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Hilbert-space structure of a solid-state quantum computer:
Two-electron states of a double-quantum-dot artificial molecule
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We theoretically study a double-quantum-dot hydrogen molecule in the GaAs conduction band as the basic
elementary gate for a quantum computer, with the electron spins in the dots serving as qubits. Such a two-dot
system provides the necessary two-qubit entanglement required for quantum computation. We determine the
excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its
dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and
triplet states, the double occupation probability of the lowest states, and the relative energy scales of these
states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation
probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite
magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We
critically discuss the applicability of the envelope-function approach in the current scheme, and also the merits
of various quantum-chemical approaches in dealing with few-electron problems in quantum dots, such as the
Hartree-Fock self-consistent-field method, the molecular-orbital method, the Heisenberg model, and the Hub-
bard model. We also discuss a number of relevant issues in quantum dot quantum computing in the context of
our calculations, such as the required design tolerance, spin decoherence, adiabatic transitions, magnetic-field
control, and error correction.

PACS numbd(s): 03.67.Lx, 73.20.Dx, 85.30.Vw

I. BACKGROUND the individual nuclear spins in a molecule are the qubits, with
different locations on the molecule as tags for each qubit.
In recent years there has been a great defdofvell as a Radio—_frequen(_:y eI.ectromagnetic': pulses provide single—'qub_it
growing) interest throughout the physics community in quan-operations, while dipolar interaction between nuclear spins is
tum computation and quantum computd@C’s) [1], in used for two-qubit operations. Final-state detection in the
which microscopic degrees of freedom such as atomic levelMR QC is achieved through an ensemble average over all
Because of the inherent entanglement and superposition duftiPit operations have so far been demonstrated in trapped
ing the unitary evolution of multiple qubits, QC’s can per- '0NS[9], photons in a microcavitj11], and nuclear spins in
form certain tasks such as factoring large integ@isexpo- bulk solutions[12]. One _percel_ved shortcomlng_(_)f all these
nentially faster than classical computers. They also havgppr%acxeﬁéshokxz\r’]er'o'isn tg:jelznfctlaa?f tf](;almlptay'am:ogﬁh
significant advantages over classical computers in tasks su p'e, P PP

as searching3] and simulating quantum mechanical systems which is considered to be a promising QC architeqtues-
94 . Y not go beyond 20 qubits because of an exponentially dimin-
[4,5]. Moreover, quantum error correction codes have bee

ishing signal-to-noise rati the number of its incr
discovered 7], which fur?her bolster the hope for a practical ?512]_ gF(S)rgthz i(?n tcr)aspe aﬁdocg\s;ityeQEuD g(é (S)ysc![ggq; it i(; ﬁg?g S
quantum computer. Various QC architectures have been prgg see how one would surpass only a few qubits. Thus the
posed in the literature. The basic ingredients for a QC argsmjc-molecular systems, which have so far demonstrated
two-level elements serving as qubits, controlled single- a“‘éingle- and perhaps even two-qubit operations, are unlikely
two-qubit unitary operations, exponentially large and pre+g |ead to an operational QC due to severe scalability prob-
cisely defined(i.e., no mixing with other stat¢sHilbert |ems.
space, weak decoherence, and single qubit measurefbgnts  There have been several recent proposals for solid-state
One of the earliest QC proposals uses electronic energy levquantum computers, with superconducting Cooper pairs
els of ions in a linear tragan “ion trap” QC) as qubitg8,9]. [13], electron spin$14,15, electron orbital energy levels in
Optical pulses perform single-qubit operations, while two-nanostructuregl6], and donor nuclear spifd7] serving as
qubit operations are provided by multiple optical pulses withqubits. A solid-state quantum computer, if it can ever be
the lowest vibrational mode of the ion chain as an interme-built, holds a decisive advantage in scalability compared to
diary. In another proposed QC architecture, the cavity QEOihe atomic-molecular systems mentioned above. However,
QC [10,11], photon polarization provides the two required strong decoherence, the intrinsic difficulty in obtaining pre-
states for a qubit. The polarization state can be rotated opteise microscopic control, and inherently complicated Hilbert
cally, which provides single-qubit operations. Two-qubit op-space are key roadblocks on the way to a practical solid-state
erations are achieved with the intermediary of a trapped ator®C. In fact, no demonstration of even a single-qubit opera-
in the cavity using the atom-photon interaction. Yet anothettion has yet been achieved in a solid-state QC, and thus the
proposed QC architecture uses bulk NMR techniques, whersubject of developing reasonable QC hardwares faces an un-
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enviable dichotomy: QC systems with demonstrated qubitef electrons trapped, the strength of the electron-electron in-
are difficult to scale up, while proposed scalable QC systemteraction, the strength of the additional external figlusg-
do not have any qubits. netic, electric, etg, impurities, surface roughness, boundary
In this paper we study a solid-state QC architecture whichrregularities, etc. Substantially smaller size quantum dots
uses electron spins in two-dimensional horizontally COUp|ed:an be made by direct material growth techniquesl such as
quantum dots as qubif44]. Here a single electron is trapped quantum-dot self-assembly, but it has been difficult to add
in each individual quantum dot. Spins of these trapped elecajectrons to such self-assembled dots, making QC architec-
trons are qubits, while the quantum dots in which they residg e difficult.

provide tags for each qubit. Single-qubit operations, involv- 114 study of semiconductor quantum dots and other nano-

ing the modification of local electronic spin states in eachgy,cyres has been a large and fast developing field in the
dot, are to be performed using external Iopal-magnenc-flelq)ast ten yearf22]. There are, however, relatively few works
pulses, while two-qubit operations are realized using the €xzqcentrating on the properties of two electrons in a coupled
change interaction between two electrons in neighboringy, hie-dot system, or an artificial hydrogenic quantum-dot
quantum dots. Since electron-spin eigenstates usually haygo|ecyle, which is the subject of our work. Among related
very long coherence times compared with electron orbitaky,jjes quantum-dot H@wo electrons in a single quantum
states[18,19, spin states may be better candidates for thgjoy has been theoretically investigati2,24. A vertically

role of qubits. Although a microscopically local magnetic ¢, pjeq double-quantum-dot system has also been theoreti-

field is not a standard feature of modern condensed—matt%ra"y [25-29 and experimentallj30—33 studied. The hori-
experiments, reasonable proposals for the local manipulatlogon,[a”y coupled double-dot “hydrogen” molecule, which is

of spin states have been put forwafdi]. Exchange interac- yhe focus of the current paper, has been studied experimen-

tion can be tuned by various means, including external gaigy\y and theoretically in the context of transport and optical

potentials and external magnetic fields. An important point is(or infrared spectroscopic experimeni84—39, and very

that a single electron spin can, in principle, be detected bYgcenty the case when there are only two electrons in the

superconducting quantum interference device magnetomey, hie-dot structure has been treated theoretigay in a
ters, and it has been proposed that single-electron-spin deteggpor simple approximation scheme using the Heitler-

tion can also be done by transfe_rring the spin information t9 ondon and Hund-Mulliken molecular-orbital approaches.
charge degrees of freedom, which can then be detected Vig, aqgitional complication in the case of horizontally
thg sensitive single-electron transistor techni¢2e]. The coupled dots is that thedirection angular momentum is not
spin-based quantum-dot quantum computer proposal clearly,nserved because of the absence of the cylindrical symme-
has important merits and deserves serious consideratiogy e this symmetry can be used to simplify calculations
Much theoretical work, however, is needed to investigatg, the case of a single quantum dot or a vertically coupled
whether the design tolerance required for QC operations cafy; This |ack ofz angular momentum conservation makes

actually be achieved in the state of the art quantum-dot sy, cajculation substantially more complicated than earlier
tems. In this study we focus on the Hilbert space structure O&uantum-dot electronic structure calculatiof23—29 in

coupled quaptum—dot systems, anq'its implicgtions for quangingle-dot and vertically coupled-dot structures.
tum computing. One of our specific goals is to ascertain, |, this paper we present our study of the Hilbert space

through fairly extensive numerical computations, whetherg.cture of a horizontally coupled double-quantum-dot sys-

the spin-based quantum-dot QC is a feasible proposal evefyy, 45 shown schematically in Fig. 1. Such a horizontally
from an idealized theoretical perspective. We believe tha&oupled double-quantum-dot system, with suitable litho-

such a the_oretlcal study is necessary before one could Selraphic gates to control the interdot coupling, is one of the
ously consider the fabrication of a quantum-dot QC. minimal requirements for a spin-based quantum dot QC.
Vertically coupled double dots might not be as good a can-

Il. INTRODUCTION didatg for the purpose of quantum computing becguse the

coupling between the dots cannot be tuned as easily, while
There are many different ways to fabricate a quantum dothe tuning of interdot coupling is essential in the two-qubit
[21]. In GaAs, which is the system we nominally consider inoperations. QC operation requires a very special Hilbert-

this paper, one common approach is to apply external elespace structure with a very large and a precisely defined state

tric fields through lithographically patterned gates to producespace. In the electron-spin-as-qubit proposal we consider in
a depletion area in a two-dimensional electron gas. In parthis paper, one crucial condition is the isolation of the elec-
ticular, nanoscale electrodes are created on the surface oftn spins from their environment, including the electronic
heterostructure using photolithography. The application obrbital degrees of freedom. For example, if a doubly occu-
appropriate electric voltages over the electrodes then prgied state(with two electrons in the same orbital state of a
duces a suitable confining potential, thus creating areasingle quantum dotis easily accessed, when the two elec-

where electrons have been pushed away at desired locatiotrens separate again, one loses all the information about the

