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Hilbert-space structure of a solid-state quantum computer:
Two-electron states of a double-quantum-dot artificial molecule
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We theoretically study a double-quantum-dot hydrogen molecule in the GaAs conduction band as the basic
elementary gate for a quantum computer, with the electron spins in the dots serving as qubits. Such a two-dot
system provides the necessary two-qubit entanglement required for quantum computation. We determine the
excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its
dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and
triplet states, the double occupation probability of the lowest states, and the relative energy scales of these
states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation
probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite
magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We
critically discuss the applicability of the envelope-function approach in the current scheme, and also the merits
of various quantum-chemical approaches in dealing with few-electron problems in quantum dots, such as the
Hartree-Fock self-consistent-field method, the molecular-orbital method, the Heisenberg model, and the Hub-
bard model. We also discuss a number of relevant issues in quantum dot quantum computing in the context of
our calculations, such as the required design tolerance, spin decoherence, adiabatic transitions, magnetic-field
control, and error correction.

PACS number~s!: 03.67.Lx, 73.20.Dx, 85.30.Vw
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I. BACKGROUND

In recent years there has been a great deal of~as well as a
growing! interest throughout the physics community in qua
tum computation and quantum computers~QC’s! @1#, in
which microscopic degrees of freedom such as atomic le
and electron spins play the role of quantum bits~qubits!.
Because of the inherent entanglement and superposition
ing the unitary evolution of multiple qubits, QC’s can per
form certain tasks such as factoring large integers@2#, expo-
nentially faster than classical computers. They also h
significant advantages over classical computers in tasks
as searching@3# and simulating quantum mechanical syste
@4,5#. Moreover, quantum error correction codes have b
discovered@7#, which further bolster the hope for a practic
quantum computer. Various QC architectures have been
posed in the literature. The basic ingredients for a QC
two-level elements serving as qubits, controlled single- a
two-qubit unitary operations, exponentially large and p
cisely defined~i.e., no mixing with other states! Hilbert
space, weak decoherence, and single qubit measuremen@6#.
One of the earliest QC proposals uses electronic energy
els of ions in a linear trap~an ‘‘ion trap’’ QC! as qubits@8,9#.
Optical pulses perform single-qubit operations, while tw
qubit operations are provided by multiple optical pulses w
the lowest vibrational mode of the ion chain as an interm
diary. In another proposed QC architecture, the cavity Q
QC @10,11#, photon polarization provides the two require
states for a qubit. The polarization state can be rotated o
cally, which provides single-qubit operations. Two-qubit o
erations are achieved with the intermediary of a trapped a
in the cavity using the atom-photon interaction. Yet anot
proposed QC architecture uses bulk NMR techniques, wh
1050-2947/2000/61~6!/062301~19!/$15.00 61 0623
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the individual nuclear spins in a molecule are the qubits, w
different locations on the molecule as tags for each qu
Radio-frequency electromagnetic pulses provide single-q
operations, while dipolar interaction between nuclear spin
used for two-qubit operations. Final-state detection in
NMR QC is achieved through an ensemble average ove
the molecules in the entire bulk solution. Single- and tw
qubit operations have so far been demonstrated in trap
ions @9#, photons in a microcavity@11#, and nuclear spins in
bulk solutions@12#. One perceived shortcoming of all thes
approaches, however, is their lack of scalability. For e
ample, it has been pointed out that the NMR approa
~which is considered to be a promising QC architecture! can-
not go beyond 20 qubits because of an exponentially dim
ishing signal-to-noise ratio as the number of qubits increa
@12#. For the ion trap and cavity QED QC systems it is ha
to see how one would surpass only a few qubits. Thus
atomic-molecular systems, which have so far demonstra
single- and perhaps even two-qubit operations, are unlik
to lead to an operational QC due to severe scalability pr
lems.

There have been several recent proposals for solid-s
quantum computers, with superconducting Cooper p
@13#, electron spins@14,15#, electron orbital energy levels in
nanostructures@16#, and donor nuclear spins@17# serving as
qubits. A solid-state quantum computer, if it can ever
built, holds a decisive advantage in scalability compared
the atomic-molecular systems mentioned above. Howe
strong decoherence, the intrinsic difficulty in obtaining pr
cise microscopic control, and inherently complicated Hilb
space are key roadblocks on the way to a practical solid-s
QC. In fact, no demonstration of even a single-qubit ope
tion has yet been achieved in a solid-state QC, and thus
subject of developing reasonable QC hardwares faces an
©2000 The American Physical Society01-1
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enviable dichotomy: QC systems with demonstrated qu
are difficult to scale up, while proposed scalable QC syste
do not have any qubits.

In this paper we study a solid-state QC architecture wh
uses electron spins in two-dimensional horizontally coup
quantum dots as qubits@14#. Here a single electron is trappe
in each individual quantum dot. Spins of these trapped e
trons are qubits, while the quantum dots in which they res
provide tags for each qubit. Single-qubit operations, invo
ing the modification of local electronic spin states in ea
dot, are to be performed using external local-magnetic-fi
pulses, while two-qubit operations are realized using the
change interaction between two electrons in neighbor
quantum dots. Since electron-spin eigenstates usually h
very long coherence times compared with electron orb
states@18,19#, spin states may be better candidates for
role of qubits. Although a microscopically local magne
field is not a standard feature of modern condensed-ma
experiments, reasonable proposals for the local manipula
of spin states have been put forward@14#. Exchange interac-
tion can be tuned by various means, including external g
potentials and external magnetic fields. An important poin
that a single electron spin can, in principle, be detected
superconducting quantum interference device magneto
ters, and it has been proposed that single-electron-spin d
tion can also be done by transferring the spin information
charge degrees of freedom, which can then be detected
the sensitive single-electron transistor technique@20#. The
spin-based quantum-dot quantum computer proposal cle
has important merits and deserves serious considera
Much theoretical work, however, is needed to investig
whether the design tolerance required for QC operations
actually be achieved in the state of the art quantum-dot
tems. In this study we focus on the Hilbert space structure
coupled quantum-dot systems, and its implications for qu
tum computing. One of our specific goals is to ascerta
through fairly extensive numerical computations, wheth
the spin-based quantum-dot QC is a feasible proposal e
from an idealized theoretical perspective. We believe t
such a theoretical study is necessary before one could
ously consider the fabrication of a quantum-dot QC.

II. INTRODUCTION

There are many different ways to fabricate a quantum
@21#. In GaAs, which is the system we nominally consider
this paper, one common approach is to apply external e
tric fields through lithographically patterned gates to produ
a depletion area in a two-dimensional electron gas. In p
ticular, nanoscale electrodes are created on the surface
heterostructure using photolithography. The application
appropriate electric voltages over the electrodes then
duces a suitable confining potential, thus creating ar
where electrons have been pushed away at desired loca
~depletion areas!. The typical size of this type of dot, with
currently available lithographic techniques, is generally la
~in the order of 1003100 to 100031000 nm2). The impor-
tant physical parameters for such a quantum dot are
shape and strength of the confinement potential, the num
06230
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of electrons trapped, the strength of the electron-electron
teraction, the strength of the additional external fields~mag-
netic, electric, etc.!, impurities, surface roughness, bounda
irregularities, etc. Substantially smaller size quantum d
can be made by direct material growth techniques, such
quantum-dot self-assembly, but it has been difficult to a
electrons to such self-assembled dots, making QC arch
ture difficult.

The study of semiconductor quantum dots and other na
structures has been a large and fast developing field in
past ten years@22#. There are, however, relatively few work
concentrating on the properties of two electrons in a coup
double-dot system, or an artificial hydrogenic quantum-
molecule, which is the subject of our work. Among relat
studies, quantum-dot He~two electrons in a single quantum
dot! has been theoretically investigated@23,24#. A vertically
coupled double-quantum-dot system has also been theo
cally @25–29# and experimentally@30–33# studied. The hori-
zontally coupled double-dot ‘‘hydrogen’’ molecule, which
the focus of the current paper, has been studied experim
tally and theoretically in the context of transport and optic
~or infrared! spectroscopic experiments@34–38#, and very
recently the case when there are only two electrons in
double-dot structure has been treated theoretically@39# in a
rather simple approximation scheme using the Heitl
London and Hund-Mulliken molecular-orbital approache
An additional complication in the case of horizontal
coupled dots is that thez-direction angular momentum is no
conserved because of the absence of the cylindrical sym
try, while this symmetry can be used to simplify calculatio
in the case of a single quantum dot or a vertically coup
dot. This lack ofz angular momentum conservation mak
our calculation substantially more complicated than ear
quantum-dot electronic structure calculations@23–28# in
single-dot and vertically coupled-dot structures.

In this paper we present our study of the Hilbert spa
structure of a horizontally coupled double-quantum-dot s
tem, as shown schematically in Fig. 1. Such a horizonta
coupled double-quantum-dot system, with suitable lith
graphic gates to control the interdot coupling, is one of
minimal requirements for a spin-based quantum dot Q
Vertically coupled double dots might not be as good a c
didate for the purpose of quantum computing because
coupling between the dots cannot be tuned as easily, w
the tuning of interdot coupling is essential in the two-qu
operations. QC operation requires a very special Hilbe
space structure with a very large and a precisely defined s
space. In the electron-spin-as-qubit proposal we conside
this paper, one crucial condition is the isolation of the ele
tron spins from their environment, including the electron
orbital degrees of freedom. For example, if a doubly oc
pied state~with two electrons in the same orbital state of
single quantum dot! is easily accessed, when the two ele
trons separate again, one loses all the information about
identification of the spins~the ‘‘tags’’!. Therefore, one strin-
gent requirement is that the Hilbert space should be suc
not to allow appreciable double occupation. This is, ho
ever, quite tricky, since the double occupation probabi
obviously depends on interdot tunneling which cannot
1-2
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HILBERT-SPACE STRUCTURE OF A SOLID-STATE . . . PHYSICAL REVIEW A 61 062301
zero if there is to be an appreciable exchange coup
~which is required for two-qubit operations in the curre
model!. The goal of the current study is to obtain the Hilbe
space for a two-electron double-dot system using reason
realistic quantum-chemical techniques. Since single-
two-qubit operations are the only operations necessary
quantum computing@1#, our study would be exploring the
envelope of the needed Hilbert space~for QC! and its prox-
imity to the unwanted excited-state space. We are to as
the constraints and tolerance required to fabricate a s
based quantum-dot QC system. We will go beyond
simple Heitler-London and Hund-Mulliken models and ta
into consideration electron correlation through a larger ba
in the molecular-orbital calculation. We use several appro
mations of varying complexity in our electronic structu
calculations in order to obtain a realistic estimate of the t
oretical computational work which will be needed to provi
the underlying basis for fabricating a spin-based quantu
dot QC.

