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Amount of information obtained by a quantum measurement
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In this paper we address the problem of how much can be learned about an unknown quantum state by a
measurement. To this end we consider optimal measurements for the state estimation problem, that is mea-
surements that maximize the expectation of a fidelity function. We then enlarge the class of optimal measure-
ments to measurements that act collectively on blocks of input states, and in addition we only require that the
fidelity of the measurement be arbitrarily close to the optimal fidelity. We then consider the Shannon infor-
mation of the outputs of optimal measurements, which is the amount of data produced by the measurements.
We show that in the enlarged class of optimal measurements described above one can always construct an
optimal measurement so that the Shannon information of its outputs equals the von Neumann entropy of the
unknown states. Since this result is valid for all choices of fidelity functions and all distributions of input states,
it provides a model independent answer to the question of how much can be learned about a quantum state by
a measurement. Namely, this result shows that a measurement can extract at most one meaningful bit from
every qubit carried by the unknown state.

PACS numbgs): 03.67—a, 03.65.Bz, 03.67.Hk

[. INTRODUCTION was emitted. Let the guess bég), and let the measure of
succesgfidelity) be
Quantum mechanics has at its core a fundamental statis-
i i i i f(i,9)=[(dglv)I? D)
tical aspect. Suppose you are given a single quantum particle ) ol ¥il ™

in a statg¥') unknown to you. There is no way to find what ,
| ) is—to find it out you need an infinite ensemble of quan-1-€- the absolute value square of the scalar produpt in be-
tum particles, all prepared in the same state. Indeed, the dgifween the true stati/;) and the gues*§¢g)_. The goa_l IS to
ferent properties that characterize the state are, in gener.’;‘ﬂpt'm'z.e th_e measurement such that it yields the highest av-
complementary to one another; measuring one disturbs th%h':lge fidelity

rest. Only if an infinite ensemble is given can one find out

the state. But infinite ensembles do not exist in practice. F=Z pifGi,a(i)pdli), (2
Given a finite ensemble of identically prepared particles, b

how well can one estimate the state? The problem is a fun-

damental one for understanding the very basis of quanturWherep(”') is the probability for the measurement to have

mechanics. It has been investigated by many authors, see foptcomej if the state i ys) andg(j) is the guessed value if

?nstancg[l,Z], and it constitL‘{tes probaply the qldeﬁt problem cai?#fggmg g;g:ﬁ erpﬁg:ﬁtr; r;;enr;ttllcin ;Eihog]ser hand, one
in what is at present called “quantum information.” Here we
approach this problem from a different point of view which, £(i,9)=[( gl oI &)
we think, leads to a deeper understanding.

What is the optimal way to estimate the quantum statedr one could try to optimize the mutual information
given a finite ensemble? As such the question is not well
posed. Indeed, since we cannot completely determine the . .
state, i.e., completely determine all its properties, we must 'Z_Z pi log, pi+§j: iji: p(ilj)logz p(ilj)  (4)
decide which particular property we want to determine. For
an ensemble of spins, for example, estimating as well agr any other measure.

possible the mean value of tlrespin component is, obvi-  The important point to notice about the above different
ously, a different question than estimating as well as possiblproblems is that the different fideliti€®)—(4) not only de-
the mean value of thg spin component. fine different scales according to which we measure the de-

But things are in fact even more complicated. The appargree of success in estimating the state, but also, implicitly,
ent benign words “as well as possible” in the previous para-define which property of the state we are actually estimating.
graph are not well defined. Indeed, “as well as possible”If all the different fidelities were to lead to the same optimal
actually means “as well as possible given a specific measurmeasurements, we could say that we learn the same property
of what ‘well’ means.” Obviously, one can imagine many about the state but just expressed in a different way. How-
different measures. For example, suppose that a source eméser, the different fidelities will in general lead to different
states| ¢;) with probability p; . The problem is to design a optimal measurements which means that in each case we
measurement at the end of which we must guess which statearn a different property about the system.
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pletely recovered. In the second case information is lost.
Classical Quantum Measuring \é However, it is now clear that the loss does not occur during
\\:

the measurement, but during the first step, where classical

information is converted into quantum information.
output To summarize, the quantum state estimation problem as
FIG. 1. Chain of events leading to a quantum state estimatiorpr.esented n Fig. 1 ConSIS.tS of a chain of events that starts
problem. The classical source specifies which state should be selw.lth a class_lcal source Wh'.Ch tells the quantum source. Wh.at
The quantum source then emits the corresponding state. Finally t ate to emit, and ends with the measurement.. Th_e ﬁd?hw
measuring device tries to identify the emitted state. measures the overall performance of the chain since it is

proportional to the scalar produn,-ng,ess On the other

hand, the number of bits in the output characterizes how
much information is extracted by the measurement. There-
g?]re in this paper we shall focus on the latter quantity.

