Inserting this decomposition into the expre
sion for F, we obtain

F~a8!5Tr l̂1(
j

Tr@~ F̂ j2l̂ !aj8#

5Fmax1(
j

Tr@~ F̂ j2l̂ !zj #

>Fmax2C Tr zj , ~17!
06230
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where we have used Eq.~16! andC is some positive constan
independent ofj. This expresses in a simple way how mu
the fidelity differs from its maximal value in terms of how
much the measurement differs from the optimal measu
ment.

XI. ELIMINATING REDUNDANCY

Our aim in this section is to construct a measurement w
less outcomes than the optimal measurement Eq.~14!. The
next two sections will be devoted to proving that this me
surement does not diminish the fidelity. This measuremen
very similar to the measurement used in@9# to decode a
classical message sent through a quantum communica
channel.

We start from the optimal POVM acting on one inp
state and decomposed into one-dimensional projectorsbi
5ubi&^bi u. We express it in terms of the normalized opera
b̃i5ub̃i&^b̃i u5bi /Tr(bi) as bi5b i b̃i . ~Throughout the text
we shall denote normalized operators by˜ !. The b i sum to
( ib i5d obtained by taking the trace of the completene
relation.

We now constructN operators acting on the space ofL
input states,

B̃j5uB̃j&^B̃j u5b̃ j 1
^ •••^ b̃ j L

, ~18!

where eachb̃ j k
is chosen randomly and independently fro

the set b̃1 , . . . ,b̃M with probabilities p15b1 /d, . . . ,pM
5bM /d.

The uB̃j& span a subspaceHB of the Hilbert space of theL
input states. In this subspace the operatorB5( j B̃ j is strictly
positive, hence we can construct the operators

Cj5uCj&^Cj u5B21/2B̃jB
21/2. ~19!

The Cj are positive operators, which sum up the identity
HB : ( j 51

N Cj5PB wherePB is the projector ontoHB . The
POVM we shall use consists of theCj and the projector onto
the complementary subspaceC05I dL2PB (I dL is the iden-
tity on the Hilbert space of theL input states!.

Our strategy in the next sections will be to compute t
average fidelityF̄L , where the average is taken over possib
choices ofBj in Eq. ~18!. We shall show that the average o
FL satisfies our main result stated at the end of Sec.
Therefore there necessarily are some choices ofBj that also
satisfy our main result. But first we derive some importa
properties of theCj . We shall obtain mean properties, whe
the mean is the average over choices ofBj in Eq. ~18!.

~i! The mean ofB̃j is B̃j5I dL /dL.
~ii ! The mean ofB is

B̄5(
j 51

N

B̃j5
N

dL I dL. ~20!

This motivates our writing
3-6



f

te

-

te
se-

s.
l-

.

AMOUNT OF INFORMATION OBTAINED BY A QUANTUM . . . PHYSICAL REVIEW A 61 062303
B5
N

dL ~ I dL1D! ~21!

and subsequently making expansions inD.
~iii ! The dimension ofHB ~denoted dimHB

) is

dimHB
5(

j
Tr Cj5(

j
Tr B21B̃j5

dL

N (
j

Tr
1

I dL1D
B̃j

>
dL

N (
j

Tr~ I dL2D!B̃j . ~22!

Furthermore,

Tr DB̃j5TrS dL

N
B2I dLD B̃j5TrFdL

N S B̃j1(
kÞ j

B̃kB̃j D 2B̃j G ,
~23!

where we have used the fact thatB̃j
25B̃j . We now take the

average of this expression. Using the fact that forkÞ j , B̃k ,
and B̃j are independent, the average ofB̃kB̃j (kÞ j ) is the

product of the averagesB̃kB̃j5B̃j B̃k5I dL /d2L. And hence

(kÞ j B̃kB̃j5(N21)I dL /d2L. Putting all together, we find

Tr DB̃j5(dL21/N) and

dL>dimHB>dLS 12
dL21

N D . ~24!