III. THEORY

A. Model Hamiltonian

In the current study we use a single-conduction-ba
effective-mass envelope function to describe the confi
electrons in two-dimensional~2D! GaAs quantum dots. Suc
an approach is valid if the characteristic energy correspo
ing to the envelope function is much smaller than the fun
mental band gap. In addition, the excitation energy along
third ~growth! direction has to be much larger than all th
characteristic 2D excitation energies. In the case of Ga
the fundamental gap is 1.5 eV. Furthermore, for a 10-n
thick 2D GaAs quantum well~which hosts the quantum dot!,
the first intersubband excitation energy~for excitations along
the growth direction! is typically 0.1 eV. Since the charac

FIG. 1. This is the schematics of the double-dot system
studied. We use Gaussian potential wells and a Gaussian ce
barrier. Unless otherwise specified, the dot size is 30 nm in rad
When the two dots are separated by 30 nm, we study three c
where the central potential barrier has strengthsVb of 20, 25, and
30 meV, corresponding to effective barrier heights of 3.38, 6.
and 9.61 meV, respectively. When the two dots are separated b
nm, we show results of three cases whereVb takes values of 13.86
18.17, and 20 meV, corresponding to actual barrier heights of 6
9.61, and 11.03 meV.
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teristic in-plane 2D excitation energy of the confined ele
tron~s! is on the order of 1–10 meV, the applicability crite
rion for the effective-mass single-envelope-functi
approximation is well satisfied. The effective two-electr
quantum dot molecule Hamiltonian in the presence of
external magnetic field~defined through the vector potentia
A) is then

H5(
i 51

2 F 1

2m*
S p1

e

c
A~r i ! D 2

1V~r i !1g* mBB•Si G1
e2

er 12
,

~1!

wherem* is the conduction-electron effective mass,V(r i) is
the quantum-dot potential~which is to be parametrized in ou
work, but can in principle be calculated by self-consiste
techniques if the details of the electrostatic confinement
known!, g* is the effective electrong factor,mB is the Bohr
magneton,g* mBB•Si is the Zeeman splitting,e is the static
background~lattice! dielectric constant, andr 12 is the dis-
tance between the two electrons. Here we uncritically
sume the effective-mass approximation~which we will show
to be well valid!, assuming the interband mixing to be ne
ligibly small in the low-energy sector of our interest and t
effect of the periodic crystal potential to be described by
electron effective mass and the background dielectric c
stant. The quantum-well material we focus on in this work
GaAs; thusg* '20.44, e'13.1, andm* '0.067m0, where
m0 is the bare electron mass. As our model 2D quantum-
confinement potential we use the following linear combin
tion of three Gaussians defined by the adjustable parame
V0 , a, Vb , l x , l y , l bx , and l by :

V~r !5V0FexpS 2
~x2a!2

l x
2 D 1expS 2

~x1a!2

l x
2 D G

3expS 2
y2

l y
2 D 1Vb expS 2

x2

l bx
2 D expS 2

y2

l by
2 D . ~2!

Here the first two Gaussians~with a strength ofV0! are for
the individual dot potential wells, and the third~with a
strength ofVb) is for controlling the central barrier~so that
we can adjust the barrier easily and independent of the lo
tions of the other two Gaussians!. Thus V0 is the potential
well depth, whileVb controls the central potential barrie
height. We choose this form for the confinement poten
mainly because of its simplicity and versatility, and no oth
particular significance should be attached to our choice.
find a realistic form forV requires a self-consistent calcula
tion using the correct boundary conditions and heterostr
ture parameters, which is not warranted at the current le
of QC modeling~and is well beyond the scope of this work!.
We only note here that the confinement potential defined
Eq. ~2! is a reasonable potential for 2D double-quantum-
structures defined electrostatically, provided the confinem
along the growth~z! direction is much tighter than the 2D
confinement as discussed above. It is easy to fit a real
confinement potential, if available, to this simple Gauss
form.

e
tral
s.
es

,
40

8,
1-3



tly
ox
n

p

s
rm
o

o
m

e
le
h

th
lt
u
e
oc

m
p
sin
oo
w
le
e

sit
h

fo
th
re

le
-
ing

in-
the

si-
lf-
is

ge
nta-
cor-

ple

f a
be
en
are
ey

ons
uge
nifi-
ns,
ic
ic

t is
wn
ct
p-
xi-
la-
our

by
er-

As
un-
ave
al
nce
ial
nce
ach
ues
o-
m-
cor-

p-
nc-
c-

n-
l-

XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A61 062301
The two-electron Hamiltonian cannot be solved exac
We use two different approaches to calculate the appr
mate energy spectra and electron states of the HamiltoniaH
defined by Eq.~1!. The first is a Hartree-Fock~HF! calcula-
tion, where the two electrons are treated as independent
ticles moving in a HF self-consistent field@40#. The second
is the so-called molecular-orbital method, in which we u
single-harmonic-well single-electron wave functions to fo
two-electron orbitals, and use them as basis states to s
the Schro¨dinger equation for the two electrons@40#. We note
that the presence of the external magnetic field makes
problem somewhat different from the standard quantu
chemistry calculations.

B. Hartree-Fock approximation

In the HF approximation, an electron is moving in th
mean field produced by all other electrons. The multip
electron wave function is a single Slater determinant. T
Pauli principle is thus obeyed, so that electrons with
same spin do not occupy the same orbital state simu
neously. Electron correlation is therefore taken into acco
crudely in the sense that only the Pauli-principle-impos
correlations are included. There are a variety of Hartree-F
calculations in the context of quantum chemistry@40#. In our
study here, a restricted Hartree-Fock~RHF! calculation,
where the two electrons with different spins occupy the sa
spatial orbital, significantly overestimates the double occu
tion probability and thus overestimates the energy of a
glet state. Such a RHF calculation is clearly a rather p
approximation for our purpose, where an accurate kno
edge of the double occupation probability and of the sing
triplet splitting is an important requirement. Therefore, w
adapt an unrestricted Hartree-Fock~UHF! approach@38#,
where the two electrons in the ground state with oppo
spins are not required to occupy the same spatial orbital. T
method inherently incorporates the uncorrelated nature
two remote quantum dots, which is partially satisfactory
our purpose. However, a shortcoming of this approach is
the ground state~where the spins of the two electrons a
opposite! is not a pure singlet state.

The HF equations forN electrons are

Fc i~r1!5Eic i~r1!,

F5 f 1(
j 51

N

~Jj2K j !,

f 5
1

2m*
Fp1

e

c
A~r1!G2

1V~r1!, ~3!

Jjc i~r1!5E c j* ~r2!c j~r2!
e2

er 12
dr2•c i~r1!,

K jc i~r1!5E c j* ~r2!c i~r2!
e2

er 12
dr2•c j~r1!.
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Here c i ( i 51, . . . ,N) are the appropriate single-partic
wave functions;f is the single-particle part of the Fock op
erator F, which has the same form as the correspond
terms of Eq.~1!; the operatorJi is the direct Coulomb repul-
sion between two electrons; and the operatorKi is the ex-
change interaction between electrons. All the integrals
clude sums over different spin indices. In other words,
exchange termK j vanishes if the spin indices of thej th and
i th electron orbitals are different.

The advantage of HF approximation lies in its clear phy
cal picture of an effective single-particle dynamics in a se
consistent-field background. However, its shortcoming
also due to this simplicity: electrons only ‘‘see’’ an avera
background produced by the other charges, not the insta
neous locations of those charges, and therefore electron
relation is not taken into account beyond the Pauli princi
~which is built into the Slater determinant!. In addition, in
numerically solving the HF equations in the presence o
finite magnetic field, the choice of gauge turns out to
important, a fact which we have not found to have be
discussed earlier in the literature. When the two electrons
well separated and each is confined to its own well, th
should have their own gauges; if the electron wave functi
are extended throughout the two wells, then a single ga
has to be used. The use of a single gauge, however, sig
cantly raises the Coulomb repulsion energy of the electro
because theA2 term can be quite large in high magnet
fields, thus behaving like an additional confining harmon
potential, pushing the two electrons toward each other. I
interesting to reflect on why gauge invariance breaks do
in this HF calculation. It certainly should hold for the exa
two-electron Schro¨dinger equation, in contrast to the HF a
proximation. However, as we make Hartree-Fock appro
mations, we mostly neglect the electron-electron corre
tions. The choice of gauge thus becomes relevant to
approximate calculation. This point is further illustrated
the fact that the exact two-electron wave function is a sup
position of an infinite number of Slater determinants.
these determinants generally transform in different ways
der a gauge transformation, the change in the overall w
function can be quite different from that of each individu
Slater determinant. The breakdown of the gauge invaria
in the HF approximation thus arises from its very spec
single Slater determinant form. The broken gauge invaria
shows a glaring weakness of the Hartree-Fock appro
which clearly needs to be supplemented by other techniq
in order to obtain a more complete description of the tw
electron system. Below we discuss another quantu
chemical approach that can better describe the electron
relations.

C. Molecular-orbital method

For a two-electron problem, the molecular-orbital a
proach involves choosing suitable single-electron basis fu
tions, forming two-electron orbitals from these basis fun
tions, expanding the two-electron Schro¨dinger equation in
these two-electron orbitals, and finally solving the eige
value problem~presumably through a direct matrix diagona
1-4
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HILBERT-SPACE STRUCTURE OF A SOLID-STATE . . . PHYSICAL REVIEW A 61 062301
ization!. In our molecular-orbital calculation, we use singl
dot single-electron wave functions as the basis states to f
our molecular orbitals. These single-electron wave functi
are the usual Fock-Darwin states~assuming parabolic con
finement at the bottom of the potential wells! @21#. We take
care in ensuring that our two-electron wave functions h
the correct symmetry of our two-particle Hamiltonian d
fined in Eq. ~1!. In the simplest case~the so-called Hund-
Mulliken approximation!, we use only the two single-do
ground eigenstates (s orbitals! as the basis states. The
wave functions take the following form for a symmetr
quantum-dot structure with identical confinement alongx
andy directions@21,39#:

f7a, or L/R~x,y!5
1

Ap l 0

expF ~x6a!21y2

2l 0
2 GexpS 7 i

ay

2l B
2 D ,

~4!

where

l 05
l B

A4 1/41v0
2/vc

2
,

l B5A\c

eB
, ~5!

vc5
eB

m* c
.