(depletion areas The typical size of this type of dot, with identification of the spingthe “tags”). Therefore, one strin-

currently available lithographic techniques, is generally largegent requirement is that the Hilbert space should be such as
(in the order of 106 100 to 1000< 1000 nnt). The impor-  not to allow appreciable double occupation. This is, how-
tant physical parameters for such a quantum dot are thever, quite tricky, since the double occupation probability
shape and strength of the confinement potential, the numbehbviously depends on interdot tunneling which cannot be
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teristic in-plane 2D excitation energy of the confined elec-
tron(s) is on the order of 1-10 meV, the applicability crite-

rion for the effective-mass single-envelope-function
2 approximation is well satisfied. The effective two-electron

guantum dot molecule Hamiltonian in the presence of an

external magnetic fielddefined through the vector potential

S o A) is then
H confinement .
= . 2 2
£ 40 potential _ € N g* _ ¢
profile H=2 || P GA(D) | +V(r)+ 0% ueB- S|+ )
s s 7 (1)

X {nm}
o . wherem* is the conduction-electron effective masy;) is
FIG. 1. This is the schematics of the double-dot system wehe quantum-dot potenti@vhich is to be parametrized in our
studied. We use Gaussian potential wells and a Gaussian centr@lork  but can in principle be calculated by self-consistent
barrier. Unless otherwise specified, the dot size is 30 nm in radiugechniques if the details of the electrostatic confinement are
When the two dots are separated by 30 nm, we study three cas%own), g* is the effective electrog factor, ug is the Bohr

where the central potential barrier has strength<f 20, 25, and « o L . .
30 meV, corresponding to effective barrier heights of 3.38, 6.28magnet0ng #eB- S is the Zeeman splittings is the static

and 9.61 meV, respectively. When the two dots are separated by ZE[&aCkgrgu{]d(lattl(t:s) q{'eleCtlrlc tconStaSt’ and; is th.? dllf'_
nm, we show results of three cases whéggakes values of 13.86, ance between the two electrons. Here we uncritically as-

18.17, and 20 meV, corresponding to actual barrier heights of 6.28S,ume the effe_ctlve-mas_s appro>_(|mat(<whlch we will show
9.61, and 11.03 meV. to _be well V§|Id, assuming the interband mixing to be neg-
ligibly small in the low-energy sector of our interest and the
effect of the periodic crystal potential to be described by the
Qlectron effective mass and the background dielectric con-
stant. The quantum-well material we focus on in this work is

aAs; thusg* ~ —0.44, e~ 13.1, andn* ~0.067m,, where

zero if there is to be an appreciable exchange couplin
(which is required for two-qubit operations in the current
mode). The goal of the current study is to obtain the Hilbert
space for a two-electron double-dot system using reasonab?]

V(r)=V,

Ill. THEORY

realistic quantum-chemical techniques. Since single- and® ']f the batre etlec;[_roln mass. ’?‘r? ofur”mo_del I?D quantug)-dot
two-qubit operations are the only operations necessary fafe U1l £ CCion ' defined by the adjustable parameters
guantum computingl1], our study would be exploring the Vv Ve Lol - y ) P
envelope of the needed Hilbert spafer QC) and its prox- 0: & Vb, Ix: 1y, Tox, @NGlpy-
imity to the unwanted excited-state space. We are to assess ) )
the constraints and tolerance required to fabricate a spin- exd — (x—a) fexng — (x+a)
based quantum-dot QC system. We will go beyond the |§ |§
simple Heitler-London and Hund-Mulliken models and take
into consideration electron correlation through a larger basis y? x? y?
in the molecular-orbital calculation. We use several approxi- Xexp — 2 +Vp expg — 2 exp — 2| @
mations of varying complexity in our electronic structure y bx by
o i o 10 0EFere te st o Gaussiataith  srengih o) ar for
. : L . the individual dot potential wells, and the thir@dvith a
the underlying basis for fabricating a spin-based quantum- . . X
dot QC. strength oNb) is for cqntrolhng the gentral barrigiso that
we can adjust the barrier easily and independent of the loca-
tions of the other two GaussignsThusV,, is the potential
well depth, whileVy controls the central potential barrier
A Model Hamiltonian height. We choose_ thi§ for_m_ for the conf_ir_lement potential
: mainly because of its simplicity and versatility, and no other
In the current study we use a single-conduction-bangarticular significance should be attached to our choice. To
effective-mass envelope function to describe the confinefind a realistic form forV requires a self-consistent calcula-
electrons in two-dimensiong§2D) GaAs quantum dots. Such tion using the correct boundary conditions and heterostruc-
an approach is valid if the characteristic energy correspondure parameters, which is not warranted at the current level
ing to the envelope function is much smaller than the fundaef QC modeling(and is well beyond the scope of this wark
mental band gap. In addition, the excitation energy along th&Ve only note here that the confinement potential defined by
third (growth) direction has to be much larger than all the Eq. (2) is a reasonable potential for 2D double-quantum-dot
characteristic 2D excitation energies. In the case of GaAsstructures defined electrostatically, provided the confinement
the fundamental gap is 1.5 eV. Furthermore, for a 10-nmalong the growth(z) direction is much tighter than the 2D
thick 2D GaAs quantum wellwhich hosts the quantum dot  confinement as discussed above. It is easy to fit a realistic
the first intersubband excitation enerdgr excitations along confinement potential, if available, to this simple Gaussian
the growth directionis typically 0.1 eV. Since the charac- form.
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The two-electron Hamiltonian cannot be solved exactly.Here ; (i=1,... N) are the appropriate single-particle
We use two different approaches to calculate the approxiwave functionsf is the single-particle part of the Fock op-
mate energy spectra and electron states of the Hamiltdhian erator F, which has the same form as the corresponding
defined by Eq(1). The first is a Hartree-FockdF) calcula- terms of Eq(1); the operatod; is the direct Coulomb repul-
tion, where the two electrons are treated as independent pagion between two electrons; and the opera&pris the ex-
ticles moving in a HF self-consistent fiefd0]. The second change interaction between electrons. All the integrals in-
is the so-called molecular-orbital method, in which we useclude sums over different spin indices. In other words, the
single-harmonic-well single-electron wave functions to formexchange terniK; vanishes if the spin indices of tjéh and
two-electron orbitals, and use them as basis states to solvéh electron orbitals are different.
the Schrdinger equation for the two electrop@0]. We note The advantage of HF approximation lies in its clear physi-
that the presence of the external magnetic field makes owal picture of an effective single-particle dynamics in a self-
problem somewhat different from the standard quantumeonsistent-field background. However, its shortcoming is
chemistry calculations. also due to this simplicity: electrons only “see” an average
background produced by the other charges, not the instanta-
neous locations of those charges, and therefore electron cor-
relation is not taken into account beyond the Pauli principle

In the HF approximation, an electron is moving in the (which is built into the Slater determinantn addition, in
mean field produced by all other electrons. The multiple-nymerically solving the HF equations in the presence of a
electron wave function is a single Slater determinant. Thejnite magnetic field, the choice of gauge turns out to be
Pauli principle is thus obeyed, so that electrons with thgmportant, a fact which we have not found to have been
same spin do not occupy the same orbital state simultagiscussed earlier in the literature. When the two electrons are
neously. Electron correlation is therefore taken into accounfye|| separated and each is confined to its own well, they
crudely in the sense that only the Pauli-principle-imposedshould have their own gauges; if the electron wave functions
correlations are included. There are a variety of Hartree-Fockre extended throughout the two wells, then a single gauge
calculations in the context of quantum chemig#@]. Inour  has to be used. The use of a single gauge, however, signifi-
study here, a restricted Hartree-Fo¢RHF) calculation,  cantly raises the Coulomb repulsion energy of the electrons,
where the two electrons with different spins occupy the sam@ecause thed? term can be quite large in high magnetic
spatial orbital, significantly overestimates the double occupafie|ds, thus behaving like an additional confining harmonic
tion probability and thus overestimates the energy of a sinpotential, pushing the two electrons toward each other. It is
glet state. Such a RHF calculation is clearly a rather poojnteresting to reflect on why gauge invariance breaks down
approximation for our purpose, where an accurate knowlin this HF calculation. It certainly should hold for the exact
edge of the double occupation probability and of the singletiyo-electron Schidinger equation, in contrast to the HF ap-
trlplet Sp|lttlng is an important requirement. Therefore, WeProximation_ However, as we make Hartree-Fock approxi-
adapt an unrestricted Hartree-Fo@dHF) approach[38],  mations, we mostly neglect the electron-electron correla-
where the two electrons in the ground state with oppositgions. The choice of gauge thus becomes relevant to our
spins are not required to occupy the same spatial orbital. Thigpproximate calculation. This point is further illustrated by
method inherently incorporates the uncorrelated nature ohe fact that the exact two-electron wave function is a super-
two remote quantum dots, which is partially satisfactory forposition of an infinite number of Slater determinants. As
our purpose. However, a shortcoming of this approach is thahese determinants generally transform in different ways un-
the ground statéwhere the spins of the two electrons are ger a gauge transformation, the change in the overall wave
oppositg is not a pure singlet state. function can be quite different from that of each individual