Source Source states ¥y Device

To summarize, in general each particular estimation prob
lem is completely different from the other; they measure dif-
ferent properties and their degree of success is measured
different scales, with the scales also defining implicitly what
exactly is the property we estimate.

That one can learn different properties is a fact of life The preceding discussion suggests that the Shannon infor-
inherent to quantum mechanics. But there is no reason not tmation of the outcomes
use the same scale to gauge how successful we have been in
learning the property we decided to measure. The aim of this S E p: log, p; (5)
paper is to propose such a universal scale, and in the process output ~ P12

to introduce a unique approach to quantum state estimation. o - .
wherep;=2;p(j|i) is the probability of outcomg measures

how much information is extracted from the state. This idea,
II. MAIN IDEA however, has to be refined.

. . The main problem is that there may be redundancies in

The central pom_t of our approach starts from a simple buEhe outputs of the measurement. As a trivial example, a mea-

;lar:g%n;ﬁ?tg:]q;e;g?g’;v\g?t S;) \i'l\ﬁsa,:gltjslIt}/]ilsaéggg?i?nagne:%urement could be accompanied by the flip of a coin, and the

: o ; Y aButcomes of the measurement would consist of both the out-

example. We shall contrast two situations. Consider a SOUrCE s of the measurement proper and the outcomes of the

which emits spin-1/2 particles. In the first case the particlesCoin flio. This adds one bit ?o Fhe entronv of the outouts
are polarized with equal probability along either thez P. Py P

without telling anything about the system. In less trivial ex-

(I12) or =z (|1)) directions. In the second case the Statesamples involving positive operator valued measures

are polarized along random directions uniformly distributed( OVMSs) and ancillas, redundancies can arise in a less ob-
on the s_phere. Suppose we want to |dent|f_y the states as w lous way, and it is not immediate how they can be identified

as possible according to the fidelity equati@y. In the first and eliminated

case it is obvious that a measurement alangperfectly Our main result is that no matter what property of the

|dent|f!;ars1 th(—‘i)state,hhencir;chft;‘:dehtyﬁy L.1n t?elsecqnd system one wants to measure, when the redundancy is elimi-
case, it has been showd] that the measurement aloeq is ated, the remaining Shannon information of the outputs has

also optimal. But in this case the states cannot be identifie : C
S universal upper bound which is the von Neumann entro
perfectly, and the fidelity is onlff = 2/3. On the other hand, of the quantu?r? SOurce Py

what actually happened is that in both cases before we per-

form the measurement we know that the outcomes of the |§utpu,(no redundanc)yslmut, (6)

measurement are eitherl or —1, and thea priori prob- VN ) _ )

abilities of the two outcomes are equal. When we performivherel, = —Tr plog, p is the Shannon information of the

the measurement this uncertainty is resolved. Hence in botuantum source ang is the density matrix of the quantum

cases the measurement yields 1 bit of information. Our maigourcep= X;p;|#;){(#;|. A more precise formulation of Eqg.

idea is to interpret this quantity as the information we extrac{6) will be given in Sec. V.

from the state. One does not always attain equality in E). Indeed
This idea might seem paradoxical at first sight because i§ome questions are more informative about the system than

one case we completely recognize the state whereas in tifghers. Less informative questions can be answered by mea-

other case we recognize it badly. To understand let us introsurements whose output entropy is smaller. More informa-

duce a classical source that decides which quantum state e questions require measurements with more entropy. But

emitted from the quantum sourdeee Fig. 1 In the first  the most detailed questions can always be answergf{jin

case the classical source must only specify onédititer+z  bits.

or —z) to determine which state is emitted. In the second

case it must provide a directiam,, (i.e., an infinite number IV. STRATEGY

of bits) in order to specify the Stafé , ). In both cases one  The main problem we face in deriving E@) is to elimi-

extracts one bit of information. In the first case this meansate the redundancy. In order to do this we shall proceed in
that the classical information supplied by the source is comseveral steps.

Ill. QUALITATIVE STATEMENT OF THE MAIN RESULT
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(1) The first step is to decide which property we are in- We define a general fidelity as follows. To each outcome
terested in. We may fix the property directlior instance | of the measurement we associate a guessed gahmwugh
decide to measure the averageogj or implicitly by choos-  a functiong(j). g may be a quantum stajt%) asin Eq.(1),
ing a fidelity. In the rest of this paper we shall adopt thebut it can also be something completely different. In addition
second approach. we are given a fidelityf (i,g) which measures how goaglis

(2) We then look at optimal measurements, that is meafor the inputi. The fidelityf could be the function defined in
surements that maximize the fidelity. In general there is arkEgs. (1) or (3), but it could also be something completely
entire class of such measurements. different. The fidelityF of the measuremeriy;} is the av-

(3) We perform a second optimization. Namely amongerage value of (i,g):
the optimal mea}ssurements we look for the measurements
which minimizel .

o Flah=2 pi2 p(ilfG.900), @)
This double optimization strategy has already been con- ' .
sidered for some particular cases[#5].