Here6a are the potential minima locations of the two qua
tum dots which are horizontally placed along thex direction;
l 0 is the effective wave-function radius;l B is the magnetic
length for the applied magnetic fieldB along thez direction;
v0 is the confinement parabolic well frequency;vc is the
electron cyclotron frequency; andm* is the GaAs
conduction-electron effective mass. The gauge that produ
the above wave function isA5(B/2)(2y,x,0). Note that in
choosing our single-particle basis to form the molecular
bitals we use the exact one-electron eigenstates corresp
ing to a double parabolic well 2D potential which is obtain
by expanding the Gaussian potential well of Eq.~2! around
its minima. This particular basis has the great advantag
being analytic~the Fock-Darwin levels! as well as a reason
able basis for the problem we are to solve. Using the sin
dot wave functionsfL/R(r ), the corresponding triplet wav
function is C15@fL(r1) fR(r2)2fL(r2) fR(r1)#/A2,
while the singlet wave functions areC25@fL(r1) fR(r2)
1fL(r2) fR(r1)#/A2, C35fL(r1) fL(r2), and C4
5fR(r1) fR(r2). It is clear that this basis consists of th
Heitler-London statesC1 andC2 and the two ‘‘ionized’’ or
‘‘polarized’’ doubly occupied statesC3 and C4. We can
solve the Schro¨dinger equation for the two-electron Hami
tonian in this basis by expanding in these four functio
Since the triplet state is antisymmetric in the orbital degr
of freedom while singlet states are symmetric, they are
coupled by the symmetric Hamiltonian of Eq.~1!. Thus trip-
let and singlet states can be treated separately. Note tha
06230
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two-electron states are generally neither orthogonal nor n
malized because the single-dot single-electron wave fu
tionsfL(r ) andfR(r ) are not orthogonal to each other. Thu
the Schro¨dinger equation of the problem can be expressed

(
j

4

Hi j cj5Ei(
j

4

Si j cj ,

Hi j 5E C i* ~1,2!HC j~1,2!dr1dr2 , ~6!

Si j 5E C i* ~1,2!C j~1,2!dr1dr2 .

We now have a generalized eigenvalue problem. It can
readily solved numerically. Formally, it is identical to a
ordinary eigenvalue problem if we know the inverse ofS.

To systematically improve upon the four-state molecu
orbital calculation, we include the first excited states
single quantum dots (p orbitals! in an improved~so-called
s-p hybridized! molecular-orbital calculation. The single
particlep orbitals have the following forms:

f1,61,2a~x,y!5
1

Ap l 0
2 @~x1a!6 iy #expF ~x1a!21y2

2l 0
2 G

3expS 2 i
ay

2l B
2 D ,

~7!

f1,61,a~x,y!5
1

Ap l 0
2 @~x2a!6 iy #expF ~x2a!21y2

2l 0
2 G

3expS i
ay

2l B
2 D .

Here the first two subindices are the quantum numbers
the Fock-Darwin states, while the third one indicates th
locations. Now we have six~two s orbitals and fourp orbit-
als! atomic orbitals~single-electron single-dot eigenstates!,
with which we can form 21 singlet states and 15 trip
states. Since parity symmetry is not broken by the introd
tion of a magnetic field, we can introduce even and o
single-electron molecular orbitals, and then build the tw
electron molecular orbitals using these symmetrized orbit
There are then 12 even singlet states, nine odd singlet
triplet states, and six even triplet states. The use of pa
reduces the number of independent two-particle matrix e
ments almost by half. The advantage of introducing thep
orbitals in the molecular-orbital calculation is that the e
cited states give us the freedom to form anisotropic sta
~which could not be accomplished with the isotrop
s-orbital-only basis!, thus enabling us to describe electro
overlap with higher accuracy.

IV. NUMERICAL RESULTS

A. Hartree-Fock approximation

In our HF calculation, we solve numerically the Hartre
Fock equations by setting up a grid of 60330 mesh points
on the two-dimensional (x,y) space. The reason for not se
1-5
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XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A61 062301
lecting a finer mesh for the grid is that we have a coup
two-dimensional problem that is not sparse, so that the ac
nonsparse matrix dimension reaches 180031800, which is
essentially our computation limit. We make a nonline
transformation of the spatial coordinates so that most of
grid points are within the two-dot region, thus ensuring t
accuracy and effectiveness of our numerical eigensolutio

Figures 2 and 3 show some of the results we obtain us
the UHF approximation. In Fig. 2 we can see that the ene
of the lowest parallel spin~triplet! state remains above th
lowest opposite spin state, and never dips below it up t
fairly high magnetic field of 7 T for reasonable quantum-do

FIG. 2. Here we show the magnetic-field~B! dependence of the
energy splitting~J! between parallel and opposite spin states cal
lated by the unrestricted Hartree-Fock approach. The two hig
energy curves are for dots with 30-nm radius, 30-nm interdot se
ration, and 20-meVVb . The lower-energy ones are for dots wi
70-nm radius and 80-nm dot separation. Between the two hig
energy sets of data, the slightly lower one has a slightly thickerl bx

larger by 2 nm! central barrier. The two sets of data for larger do
differ by central barrier heights (Vb) of 20 and 40 meV.

FIG. 3. Here we show the interdot distance dependence of
energy splitting~J! between parallel and opposite spin states cal
lated by the unrestricted Hartree-Fock approach. The left set of
corresponds to the small dot~30-nm radius and 20-meVVb) case,
and the right set of data to the large dot~70-nm radius and 20-meV
Vb) case. A steep decrease in the energy splitting is present in
cases.
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parameters as given in the figure captions. Notice that in
UHF theory the opposite spin state is actually a mixture o
singlet state and a triplet state, and therefore the ground s
is never a pure singlet state. Although a RHF approa
would have produced a pure singlet eigenstate, it sign
cantly overestimates the Coulomb energy so that the sin
state always has higher energy than the triplet state, viola
the theorem that at zero magnetic field~when the wave func-
tion can be written as a real function! the ground state should
be a singlet@42#. In Fig. 3 we show two sets of data whe
the ground-triplet splitting decreasesexponentiallyquickly
as a function of the interdot distance. This suggests tha
least in principle, an efficient control of the splitting betwe
the ground and first excited states can be achieved by
creasing the potential barrier separating the dots and/o
increasing the interdot separation.

A simple Hartree-Fock calculation with a single Slat
determinant is generally not sufficiently accurate to deal w
subtle effects arising from small interaction terms in t
Hamiltonian. For instance, since the reason for the sing
triplet crossing is essentially two-electron exchange and c
relation effects, the Hartree-Fock approximation should
be trusted to produce quantitatively reliable singlet-trip
splitting information~although it is expected to be qualita
tively correct since exchange, which the HF theory includ
is expected to be the dominant effect!. Our main reason for
pursuing the HF theory, in spite of its obvious quantitati
shortcoming, is the fact that the self-consistent HF calcu
tion produces a more accurate single-particle wave func
than the eigenstates of a fixed harmonic well. Based on th
improved single-particle HF states, a configuratio
interaction~CI! calculation can then be built in the future
which will lead to a more faithful and quantitatively accura
description of the actual two-electron wave functions in t
double-quantum-dot system. Our HF calculation could be
starting point of such a future CI calculation.

B. Molecular-orbital methods

The central task in our molecular-orbital calculation is t
computation of two-particle~Coulomb! matrix elements in
the molecular orbital basis set described in Sec. III of t
paper. In the Hund-Mulliken calculation~using only thes
orbitals! which involves a basis of three singlet states~the
Heitler-LondonC2 state and the two doubly occupied stat
C3 andC4) and one triplet state, we need to calculate on
seven Coulomb matrix elements~taking even-odd-parity
symmetry into consideration, only five Coulomb matrix el
ments are needed!. Whenp orbitals are included, we need t
calculate 231 and 120 Coulomb matrix elements for the s
glet and triplet states, respectively, which is a substan
computational task. When the even-odd symmetry is ta
into account, the number of Coulomb matrix elements
duces to 123 and 66, respectively, for the singlet and trip
states, which is still a formidable task because each ma
element corresponds to a four-dimensional integral requir
high accuracy. The most computationally intensive and ti
consuming part of our calculations has been the evaluatio
these Coulomb matrix elements.
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HILBERT-SPACE STRUCTURE OF A SOLID-STATE . . . PHYSICAL REVIEW A 61 062301
Our Hund-Mulliken calculation~with only the electrons
orbitals! results are shown in Fig. 4. Here we first perform
variational calculation at zero magnetic field. We vary t
parabolicity and the location of the fitting parabolic well
achieve the lowest energy in the ground state. The resul
the variational calculation are shown in Table I. For the
optimal variational parameters the triplet state~the first ex-
cited state at zero and low magnetic field! is also quite close
to its lowest energy. According to Fig. 4, the exchange c
pling, or equivalently the singlet-triplet splitting, is a sen
tive function of the central barrier height. This implies tha
suitable gate-controlled central barrier can, in principle,
utilized to switch the exchange coupling on or off efficient
thereby making possible two-qubit operations in o
quantum-dot QC architecture. The magnitude of the
change coupling ranges from 0.2 meV to about 1 meV
these structures, which correspond to gating times on
order of one picosecond to tens of picoseconds, which
difficult, but not impossible, to achieve.

The results of the molecular-orbital calculation done
the larger basis~including both single particles andp orbit-
als! are shown in Figs. 5–7. Comparing this more sophi
cateds-p-hybridized calculation, which includes the first e

FIG. 4. Here we show the magnetic-field dependence of
singlet-triplet splitting in a Hund-Mulliken calculation for two elec
trons in a double dot~of 30-nm radii! separated by 30 nm. Resul
of three different barrier heights are shown. The exchange coup
depends sensitively on the central barrier height.
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cited ‘‘atomic’’ orbitals, with the simple Hund-Mulliken
calculation discussed above, we find that there is a sign
cant effect arising from the strong mixing in of the high
excited states. In other words,s-p hybridization significantly
lowers the energy of the lowest singlet state. Although
s-p-hybridized ground-state resemble the Heitler-Lond
wave functions, it also contains components in which o
electron is in one of the excited states. Such a contribu
could be favorable for the quantum-dot molecule becausp
orbitals increase the ‘‘bonding’’ between the two quantu
dots, thus lowering the overall energy of the double-dot s
tem. In addition, our confinement potential is not exactly
sum of two symmetric parabolic wells. Instead, the tw
Gaussian wells and one Gaussian barrier complicate the
tour of confinement, so that the true ground state has c
ponents of single-particle excited states of the fixed h
monic well potentials.

According to the calculated energy spectra shown in F
5, the ground singlet and triplet states are well separa
from the rest of the higher excited states in the Hilbert spa
For the representative sample parameters as chosen
higher excited states are always separated from the gro
singlet-triplet states by at least 6 meV, which is much larg

e

g

FIG. 5. Here we show the magnetic-field dependence of
energy spectra in a molecular-orbital calculation where boths andp
single-electron orbitals are used. The interdot distance is 30 nm,
the central barrierVb is 30 meV, corresponding to an actual barri
height of 9.61 meV.
ts at a
ssian
tential
TABLE I. Here we tabulate the variational parameters for the three different central barrier heigh
30-nm interdot distance. The fitting well refers to the isotropic parabolic wells we use to fit the two Gau
wells. We obtain the base parabolicity from the second derivative at the bottom of the confinement po
wells, and the base locations are the actual minima of the confinement potential wells.