This shows that ifN is slightly larger than the dimension o
the Hilbert spacedL, then theCj ( j Þ0) fill the Hilbert space.

~iv! Finally we need to know how much theCj differ
from the B̃j . We write uCj&5a j uB̃j&1uBj

'& and compute
a j

2 ,

a j
25Tr CjB̃j5Tr B̃jB

21/2B̃jB
21/25~Tr B̃jB

21/2!2

>
dL

N S 12
1

2
Tr B̃jD D 2

. ~25!

Hence

ā j
2>

dL

N
~12Tr B̃jD!5

dL

N S 12
dL21

N D . ~26!

This is then used to compute the average of^Bj
'uBj

'&:

^Bj
'uBj

'&5Tr Cj2Tr CjBj<
dL

N

dL21

N
, ~27!

which shows that theCj are arbitrarily close to theB̃j when
N.dL.

XII. AN INTERMEDIATE RESULT

In this section we shall prove the following intermedia
result. Suppose that the input statesuc i& belong to a Hilbert
space of dimensiond and have a density matrixr
06230
5(ipiuci&^ciu. Denote byrmax the largest eigenvalue ofr.
Consider measurements on blocks ofL input states. Give
yourself any positive numberh.0. Let N be any integer
larger than 2L(2 log2d1log2rmax1h). Then there exist measure
ments withN outcomes with a fidelityFL>Fmax2R22Lh

whereR is a positive constant.
In the next section we shall combine this intermedia

result with the concept of probable subspace of a long
quence of states to prove our claim in full generality.

To prove this intermediate result, we proceed as follow
Let $bj5ub j&^bj u% be a POVM that maximizes the fide

ity F Eq. ~7!. Using the algorithm of Eqs.~18! to ~19! we
construct a measurementCj , j 50, . . . ,N, acting on the
space ofL copies of the input states.

Let us consider the fidelity for the measurementCj :

FL5(
j 50

N
1

L (
k51

L

(
i k

pi k
^c i k

uCj
(k)uc i k

& f „i k ,gk~ j !…, ~28!

where theCj
(k)5TrlÞk() l 8Þkr l 8)Cj are defined as in Eq

~11!.
We can decomposeCj

(k) ~for j Þ0) according to its com-

ponents along ub̃ jk&: Cj
(k)5Xjkub̃ jk&^b̃ jku1Yjkub̃ jk&^bjk

' u
1Yjk* ubjk

' &^b̃ jku1zjk wherezjkub̃ jk&50, ^b̃ jkuzjk50. Insert-
ing this expression in Eq.~28!, and using Eq.~17!, yields

FL>
1

L (
k51

L S Fmax2C(
j 51

N

Tr zjk2C Tr C0
(k)D , ~29!

where the last term comes from theC05I dL2PB outcome.
It remains to calculate TrC0

(k) and Trzjk . We start with
the former

C0
(k)5TrlÞkS )

l 8Þk

r l 8D ~ I dL2PB!

<~rmax!
L21Tr~ I dL2PB!5~rmax!

L21~dL2dimHB!,

~30!

wherermax is the largest eigenvalue ofr.
To estimate Trzjk we recall the decomposition ofuCj&

5a j uB̃j&1uBj
'&. We can further decomposeuBj

'& according
to whether when restricted to the space of thekth particle, it
is equal toubj k

& or not: uBj
'&5ub̃ j k

&uf&1ub̃ j k

' &ux&. Inserting

this into the trace which yieldsCj
(k) , we obtain

Cj
(k)5TrlÞkS )

l 8Þk

r l 8D ~a j uB̃j&1ub̃ j k
&uf&

1ub̃ j k

' &ux&)~a j* ^B̃j u1••• !

5ub̃ j k
&^b̃ j k

uXjk1ub̃ j k
&^b̃ j k

' uYjk1ub̃ j k

' &^b̃ j k
uYjk* 1ub̃ j k

' &

3^b̃ j k

' uZjk . ~31!