The HF equations foN electrons are Slater determinant. The breakdown of the gauge invariance

Fyi(ry) = E: gi(ry) in the HF approxim_ation thus arises from its very spgcial
A A single Slater determinant form. The broken gauge invariance
shows a glaring weakness of the Hartree-Fock approach
N which clearly needs to be supplemented by other techniques
FZ“‘Z (J;=Kjp), in order to obtain a more complete description of the two-
)= electron system. Below we discuss another quantum-
chemical approach that can better describe the electron cor-

2 relations.
+V(ry), (3

B. Hartree-Fock approximation

1

m*

+eA
p P (ry)

C. Molecular-orbital method
2

€ For a two-electron problem, the molecular-orbital ap-
Jj'/’i(rl):f ¢f(r2)¢j(rz)?12dr2'¢i(r1), b P

proach involves choosing suitable single-electron basis func-
tions, forming two-electron orbitals from these basis func-

o2 tions, expanding the two-electron Schilger equation in
Kjllfi(rl):f WE(r) gi(rp)——drg- (o). these two-electron orbitals, and finally solving the eigen-
€r1o value problem(presumably through a direct matrix diagonal-
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ization). In our molecular-orbital calculation, we use single- two-electron states are generally neither orthogonal nor nor-
dot single-electron wave functions as the basis states to formalized because the single-dot single-electron wave func-
our molecular orbitals. These single-electron wave functiongions ¢, (r) and¢g(r) are not orthogonal to each other. Thus
are the usual Fock-Darwin statésssuming parabolic con- the Schrdinger equation of the problem can be expressed as
finement at the bottom of the potential wegl[21]. We take 4 4

care in ensuring that our two-electron wave functions have 2 H--C-=E-E S.c;

the correct symmetry of our two-particle Hamiltonian de- R A R

fined in Eq.(1). In the simplest caséhe so-called Hund-

Mulliken approximation, we use only the two single-dot o * _

ground eigenstatess(orbitaly as the basis states. These H”_J Vi (LAHY,(1.2drdrz, ©
wave functions take the following form for a symmetric

quantum-dot structure with identical confinement along S‘J:f WH(1,2W,(1,2drdr,.

andy directions[21,39:

We now have a generalized eigenvalue problem. It can be
1 (x+a)?+y? ay . . e PEOPE
ben o Lr(XGY)= ex ex i rea_d|ly so!ved numerically. F_ormally, it is |cjent|cal to an
raor Jrlo 212 212 ordinary eigenvalue problem if we know the inverseSof
(4) To systematically improve upon the four-state molecular
orbital calculation, we include the first excited states of
where single quantum dotsp( orbitalg in an improved(so-called
s-p hybridized molecular-orbital calculation. The single-
g particle p orbitals have the following forms:
log=Tr—,
O At w2 1 , (x+a)2+y?
$121-a(XY) == [(x+a)Tiy]exg ——5——
— 2 212
xexp —i—|,
eB (7)

_L — =+ w
¢1,¢1,a(xyy)—\/;|g[(x a)*iyjex o2

0

Here = a are the potential minima locations of the two quan-
tum dots which are horizontally placed along thdirection; a

Iy is the effective wave-function radiusg is the magnetic ><exp< i _)
length for the applied magnetic fieBlalong thez direction; 2

wq is the confinement parabolic well frequenay; is the
electron cyclotron frequency; andn* is the GaAs

B

Here the first two subindices are the quantum numbers for
F%e Fock-Darwin states, while the third one indicates their
L . cations. Now we have siwo s orbitals and foump orbit-

the abpve wave functlon.|A=(B/2)(—y,x,0). Note that in al9 atomic orbitals(single-electron single-dot eig';pensta)tes
choosmg our single-particle basis to fqrm the molecular orsith which we can form 21 singlet states and 15 triplet
bitals we use the exact one-electron eigenstates corresporglyies. Since parity symmetry is not broken by the introduc-
ing to a double parabolic well 2D potential which is obtainedijgn of a magnetic field, we can introduce even and odd
by expanding the Gaussian potential well of E2). around  single-electron molecular orbitals, and then build the two-
its minima. This particular basis has the great advantage aflectron molecular orbitals using these symmetrized orbitals.
being analytiothe Fock-Darwin levelsas well as a reason- There are then 12 even singlet states, nine odd singlet and
able basis for the problem we are to solve. Using the singletriplet states, and six even triplet states. The use of parity
dot wave functionsp ,r(r), the corresponding triplet wave reduces the number of independent two-particle matrix ele-
function is W, =[¢ (r) dr(ra)— o (r) dr(ry)]//2, ments almost by half. The advantage of introducing phe
while the singlet wave functions ar®,=[ ¢ (r,) ¢r(r,) o_rbitals in the_ molecular-orbital calculation is that t_he ex-
+ () da(r))V2, Wa=o (ry) é.(r,), and W, Ccited states give us the freedom to form anisotropic states
= dr(ry) dr(ry). It is clear that this basis consists of the (Which could not be accomplished with the isotropic
Heitler-London stated’, and¥, and the two “ionized” or s-orbital-only basig thus enabling us to describe electron

“polarized” doubly occupied state¥; and ¥,. We can overlap with higher accuracy.

solye the S(;hiuﬁnger equation fpr the two-electron Har_nil- IV. NUMERICAL RESULTS
tonian in this basis by expanding in these four functions.
Since the triplet state is antisymmetric in the orbital degrees A. Hartree-Fock approximation

of freedom while singlet states are symmetric, they are not |n our HF calculation, we solve numerically the Hartree-
coupled by the symmetric Hamiltonian of Ed). Thus trip-  Fock equations by setting up a grid of 680 mesh points
let and singlet states can be treated separately. Note that th@ the two-dimensionalx(y) space. The reason for not se-
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0.4

parameters as given in the figure captions. Notice that in the
UHF theory the opposite spin state is actually a mixture of a
| singlet state and a triplet state, and therefore the ground state
+ Q & is never a pure singlet state. Although a RHF approach
¥ 9 would have produced a pure singlet eigenstate, it signifi-
02r Q 5@ cantly overestimates the Coulomb energy so that the singlet
state always has higher energy than the triplet state, violating
01 b i the theorem that at zero magnetic figlchen the wave func-
tion can be written as a real functipthe ground state should
be a single{42]. In Fig. 3 we show two sets of data where
the ground-triplet splitting decreasexponentiallyquickly
as a function of the interdot distance. This suggests that, at
least in principle, an efficient control of the splitting between
the ground and first excited states can be achieved by in-
FIG. 2. Here we show the magnetic-figB) dependence of the creasing the potential barrier separating the dots and/or by
energy splitting(J) between parallel and opposite spin states calcudincreasing the interdot separation.
lated by the unrestricted Hartree-Fock approach. The two higher- A simple Hartree-Fock calculation with a single Slater
energy curves are for dots with 30-nm radius, 30-nm interdot sepadeterminant is generally not sufficiently accurate to deal with
ration, and 20-meW,,. The lower-energy ones are for dots with syptle effects arising from small interaction terms in the
70-nm radius and 80-nm dot separation. Between the two highetyamiltonian. For instance, since the reason for the singlet-
energy sets of data, the slightly lower one has a slightly thickgr ( triplet crossing is essentially two-electron exchange and cor-
larger by 2 nm central barrier. The two sets of data for larger dots yg|atjon effects, the Hartree-Fock approximation should not
differ by central barrier heights\,) of 20 and 40 meV. be trusted to produce quantitatively reliable singlet-triplet
splitting information(although it is expected to be qualita-
lecting a finer mesh for the grid is that we have a coupledively correct since exchange, which the HF theory includes,
two-dimensional problem that is not sparse, so that the actu@ expected to be the dominant effed®ur main reason for
nonsparse matrix dimension reaches 182800, which is  pursuing the HF theory, in spite of its obvious quantitative
essentially our computation limit. We make a nonlinearshortcoming, is the fact that the self-consistent HF calcula-
transformation of the spatial coordinates so that most of théion produces a more accurate single-particle wave function
grid points are within the two-dot region, thus ensuring thethan the eigenstates of a fixed harmonic well. Based on these
accuracy and effectiveness of our numerical eigensolutionsimproved single-particle HF states, a configuration-
Figures 2 and 3 show some of the results we obtain usininteraction(Cl) calculation can then be built in the future,
the UHF approximation. In Fig. 2 we can see that the energwhich will lead to a more faithful and quantitatively accurate
of the lowest parallel spirtriplet) state remains above the description of the actual two-electron wave functions in the
lowest opposite spin state, and never dips below it up to @ouble-quantum-dot system. Our HF calculation could be the
fairly high magnetic field 67 T for reasonable quantum-dot starting point of such a future ClI calculation.