Central potential barrierVb ~meV! 20 25 30
Actual central barrier height~meV! 3.38 6.28 9.61
Change in parabolicity~meV! 22.8281 22.3915 22.0044
Actual single particle excitation 8.4134 8.8499 9.2371
Energy at zeroB field ~meV!

Change in fitting well location~nm! 20.2243 20.3779 20.1632
Actual fitting well location 12.6343 14.2441 16.0822
At zero B field ~nm!
1-7
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XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A61 062301
than the maximum value of the exchange coupling,J ~0.3
meV! as well as being much higher thankBT&0.1 meV at
the cryogenic temperature of QC operation. Thus, as lon
the coupling between the two quantum dots is turned
slowly, the two-spin two-electron system is quite isolat
from the other parts of the Hilbert space, and is thus a g
candidate for a quantum gate. This demonstration of a w
defined two-spin singlet-triplet Hilbert space, which is w
separated from the rest of the higher excited states of
two-electron double-dot system, is one of the most import
results of our work.

FIG. 6. Here we show the magnetic-field dependence of
exchange coupling in a molecular-orbital calculation with boths
andp single-electron orbitals. The interdot distance is 30 nm. R
sults of three different barrier heights are shown, together with
results~in thin lines! from the Hund-Mulliken calculation for com
parison. The exchange couplings from the full calculation are ab
20% larger at zero magnetic field than those obtained from
Hund-Mulliken calculation.

FIG. 7. Here we show the magnetic-field dependence of
double occupation probability in a molecular-orbital calculati
with both s andp single-electron orbitals. This probability chara
terizes the double occupation occurring in the single-elect
ground state of the left dot. It is clear that the two lower barr
cases, with their large double occupation probabilities, are not
propriate for the purpose of quantum computing at small magn
fields.
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Figure 5 also shows that there are discernible shell st
tures in the two-electron excitation spectra, and this struc
changes with the magnetic field. The shell structure is es
cially prominent at largeB field. The origin of the shell
structure is apparently the degeneracy of the single par
Fock-Darwin states. At smallB field, the wave function
overlap between the two quantum dots is quite significant
that the direct Coulomb repulsion and the exchange ene
play important roles in deciding the energies of individu
states. As theB field increases, the state overlaps betwe
two quantum dots decrease since the wave functions
squeezed by the applied magnetic field, and consequently
Coulomb correlation between the two dots becomes less
portant~even though the on-site Coulomb repulsion becom
more important!. The whole spectrum should then resemb
that of two isolated single quantum dots. Another effect t
should be taken into consideration is that foruBu.0 the de-
generacies of the Fock-Darwin states are lifted, so the sin
particle energy levels are scrambled. However, at cer
specific magnetic-field values shells appear as several en
levels move close to each other and away from the r
There are also apparent level crossings in the spectra, a
energies of individual Fock-Darwin states with different a
gular momenta change differently with theB field, and sin-
glet and triplet states are not coupled by the Hamiltonian
consider. In summary, any simple magnetic-field depende
of the Fock-Darwin states is scrambled by the nonparab
confinement potential and the varying Coulomb interact
between the two electrons. Although the origin of the sh
structure is clearly the starting degeneracy of the Fo
Darwin levels, its detailed magnetic-field dependence
quite complex. The shell structure may, in principle, be u
ful for the purpose of quantum computing because a
shell plus one electron might be effectively considered a
spin-12 single-electron system, i.e., a filled shell could
considered ‘‘inert.’’ Whether such an effective spin-1

2 system
with filled shells is sufficient as a qubit can only be demo
strated by a multielectron CI calculation of its spectrum, a
clearly requires further investigation. Our molecular-orbi
results in the presence of the external magnetic field could
considered suggestive of such a possibility.

Figure 6 shows the magnetic-field dependence of the
change coupling~singlet-triplet splitting! with three different
central barrier heights. Here we can see that all the th
curves ~from the larger basis calculations! are shifted up-
wards from the thinner curves~from the smaller basis calcu
lations!. The reason for this change is that the larger ba
allows us to obtain a much lower~and presumably more
accurate! energy for the singlet states. The triplet states
not change nearly as strongly as the singlet states. Thus
exchange couplingJ changes~increases! by 23%, 42%, and
18%, respectively, for 3.38-, 6.28-, and 9.61-meV cent
barriers in the more sophisticated calculations using
larger s-p-hybridized molecular-orbital basis. Note that th
improvement in the calculatedJ is less for larger centra
barrier potentials. This is consistent with our belief that thep
orbitals play a more important role when the two-dot over
is larger, and therefores-p hybridization effects are quanti
tatively more important when the interdot overlap~and hence
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HILBERT-SPACE STRUCTURE OF A SOLID-STATE . . . PHYSICAL REVIEW A 61 062301
the exchange coupling! is larger.
Figure 7 shows the ground-state double occupation p

ability as a function of the magnetic field, which clearly d
creases as theB field increases. The reason for this decrea
with increasing magnetic field is straightforward. AsB in-
creases, the single-electron atomic wave functions bec
narrower. Thus the ‘‘on-site’’ Coulomb repulsion energy f
the doubly occupied state increases rapidly, which decre
the double occupation probability. The ground-state dou
occupation probability can also be seen in Fig. 7 to decre
significantly with increasing central barrier strength sepa
ing the two dots~as one would expect!. Here we do not show
double occupation for the triplet state, because in those s
one electron would have to be in an excited state; thus
probability is quite small, and could be considered negligi
for most purposes in contrast to the ground singlet state s
ation shown in Fig. 7. The double occupation probability
an important parameter for a quantum-dot quantum comp
~QDQC!. In a QDQC, electron spins are qubits, while the
residence quantum dots~QD’s! ~i.e., the individual dots on
which the electrons are located! are their tags to distinguish
the different qubits. If during the gating action two electro
jump onto a single QD due to high double occupation pr
ability, even if they separate eventually, their original t
information is lost, which will result in an error requirin
appropriate error correction. Thus, in designing a QDQ
one needs to minimize the double occupation probability
the states~especially the lowest singlet state! that belong to
the QDQC Hilbert space. Indeed, Fig. 7 shows that
lower-barrier cases the double occupation probabilities
prohibitively large for the purpose of quantum computin
On the other hand, one cannot have a QDQC with very la
central barrier~thereby producing very small double occup
tion probability! because then the exchange coupling~Fig. 6!
will be very small, making two-qubit operations impossib
This indicates that one has to settle for a compromise in
pursuit of a large exchange coupling~for achieving smaller
gating time during two-qubit operations! and a small double
occupation probability~for reducing the error correction re
quirement!.

To look for parameters that can lead to small double
cupation probability but still maintain a finite exchange co
pling for a double quantum dot, we increase the inter
distance from 30 nm as studied above to 40 nm and perf
the molecular-orbital calculations. The results are shown
Figs. 8–11.

Again, we first vary the location and parabolicity of th
fitting parabolic wells. In Fig. 8 we plot these variation
parameters as functions of the central barrier height. O
interesting feature shown in panel~a! of the figure is that the
fitting well parabolicity increases as the central barrier hei
increases. In other words, when the barrier is low, the e
tron wave functions tend to be more spread out. Furtherm
panel~b! of Fig. 8 shows that the distance of the two fittin
wells are closer when the central barrier is low. These res
show that the two-electron artificial molecule is bound
tighter when the interdot barrier is low, in analogy to a d
atomic molecule and its orbital contraction.

In Figs. 9 and 10 we show the magnetic-field depende
of the exchange coupling and the double occupation pr
06230
b-

e

e

es
le
se
t-

tes
e

e
u-

er

-

,
r

r
re
.
e

.
e

-
-
t
m
in

e

t
c-
e,

lts

e
b-

ability. The values of both these quantities at zero magn
field are about half of their values in Figs. 6 and 7~with the
same barrier heights!. Therefore, at zero magnetic field, th
exchange coupling and double occupation probability
crease at about the same rate as we pull the two quan
dots away from each other. In Fig. 11 we also plot the cen
barrier height dependence of both the exchange coupling
the double occupation probability. Both quantities decre

FIG. 8. Here we show the central barrier height dependenc
the variational parameters in our study when the interdot distanc
40 nm. Panel~a! shows the changedE in the fitting well parabo-
licity, while panel~b! shows the changeda in the locations of the
two fitting wells~symmetric about the origin!. The decrease in para
bolicity and interorbital distance indicates an analogy to orbital c
traction and bonding in molecular physics.

FIG. 9. Here we show the magnetic-field dependence of
exchange coupling in a molecular-orbital calculation using bots
andp single-electron orbitals. The interdot distance is 40 nm. R
sults of three different barrier heights are shown, together with
results~in thin lines! from the Hund-Mulliken calculation for com-
parison. The exchange couplings from the full calculation are o
slightly larger at zero magnetic field than those obtained from
Hund-Mulliken calculation, but there are some differences at fin
magnetic fields.
1-9
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XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A61 062301
exponentially as we increase the central barrier, as one
pects. In the range of the barrier heights we considered,
exchange coupling decreases from 0.27 to 0.0097 meV
change of about 28 times; the double occupation probab
decreases from 0.060 to 0.0017, a change of about 35 ti
Although the double occupation probability decreases a l
faster than the exchange coupling, the difference is insign
cant. Thus we also show that these two quantities chang
about the same rate as we change the central barrier he

FIG. 10. Here we show the magnetic-field dependence of
double occupation probability in a molecular-orbital calculati
with both s and p single-electron orbitals. The interdot distance
40 nm. This probability characterizes the double occupation oc
ring in the single-electron ground state of the left dot. At hi
magnetic fields the double occupation probabilities are vanishin
small for all three cases.

FIG. 11. Here we show the central barrier height dependenc
the exchange couplingJ and the double occupation probability
zero magnetic field. The interdot distance here is 40 nm. Both qu
tities decrease exponentially as functions of the central ba
height. The rates of these decreases for both quantities are abo
same. As the central barrier height varies in the shown rangJ
changes from 0.27 to 0.0097 meV, while the double occupa
probability changes from 6% to 0.17%.
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Therefore, at zero magnetic field, it would be difficult
achieve a vanishingly small double occupation probabi
while maintaining a sizable exchange coupling.

However, as shown in Figs. 9 and 10~and also Figs. 6 and
7!, a finite magnetic field may lead to a solution to this pro
lem of correlated exchange coupling and double occupa
probability. Physically, the exchange coupling is determin
by the competition between direct and exchange Coulo
interactions, while the double occupation probability
mainly determined by the direct Coulomb repulsion. It
thus expected that the two quantities have different dep
dence on the magnetic field. Indeed, according to Figs. 6
9, and 10, for magnetic field above 6 T the magnitude of the
exchange coupling decreases quasilinearly, while the do
occupation probability decreases exponentially fast. For
ample, in Fig. 10, at a magnetic field of 7 T and an effective
central barrier of 9.61 meV, the double occupation proba
ity is about 631024, a magnitude that is of the same ord
as the tolerance of the currently available error correct
codes, while the exchange coupling in this case is ab
0.009 meV, corresponding to a swap gate time of about 3
~after taking into account adiabaticity!. Thus the difference
in the magnetic-field dependence of the exchange coup
and the double occupation probability can be exploited
optimal QC operations. This is another important result
our calculation in the context of QDQC architecture.