The coefficientsXjk , Yjk , Zjk are easily calculated. The
one of interest isZjk5Tr zjk ,
3-7
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Zjk5Tr )
l 8Þk

r l 8ux&^xu<~rmax!
(L21)^xux&

<~rmax!
(L21)^Bj

'uBj
'&. ~32!

Inserting these bounds into the expression forFL we ob-
tain

FL>
1

L (
k51

L

@Fmax2C~rmax!
L21^Bj

'uBj
'&

2C~rmax!
L21~dL2dimHB!#. ~33!

We now take the average of this expression over all poss
choices ofbjk operators in Eq.~18!. Inserting Eqs.~24! and
~27! yields

F̄L>Fmax22C~rmax!
L21dL

dL21

N
. ~34!

Therefore if N>2L(2 log2 d1log2 rmax1h), then F̄L>Fmax
2R22Lh whereR52C/rmax. This proves the intermediat
result.

Note that if the input states are uniformly distributed
Hilbert space, i.e.,r5I /d, then this intermediate result d
rectly implies our main claim. Indeed whenr5I /d, rmax

51/d, then F̄L>Fmax2R22Lh if N>2L(log2 d1h)

52L(Iinput
VN

1h). When the input states are not uniformly distri
uted in Hilbert space, we must use the notion of proba
se

06230
le

le

Hilbert space of a long sequence to prove our main res
This is done in the next section.

XIII. MEASUREMENTS ON PROBABLE SUBSPACES

We now combine the result of the previous section w
the notion of probable subspace of large blocks of states.
first recall the properties of the probable subspace@7,8#. Con-
sider a long sequence ofL8 input statesuc i 1

. . . c i L8
&. The

density matrix of these states isr5)k51
L8 rk . The projector

P onto the probable subspace has the properties that g
e8.0, h8.0, and forL8 sufficiently large,~1! Tr Pr>1
2e8, i.e., the probability to be in the probable subspace
arbitrarily close to 1.

~2! P andr commute, i.e., the eigenvectors ofr are ei-
ther eigenvectors ofP or of 12P. And, furthermore, the
eigenvectors which are common toP andr have eigenval-
ues comprised between 2L8(2H2h8)<(rL8) i<2L8(2H1h8).

~3! From these two properties it follows that the dime
sion of the probable Hilbert space is bounded by
2e8)2L8(H2h8)<Tr P<2L8(H1h8).

Let us now show that measurements restricted to
probable subspace are arbitrarily close to optimal. Supp
that Aj is a measurement that optimizes the state determ
tion problem Eq.~10! for sequences ofL8 input states@for
instance, the measurement equation~14!#. Consider the
POVM consisting of the operatorsAj85PAjP @to which we
associate the unmodified guessesg( j )# and the operatorI
2P ~to which we associate the minimal value of the fidel
f min). The fidelity for this measurement is
FL85 (
i 1••• i L8

pi 1
•••pi L8(j 51

N

^c i 1
•••c i L8

uPAjPuc i 1
•••c i L8

&
1

L8
(
k51

L8

f „i k ,gk~ j !…

1 (
i 1••• i L8

pi 1
•••pi L8

^c i 1
•••c i L8

u12Puc i 1
•••c i L8

& f min

>Fmax2 (
i 1••• i L8

pi 1
•••pi L8(j 51

N

^c i 1
•••c i L8

uAj2PAjPuc i 1
•••c i L8

&
1

L8 (
k51

L8

f ~c i k
,f jk!2u f minuTr r~12P!. ~35!
y
The main difficulty is to bound the second term who
absolute value we denote byT2. We proceed as follows:

T25U (
i 1••• i L8

pi 1
•••pi L8(j 51

N

^c i 1
•••c i L8

uAj

2PAjPuc i 1
•••c i L8

&
1

L8 (
k51

L8

f ~c i k
,f jk!U

<u f maxu (
i 1••• i L8

pi 1
•••pi L8

3(
j 51

N

z^c i 1
•••c i L8

uAj2PAjPuc i 1
•••c i L8

& z, ~36!
where f max is the maximum value of the fidelity. Denote b
S the operator

S5uc i 1
•••c i L8

&^c i 1
•••c i L8

u2Puc i 1
•••c i L8

&

3^c i 1
•••c i L8

uP. ~37!