One expects that this strategy yields measurements th
have no spurious redundancy. However, as we will show’
below through some examples, redundancies cannot be com- .
pletely eliminated by the above procedure and we will have p(ili)=(wilayl ). (8)
to further modify it.

These further modifications are motivated by the classical We will be particularly interested in the optimal measure-
and quantum theory of informatidi6,7] which suggest the ments for whichF is maximal. Denoté ,,,, the maximum of
idea of performing measurements on blocks of quantunt,
states, rather than on individual particles. Thus we shall al-

mherep(j |i) is the probability that the outcome of the mea-
urement ig if the input state ig;)

low the measuring device to accumulate a large nurhbr Fmax=maxF({a;}). 9
input states before making a collective measurement oh the {a}

states simultaneously. It is in the context of these collective

measurements that we make the two optimizatigmsints Suppose now that the source emits large blocKs iofput

(2) and(3) above and thereby eliminate the spurious redun-states|; - - - ¢ ). The successive states of the block are
dancies. distributed independently with the same distributipp.

We want to emphasize that this procedure cannot increasgynsider a measuremeAf acting on the whole block of
the fidelity since the subsequent partlcles are completely UNnput states. To each outcomee can associate values of
correlated. However, by considering measurements on Iargé:: one for each input state, through functions

blocks we can hope to reduce the redundancy of the me%—l(j), _
surement, i.e., the entropy of the outcomes, by making “bet-t
ter use” of each outcome.

Two technicalities have to be taken into account. First o
all we must take care not to modify the definition of fidelity.
That is, the fidelity must still be the fidelity of each state
individually, rather than the fidelity for the whole block. Sec-
ond we should not require the measurement to absolutel§L ({A;})
maximize the fidelity, since then using block measurements

.,.9.(j). The fidelity for outcomg, averaged over

he L input states, is (]./)Ek:lf(ik,gk(j)). We therefore
fdefine the fidelityF, of a measuremertA;} acting on large
blocks as the average over the outcomes of the measurement
and over thd. input states off(i,g),

does not help to reduce the entroftlyis follows once more = 2 - bi 'piLZ <¢il' - ¢iL|Aj|¢//il~ . ¢iL)
from the fact that the subsequent states are completely un- 'L !
correlated. However, following the ideas of information L

theory, we shall only require that the measurement has a XE
fidelity approaching arbitrarily closely the optimum. In this L
framework we shall prove Ed6).

In Sec. V we show how to formulate mathematically the The key property ofF| which justifies this definition is
above strategy, and in particular the two technical points jusbbtained by a rewriting of Eq10). To this end we define the

f(i,9x())). (10
=y

mentioned. operatorsAl as the operatoré; restricted to the space of
particlek,
V. PRECISE STATEMENT OF THE MAIN RESULT
Consider the general setup of Fig. 1. The states emitted by A}k)=Trkr¢k( 1T p|r)Aj . (17
the quantum sources;) belong to a Hilbert space of dimen- I"#k

siond. They occur with probabilityp; . Their density matrix

is p=2ipi| #i){ 4| with Tr p=1. The most general measure- The operatorss\}") are positive and sum to the identity on the
ment on the input states is a POVM witl element:a; space of particld, hence they constitute a POVM acting on
=0, E}"'zlajz lq- the space of particlk. We can then rewrit&_ as
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1t guessed states are undetermined and both must be varied to
FLAD =+ 20 20 20 oy (o |AR L ) () find the optimum estimation strategy. That is, whereas in
L= % Sec. V the specification of an estimation strategy consisted

L only of the POVM element$a;}, it now consists of the set
> F({A](k)})_ (12)  1aj,¢4(j)} which comprises both the POVM'eIe.ments and
=1 the guessed states. An example of such a fidelity was con-
o o ) sidered in[3]. The unknown statels/;) were taken to be
ThusF | is just the average of the fidelities for the restrlctedspin_l/z particles all polarized along the same directibn
measurementa (). From this it follows thatF, is less or  and the fidelity was taken to be the scalar product of one spin
equal toF 4 polarized alond) with one spin polarized along the guessed
directionf=|{TQ|TQg)|2.

It is easy to show that our main result E§) also applies
o such more general fidelities for which both the POVM
elements and the guessing strategy can be optimized. Indeed
allowing the guess to vary just corresponds to considering a
A=a;®- - ®a, (14) family of fid_elities._ Since our result holds for each_ fidelity

separately, it applies to the optimal one of the family.