V. DISCUSSIONS

A. Validity of the envelope-function approach

The issue of the adequacy of the single-envelope-func
effective-mass approximation~used throughout our calcula
tions! for the purpose of studying electron entanglement
the context of a QDQC requires careful consideration. Let
first discuss the validity of the envelope-function approach
our study of the electronic structure of a 2D GaAs-bas
double-dot molecule. One necessary condition@41# is that
the k•p approximation should be valid in our problem. F
the GaAs conduction band, thek•p approximation~‘‘Kane
model’’! is valid up to ek2e0;0.3 eV, wheree0 is the
conduction-band edge energy andek is the energy of a con-
duction electron at momentumk in the Brillouin zone. In our
study of the coupled-quantum-dot molecule, the energy s
of the electrons is in the order of 10 meV, making thek•p
approximation valid.

Another condition for the validity of the envelope func
tion approach is weak intervalley scattering. The electro
wave functions in this paper are built from conduction-ba
G-point Bloch functions. However, if a GaAs quantum we
~in the growth direction we have a narrow GaAs quantu
well sandwiched between AlxGa12xAs barriers! is too nar-
row (,3 nm!, theX valley would lie close to theG point in
energy, so that a more complete approach~going beyond the
single-envelope-function approach! is needed to take into ac
count theG-X intervalley scattering. An envelope functio
approach becomes inappropriate because it onlylocally de-
scribes a small part of the Brillouin zone. Thus, for our a
proach to be valid, the quantum well in the growth directi
cannot be too narrow@41#. Calculations going beyond th
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HILBERT-SPACE STRUCTURE OF A SOLID-STATE . . . PHYSICAL REVIEW A 61 062301
single envelope approximation for GaAs quantum we
however, show@41# that even for such extremely narro
quantum wells, the single envelope function approximat
gives qualitatively~and semiquantitatively! accurate results.

Although we do not think it to be necessary at prese
one can go beyond the single-envelope-function approxi
tion. A more complete analysis~than our single-envelope
function model! would employ an 838 Kane model@41# to
include all the closeby valence bands, with twoG6 states
corresponding to the conduction bands, fourG8 states corre-
sponding to the heavy- and light-hole bands, and twoG7
states corresponding to the split-off band. We would th
have eight envelope functions instead of just one as we
here. The complete single-electron Schro¨dinger equation and
the general QD Hamiltonian without any magnetic field ta
the forms

Hc5Ec,

H5
p2

2m0
1U~r !1V~r'!, ~8!

c5(
i 51

8

f iui0 .

Here m0 is the bare electron mass.U(r ) is the crystalline
periodic potential, which assumes different values in
quantum well and in the barriers. It thus has a steplike ov
all profile along thez direction.V(r') is the QD confinemen
potential produced by an external static electric field aris
from lithographic gates, dopants, and all other sources
contained inU(r ). r' refers to the 2Dx-y plane, i.e., direc-
tions perpendicular to thez direction. Since thez-direction
confinement is very narrow whileV is slowly varying, we
neglect its variation along thez direction. ui0’s are the
G-point Bloch functions, which are the same as the atom
orbitals of the constituent elements.f i ’s are the eight enve
lope functions corresponding to the eight relevant ban
which are slowly varying functions on the atomic scale. T
Schrödinger equation can be simplified into a set of equ
tions for the envelope functionsf i ’s by using the following
identity:

E
V

f ~r !u~r !dr>
1

VE
V

u~r !drE
V

f ~r !dr

5
1

V0
E

V0

u~r !drE
V

f ~r !dr . ~9!

HereV is the total volume of the crystal,V0 is the volume
of one unit cell, f (r ) is a slowly varying function on the
atomic scale, andu(r ) is a fast varying and periodic functio
on the atomic scale. This identity can be proved by assum
that f (r ) is a constant in each unit cell of the crystal. The
of equations for the envelope functions is then~assuming an
Al xGa12xAs-GaAs-AlxGa12xAs-type heterostructure in thez
direction, withA/B below denoting AlxGa12xAs-GaAs)
06230
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H F p2

2m0
1@e l

AY11e l
BY21e l

AY31V~r'!#G
3d lm1~p•p! lmJ f m~r' ,z!5E fl~r' ,z!. ~10!

Heree l
A ande l

B are band edge energies of materialsA andB
at thel th band edge atG point.Yi are step functions that tak
the value 1 for thei th layer and 0 everywhere else—w
assume sharp interfaces between materialsA andB ~although
deviations from sharpness can be built into the model!. p is
the interband transition matrix, which is essentially the e
pectation value of momentum operatorp in a unit cell. We
can separatef into an in-plane 2D component and
z-direction component, and further simplify the equations.
addition, the valence-band envelope functions can be wri
in terms of the two conduction-band functions, thus lead
to a nonlinear ~but only 232) eigenvalue problem. The
presence of a slowly varying electric field~for the purpose of
confinement! plus the band edges for the heterostructure
troduces additional~on top of interband coupling in bulk
GaAs! coupling between different bands@41#. At the zeroth-
order approximation, when one neglects all spin-orbit co
pling terms and interband couplings, the set of equati
above reduces to the single-envelope-function Schro¨dinger
equation we employ in our current study. In our approxim
tion the only effects of the band structure are to replace
bare electron massm0 by an effective massm* and the bare
Coulomb interaction by its screened form, which is precis
the single-envelope-function effective-mass approximatio

To validate our zeroth-order approximation, we need
estimate the magnitudes of the higher-order corrections
glected in our approximation. In particular, we can evalu
the quantityp5EpĒm* /m0Eg

2 @41#, wherep is the strength
of the interband and spin-orbit corrections relative to t
zeroth-order terms within each conduction band. HereEp

represents the interband coupling strength,Ē is the charac-
teristic electron envelope energy,m0 is the bare electron
mass,m* is the conduction-band effective mass, andEg is
the fundamental band gap at theG point. For GaAs,Ep
522.71 eV,m* 50.067m0 , Eg51.5192 eV @41#, and the
characteristic electron energyĒ is about 10 meV. Using
these parameters, we obtainp;1/150, which is indeed a
small quantity, justifying our envelope-function effectiv
mass approximation in the low-energy singlet-triplet sect
The off-diagonal corrections, which couple the spin-up a
-down components of the envelope wave functions, h
similar negligibly small magnitudes. For the spin-couplin
the corresponding small parameter isp85EpDV̄m* /m0Eg

3 ,
whereD is the valence-band splitting due to spin-orbit co
pling and V̄ is the average confinement energy. For Ga
D50.341 eV, while we takeV̄;50 meV. We then obtain
p8;p;1/150. Therefore, up to an accuracy of 1%, the co
duction bands of two different spins are decoupled from e
other and from other valence bands, and the use of a sin
band envelope function may be quite useful qualitatively a
semiquantitatively. It would, however, require further n
1-11
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merical investigations going beyond the single-envelo
function approximation to establish whether this accurac
consistent with the stringent error correction requirement
a QC.

To go beyond the zeroth-order approximation, the abo
mentioned correction terms need to be included, and the
ear Schro¨dinger equation we have now becomes a nonlin
eigenvalue problem, with a nonvanishing off-diagonal te
that couples the up- and down-spins. Thus, strictly speak
because of spin-orbit coupling, the spin-up and -down sta
of a conduction electron are not the eigenstates in a semi
ductor heterostructure. This opens another possible, a
weak, channel for spin decoherence in quantum dots th
not present in the bulk.

When a magnetic field is introduced, it can be direc
incorporated in the envelope-function effective Hamiltonia
The underlyingG-point Bloch functions, which are atomi
wave functions, are only minimally affected by the extern
magnetic field. Indeed, in a typical atom, theA2 term is
about 1023 as large as the linear term in a 10-T field, whi
can be safely neglected. The linear term inA corresponds to
the coupling between the electron orbital angular momen
with the external magnetic field. For theS orbital of the
conduction band, this coupling vanishes; for theP orbitals of
the valence bands, the magnitude of the splitting caused
this term is about 1 meV per 18 T. Compared to the m
gap of about 1.5 eV, this splitting can also be safely dropp
Therefore, we can conclude that the underlying Bloch fu
tions are not affected by any moderate~up to 10 T! external
magnetic fields one needs for QDQC operation. We a
conclude that for the purpose of QDQC operations, wh
one restricts to only the low energy singlet-triplet sector
the Hilbert space, the single-envelope-function effecti
mass approximation employed in this paper is qualitativ
excellent, but further studies are needed to establish whe
this approximation satisfies the demanding constraints of
ror correction in a realistic QDQC architecture.

B. Singlet-triplet crossing

In our calculations we find a singlet-triplet crossing in
the situations we considered for a magnetic field around 4
The physical reason underlying this magnetic-field-induc
singlet-triplet crossing~making the triplet state the groun
state in high fields! is somewhat subtle. In a single-quantum
dot ‘‘helium atom’’ ~two electrons in one dot!, where such a
crossing has also been reported in the literature, the com
tition between interelectron Coulomb repulsion and sing
particle excitation is the reason for the singlet-triplet cross
@22,44#. In the quantum-dot hydrogen molecule that we co
sider ~two electrons in two dots!, the electrons can reside i
different dots, minimizing the Coulomb repulsion effect, a
therefore the above reasoning does not really apply for
singlet-triplet crossing. To achieve a better understandin
this crossing, we first write down the expression for t
singlet-triplet energy splitting~exchange coupling! using the
Heitler-London wave functions of the ground singlet a
triplet states:
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uCs&5F ufL(1)&ufR~2!&1ufL~2!&ufR~1!&

A2
G u↑↓&2u↓↑&

A2
,

~11!

uC t&5F ufL~1!&ufR~2!&2ufL~2!&ufR~1!&

A2
G u↑↓&1u↓↑&

A2
,

where ufL& and ufR& are localized electron spatial orbital
The exchange coupling—the energy splitting between
lowest triplet and singlet states—can then be expressed

J5
^C tuHuC t&

^C tuC t&
2

^CsuHuCs&

^CsuCs&
5Jr1Jc , ~12!

whereJr is the contribution from the single-particle potenti
energy, whileJc is the contribution from Coulomb interac
tion between the two electrons.Jr andJc can be expressed a

Jr5
2uSLRu2

12uSLRu4
@^fLuDVLufL&1^fRuDVRufR&

2^fRuDVLufL&2^fLuDVRufR&#,

~13!