$000o0
t++44 © O
03 | + +

J (meV)

B. Molecular-orbital methods
1.0 A Adot width: 30nm The central task in our molecular-orbital calculation is the
o8 1A 88t width=70nm computation of two-particléCoulomb matrix elements in
A the molecular orbital basis set described in Sec. Ill of this
S 06} 4 paper. In the I—_|und—MuII|ken g:alculano(us[ng only thes
2 & orbital§ which involves a basis of three singlet statése
S04l Heitler-LondonW¥, state and the two doubly occupied states
AA L V5 and¥,) and one triplet state, we need to calculate only
02 A ++ seven Coulomb matrix elementdaking even-odd-parity
A%%{W\M + symmetry into consideration, only five Coulomb matrix ele-
0.0 LOM ++++ ments are needédWhenp orbitals are included, we need to
. : : calculate 231 and 120 Coulomb matrix elements for the sin-
10 20 30 40 50

glet and triplet states, respectively, which is a substantial
computational task. When the even-odd symmetry is taken

FIG. 3. Here we show the interdot distance dependence of th1t0 account, the number of Coulomb matrix elements re-
energy splitting(J) between parallel and opposite spin states calcu-duces to 123 and 66, respectively, for the singlet and triplet
lated by the unrestricted Hartree-Fock approach. The left set of datates, which is still a formidable task because each matrix
corresponds to the small d680-nm radius and 20-meV,) case, €lement corresponds to a four-dimensional integral requiring
and the right set of data to the large d@0-nm radius and 20-meV high accuracy. The most computationally intensive and time
V,) case. A steep decrease in the energy splitting is present in boonsuming part of our calculations has been the evaluation of
cases. these Coulomb matrix elements.

Half interdot distance (nm)
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1.0

A A—a Central barrier 3.38 meV -45 |
=-—# Central barrier 6.28 meV —
¢ ---¢ Central barrier 9.61 meV — -

Energy levels (meV)

Singlet-triplet splitting (meV)

~o 2 4 6 8 10 -9 0 2
Magnetic field (Tesla) Magnetic field (Tesla)
FIG. 4. Here we show the magnetic-field dependence of the k|G, 5. Here we show the magnetic-field dependence of the
singlet-triplet splitting in a Hund-Mulliken calculation for two elec- energy spectra in a molecular-orbital calculation where bathdp
trons in a double dotof 30-nm radi) separated by 30 nm. Results sjngle-electron orbitals are used. The interdot distance is 30 nm, and

depends sensitively on the central barrier height. height of 9.61 meV.

Our Hund-Mulliken calculatior{with only the electrors  cited “atomic” orbitals, with the simple Hund-Mulliken
orbitalg results are shown in Fig. 4. Here we first perform acalculation discussed above, we find that there is a signifi-
variational calculation at zero magnetic field. We vary thecant effect arising from the strong mixing in of the higher
parabolicity and the location of the fitting parabolic well to excited states. In other words,p hybridization significantly
achieve the lowest energy in the ground state. The results dbwers the energy of the lowest singlet state. Although the
the variational calculation are shown in Table I. For theses-p-hybridized ground-state resemble the Heitler-London
optimal variational parameters the triplet stétiee first ex- wave functions, it also contains components in which one
cited state at zero and low magnetic fieisl also quite close electron is in one of the excited states. Such a contribution
to its lowest energy. According to Fig. 4, the exchange coucould be favorable for the quantum-dot molecule because
pling, or equivalently the singlet-triplet splitting, is a sensi- orbitals increase the “bonding” between the two quantum
tive function of the central barrier height. This implies that adots, thus lowering the overall energy of the double-dot sys-
suitable gate-controlled central barrier can, in principle, begem. In addition, our confinement potential is not exactly a
utilized to switch the exchange coupling on or off efficiently, sum of two symmetric parabolic wells. Instead, the two
thereby making possible two-qubit operations in ourGaussian wells and one Gaussian barrier complicate the con-
quantum-dot QC architecture. The magnitude of the extour of confinement, so that the true ground state has com-
change coupling ranges from 0.2 meV to about 1 meV inponents of single-particle excited states of the fixed har-
these structures, which correspond to gating times on theonic well potentials.
order of one picosecond to tens of picoseconds, which is According to the calculated energy spectra shown in Fig.
difficult, but not impossible, to achieve. 5, the ground singlet and triplet states are well separated

The results of the molecular-orbital calculation done onfrom the rest of the higher excited states in the Hilbert space.
the larger basigincluding both single particls andp orbit-  For the representative sample parameters as chosen, the
als) are shown in Figs. 5—7. Comparing this more sophisti-higher excited states are always separated from the ground
cateds- p-hybridized calculation, which includes the first ex- singlet-triplet states by at least 6 meV, which is much larger

TABLE I. Here we tabulate the variational parameters for the three different central barrier heights at a
30-nm interdot distance. The fitting well refers to the isotropic parabolic wells we use to fit the two Gaussian
wells. We obtain the base parabolicity from the second derivative at the bottom of the confinement potential
wells, and the base locations are the actual minima of the confinement potential wells.

Central potential barriev, (meV) 20 25 30

Actual central barrier heighimeV) 3.38 6.28 9.61
Change in parabolicitymeV) —2.8281 —2.3915 —2.0044
Actual single particle excitation 8.4134 8.8499 9.2371
Energy at zerd® field (meV)

Change in fitting well locatiorinm) —0.2243 —-0.3779 —0.1632
Actual fitting well location 12.6343 14.2441 16.0822

At zero B field (nm)
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' ' ' Figure 5 also shows that there are discernible shell struc-
A—a Central barrier 3.38 meV, SP

10 Central barrier 3.38 meV. S - tures in the two-electron excitation spectra, and this structure
s b = Central barrier 6.28 meV, SP changes with the magnetic field. The shell structure is espe-
08 Central barrier 6.28 meV, S - : : . T
% @9 ! biirrier 6 ) T, O cially promlnent at largeB field. The origin of Fhe shelll
£ Central barrier 9.61 meV, S structure is apparently the degeneracy of the single particle
% Fock-Darwin states. At smalB field, the wave function
g overlap between the two quantum dots is quite significant, so
£ that the direct Coulomb repulsion and the exchange energy
5 play important roles in deciding the energies of individual
= R = = states. As theB field increases, the state overlaps between
o 02 ; two quantum dots decrease since the wave functions are
' RS squeezed by the applied magnetic field, and consequently the
-04 Coulomb correlation between the two dots becomes less im-
0 2 4 6 8 10 . .
M o portant(even though the on-site Coulomb repulsion becomes
agnetic field (Tesla)

more important The whole spectrum should then resemble
FIG. 6. Here we show the magnetic-field dependence of thdhat of two isolated single quantum dots. Another effect that
exchange coupling in a molecular-orbital calculation with bsth Should be taken into consideration is that fBf>0 the de-
and p single-electron orbitals. The interdot distance is 30 nm. Re-generacies of the Fock-Darwin states are lifted, so the single
sults of three different barrier heights are shown, together with theparticle energy levels are scrambled. However, at certain
results(in thin lines from the Hund-Mulliken calculation for com-  specific magnetic-field values shells appear as several energy
parison. The exchange couplings from the full calculation are aboulevels move close to each other and away from the rest.
20% larger at zero magnetic field than those obtained from th& here are also apparent level crossings in the spectra, as the
Hund-Mulliken calculation. energies of individual Fock-Darwin states with different an-
gular momenta change differently with tiefield, and sin-
than the maximum value of the exchange couplidd0D.3  glet and triplet states are not coupled by the Hamiltonian we
meV) as well as being much higher th&gT=<0.1 meV at  consider. In summary, any simple magnetic-field dependence
the cryogenic temperature of QC operation. Thus, as long asf the Fock-Darwin states is scrambled by the nonparabolic
the coupling between the two quantum dots is turned oRonfinement potential and the varying Coulomb interaction
slowly, the two-spin two-electron system is quite isolatedpetween the two electrons. Although the origin of the shell
from the other parts of the Hilbert space, and is thus a goodtructure is clearly the starting degeneracy of the Fock-
candidate for a quantum gate. This demonstration of a We"Darwin |eve|S' its detailed magnetic-ﬁe'd dependence is
defined tWO-Spin Singlet-triplet Hilbert space, which is well quite Comp|ex_ The shell structure may, in princip|e, be use-
Separated from the rest of the hlgher excited states of thﬂ_” for the purpose of quantum Computing because a full
two-electron double-dot system, is one of the most importanghell plus one electron might be effectively considered as a
results of our work. spin+4 single-electron system, i.e., a filled shell could be
considered “inert.” Whether such an effective sgirsystem

0.25 ; ; ; e ; . .
Central barrier 3.38 meV, SP with filled shells is sufficient as a quk_Jlt can only be demon-
Aka, = Central barrier 6.28 meV, SP strated by a multielectron CI calculation of its spectrum, and
0.20 | -~ Central barrier 9.61 meV, SP clearly requires further investigation. Our molecular-orbital

results in the presence of the external magnetic field could be
considered suggestive of such a possibility.