One can, however, construct even more general fidelities
. . . (for instance, by taking the fidelity to be non linear in the
mlee Eq.(7). Note that this optimal measuremef;} has POVM elements For such more general fidelities it is an
M" outcomes. open question whether our claim also applies. One example

It is these properties that justify our defln_ltlon EfL'. of such more general fidelities is the mutual information
Indeed they guarantee that one can compare in a meanlngfg uation(4)

way the fidelity for measurements on individual input states
and measurements on large blocks.

We are now in a position to formulate our main result
with precision. We state it as a theorem.

Theorem Consider a state estimation problem in which

|~

FL<Fmax- (13

Equality can be attained by a measurement which is th
product of optimal measurements on each input state,

where{a;} is a measurement withl outcomes which maxi-

VII. RELATION TO THE CLASSICAL CAPACITY
OF A QUANTUM CHANNEL

the unknown state |¢;) have density matrix p The result presented here finds its origin in a reflexion on
=Zipil¢i){(¢s] and von Neumann entropyli\{]’;utz the recent developments of quantum information theory, in

—Trplog,p. Consider a bounded fidelity functiof(i,g) particular on the classical capacity of a quantum channel.
and the corresponding optimal fideliy, ,, given by Eq.(9).  The two problems are related, as the following discussion
Given anye>0 and»>0, then there exists, such that for ~shows.

anyL=L,, and anyN larger than 2(|i\’n’gm+ " there exists a Co_nsider the_resu[IQ] that the Holevo boun{tL0] for the
measurement on sequenceslofnput states which hasl clas.smal capacny of a pure .statt.a qugntum channel can be
outcomes and attains a fidelif, =F,,— e where F, is attamed. An mportant ingredient in this proof was to derive
defined in Eq(10). certain properties of random sequences of sthtes each

To summarize, there is no best way of estimating an uncnosen with probability; . Namely it was shown thatvi'E the
|

known quantum state. Different measurements will lear?UmPerN of sequences of length is less tharN<L 1y,
about different properties of the state, and it is up to us tg= — L T p10G; p, with p=3;p;|45;)(#], then each sequence
choose which property we want to learn about. HoweveriS With high probability almost orthogonal to the other se-
once we fix the property we want to learn about, one cannofU€nces. It is this property that ensures that with high prob-
learn more thammut: —Tr p log, p bits about this property. ability such sequences constitute good code words that can

That is, a measurement can extract at most one meaningfGf réliably distinguished by the receiver.
bit from each qubit coming from the source. In the present case we consider random sequences of

Before presenting the proof of this result, we discuss itd’OVM elementsa; . We show that when thevrlzlumber of
generalization to other fidelities, its connection with otherSuch sequences of lendthis greater thalN>L1;,,,, (where
aspects of quantum information theory, and we present twéinput 1S the von Neumann entropy of the input states on
examples that show the nontrivial character of the result. Wwhich the measurement should ja¢hen the sequencégro-
jected onto the probable subspace of the input Stafesost
sum to the identity operator. Thus with minor tinkering one
can almost always transform this random sequence of
Our main result, as stated with precision at the end of thd®OVM elements into a genuine POVM acting on sequences

preceding section, applies to fidelities in the form of Efj.  of L input states.

VI. OTHER FIDELITIES

This is very general since the fidelity functidigi,g) is ar- In both cases the properties of the sequences change dra-
bitrary. Nevertheless one can consider other more generahatically when the number of sequences becomes equal to
fidelities. the von Neumann entropy of the stats=LI}/% . In the

As a first generalization, we consider fidelities in the formfirst case the code words cease to be mutually orthogonal. In
Eq. (1), but for which both the POVM elements and the the second case the sequences of POVM elements cease to
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7[’2 7,[)1 d)l
FIG. 2. The two input statels/,),|#,)=«|T) = B||). The opti-
mal measurement is a measurement of the spin irx tthieection. ¢3 ¢2

sum to the identity. But in one case the limit is approached

from below and in the other case from above. Thus the FIG. 3. The three input stateg,, ¢, s in the second ex-
present analysis and that [&] explore complementary prop- ample. The optimal measurement is a POVM whose elements are
erties of random sequences of operators. projectors onto the three statgs, 4z, .

Nevertheless, even thought the limiting case L1 . is
approached from different directions|i@] and in the present
paper, the mathematical techniques that we use in this pap
are related to the techniques used®. These techniques
are the subject of Sec. XI.