Jc5
2uSLRu2

12uSLRu4 F ^fL~1!fR~2!ue2/er 12ufL~1!fR~2!&

2
Rê fL~1!fR~2!ue2/er 12ufL~1!fR~2!&

uSLRu2 G ,

where SLR5^fLufR&, DVL5V(x,y)2VL , and DVR
5V(x,y)2VR , with V(x,y)[V(r i) of Eq. ~1!. HereVL is a
harmonic well located on the left andVR is a harmonic well
located on the right. The basis wave functionsfL andfR are
eigenstates of these two wells, respectively. Thus we can
that Jr is a contribution due to the difference caused by
placing the actual confinement potentialV by a left or right
harmonic well. It is a single-particle contribution. Wheth
Jr is positive or negative depends on the particular choice
V and the parabolicity choice forVL and VR . When the
distance between the two quantum dots becomes large,
quantity approaches zero.

The Coulomb contributionJc consists of two parts, one
from direct Coulomb interaction, the other from exchan
interaction. These two parts generally do not have the sa
type of dependence on an external magnetic fieldB. As B
increases in strength, the exchange interaction becomes
important, which leads to singlet-triplet crossing in a qua
tum dot molecule. An analytical calculation for a spec
~somewhat artificial! confinement potential was recently pe
formed@39#, which explicitly demonstrated the different be
havior of the direct Coulomb and exchange terms.

The expression forJ shows that there are multiple contr
butions to the energy difference between singlet and trip
states. Without analytical expressions it is difficult to det
mine exactly which factor dominates in a particular range
parameters. Physically, the Pauli principle constraint de
1-12
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mines that in a triplet state the two electrons will try to avo
each other, thus establishing a repulsive correlation betw
them. This correlation helps to lower the Coulomb intera
tion energy, favoring the triplet state to have a lower ene
if Coulomb interaction is dominant. As the external magne
field is increased, the wave-function overlap decreases
cause of the squeezing by the magnetic field, so the lo
range Coulomb interaction becomes the dominant facto
the total two-electron interaction energy, leading to the tr
let state being the ground state at high enough magn
fields. On the other hand, at lower magnetic fields, the wa
function overlap is significant; a singlet state is then
ground state since it lowers the electron kinetic energy
singlet-triplet crossing is therefore inevitable as a function
the magnetic field, which for the double-dot parameters
choose, happens at rather low accessible fields of 4 T.

C. Quantum-chemical approaches

As we mentioned above, the Schro¨dinger equation for a
two-center two-electron problem cannot be solved exac
Various quantum-chemical approximations have been p
posed and implemented in this problem in the context
electronic energy-level calculations in real molecules@40#.
Below we present a summary and a critique of the vari
techniques which may be useful in the calculations for
taining realistic QDQC architectural parameters. Since
exact electron wave functions are important in the contex
quantum computing, we will not discuss approaches that d
only with electron charge or spin densities. We believe t
detailed electronic structure calculations, which provide
curate information about the wave functions spanning
relevant Hilbert space for realistic QDQC architecture, w
be absolutely essential for further progress in this field.

1. Hartree-Fock approximation

One of the simplest quantum-chemical approaches is
Hartree-Fock approximation. It uses an effective sing
electron equation to simulate a two-electron problem. T
Pauli principle is accounted for because the two-elect
wave function is written as a single Slater determinant. T
HF equation can be solved directly or on a finite basis~the
so-called linear combination of atomic orbitals method!. The
main advantages of a HF calculation are its single-part
feature, its accessibility, and its clear underlying physi
picture. The main shortcoming is its disregard of electr
correlations, which originates from the simplification of
two-particle problem to a one-particle problem. This de
ciency can be systematically remedied by introducing c
figuration interaction~CI! corrections. Instead of using
single Slater determinant as the system wave function,
can use a series of Slater determinants~in which the single-
particle wave functions are HF wave functions including t
excited states! as basis and search for the best combinati
As the size of this basis goes to infinity, the method becom
exact. One may, however, be able to obtain a very high
curacy with a reasonable size CI calculation if the config
rations to be mixed in are chosen judiciously.
06230
en
-
y
c
e-
g-
in
-
tic
e-
e
A
f
e

y.
o-
f

s
-
e
f
al
t
-
e
l

e
-
e
n
e

le
l

n

-
-

ne

.
s

c-
-

One potential shortcoming of the Hartree-Fock meth
for the purpose of quantum computation is that it may not
sufficient to describe quantum entanglement. Multielect
wave functions are intrinsically inseparable when there
overlaps between single-electron wave functions. As a c
sequence of electrons beingindistinguishable, a Slater deter-
minant is not a simple separable product function, and the
fore individual electron states generally cannot be factor
For example, consider a two-particle Slater determinant

uC&5
1

A2
@ uf~1!&u↑&1uc~2!&u↓&2

2uf~2!&u↑&2uc~1!&u↓&1]. ~14!

We can easily calculate the single-particle density matrix
particle 1,

r15Tr2~r12!

5Tr2~ uC&^Cu!

5
1

2
@ uf~1!&^f~1!uu↑&1^↑u1

1uc~1!&^c~1!uu↓&1^↓u1#, ~15!

which is indeed a mixed state. However, this inseparabi
in the Slater determinant arises only from correlations due
the Pauli exclusion principle. If the electrons are spatia
separated so that they becomedistinguishable, the electron
wave function of Eq.~14! becomes a product. For exampl
if f andc above are localized spatially with no overlap, th
above two-particle wave function simplifies to

uC&5uf~1!&u↑&1uc~2!&u↓&2 . ~16!

Here 1 and 2 are labels of the two distinguishable particle
particle 1 inf and particle 2 inc. The two-electron wave
function is now in a product form, and the state for ea
particle is pure. In other words, Eq.~16! is not an entangled
state.

In the RHF approach, the spin part of the wave functi
would be a singlet for two electrons when they occupy
same spatial orbital, so that the state is necessarily entan
The entanglement here is fundamentally different from
inseparability that arises purely out of the Pauli exclus
principle as considered above. Instead, it represents a
correlation between the two particles—they occupy the sa
spatial orbital. On the other hand, in the UHF approach
wave function is completely separable when the two wa
functions are localized, so that no entanglement can be
scribed. In general, for indistinguishable particles, the
tanglement information is encoded in the form of superpo
tion of different Slater determinants so that, in principle,
is alwaysneededfor the wave function to carry entangleme
information. From another perspective, forn spin-12 particles,
the number of real variables needed to describe the spin
of the entangled multielectron wave function is 2n1122,
while one Slater determinant only provides 2n real variables
to describe the spin degrees of freedom, which is clearly
1-13
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XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A61 062301
enough to incorporate entanglement in any multielect
case, including even then52 two-electron case we conside
here. Therefore, the single Slater determinant HF approxi
tion is manifestly inadequate for QC purposes. One sho
note, however, that the HF approximation is not intended
the purpose of describing quantum entanglement. It is
signed to compute accurately electronic energy spec
charge and spin densities, etc. Therefore, as long as one
ognizes the shortcomings of this method, it can still prov
valuable information about the electronic system.

2. Heitler-London method

A Hartree-Fock calculation is self-consistent, and in i
mean field is produced by the calculated electron dens
One can also solve the two-electron problem using a fi
finite molecular-orbital basis. Indeed, when the number
states in the basis goes to infinity, the solution approache
exact two-electron state. However, the convergence ma
slower than a self-consistent calculation~with CI!, and it
quickly becomes computationally intractable for multiele
tron problems. On the other hand, for a two-electron prob
with a small number of basis states, such a fixed finite-b
calculation is numerically tractable and provides a clear
vantage over the HF approximation for studying entang
ment.

The Heitler-London method is an approximation of t
simplest molecular-orbital calculation. Here only the tw
single-particle ground states in the individual quantum d
are taken into account. Furthermore, in forming two-elect
orbitals, the two ‘‘polar’’ ~doubly occupied! states are ne
glected. There is then only one possible functional form e
for singlet and triplet states, respectively. This approach
quite accurate when the two dots are far from each other
that the single-particle wave functions have the correct
pendence on the interdot distance. On the other hand, if
two dots are brought close to each other, the wave functio
radii should be varied in order to obtain the lowest energy
the two-electron states. This is similar to the orbital contr
tion in molecular physics when two binding atoms a
brought together@40#, although in quantum dots it might b
orbital expansion rather than contraction. Another way
improve Heitler-London calculation is to introduce orbit
‘‘polarization’’ ~a contortion of thes orbitals toward each
other!, so that anisotropies in the problem can be at le
partly accounted for. For example,p orbitals can be included
in the single-particle wave functions (s-p hybridization!
@39#. Indeed, in the case we considered in this paper,s-p
hybridization is an extremely important feature of the pro
lem, as we already discussed in Secs. III and IV of the pa

3. Molecular-orbital theory

The Heitler-London method is appealing in its simplici
and its clear physical picture. However, unless perfect b
states happen to be ‘‘luckily’’ chosen, it is difficult for
method with such a small basis to accurately describ
double-dot molecular system. The first improvement one
make is to include the polar states. It then becomes the
plest molecular-orbital calculation—the Hund-Mulliken a
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proach@39#. To further enlarge the basis, one just includ
more single-particle orbitals. For example, in our case,
have included all the single-particle first-excited states,
that there are in total six single-particle states forming o
basis, from which we can form 36 two-particle states. Ifn
single-particle orbitals are used, the number of two-parti
states grows asn2, while the number of Coulomb matrix
elements grows asn4. It is thus imperative to select the be
possible single-particle wave functions, so that the numbe
these orbitals can be kept at a minimum, allowing a tracta
computation.

To limit the size of the two-electron state basis, one c
select a portion of states from a more complete basis, u
criteria such as a single-particle energy cutoff. Such an
proach amounts to a Heitler-London calculation supp
mented by limited CI. However, there can always be hidd
hazards in this practice. For example, as has been pointed
@45#, the calculation of exchange energy is nontrivial in
array of atoms. One reason is that exchange is mainly de
mined by tail overlaps between neighboring electron wa
functions, where Heitler-London wave functions~often used
for calculating exchange energy! are less reliable. In addi
tion, including more configurations and going beyo
Heitler-London wave functions may not improve the acc
racy because the excited atomic wave functions have dif
ent exponential tails. Thus the eigenstates may have m
accurate shapes near the atomic cores, but their tails
become less accurate, leading to an inaccurate exchange
pling energy. Indeed, it is always a dangerous practice
obtain a small quantity numerically from the difference
two large quantities. In quantum-dot molecules, the tail
havior of wave functions is somewhat simpler than in ato
because all the harmonic well eigenfunctions have the s
long-distance exponential behavior~but multiplied by differ-
ent polynomials!. Therefore, by including a larger basis an
doing limited CI calculations, one should be able to achie
a reasonable description of the eigenstates, eigenener
and in particular, the exchange energy in QDQC archit
tures. In this particular sense, 2D harmonic confinemen
QD systems may provide a significant calculational adv
tage over the corresponding real atom-molecule situati
with Coulomb confinement. On the other hand, the nons
gular nature of the harmonic potential well also means t
the electronic states are more sensitive to the actual detai
the confinement, making the QDQC architecture a frag
one for quantum computation.