Figure 6 shows the magnetic-field dependence of the ex-
P — change couplingsi_nglet-triplet splitting with three different _

] central barrier heights. Here we can see that all the thick
curves (from the larger basis calculationare shifted up-
wards from the thinner curvgfrom the smaller basis calcu-
lationg. The reason for this change is that the larger basis
allows us to obtain a much lowgand presumably more
accuratg energy for the singlet states. The triplet states do
not change nearly as strongly as the singlet states. Thus the
exchange coupling changeqincreasegby 23%, 42%, and

FIG. 7. Here we show the magnetic-field dependence of théLS%_’ regpectlvely, for 3'38," _6'28" and 9.6.1-meV _central
double occupation probability in a molecular-orbital calculation ParTiers in the more sophisticated calculations using the
with both's andp single-electron orbitals. This probability charac- larger s-p-hybridized molecular-orbital basis. Note that the
terizes the double occupation occurring in the single-electroimprovement in the calculated is less for larger central
ground state of the left dot. It is clear that the two lower barrierParrier potentials. This is consistent with our belief thatghe
cases, with their large double occupation probabilities, are not aporbitals play a more important role when the two-dot overlap
propriate for the purpose of quantum computing at small magnetiés larger, and therefors-p hybridization effects are quanti-
fields. tatively more important when the interdot overk@md hence

0.15

0.05

Double occupation probability

0.00
0

Magnetic field (Tesla)
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the exchange couplings larger. -1.0 . T . T : r
Figure 7 shows the ground-state double occupation prob-

ability as a function of the magnetic field, which clearly de- -5

creases as thi field increases. The reason for this decrease & oo |

with increasing magnetic field is straightforward. Bsin- E i

creases, the single-electron atomic wave functions become & -25T

narrower. Thus the “on-site” Coulomb repulsion energy for 30 F

the doubly occupied state increases rapidly, which decreases -

the double occupation probability. The ground-state double 1.0

occupation probability can also be seen in Fig. 7 to decrease

significantly with increasing central barrier strength separat- 0:s -

ing the two dotgas one would expectHere we do not show ’g - [

double occupation for the triplet state, because in those states =

one electron would have to be in an excited state; thus the 05 | |

probability is quite small, and could be considered negligible “

for most purposes in contrast to the ground singlet state situ- 1.0 ; L ; L ; L

ation shown in Fig. 7. The double occupation probability is 5 10 15 20

an important parameter for a quantum-dot quantum computer Effective central barrier height (meV)

(QDQO). In a QDQC, electron spins are qubits, while their
residence quantum dot®D’s) (i.e., the individual dots on
which the electrons are locatedre their tags to distinguish 40 nm. Panela) shows the changéE in the fitting well parabo-

the different qubits. If during the gating action two eIECtronSIicity, while panel(b) shows the changéa in the locations of the

J“’T‘P onto a s_ingle QD due to high double occupation prOb'two fitting wells (symmetric about the orignThe decrease in para-
ability, even if they separate eventually,

) g . . . ! their Or'g'nal, tag bolicity and interorbital distance indicates an analogy to orbital con-
information is lost, which will result in an error requiring action and bonding in molecular physics.

appropriate error correction. Thus, in designing a QDQC,

one needs to minimize the double occupation probability for_, .. . .
the stategespecially the lowest singlet statihat belong to ability. The values of both these quantities at zero magnetic

the QDQC Hilbert space. Indeed, Fig. 7 shows that forfield are about half of their values in Figs. 6 andwith the

lower-barrier cases the double occupation probabilities argamhe barrier heli.gh)tsTh dergforgl, at zero Tagneticbﬁﬁl.?t’ thde
prohibitively large for the purpose of quantum computing.exc ang? Ct?uptlrt]r? an oute occupa '?lnthproma ity te-
On the other hand, one cannot have a QDQC with very larg rease at about the same raté as we pull the two quantum

: : ts away from each other. In Fig. 11 we also plot the central
central barriefthereby producing very small double occupa- ots . X
tion probability because then the exchange coupliFi. 6) barrier height dependence of both the exchange coupling and

will be very small, making two-qubit operations impossible.the double occupation probability. Both quantities decrease
This indicates that one has to settle for a compromise in the

FIG. 8. Here we show the central barrier height dependence of
the variational parameters in our study when the interdot distance is

pursuit of a large exchange coupliiipr achieving smaller ] ' i '
gating time during two-qubit operationand a small double = ‘:‘822{:2: ﬁz:::z: 2;22 mzx §P
occupation probabilityfor reducing the error correction re- s = Central barrier 9.61 meV, SP
quirement. 13 02 \ - Central barrier 9.61 meV, S
To look for parameters that can lead to small double oc- 2 “8:2:2: L’Z::ﬁ:}}gi 2Z¥ §P
cupation probability but still maintain a finite exchange cou- =
pling for a double quantum dot, we increase the interdot .g.
distance from 30 nm as studied above to 40 nm and perform =
the molecular-orbital calculations. The results are shown in ;.',
Figs. 8—11. °
Again, we first vary the location and parabolicity of the ]
fitting parabolic wells. In Fig. 8 we plot these variational
parameters as functions of the central barrier height. One ~0.1 : : L -

0 2 4 6 8 10

interesting feature shown in par@) of the figure is that the o
Magnetic field (Tesla)

fitting well parabolicity increases as the central barrier height
increases. In ot_her words, when the barrier is low, the elec- £, 9 Here we show the magnetic-field dependence of the
tron wave functions tend to be more spread out. Furthermorychange coupling in a molecular-orbital calculation using koth
panel(b) of Fig. 8 shows that the distance of the two fitting andp single-electron orbitals. The interdot distance is 40 nm. Re-
wells are closer when the central barrier is low. These resultgyits of three different barrier heights are shown, together with the
show that the two-electron artificial molecule is boundedresults(in thin lineg from the Hund-Mulliken calculation for com-
tighter when the interdot barrier is low, in analogy to a di- parison. The exchange couplings from the full calculation are only
atomic molecule and its orbital contraction. slightly larger at zero magnetic field than those obtained from the

In Figs. 9 and 10 we show the magnetic-field dependencelund-Mulliken calculation, but there are some differences at finite
of the exchange coupling and the double occupation probmagnetic fields.
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Therefore, at zero magnetic field, it would be difficult to
achieve a vanishingly small double occupation probability
while maintaining a sizable exchange coupling.

However, as shown in Figs. 9 and (dhd also Figs. 6 and
7), a finite magnetic field may lead to a solution to this prob-
lem of correlated exchange coupling and double occupation
probability. Physically, the exchange coupling is determined
by the competition between direct and exchange Coulomb
interactions, while the double occupation probability is
mainly determined by the direct Coulomb repulsion. It is
thus expected that the two quantities have different depen-
dence on the magnetic field. Indeed, according to Figs. 6, 7,
9, and 10, for magnetic field abews T the magnitude of the
exchange coupling decreases quasilinearly, while the double
occupation probability decreases exponentially fast. For ex-
ample, in Fig. 10, at a magnetic field ® T and an effective

FIG. 10. Here we ShOW. .the. magnetic-field dep_endence Of. th%entral barrier of 9.61 meV, the double occupation probabil-
double occupation probability in a molecular-orbital calculation

. . 74 . .
with both s and p single-electron orbitals. The interdot distance is ity 'ShabOlIJt 6<10 f a:}magnltudle that .Ils t())If the same ordgr
40 nm. This probability characterizes the double occupation occurds the to grance of the currently f”wa',a e. error cqrrectlon
ring in the single-electron ground state of the left dot. At high codes, while the exchange coupling in this case is about

magnetic fields the double occupation probabilities are vanishinglf?-009 meV, corresponding to a swap gate time of about 3 ns
small for all three cases. (after taking into account adiabaticjtyThus the difference

in the magnetic-field dependence of the exchange coupling
exponentially as we increase the central barrier, as one e%nd. thf double OC?Upat'OE. pfobab|l|'[ﬁ/ can be epr0|ted| fofr
pects. In the range of the barrier heights we considered, th%pt'maI QIC_opt_aratrllons. This 'Sf another |mrp])_ortant result o
exchange coupling decreases from 0.27 to 0.0097 meV, gur caicu ation in the context of QDQC architecture.
change of about 28 times; the double occupation probability
decreases from 0.060 to 0.0017, a change of about 35 times.
Although the double occupation probability decreases a little
faster than the exchange coupling, the difference is insignifi-
cant. Thus we also show that these two quantities change a

about the same rate as we change the central barrier heig

0.04

0.02

Double occupation probability

0.00 1 1 OO B W, ®
0 2 4 6 8 10

Magnetic field (Tesla)

V. DISCUSSIONS

A. Validity of the envelope-function approach

The issue of the adequacy of the single-envelope-function
fective-mass approximatiofused throughout our calcula-
tions) for the purpose of studying electron entanglement in

. the context of a QDQC requires careful consideration. Let us

10 ¢ ' T ' T first discuss the validity of the envelope-function approach in
= i @ our study of the electronic structure of a 2D GaAs-based
10" L 4 double-dot molecule. One necessary conditjid] is that
£ ] E the k- p approximation should be valid in our problem. For
g | T the GaAs conduction band, the p approximation(“Kane
%10 E 3 model”) is valid up to e,—€p~0.3 eV, whereg, is the

[ conduction-band edge energy agdis the energy of a con-

107 ¢ : : : : duction electron at momentuknin the Brillouin zone. In our

b) study of the coupled-quantum-dot molecule, the energy scale
1 of the electrons is in the order of 10 meV, making the
approximation valid.