Using the techniques of Sec. X, one can show that the
lements of an optimal POVM are necessarily proportional

0 the three projectorsyy ){ ¥, |2)(al,|#3) (4|, see Fig.
3. Therefore the optimal POVM whose output entropy is

minimum is{5|y1) (4, 5192)(Wal. 5| ¥)(sl}. In this case
|§utput= log, 3>1 bits. Any other optimal measurements has
larger output entropyfutpulzlong bits. One can also show
Before embarking on a proof of our result, we give two that there is no measurement on blocksLofnput states
examples which illustrate the main points that must be takemvhose fidelity is strictly equal to the optimum and whose
into account in the proof. output entropy is less thdnlog, 3 bits. However, if one only
In the first example there are two possible input statesequires that the fidelity is arbitrarily close to the maximum,
[41)=al|T)+B|]l) and|¥,)=a|T)—B]]) which occur with  then in the asymptotic limitl{(— ) the output entropy can
equal probability. The density matrix of the sourceps be made arbitrarily close th bits, thereby attaining the
=a?|T)(1]|+ 8?1 ){]] which is different from the identity bound Eq.(6). The main difficulty of the proof will be to
for a# B. Therefore the von Neumann entropy of the inputconstruct such a measurement on large blocks whose output
statesl mut<1 qubit. entropy is equal td bits and whose fidelity is arbitrarily
The fidelity is defined as follows: after each measuremenglose to the optimal fidelity.
one must guess whether the statéus) or |¢,). In case of
a correct guess one receives a scoretdf, and for an in- IX. PLAN OF THE PROOF
correct guess one receives a score—0f. The aim is to

maximize the average score. The techniques of Sec. X can be TlheSnexthectlgns_ are devoted to _prov:cn% the l_Joulnd Eq.
used to show that the optimal measurement is a von Nelf- ). In Sec. | V‘g’ e;|(\|/e son;]e prﬁpertles of the optimal mea-
mann measurement of,, see Fig. 2. The two outcomes of surements. In Sec. X we show how to construct a measure-

this measurement occur with equal probability, and hencg"ent on large plocks Wh'Ch has little redundancy. In_ Sep. Xl
IS 1= |WN we derive an intermediate result concerning the fidelity of
output Input- the measurement constructed in Sec. Xl. If the states are

In this example, a natural first step in eliminating the re-" - Lo . .
dundancy is to project blocks of input states onto their prob-Miformly distributed in Hilbert spacé.e., the density ma-

able subspack?,8]. This projection succeeds with arbitrarily m)e(:o:isatpercr)g:[ltlltogl?tlea}\cé therc;sggtgz‘r) ;Zii)élg;rinliteglsvsl?nts:
high probability, and affects the input states arbitrarily Iittle.the states are not uni);o?ml distributed in Hilbert-s ace. we
But it reduces the dimensionality of the Hilbert space of the . ; y pace,
] VN must first project blocks of states onto the probable subspace
input states from B to 2\'i

: nput. Hence if we can prove that pefore using the intermediate result of Sec. XII. This is done
there is a von Neumann measurement restricted to the prokyy sec. X111 and completes the proof of E().

able subspace that is optimal, we will have proved our claim.
However, the construction of such a von Neumann measure-
ment is nontrivial, as is illustrated in the next example.

In our second example there is no “most probable” sub-  Consider a fidelity as defined in Sec. V. We summarize
space because the density matrix of the inputs is completelyere the main properties of optimal measurements, i.e., those
random. In this example there are three input staies that maximize the fidelity, see al$a,3].
=11), =31+ 3/21), ¥3)=%|1)—3/2]|), each First of all note that we can always take the optimal
occurring with equal probability; = 1/3. The density matrix POVM to consist of one-dimensional projectors;
of these states ig=1/2 and their entropy i$mut=1 qubit.  =|b;)(b;| (the b; are not normalized Indeed, refining a
The fidelity is defined as above: after the measurement onBeOVM can only increase the fidelity. This can be seen for-
must guess which was the input state. If the guess is correabally in the following way: suppose tha; are an optimal
one scorest 1 point, if the guess is incorrect, one scores POVM, but not necessarily made out of one-dimensional
—1 points. The aim is to maximize the average sdficel-  projectors. Then each; can always be decomposed @&s
ity). =3 bjk)(bjk| since it is a positive operator. Inserting this

VIIl. EXAMPLES

X. PROPERTIES OF OPTIMAL MEASUREMENTS
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into the expression foF one sees that thiej, [to which we
associate the same value @f g(jk)=g(j)] are also opti-
mal.

Thus we can optimiz& in the class of POVM's whose
elements all have rank onb;)(b;|. These elements are sub-
ject to the unitarity condition;|b;)(b;|=14. This can be
implemented by introducingl® Lagrange multipliers\ ,,
which we group into one operatér.

F=3 0.3 (0o (by0)1(.0(1)

=; T (F;—X)[by)(bj| 1+ Tr &, (15)

where |3j=2ipi|¢i)(1/fi|f(i,g(j)). If we vary this with re-
spect to(b;|, we obtain the equations

(Fj—\)|bj)=0. (16)

Inserting this into Eq(15) shows thafF 5= Tr\.
Equation (16) is the essential equation to find optimal

measurements explicitly. For instance, consider the first ex-

ample of Sec. VIII. There are two input stat¢s and ¢, and
two guessed states)"*>=|y,) and ¢3"°5=|y,). If the in-
put state is|#;,) and one guesseg?"®*S then f=+1,
whereas if the input state is/,) and one guesse#?"®*,

thenf=—1, henceF ;=3 (|1 )(¢a|— | 2){W2]) = + aBoy.