4. Hubbard model

The Hubbard model is a highly simplified model descr
ing Coulomb correlation effects in an array of atoms. T
model @46# deals with a second-quantized multielectr
Hamiltonian with a cutoff in the interaction. Only one orbit
state per site is kept~in the atomic limit!, and there is a finite
hopping termt, arising from overlap, between the neighbo
ing orbitals. The long-range Coulomb interaction is replac
by a single on-site repulsion termU—the rationale being tha
screening by all the other electrons lead to an on-site ef
tive U. The ferromagnetic direct exchange part of the Ham
tonian is dropped because the wave-function overlap
1-14
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HILBERT-SPACE STRUCTURE OF A SOLID-STATE . . . PHYSICAL REVIEW A 61 062301
tween neighbors is exponentially small. Multisite Coulom
interaction is also neglected, assuming that they do not af
the magnetic properties of the model. In the limit of lar
on-site repulsion~large U), the effective Hamiltonian tha
describes the excitation of this model is a Heisenberg
change Hamiltonian, with the exchange couplingJ related to
t and U by J54t2/U. As this J is always positive, the
ground state is antiferromagnetic when there is one elec
per site. There are various attempts to add additional term
the Hubbard model~the extended Hubbard models! so that it
can describe various other phenomena. For example, in
extended Hubbard model, nearest-neighbor Coulomb in
action is also taken into consideration. The model can t
describe spatial charge-density fluctuations.

The Hubbard model and its variants have been applie
quantum-dot arrays@47#, particularly in the context of trans
port and magnetic properties, and also to study quan
phase transitions in quantum-dot arrays. It is an effec
model that can describe complex phenomena with simplic
In the context of a QDQC, using spins as qubits it is uncl
that the Hubbard model could have a considerable releva
because of its extreme simplicity. This is certainly true
the two-electron model in the double-dot problem studied
this paper. However, if multiple-dot algorithms are design
in the future, the Hubbard model may become a powe
tool, although various details will have to be added, dim
ishing the simplicity of the original model.

The Hubbard model reduces to the Heisenberg mode
the large on-site repulsion limit (U→`). One condition for
the validity of the Heisenberg exchange Hamiltonian is t
each localized electron wave function should have expon
tially small overlaps with others. This condition is genera
not satisfied in the QDQC when we bring two quantum d
very close to each other. However, for a two-electron pr
lem, if the orbital degrees of freedom are frozen, the s
degree of freedom has only four dimensions which can
described by singlet and triplet states, and a Heisenb
model description becomes possible. On the other han
the electron orbital degrees of freedom are ever excited,
Heisenberg exchange Hamiltonian will not be applicable
our purpose. For example, if two electrons ever enter
quantum dot simultaneously, we will lose track of whic
qubit is represented by which spin; thus the error probab
would be 50%. As we have shown previously, at low ma
netic fields in the current configuration, the ground sing
state has a finite probability~as large as 20% or more at ze
magnetic field! of double occupation in either dot. For
short QC calculation or for qualitative results, a 5% dou
occupation probability may be acceptable. However, t
small error becomes a very serious problem that canno
overcome by currently available error correction schemes
a long quantum computation, leading to the constraint t
the double occupation probability must be kept very low.

D. Various aspects of a quantum-dot quantum computer

It has been pointed out that the spin-based quantum
quantum computer, in principle, satisfies the necessary
sufficient conditions required for quantum computing@14#.
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Here we would like to discuss in further detail a number
salient features that arise naturally in the context of a QDQ

In many materials, electron spins are less vulnerable
decoherence than their orbital degrees of freedom, whic
fact is the main motivation for the proposed spin-bas
QDQC. For example, carriers in GaAs have a subpicosec
momentum-relaxation time, while their spin-relaxation tim
is longer than 1 ns@43#. Since a long spin coherence time
absolutely essential for QDQC operations~in particular the
spin coherence time must be much longer than the sin
and two-qubit operation times, which have to be control
by switching magnetic fields and gates, and cannot be v
fast!, we briefly summarize spin-relaxation mechanisms a
comment on their relevance in the context of tw
dimensional GaAs quantum-dot structures.

There are three major spin-relaxation channels for c
duction electrons in GaAs: the Elliott-Yafet~EY! mecha-
nism, the D’yakonov-Perel’~DP! mechanism, and the Bir
Aronov-Pikus ~BAP! mechanism @19#. The EY process
originates from the fact that real Bloch functions are not s
eigenstates. For example, spin-orbit coupling can m
spin-up and -down states in the electron eigenstates. T
whenever an electron is scattered~by other electrons,
phonons, impurities, etc.!, there is a finite probability that the
dominant spin component will flip, thus causing spin rela
ation. The DP channel arises from the lack of inversion sy
metry in GaAs, which leads to an intrinsic spin splitting
the conduction band even for zero magnetic field. In the
channel, the energy band splitting due to spin-orbit coupl
is treated as an effective magnetic field. For differentk
states, this effective field has different magnitudes and dir
tions. Thus, as an electron is scattered from one momen
state to another, it sees different fields and precesses di
ently whenever it is scattered. Soon the electron loses
memory of its initial spin state, thus showing spin relaxatio
The BAP channel is somewhat similar to the DP channel
it also treats electron spins as precessing in an effective m
netic field. However, in the BAP mechanism the effecti
field for the conduction electrons is produced by free
bound holes~or other paramagnetic impurities which may b
present!. Hole spins relax very quickly, so that the effectiv
fields ~the conduction electrons! produced by hole spins fluc
tuate, which causes an electron spin to lose informat
about its initial state.

In GaAs heterostructures, it is generally believed that
DP mechanism is the dominant spin-relaxation channel
conduction electrons@19#. In particular, due to the band dis
continuity in a heterostructure, there is an additional s
splitting for the conduction electrons~‘‘Rashba’’ effect!
which can be treated as an extended DP channel. For h
however, the EY mechanism is the dominant process.
additional complication is that in a quantum dot produced
modulating electric fields through lithographic gates, t
confining electric field produces a mixing between t
spin-up and -down states~in addition to the basic splitting
arising from the lack of inversion symmetry in GaAs!. The
boundaries and the interfaces are also known to cause
relaxation. Indeed, these additional spin-relaxation chan
may actually be the dominant processes for electrons c
1-15
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fined in the quantum dots, because the wave functions
these electrons are built from theG-point Bloch functions,
where the underlying Bloch function isS type, which has no
spin-orbit coupling. Since the DP channel depends on
effective field produced by the spin-orbit coupling~which
vanishes at theG point!, and an external magnetic field ma
also help limit the DP channel, electron spin relaxation in
quantum dot should be quite weak~and probably arises pri
marily from the interface-boundary scattering, the confin
electric field, and perhaps the Rashba effect!.

When electron spin relaxation originating from the sp
orbit coupling~DP channel! is largely suppressed, other re
laxation channels have to be carefully considered. In part
lar, interface-boundary-scattering-induced spin relaxat
needs to be considered. In addition, it has been pointed
@39# that nuclear spins may affect electronic spin relaxat
through the hyperfine interaction. This spin-relaxation ch
nel can, however, be substantially suppressed by applyin
external magnetic field or through the Overhauser effec
dynamically polarize the nuclear spins@39#. These issues re
quire more careful~and quantitative! considerations before
QDQC architecture questions can be seriously considere

If the spin-orbit coupling is strong so that electron spin
itself is no longer a good quantum number, then one m
consider the total angular momentumJ, which involves both
spin and orbital degrees of freedom. Such a mixing by its
would not be a disaster for quantum computing, sinceJ can
now replace electron spin to serve as the qubit. However,
‘‘spin’’ relaxation time will then be in the same order o
magnitude as the momentum relaxation time, which is g
erally very short (; picoseconds or less! in semiconductors,
which could be disastrous from the QC perspective. It is t
imperative to choose materials with small spin-orbit coupl
for the purpose of electron-spin quantum computing
otherwise decoherence problem makes QC operations
possible.

Even if spin relaxation can be neglected~for example,
because of long spin coherence time!, there are many othe
factors that can affect the performance of a quantum c
puter. For example, based on our molecular-orbital calc
tion, the exchange coupling in a coupled-dot system is fo
to be large enough for fast picosecond switching. Howev
one has to be careful in exploiting the possibility of fa
switching. Indeed, to produce the best structure for the p
pose of quantum computing, a compromise needs to
achieved between an optimal gating time and an opti
error rate that should both be as small as possible. As
learned from our calculations and from general argume
exchange coupling decreases exponentially quickly as
two dots are pulled apart. Consequently, to have a la
exchange coupling~which means a shorter gating time!, the
dots should preferably be close to each other, which, h
ever, increases the overlap between the electron wave f
tions, leading to an enhanced double occupation probab
which means higher error rate. A compromise in the QDQ
architecture will therefore be needed.

As shown in our molecular-orbital calculation, the su
space of the total Hilbert space containing the ground sin
and triplet states is well separated from the rest of the Hilb
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space, and can thus be treated as an isolated system. T
the whole idea behind using the exchange coupling for
purpose of quantum gating. Moreover, as long as the Heis
berg Hamiltonian can be used to describe the quantum
two-spin system, the spin singlet and triplet states are alw
the exact eigenstates. The only important parameter for s
evolution is the time integral of the Hamiltonian*H(t)dt,
and the exchange coupling should be turned on for as sh
time as possible to produce an ultrafast gate. However,
time cannot be too short as to make the system ‘‘leak
Using the uncertainty principle, we can estimate the low
limit of this turn-on timetp . Recall that the next excited
state of our two-electron system is about 8 meV above
ground states. Thus the lower limit oftp is about (dE;8
meV is the energy difference between the next excited s
and the ground singlet and triplet states!

tp@\/dE;0.1 ps. ~17!

Therefore, as long as the gating timetp is longer than 1 ps in
the current configuration, the coupled-dot system is well i
lated, so that the higher excited states can be safely
glected, and the gating action can be considered adiab
This is critical for QC operation. Again a compromise
needed here to optimize a fast gating time and adiabatic
Calculations of the kind carried out in our paper can prov
quantitative estimates for such required QDQC architectu
optimization.

According to Fig. 6, the exchange couplingJ depends
quite sensitively on the magnetic fieldB. If a sequential
pulse algorithm is used, one does not need to worry abou
interplay between the exchange interaction and the lo
magnetic field. On the other hand, if a parallel pulse sche
is used@48#, one has to take into consideration the effect
the inhomogeneous magnetic field on the exchange coup
Intuitively, the average field exchange coupling may be s
ficient in many cases, because the single-electron wa
function radius decreases slowly as the magnetic field
creases:l B5A\c/eB. If the average field is around zero, th
field inhomogeneity may lead to a larger change in the
change coupling, and will have to be taken into account.