Another condition for the validity of the envelope func-
tion approach is weak intervalley scattering. The electronic
wave functions in this paper are built from conduction-band
I'-point Bloch functions. However, if a GaAs quantum well
(in the growth direction we have a narrow GaAs quantum
well sandwiched between ABa _,As barrier$ is too nar-

FIG. 11. Here we show the central barrier height dependence dw (<3 nm), theX valley would lie close tp thé’ point in
the exchange coupling and the double occupation probability at €N€rgy, so that a more complete approgging beyond the
zero magnetic field. The interdot distance here is 40 nm. Both quarsingle-envelope-function approgd needed to take into ac-
tities decrease exponentially as functions of the central barriefount thel’-X intervalley scattering. An envelope function
height. The rates of these decreases for both quantities are about tABProach becomes inappropriate because it wdglly de-
same. As the central barrier height varies in the shown rafige, scribes a small part of the Brillouin zone. Thus, for our ap-
changes from 0.27 to 0.0097 meV, while the double occupatiorproach to be valid, the quantum well in the growth direction
probability changes from 6% to 0.17%. cannot be too narro41]. Calculations going beyond the

Double occ. prob.
3
)
1

10-3 . 1 . 1 .
5 10 15 20

Effective central barrier height (meV)
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p2
e

single envelope approximation for GaAs quantum wells,
however, show41] that even for such extremely narrow
guantum wells, the single envelope function approximation
gives qualitatively(and semiquantitativejyaccurate results.
Although we do not think it to be necessary at present, X Sm+ (7 P)im
one can go beyond the single-envelope-function approxima-
tion. A more complete analysig@han our single-envelope-
function model would employ an &8 Kane mode[41]to ~ Hereel* ande; are band edge energies of materialandB
include all the closeby valence bands, with tWg states at thelth band edge dt point.Y; are step functions that take
corresponding to the conduction bands, fbyrstates corre- the value 1 for theith layer and O everywhere else—we
sponding to the heavy- and light-hole bands, and fivo ~assume sharp interfaces between mateAasdB (although
states corresponding to the split-off band. We would therfleviations from sharpness can be built into the mpdelis
have eight enve|ope functions instead of just one as we u§@e interband transition matrix, which is essentially the ex-
here. The complete single-electron Salinger equation and pectation value of momentum operain a unit cell. We

the general QD Hamiltonian without any magnetic field takecan separatef into an in-plane 2D component and a
the forms zdirection component, and further simplify the equations. In

addition, the valence-band envelope functions can be written
Hy=E, in terms of the two conduction-band functions, thus leading
to a nonlinear (but only 2x2) eigenvalue problem. The
p2 presence of a slowly varying electric figlbr the purpose of
H=o —+UM+V(r), (8)  confinementplus the band edges for the heterostructure in-
mg " 4 o
troduces additionalon top of interband coupling in bulk
o GaAs coupling between different banfié1]. At the zeroth-
_2 order approximation, when one neglects all spin-orbit cou-
T & io pling terms and interband couplings, the set of equations
above reduces to the single-envelope-function Stihger
. . . equation we employ in our current study. In our approxima-
Herem, is the bare electron mas8i(r) is the crystalline t|gn the only effgctg of the band structu);e are to rzl?)lace the

periodic potential, which assumes different values in theoare electron mags, by an effective masar* and the bare
0

quantum well and in the barriers. It thus has a steplike OVeTEoulomb interaction by its screened form, which is precisel
all profile along thez direction.V(r ) is the QD confinement y P y
the single-envelope-function effective-mass approximation.

potential produced by an external static electric field arising To validate our zeroth-order approximation, we need to

from lithographic gates, dopants, and all other sources not
estimate the magnitudes of the higher-order corrections ne-
contained inU(r). r, refers to the 2Ix-y plane, i.e., direc-
glected in our approximation. In particular, we can evaluate

tions perpendicular to the direction. Since thez—direction ) — ’ i
confinement is very narrow whil¥ is slowly varying, we the quantityp=E,Em*/moE, [41], wherep is the strength

neglect its variation along the direction. u;y’s are the Of the interband and spin-orbit corrections relative to the

I-point Bloch functions, which are the same as the atomigeroth-order terms within each conduction band. Hege
orbitals of the constituent elemenfs’s are the eight enve- represents the interband coupling strendihis the charac-
lope functions corresponding to the eight relevant bandsieristic electron envelope energg, is the bare electron
which are slowly varying functions on the atomic scale. Themass,m* is the conduction-band effective mass, dglis
Schralinger equation can be simplified into a set of equathe fundamental band gap at the point. For GaAs,E,
tions for the envelope functionfs’s by using the following =22.71 eV,m*=0.06Tm,, E4=1.5192 eV[41], and the
identity: characteristic electron enerdy is about 10 meV. Using
these parameters, we obtgmn-1/150, which is indeed a

+LePY 1+ €Yo+ e Y3+ V(r )]

m

fm(r,,2)=Ef|(r,,z). (10

1 small quantity, justifying our envelope-function effective
fﬂf(r)u(r)drz ﬁfﬂu(r)drfﬂf(r)dr mass approximation in the low-energy singlet-triplet sector.
The off-diagonal corrections, which couple the spin-up and
1 -down components of the envelope wave functions, have

= _f u(r)drf f(r)dr (9 similar negligibly small magnitudes. For the spin-coupling

the corresponding small parameteris= EpAVm*/m0E3,
Here () is the total volume of the crystaf), is the volume whereA is the valence-band splitting due to spin-orbit cou-

of one unit cell, f(r) is a slowly varying function on the Pling andV is the average confinement energy. For GaAs
atomic scale, and(r) is a fast varying and periodic function A=0.341 eV, while we take&/~50 meV. We then obtain

on the atomic scale. This identity can be proved by assuming’ ~p~ 1/150. Therefore, up to an accuracy of 1%, the con-
thatf(r) is a constant in each unit cell of the crystal. The setduction bands of two different spins are decoupled from each
of equations for the envelope functions is thessuming an  other and from other valence bands, and the use of a single-
AlL,Ga _,As-GaAs-AlGa _,As-type heterostructure in tte band envelope function may be quite useful qualitatively and
direction, withA/B below denoting AlGa, _ ,As-GaAs) semiquantitatively. It would, however, require further nu-

062301-11



XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A61 062301

merical investigations going beyond the single-envelope- [ 1 2))+ 2 )] _
function approximation to establish whether this accuracy is |¥g)= 4L 1$a(2) 1) ¢=(1) |ITD) |”>,
consistent with the stringent error correction requirements in ! V2 | V2

a QC. (12

To go beyond the zeroth-order approximation, the above- - :
mentioned correction terms need to be included, and the lin- |y |pL(1))|r(2)) = |dL(2))| dr(D)|ITL)+]LT)
ear Schrdinger equation we have now becomes a nonlinear ! J2 ] V2
eigenvalue problem, with a nonvanishing off-diagonal term
that couples the up- and down-spins. Thus, strictly speakingvhere|¢,) and|$g) are localized electron spatial orbitals.
because of spin-orbit coupling, the spin-up and -down state§he exchange coupling—the energy splitting between the
of a conduction electron are not the eigenstates in a semicofewest triplet and singlet states—can then be expressed as
ductor heterostructure. This opens another possible, albeit
weak, channel for spin decoherence in quantum dots that is - (WH[¥y _ (VHIVs)
not present in the bulk. (W) (V| W)
When a magnetic field is introduced, it can be directly
incorporated in the envelope-function effective Hamiltonian.
The underlyingl’-point Bloch functions, which are atomic
wave functions, are only minimally affected by the external
magnetic field. Indeed, in a typical atom, the¢ term is

=J,+Jc, (12

whereJ, is the contribution from the single-particle potential
energy, whileJ, is the contribution from Coulomb interac-
tion between the two electron. andJ, can be expressed as