Similarly Fo=3(|¢o)(w2l —[¢2)(41]) = — aBo. The task
is then to find an operatox such that null eigenvectors of

IA:LZ—)A\ can satisfy the completeness relation. The only pos-

sibility is A\=apl. Therefore the optimal measurement is
along thex axis, andF,,,=2aB. The second example of
Sec. VIl can be treated along similar lines.

An important consequence of E(L6) is an explicit ex-
pression for the value df if the measurement is not optimal.
Consider a measuremeaf which is not optimal, but each
positive operatoaj’ is “close” to the corresponding operator
b; of the optimal measurement. We then decompose the o
erator a/ in terms of its components alongp;): aj
|bj’) is orthogonal tob;) and the operator; obeysz|b;)

=0, (b; |zj =0. Inserting this decomposition into the expres-

sion for F, we obtain
F(a')=TrA+2> Tr(Fj—Ma/]
]

=Fmaxt 2 TI(F;—N)z]
]

=Fpna—CTrz, 17

PHYSICAL REVIEW A1 062303

where we have used E@L6) andC is some positive constant
independent of. This expresses in a simple way how much
the fidelity differs from its maximal value in terms of how
much the measurement differs from the optimal measure-
ment.

XI. ELIMINATING REDUNDANCY

Our aim in this section is to construct a measurement with
less outcomes than the optimal measurement(E4). The
next two sections will be devoted to proving that this mea-
surement does not diminish the fidelity. This measurement is
very similar to the measurement used[®] to decode a
classical message sent through a quantum communication
channel.

We start from the optimal POVM acting on one input
state and decomposed into one-dimensional projediors
=|b;){b;|. We express it in terms of the normalized operator

bi=[b;,)(b;|=b;/Tr(b;) asb;=pb;. (Throughout the text

we shall denote normalized operators by The 8; sum to
2;B;=d obtained by taking the trace of the completeness
relation.

We now constructN operators acting on the space lof
input states,

where eacFBjk is chosen randomly and independently from

the setb,, ..
The|EJ-) span a subspadég of the Hilbert space of the

input states. In this subspace the operaeijNBj is strictly
positive, hence we can construct the operators

. by with probabilities p;=p3,/d, ... ,pwm

CJ:|CJ><CJ|:B llszB 1/2. (19)
The C; are positive operators, which sum up the identity in
Hg: EJ-N:1CJ-=HB wherelly is the projector ontddg. The
POVM we shall use consists of ti@& and the projector onto
the complementary subspa€g=14.—1Ilg (I 4 is the iden-
tity on the Hilbert space of thie input stateg

Our strategy in the next sections will be to compute the

[verage fidelit)EL , Where the average is taken over possible

choices ofB; in Eq. (18). We shall show that the average of
F_ satisfies our main result stated at the end of Sec. V.
Therefore there necessarily are some choice8;dhat also
satisfy our main result. But first we derive some important
properties of theC; . We shall obtain mean properties, where
the mean is the average over choicegfin Eq. (18).

(i) The mean oB; is Bj=14./d".

(i) The mean oB is

(20

This motivates our writing
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N
B=qr(la+4) (22)
and subsequently making expansionsiin
(i) The dimension oHg (denoted dirnB) is
. 1 .
dimy_=>, TrC;=2>, TrB !B ——2 T—B;
S i i g+ A
d- ~
;WZ Tr(lge—A)B;. (22)
i
Furthermore,
~ d- ~ d-/ . = | o~
TrABJ:Tr(WB—IdL)Bj:Tr[W Bﬁ% BkBj)—B},
(23)

where we have used the fact tfgft=B;. We now take the
average of this expression. Using the fact thatkferj, By,
and B; are independent, the average BfB;(k+]) is the
product of the averageB,B; =B, By=14./d*". And hence
Ek;&] «Bj=(N—1)I4/d*. Puttmg all together, we find

TrAB;=(d"—1/N) and
d-—-1
ik

This shows that iN is slightly larger than the dimension of
the Hilbert spacel, then theC;(j #0) fill the Hilbert space.

(iv) Finally we need to know how much the; differ
fr(2)m the B;. We write |C;)=«;|B;)+|B;) and compute
CY] y

dLBdimHBBd'—( 1- (24

a’=TrC;B;=TrB;B ¥8B;B ?=(TrB;B 3?2

d- 1.~ |2
>W(1—§TrB,—A) : (25
Hence
d- d" d-—1
2= _
o= (1-TrBjA)= | 1- ) (26)
This is then used to compute the averagé®f|B;):
dL dL_
(Bj[B)=TrC;=TrCiBj< 5 — (27

which shows that th€; are arbitrarily close to thB when
N>dt.