We decompose the Hermitian operatorS into its eigenstates
S5( isi usi&^si u. We then have
3-8
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(
j

uTr SAj u5(
j
U(

i
si^si uAj usi&U<(

j
(

i
usi u^si uAj usi&5(

i
usi u5TruSu. ~38!

We now use lemma I.4 of@11# which, applied to our case, states that

TruSu<A8~12^c i 1
•••c i L8

uPuc i 1
•••c i L8

&!. ~39!

Going back to Eq.~36!, we have

T2<u f maxu (
i 1••• i L8

pi 1
•••pi L8

A8~12^c i 1
•••c i L8

uPuc i 1
•••c i L8

&!. ~40!

Using the concavity ofA12x, we have

T2<u f maxuA8 (
i 1••• i L8

pi 1
•••pi L8

~12^c i 1
•••c i L8

uPuc i 1
•••c i L8

&!5u f maxuA8@12Tr~rP!#. ~41!
th
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Putting everything together we have

FL8>Fmax2u f minue82u f maxuA8e8. ~42!

This shows that the restriction of the measurement to
probable Hilbert space diminishes the fidelity by an ar
trarily small amount of orderO(Ae8).

We can now build a measurement which satisfies
main result as stated at the end of Sec. V. We decompos
input states into blocks ofL8 states. On each of these bloc
we first carry out a partial measurementP and I 2P to
know whether it is in the probable subspace or not. If
result is I 2P the sequence is discarded. The sequen
which pass the test are kept.

We now take the sequences that have passed the te
the input states in the intermediate result. These seque
belong to a Hilbert space of dimension dimHprobable

<2L8(I input
VN

1h8) and the largest eigenvalue of their dens

matrix is rmax<2L8(2I input
VN

1h8). To apply the intermediate
result, we take an integerL and anh.0. Then there exists a
measurement on blocks ofL sequences which has a numb
of possible outcomes equal to any integerN larger than

2L[L8(I input
VN

13h8)1h]52LL8(I input
VN

13h81h/L8) and which has a
fidelity larger than FLL8>Fmax2u f minue82u f maxuA8e8
2R22Lh, whereR is a positive constant.

Let us calculate the entropyI outputs
S of the outputs of this

measurement. We need less thanI e852e8 log2 e82(1
2e8)log2(12e8) bits to describe whether or not the inp
state passes the first test of belonging to the probable Hil
space or not. If it does then we need less than log2N bits to
encode the output of the measurement on theL blocks of
probable sequences. Therefore the total number of bits
ry

m
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need to describe the outcome of this measurement onLL8
elementary input states isI output

S < log2N1LIe8 . ReplacingN
by its lower bound, we haveI output

S <LL8(I input
VN 1(3h8

1h/L81I e8 /L8). Sincee8, h8, andh can be chosen arbi
trarily small, andL8 arbitrarily large, our claim is proven.

XIV. CONCLUSION

In this paper we have obtained a quantitative estimate
how much information can be obtained by a quantum m
surement. We considered optimal measurements, that is m
surements which maximize a fidelity function. We then e
larged the set of optimal measurements in two ways. F
we considered optimal measurements that act collectively
large blocks of input states rather than measurements
stricted to act on each state separately. Second, we did
require the fidelity of the measurements to be exactly eq
to the optimal fidelity, but only that it be arbitrarily close t
the optimal fidelity. In this context we showed that whatev
property of a quantum system one wants to learn about,
can learn at most one bit of information about every qubit
quantum information carried by the unknown quantum s
tem. That is, the Shannon entropy of the outcomes of opti
measurements can always be made equal or less than th
Neumann entropy of the unknown quantum states.
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