2 2
about 102 as large as the linear term in a 10-T field, which Jr:ﬁ[<¢L|AVL|¢L>+<¢R|AVR|¢R>
. . _ 4
can be safely neglected. The linear termAircorresponds to 1-[Serl
the coupling between the electron orbital angular momentum _ AV _ AV
with the external magnetic field. For thH® orbital of the (SrlAVLIGL) =(SLIAVRIdr)],
conduction band, this coupling vanishes; for therbitals of (13

the valence bands, the magnitude of the splitting caused by 21S,l?
this term is about 1 meV per 18 T. Compared to the main 5 — StR (1) pr(2)|€] e 17 P (1) PR(2))

gap of about 1.5 eV, this splitting can also be safely dropped. 1-|SR*

Therefore, we can conclude that the underlying Bloch func-

tions are not affected by any moderéts to 10 T) external Re(p(1) pr(2)|€%/ er 15 p (1) pr(2))
magnetic fields one needs for QDQC operation. We also B ERE '

conclude that for the purpose of QDQC operations, where
one rgstricts to only the Iqw energy singlet—triplet sector ofywhere Sir={(d|dr), AV, =V(Xy)—V,, and AVg
the Hilbert space, the single-envelope-function effective— V(X,y) — Vg, with V(x,y)=V(r;) of Eq. (1). HereV, is a
mass approximation employed in this paper is qualitativelyharmonic well located on the left angk is a harmonic well
excellent, put fqrther s.tu<_j|es are needeq to establls_h whethgdcated on the right. The basis wave functigfisand ¢y are
this approximation satisfies the demanding constraints of efgjgenstates of these two wells, respectively. Thus we can see
ror correction in a realistic QDQC architecture. thatJ, is a contribution due to the difference caused by re-
placing the actual confinement potentiaby a left or right
harmonic well. It is a single-particle contribution. Whether
J, is positive or negative depends on the particular choice of
In our calculations we find a singlet-triplet crossing in all V and the parabolicity choice fov, and Vg. When the
the situations we considered for a magnetic field around 4 Tdistance between the two quantum dots becomes large, this
The physical reason underlying this magnetic-field-inducedjuantity approaches zero.
singlet-triplet crossingmaking the triplet state the ground The Coulomb contributiold,; consists of two parts, one
state in high fieldsis somewhat subtle. In a single-quantum- from direct Coulomb interaction, the other from exchange
dot “helium atom” (two electrons in one ditwhere such a interaction. These two parts generally do not have the same
crossing has also been reported in the literature, the compéype of dependence on an external magnetic fieldAs B
tition between interelectron Coulomb repulsion and singledincreases in strength, the exchange interaction becomes more
particle excitation is the reason for the singlet-triplet crossingmportant, which leads to singlet-triplet crossing in a quan-
[22,44). In the quantum-dot hydrogen molecule that we contum dot molecule. An analytical calculation for a special
sider (two electrons in two dojs the electrons can reside in (somewhat artificialconfinement potential was recently per-
different dots, minimizing the Coulomb repulsion effect, andformed[39], which explicitly demonstrated the different be-
therefore the above reasoning does not really apply for ouhnavior of the direct Coulomb and exchange terms.
singlet-triplet crossing. To achieve a better understanding of The expression fod shows that there are multiple contri-
this crossing, we first write down the expression for thebutions to the energy difference between singlet and triplet
singlet-triplet energy splittingexchange couplingusing the  states. Without analytical expressions it is difficult to deter-
Heitler-London wave functions of the ground singlet andmine exactly which factor dominates in a particular range of
triplet states: parameters. Physically, the Pauli principle constraint deter-

B. Singlet-triplet crossing
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mines that in a triplet state the two electrons will try to avoid One potential shortcoming of the Hartree-Fock method
each other, thus establishing a repulsive correlation betweehr the purpose of quantum computation is that it may not be
them. This correlation helps to lower the Coulomb interac-sufficient to describe quantum entanglement. Multielectron
tion energy, favoring the triplet state to have a lower energyvave functions are intrinsically inseparable when there are
if Coulomb interaction is dominant. As the external magneticoverlaps between single-electron wave functions. As a con-
field is increased, the wave-function overlap decreases b&equence of electrons beinglistinguishablea Slater deter-
cause of the squeezing by the magnetic field, so the longhinant is not a simple separable product function, and there-
range Coulomb interaction becomes the dominant factor ifiore individual eleqtron states geperally cannot be _factored.
the total two-electron interaction energy, leading to the trip--O" €x@mple, consider a two-particle Slater determinant

let state being the ground state at high enough magnetic 1

f|eId§. On the othgr he.md., at lower magnetic fleld_s, the wave- |Wy=—=[|(1)) 1)1 #(2))] 1 )»

function overlap is significant; a singlet state is then the V2

ground state since it lowers the electron kinetic energy. A
singlet-triplet crossing is therefore inevitable as a function of —[d(2)[ )2l (1))]1)4]- (14)

the magnetic field, which for the double-dot parameters weye can easily calculate the single-particle density matrix for
choose, happens at rather low accessible fields of 4 T. particle 1,

p1=Tra(p12)
C. Quantum-chemical approaches
: ", . =Tro(|W)(¥))
As we mentioned above, the Schioger equation for a
two-center two-electron problem cannot be solved exactly. 1
Various quantum-chemical approximations have been pro- _§[|¢(1)><¢(1)”T>1<T|1
posed and implemented in this problem in the context of
electronic energy-level calculations in real molecu46]. (D)) B(DI] L)1, (15)

Below we present a summary and a critique of the various , . = . . . . .
techniques which may be useful in the calculations for obWhich is indeed a mixed state. However, this inseparability

taining realistic QDQC architectural parameters. Since thé?1 thg Sllz_iter dlete_rmma_nt ar;seslforrl]Iy fr?m correlations dl.Je”to
exact electron wave functions are important in the context ofhe Pau |dexc uhsmnhprlnglp em. the 9ﬁcg|°nf, are: spatially
guantum computing, we will not discuss approaches that degeparated so that they becomistinguishable the electron

only with electron charge or spin densities. We believe that/ave function of Eq(14) becomes a product. For example,

detailed electronic structure calculations, which provide ac!l ¢ @ndd above are localized spatially with no overlap, the

curate information about the wave functions spanning théPoVe two-particle wave function simplifies to
relevant Hilbert space for realistic QDQC architecture, will _
be absolutely essential for further progress in this field. W)=l lv(2)1D)-. (16

Here 1 and 2 are labels of the two distinguishable particles—
particle 1 in¢ and particle 2 ings. The two-electron wave
One of the simplest quantum-chemical approaches is thiinction is now in a product form, and the state for each
Hartree-Fock approximation. It uses an effective single{article is pure. In other words, E(L6) is not an entangled
electron equation to simulate a two-electron problem. Thestate.
Pauli principle is accounted for because the two-electron In the RHF approach, the spin part of the wave function
wave function is written as a single Slater determinant. Thewould be a singlet for two electrons when they occupy the
HF equation can be solved directly or on a finite bati®  same spatial orbital, so that the state is necessarily entangled.
so-called linear combination of atomic orbitals methdthe  The entanglement here is fundamentally different from the
main advantages of a HF calculation are its single-particlenseparability that arises purely out of the Pauli exclusion
feature, its accessibility, and its clear underlying physicalprinciple as considered above. Instead, it represents a true
picture. The main shortcoming is its disregard of electroncorrelation between the two particles—they occupy the same
correlations, which originates from the simplification of a spatial orbital. On the other hand, in the UHF approach the
two-particle problem to a one-particle problem. This defi-wave function is completely separable when the two wave
ciency can be systematically remedied by introducing confunctions are localized, so that no entanglement can be de-
figuration interaction(Cl) corrections. Instead of using a scribed. In general, for indistinguishable particles, the en-
single Slater determinant as the system wave function, on@nglement information is encoded in the form of superposi-
can use a series of Slater determindiniswhich the single- tion of different Slater determinants so that, in principle, CI
particle wave functions are HF wave functions including theis alwaysneededor the wave function to carry entanglement
excited statésas basis and search for the best combinationinformation. From another perspective, fospin+ particles,
As the size of this basis goes to infinity, the method becomethe number of real variables needed to describe the spin part
exact. One may, however, be able to obtain a very high acef the entangled multielectron wave function i§*2—2,
curacy with a reasonable size CI calculation if the configu-while one Slater determinant only provides gal variables
rations to be mixed in are chosen judiciously. to describe the spin degrees of freedom, which is clearly not

1. Hartree-Fock approximation
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enough to incorporate entanglement in any multielectrorproach[39]. To further enlarge the basis, one just includes
case, including even the=2 two-electron case we consider more single-particle orbitals. For example, in our case, we
here. Therefore, the single Slater determinant HF approximaiave included all the single-particle first-excited states, so
tion is manifestly inadequate for QC purposes. One shouldhat there are in total six single-particle states forming our
note, however, that the HF approximation is not intended fobasis, from which we can form 36 two-particle statesn If
the purpose of describing quantum entanglement. It is desingle-particle orbitals are used, the number of two-particle
signed to compute accurately electronic energy spectratates grows as?, while the number of Coulomb matrix
charge and spin densities, etc. Therefore, as long as one reglements grows as’. It is thus imperative to select the best
ognizes the shortcomings of this method, it can still providepossible single-particle wave functions, so that the number of

valuable information about the electronic system. these orbitals can be kept at a minimum, allowing a tractable
computation.
2. Heitler-London method To limit the size of the two-electron state basis, one can