XIl. AN INTERMEDIATE RESULT

In this section we shall prove the following intermediate

result. Suppose that the input states) belong to a Hilbert
space of dimensiond and have a density matrixp

PHYSICAL REVIEW A 61 062303

=3ipi|s)Xik|. Denote bypnmax the largest eigenvalue of.
Consider measurements on blocks Lofinput states. Give
yourself any positive number>0. Let N be any integer
larger than 2(2'0%d+0%emac* 7 Then there exist measure-
ments withN outcomes with a fidelityF, = R27t
whereR is a positive constant.

In the next section we shall combine this intermediate
result with the concept of probable subspace of a long se-
guence of states to prove our claim in full generality.

To prove this intermediate result, we proceed as follows.

Let {b;=|bj)(b;|} be a POVM that maximizes the fidel-
ity F Eq. (7). Using the algorithm of Eq918) to (19) we
construct a measuremefd;, j=0,... N, acting on the
space ofL copies of the input states.

Let us consider the fidelity for the measurement

Fmax

N 1 L
2 T2 2 PysJClu)fieadi), (28

where theC¥=Tr_ (11} .xp;/)C; are defined as in Eq.
(11).

We can decomposg ! (for j#0) according to its com-
ponents  along [bj: =X/ (bjid + YDy (bl
- Y]*k|bjik><bjk|+zjk Whererk|ka> 0,- <bjk|ZJk 0.-|nsert'
ing this expression in Eq28), and using Eq(17), yields

Stk

where the last term comes from tlg=14.—I1z outcome.
It remains to calculate Te{ and Trz;, . We start with
the former

N

max_Czl Trz—CTrc|, (29
=

Cgk)ITﬁ#k( I1 P|/> (lqu—1IIg)
I"#k
S(pm<';1x)L71-|—r(|d'-_HB):(pma1x)|_7l(dl__dim Hg),
(30)

wherep,ay iS the largest eigenvalue of
To estimate Te; we recall the decomposition 4C;)

=aj|B;)+|B;). We can further decompo$B;’) according
to whether when restricted to the space of ke particle, it
is equal tofb;,) or not:|Bj)=[b; ) #)+[b} )| x). Inserting
this into the trace which yield€{ , we obtain

K
C=Tr .

il p.,)<aj|é,->+|5jk>|¢>
+[B)x)) (af (Bl + -

= (B, ) (B [ X+ B )(By | Y i+ B} ) By, [ Y+ [B)
x(bj. 1Zjk- (D)

The coefficientsXj,, Y, Zj are easily calculated. The
one of interest iZ; =Tr z,
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L1 Hilbert space of a long sequence to prove our main result.
Zi=Tr [T prlx){xI<(pma0®™ Y xlx) This is done in the next section.
I"#k

- Xlll. MEASUREMENTS ON PROBABLE SUBSPACES
=(pmad" (B} [By). (32)

We now combine the result of the previous section with
Inserting these bounds into the expressionFprwe ob-  the notion of probable subspace of large blocks of states. We
tain first recall the properties of the probable subsgacg. Con-
sider a long sequence &f input stateg i, - z//iL,>. The

L
. . . L’ .
E = FE _—C L-1/gl|gt density matrix of these states gs=1II,_,p,. The projector
- kgl [Fimax=Clpmad ™ ! | ! ) IT onto the probable subspace has the properties that given
e€'>0, »'>0, and forL' sufficiently large,(1) Trllp=1
—¢€', i.e., the probability to be in the probable subspace is

. . . arbitrarily close to 1.
We now take the average of this expression over all possible (2) T and p commute, i.e., the eigenvectors pfare ei-

choices ofbj, operators in Eq(18). Inserting Eqs(24) and  tner eigenvectors ofl or of 1—1II. And, furthermore, the
(27) yields eigenvectors which are common b andp have eigenval-
L_ ues comprised betweert 2-H-7)<(p );<2t (H+7),
FL=Fmax 2C(pman "~ td"- , (34) (3) From these two properties it follows that the dimen-
N sion of the probable Hilbert space is bounded by (1
— )2t H=")<Tr <2t (H+ 7)),

Let us now show that measurements restricted to the
probable subspace are arbitrarily close to optimal. Suppose
thatA; is a measurement that optimizes the state determina-
tion problem Eq.(10) for sequences of’ input stateqfor
instance, the measurement equatiti®)]. Consider the
B L L(om g POVM consisting of the operatoss =ITA;II [to which we
_1/d\;N then F =Fna—R2 it N=270 associate the unmodified guessd$)] and the operatot
=2(inpu™ ., When the input states are not uniformly distrib- —II (to which we associate the minimal value of the fidelity
uted in Hilbert space, we must use the notion of probablef ;). The fidelity for this measurement is

|~

—Cl(pman" H(d"—dimHg)]. (33

Therefore if N=2.(210%dH0% mat ) then F|=F .
—R27Y7 whereR=2C/pyax. This proves the intermediate
result.