Throughout our calculation we have neglected the Z
man splitting of the electronic levels. This splitting cannot
ignored in a real unitary evolution. For instance, in Ref.@39#
a pulse sequence was given for a controlled-NOT ~CNOT! gate
~the sequence as given is a conditional phase shift, which
be easily transformed into aCNOT operation!. If a finite B
field is present during the swap action, an additional ph
due to Zeeman splitting of the triplet states will show up
the electron spin states. An oppositeB field with the same
strength has to be applied to the two electrons for the sa
amount of time as the swap gate to correct this phase e
For GaAs, the Zeeman splitting is about 0.03 meV/T. If a d
system has an exchange coupling of 0.1 meV and the
spins experience a magnetic field difference of 1 T, the c
responding difference in the Zeeman splitting would be 0
meV, about 30% of the exchange coupling, which is a s
nificant number. Since an error rate below 1024 is needed for
the currently available error correction schemes to be ef
1-16
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tive, one has to be able to control the magnitude of the
change interaction up to that accuracy. Furthermore, any
sidual local-field effect has to be corrected continuous
Indeed, if in an actual structure the gating area is separ
from the storage area, which means that all the spins hav
be transported to and from the gating area, one does not
to worry about the stray magnetic field. Here the main pr
lem would be the transportation of the spins. On the ot
hand, if the spins are stored close to each other and
gating and storage areas are combined, the main prob
would be the effects of the local stray magnetic field. It
straightforward to correct for the effect of a magnetic field
one spin. However, it is much less obvious how to correct
the effect of an inhomogeneous field on all but one spin i
chain. From an engineering perspective, the modular
proach of separating storage and gating areas is some
more promising. We anticipate that the inhomogeneous fi
and the stray field problems to be significant obstacles
producing a successful QDQC architecture.

When electron transport is needed in an architecture, e
tron labeling becomes very important. In a semiconduc
heterostructure, there always exist stray electrons, suc
those trapped in impurities and deep levels. If we move
qubit electron around in a heterostructure, there is the da
of losing this electron, and in its place, acquiring a str
electron, so that all the spin information of the particu
qubit is lost. The indistinguishable character of electrons
comes an important issue in this context. Initially, when
the electrons are trapped in their respective quantum d
they are labeled and distinguishable. As soon as stray e
trons are present outside the dot electrons we have con
ered, Pauli exchange errors will occur from the indistingui
ability of fermions and have to be corrected@49#. This will
be another significant obstacle for the QDQC architectur

Experimentally, it is easier to deal with multiple electro
~instead of a single electron! in a quantum dot produced b
modulating electric fields. Here it is hoped that certain sh
structures exist~as we show in our results!, so that such a
quantum dot can be considered to be an effective sp1

2

system. Multiple electrons may, however, make the indis
guishability problem a more prominent issue. However, o
needs to keep in mind that the important question here is
spin state of the effective spin-1

2 system, not the spin state o
any particular electron. We are currently pursuing multiel
tron calculations in order to better understand these diffi
and complex issues.

If the exchange couplingJ is tuned by changing externa
gate voltage in a QDQC, thermal fluctuations~or any other
types of fluctuations! in the gate voltage will lead to fluctua
tions in J, thus causing phase errors in the swap gate tha
crucial for two-qubit operations. Here we estimate this er
by assuming a simple thermal~white! noise@17#.

Assuming thatJ5 f (V), whereJ is the exchange coupling
andV is the gate voltage that controls the value ofJ, around
any particular valueV0 , J can be expressed asJ(V)
5J(V0)1 f 8(V)uV0

(V2V0). During a swap gate betwee
two quantum dots, the phase of the electronic spin w
function evolves asf5*0

t J(t)dt/\. Thus the fluctuation in
the phasef is
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^df2&5^f2&2^f&2

5
1

\2E0

tE
0

t

^dJ~t1!dJ~t2!&dt1dt2

;E
0

tE
0

t @ f 8~V̄!#2

\2
^dV~t1!dV~t2!&dt1dt2 .

~18!

If u f 8(V̄)u is bounded by a constanta, we can replace it bya
in the above expression. Furthermore, according to Nyq
theorem,

^dV~t1!dV~t2!&54RkBTd~t12t2!. ~19!

HereR is the circuit resistance andT is the circuit tempera-
ture. We thus obtain the approximate expression for
phase fluctuation:

^df2&;4RkBTa2t/\2. ~20!

In our calculation for double-quantum-dot QC architectu
Vb plays the role of external gate voltage. According to F
9, in the two higher-barrier cases,J changes about 0.038
meV whenVb ~the strength of the barrier Gaussian, not t
effective barrier height! changes 1.83 meV.a can be ob-
tained from this ratio as 0.021 eV/V. Assuming the sw
gate is performed at 1 K~sinceJ is in the order of 0.1 meV
;1 K, the experimental temperature can only be lower th
1 K!, and the transmission line connecting the gate to
outside has an impedance of 50V, the rate for phase fluc
tuation ^df2&/t is about 3.2 MHz. The phase error accru
during a swap gate is about 0.06%. This is quite a small e
which is of the same order of magnitude as the theoret
tolerance of the currently available quantum error correct
codes. It should pose no problem to any demonstrative
periment. For a real quantum computer, this error rate ne
to be further lowered by lowering experimental temperat
and turning upJ more gently~which requires longer time bu
produces smallera) in the QDQC operation.

Indeed, the error discussed here, which originates fr
the interaction between the double dot and its external c
trol, is relevant for all the other external ‘‘knobs’’ that ar
used to control the evolution of the double-dot states.
design a practical QDQC, one has to identify all the possi
external noise sources and tunes the system parameter
cordingly so as to prevent these noises from overwhelm
the operations of the QDQC.

E. Future directions

In the current paper we studied in detail the Hilbert-spa
structure for a two-electron two-dot artificial hydrogen mo
ecule situation. It is important to emphasize that detai
theoretical calculations of the type carried out in this pa
will be critical in determining the feasibility and practicalit
of all the proposed semiconductor-based solid state QC
chitectures@14,16,17#, not just the spin-based QDQC consi
ered in our work. Given this crucial importance of theory
providing the QC architectural basis, it is quite surprisi
that no such detailed calculations have earlier been repo
1-17
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in the literature in spite of very extensive research activity
the subject of QC. Indeed, there are many other theore
questions that need to be answered for the quantum
quantum computer architecture. For example, an accurate
scription of the confinement potential is an important ing
dient of a quantum computer, as quantum computation
quires an exact knowledge of the qubit wave functions.
addition, currently there is no systematic calculation of s
relaxation in GaAs quantum dots, which will clearly b
needed for a better understanding of spin coherence iss

As for further improving the calculation of electron e
change coupling in the two-dot configuration, the main pro
lem is to obtain a more accurate description of electron c
relations. In the approaches we used in the current paper
UHF method self-consistently evaluated single-particle w
functions, but only a single Slater determinant is used as
two-electron wave function. No two-electron correlation
included. On the other hand, the molecular-orbital meth
uses a small number of rigid single-electron wave functio
~harmonic-well single-particle orbitals!, but many two-
electron orbitals are included to minimize the energy of
system. To improve upon the results obtained here, a s
consistent calculation with CI is needed. That is, one
solve the Hartree-Fock equations self-consistently, then
these HF wave functions as an improved basis to form
number of Slater determinants~instead of just one as in th
HF calculation!. The two-electron problem can then b
solved on the basis of these Slater determinants. Gener
the larger the basis the more accurate is the result. Furt
more, a linear-combination-of-atomic-orbital approach c
be used to partially solve the dilemma in the choice of gau
Such CI calculations, which we are currently pursuing,
notoriously computationally demanding, and real progr
toward truly realistic calculations is expected to be slow.

As it is very difficult to precisely trap a single electron
each quantum dot, one can consider using multielec
quantum dots as effective spin-1

2 qubits. Thus an importan
problem would be to study a multielectron two-d
system—in other words, a quantum dot Na2 ~or Cl2, or oth-
ers! molecule instead of H2. The objective of such a calcu
lation is twofold. First, at certain fillings there might exi
effective spin-12 states for a multielectron system, so that t
‘‘single-electron’’ quantum-dot requirement in the curre
proposal can be relaxed. Second, such a calculation is
relevant in the general study of quantum dots. We are c
rently pursuing such calculations as well.

VI. CONCLUSION

We have studied a quantum-dot hydrogen molecule as
basic elementary gate for a quantum computer based on
tron spins in quantum dots. By using both Hartree-Fock
proximation and a molecular-orbital theory, we determ
the excitation spectrum of two electrons in two horizonta
coupled quantum dots, and study its dependence on an
ternal magnetic field. We particularly focus on the splitti
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of the lowest singlet and triplet states—the exchange c
pling, the double occupation probability of the lowest stat
and the relative energy scales of these states. We find th
our chosen configuration and for reasonable GaAs dot-ba
parameters the exchange coupling has a maximum of a
0.2–1.1 meV at zero magnetic field as we vary the cen
barrier height from about 9.61–3.38 meV when the dots
separated by 30 nm. When the interdot separation incre
to 40 nm, the exchange coupling decreases to below
meV. There exists a singlet-triplet crossing for all the ca
for an applied magnetic field of about 4 T, above which t
triplet state becomes the ground state of the two-elec
system. At zero magnetic field, the double occupation pr
ability in the ground singlet state is found to be as large
22% with a 3.38-meV central barrier when the two dots a
separated by 30 nm, and as small as 1.7% with a 11.03-m
central barrier when the interdot distance is 40 nm. Both
exchange coupling and the double occupation probab
have similar dependence on the interdot distance and
central barrier height at zero magnetic field, so that it
difficult to have a configuration with large exchange co
pling and vanishing double occupation probability~which
means a vanishingly small error rate!. At finite magnetic
field, on the other hand, it is possible to have a finite~albeit
negative! exchange coupling and a small double occupat
probability simultaneously. We discuss in detail the nec
sary conditions for the validity of the effective-mas
envelope-function approach, finding this approximation to
valid for our problem. We also discuss the applicability
various quantum-chemical approaches in the current con
of quantum-dot quantum computation in dealing with fe
electron problems, such as the Hartree-Fock self-consist
field method, the molecular-orbital method, the Heisenb
model, and the Hubbard model. In particular, we point o
that a configuration-interaction calculation is needed for a
realistic description of electron wave functions. The diffe
ence between the non-product form of a Slater determin
and a truly entangled state is discussed. The presenc
singlet-triplet crossing in a coupled-dot system is also st
ied. In addition, we discuss various important issues
quantum-dot quantum computing, such as controls nee
spin decoherence channels in semiconductors, adiabatic
sitions, and errors in spin evolution. Our results should fo
a reasonable semirealistic basis for discussing spin-ba
quantum-dot quantum computer architectures, and sho
also be useful for various studies of quantum dot artific
molecule systems.
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