Note that if the input states are uniformly distributed in
Hilbert space, i.e.p=1/d, then this intermediate result di-
rectly implies our main claim. Indeed when=1/d, pmnax

N 1L
Fo= > Pi, - 'piL,Z (i JOAT g - ) — Z f(ix.9k(i))
Pge-ipr =1 L' k=1

+i12iu Pi, P (i 1= i) min

N 1 L’
=Frac 2 pil--~piL,j§1 (Wi, i A= TIAT o ) 5 2 F (60— [ frinl Tr (1= 1) (39)

The main difficulty is to bound the second term whosewheref . is the maximum value of the fidelity. Denote by
absolute value we denote Ay. We proceed as follows: Sthe operator

N
To=|. E. P 'piL,JZl (Wi i A
L S=hi, i Nty i =i i)

1
—HAjl—Il‘r/Iil"'{/jiL'>F kzl f(',//ikyd)jk) X<¢ e |H (37)

S|fma>Ji Z. Pi, - Pi
1

_ We decompose the Hermitian opera®into its eigenstates
A —TIAIL ¢ - -y )Y, (36
! i, v ) (36) S=3;si|si)(si|. We then have

N
» (/T
=1
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; |TrSA,|=; ’Z si(siAjlsi)

$; EI |Si|<si|Aj|Si>:2i |si|=Tr|S]. (38)

We now use lemma 1.4 dfL1] which, applied to our case, states that

TrIS|< 81— (i, i [, 45, ,). (39
Going back to Eq(36), we have

T2$|fmaAi12L, Piy o Pi BT - ). (40)

Using the concavity of/1—x, we have
To<|fma \/8i12~i|_r P, Pi (L= T )= | Fmad VB[ 1= Tr(pIT) ], (41

|

Putting everything together we have need to describe the outcome of this measuremeﬁildn
o= Froc e B8, G2 by e louer oo e g L (o

This shows that the restriction of the measurement to the’ 7L’ +1e//L"). Sincee’, 7', and# can be chosen arbi-
probable Hilbert space diminishes the fidelity by an arbi-trar'ly small, andL’ arbitrarily large, our claim is proven.
trarily small amount of orde®(\/e’).

We can now build a measurement which satisfies our XIV. CONCLUSION
main result as stated at the end of Sec. V. We decompose the
input states into blocks df’ states. On each of these blocks N this paper we have obtained a quantitative estimate of
we first carry out a partial measuremeiit and | —II to ~how much information can be obtained by a quantum mea-
know whether it is in the probable subspace or not. If theSurement. We considered optimal measurements, that is mea-
result is | —II the sequence is discarded. The sequence8urements which maximize a fidelity function. We then en-
which pass the test are kept. larged the set of optimal measurements in two ways. First,

We now take the sequences that have passed the test ‘4§ considered optimal measurements that act collectively on
the input states in the intermediate result. These sequenck¥ge blocks of input states rather than measurements re-
belong to a Hilbert space of dimension diy,qpapie stricted to act on each state separately. Second, we did not

require the fidelity of the measurements to be exactly equal
LOUN S, to the optimal fidelity, but only that it be arbitrarily close to
matrix is pma,=2- 'input™ 7). To apply the intermediate the optimal fidelity. In this context we showed that whatever
result, we take an integd&rand an17>0. Then there exists a property of a quantum System one wants to learn about, one
measurement on blocks bfsequences which has a number can learn at most one bit of information about every qubit of
of possible outcomes equal to any integérlarger than  quantum information carried by the unknown quantum sys-
2L[L’(I¥.“,iut+3n’)+nl - 2LL’(li\ff,§ut+3n’+n/L’) and which has a tem. Thatis, the Shannon entropy of the outcomes of optimal
fidelity larger than F . =Fnax—|fminl€ —|fmax J8e' measurements can always be made equal or less than the von
—R27'7, whereR is a positive constant. Neumann entropy of the unknown quantum states.

Let us calculate the entromiutputs of the outputs of this
measurement. We need less thdap=—¢€'log, e —(1
—€')log,(1—¢€') bits to describe whether or not the input
state passes the first test of belonging to the probable Hilbert We would like to thank Andreas Winter for helpful dis-
space or not. If it does then we need less thapNogjts to  cussions. S.M. would like to thank Utrecht University where
encode the output of the measurement on lthelocks of  part of this work was carried out. S.M. is a research associate
probable sequences. Therefore the total number of bits wef the Belgian National Research Fu(feNRS.

171 VN ’ . . .
<24 Uinpu™ ) and the largest eigenvalue of their density
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