. ) ... _select a portion of states from a more complete basis, using
A Ha}rtreg—Fock calculation is self-consistent, and in it Acriteria such as a single-particle energy cutoff. Such an ap-
mean field is produced by the calculated electron density, -1 amounts to a Heitler-London calculation supple-
One can also solve the two-electron problem using a fixeghenteq by limited CI. However, there can always be hidden

finite molecular-orbital basis. Indeed, when the number 0,5, 4,4 in this practice. For example, as has been pointed out
states in the basis goes to infinity, the solution approaches EfﬂS], the calculation of exchange energy is nontrivial in an

exact two-electron state. However, the convergence may B,y of atoms. One reason is that exchange is mainly deter-

slower than a self-consistent calculatignith CI), and it ineq by tail overlaps between neighboring electron wave
quickly becomes computationally intractable for m““'elec'functions, where Heitler-London wave functiofsften used

tron problems. On the other_hand, foratwo-el_ectron problen}or calculating exchange energgre less reliable. In addi-
with a small number of basis states, such a fixed f|n|te—ba5|§on including more configurations and going beyond

calculation is numerically tractable and provides a clear adyaitier-London wave functions may not improve the accu-

vantage over the HF approximation for studying entangle;,cy necause the excited atomic wave functions have differ-
men;[]. il d hod i L £ th ent exponential tails. Thus the eigenstates may have more
The Heitler-London method is an approximation of the 5cc\rate shapes near the atomic cores, but their tails may

simplest molecular-orbital calculation. Here only the tWOpeoome less accurate, leading to an inaccurate exchange cou-
single-particle ground states in the individual quantum dot ling energy. Indeed, it is always a dangerous practice to

are taken into account. Furthermore, in forming two-electrorypi~in a small quantity numerically from the difference of

orbitals, the two “polar” (doubly occupiedi states are ne- yq |arge quantities. In quantum-dot molecules, the tail be-
glected. There is then only one possible functional form each o.ior of wave functions is somewhat simpler than in atoms
for singlet and triplet states, respectively. This approach igecqyse all the harmonic well eigenfunctions have the same
quite accurate when the two dots are far from each other, Sl%ng-distance exponential behavitut multiplied by differ-

that the single—pa_rticle wave functions have the correct deant polynomials Therefore, by including a larger basis and
pendence on the interdot distance. On the other hand, if thg,ing |imited CI calculations, one should be able to achieve
two dots are brought close to each other, the wave functions; reag0nable description of the eigenstates, eigenenergies,
radii should be varied in order to obtain the lowest energy for, 4 in particular, the exchange energy in QDQC architec-
the two-electron states. This is similar to the orbital contracy, o5 | this particular sense, 2D harmonic confinement in
tion in molecular physics when two binding atoms arenp gystems may provide a significant calculational advan-
brought togethef40], although in quantum dots it might be 740 oyer the corresponding real atom-molecule situations
orbital expansion rather than contraction. Another way tQith Coulomb confinement. On the other hand, the nonsin-
improve Heitler-London calculation is to introduce orbital o5 nature of the harmonic potential well also means that
“polarization” (a contortion of thes orbitals toward each he glectronic states are more sensitive to the actual details of

othe, so that anisotropies in the pr_oblem can ,be at leasfq confinement, making the QDQC architecture a fragile
partly accounted for. For exampleorbitals can be included 4 for quantum computation.

in the single-particle wave functionss-p hybridization
[39]. Indeed, in the case we considered in this papep, 4. Hubbard model
hybridization is an extremely important feature of the prob-

lem, as we already discussed in Secs. Ill and IV of the paper. The Hubbard modgl Is a highly simplified model describ-
ing Coulomb correlation effects in an array of atoms. The

model [46] deals with a second-quantized multielectron
Hamiltonian with a cutoff in the interaction. Only one orbital
The Heitler-London method is appealing in its simplicity state per site is kefin the atomic limi}, and there is a finite

and its clear physical picture. However, unless perfect basikopping termt, arising from overlap, between the neighbor-
states happen to be “luckily” chosen, it is difficult for a ing orbitals. The long-range Coulomb interaction is replaced
method with such a small basis to accurately describe &y a single on-site repulsion terbh—the rationale being that
double-dot molecular system. The first improvement one cascreening by all the other electrons lead to an on-site effec-
make is to include the polar states. It then becomes the sinive U. The ferromagnetic direct exchange part of the Hamil-
plest molecular-orbital calculation—the Hund-Mulliken ap- tonian is dropped because the wave-function overlap be-

3. Molecular-orbital theory
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tween neighbors is exponentially small. Multisite CoulombHere we would like to discuss in further detail a number of
interaction is also neglected, assuming that they do not affecalient features that arise naturally in the context of a QDQC.
the magnetic properties of the model. In the limit of large In many materials, electron spins are less vulnerable to
on-site repulsion(large U), the effective Hamiltonian that decoherence than their orbital degrees of freedom, which in
describes the excitation of this model is a Heisenberg exfact is the main motivation for the proposed spin-based
change Hamiltonian, with the exchange couplinglated to  QDQC. For example, carriers in GaAs have a subpicosecond
t and U by J=4t?/U. As this J is always positive, the momentum-relaxation time, while their spin-relaxation time
ground state is antiferromagnetic when there is one electrog |onger than 1 n§43]. Since a long spin coherence time is
per site. There are various attempts to add additional terms tgnso|utely essential for QDQC operatiofiis particular the

the Hubbard modefthe extended Hubbard modgko that it gpin coherence time must be much longer than the single-
can describe various other phenomena. For example, in ong,g two-qubit operation times, which have to be controlled
extended Hubbard model, nearest-neighbor Coulomb intefsy switching magnetic fields and gates, and cannot be very
action is also taken into consideration. The model can thefsy, we briefly summarize spin-relaxation mechanisms and

describe spatial charge-density fluctuations. ~ comment on their relevance in the context of two-
The Hubbard model and its variants have been applied tgimensional GaAs quantum-dot structures.
quantum-dot arrayp47], particularly in the context of trans-  There are three major spin-relaxation channels for con-

port and magnetic properties, and also to study quanturgyction electrons in GaAs: the Elliott-YaféEY) mecha-
phase transitions in quantum-dot arrays. It is an effectivenism’ the D’yakonov-PereliDP) mechanism, and the Bir-
model that can describe complex phenomena _with ;implicityAronov_pikus (BAP) mechanism[19]. The EY process
In the context of a QDQC, using spins as qubits it is uncleagyginates from the fact that real Bloch functions are not spin
that the Hubbard model could have a considerable releVar‘C&genstates. For example, spin-orbit coupling can mix
because of its extreme simplicity. This is certainly true forspin—up and -down states in the electron eigenstates. Thus,
the two-electron model in the double-dot problem studied inyhenever an electron is scatterély other electrons,
this paper. However, if multiple-dot algorithms are designedyhonons, impurities, etg.there is a finite probability that the
in the future, the Hubbard model may become a powerfugominant spin component will flip, thus causing spin relax-
tool, although various details will have to be added, dimin-ation. The DP channel arises from the lack of inversion sym-
ishing the simplicity of the original model. _metry in GaAs, which leads to an intrinsic spin splitting in

The Hubbard model reduces to the Heisenberg model ighe conduction band even for zero magnetic field. In the DP
the large on-site repulsion limit{—). One condition for  channel, the energy band splitting due to spin-orbit coupling
the validity of the Heisenberg exch_ange Hamiltonian is thatg treated as an effective magnetic field. For differént
each localized electron wave function should have exponensiaies; this effective field has different magnitudes and direc-
tially small overlaps with others. This condition is generally tijons. Thus, as an electron is scattered from one momentum
not satisfied in the QDQC when we bring two quantum dotssate to another, it sees different fields and precesses differ-
very close to each other. However, for a two-electron probently whenever it is scattered. Soon the electron loses the
lem, if the orbital degrees of freedom are frozen, the spinpemory of its initial spin state, thus showing spin relaxation.
degree of freedom has only four dimensions which can behe BAP channel is somewhat similar to the DP channel, as
described by singlet and triplet states, and a Heisenberg 5|50 treats electron spins as precessing in an effective mag-
model description becomes possible. On the other hand, {etjc field. However, in the BAP mechanism the effective
the electron orbital degrees of freedom are ever excited, thga|d for the conduction electrons is produced by free or
Heisenberg exchange Hamil_tonian will not be applicable forygung holegor other paramagnetic impurities which may be
our purpose. For example, if two electrons ever enter ongresenyt Hole spins relax very quickly, so that the effective
quantum dot simultaneously, we will lose track of which fie|qs (the conduction electrongroduced by hole spins fluc-
qubit is represented by which spin; thus the error probabllltytuate, which causes an electron spin to lose information
would be 50%. As we have shown previously, at low mag-gpout its initial state.
netic fields in the current configuration, the ground singlet |, gaAs heterostructures, it is generally believed that the
state has a finite probabiliias large as 20% or more at zero pp mechanism is the dominant spin-relaxation channel for
magnetic fieldl of double occupation in either dot. For a ¢onduction electrongl9]. In particular, due to the band dis-
short QC calculation or for qualitative results, a 5% doublecontinuity in a heterostructure, there is an additional spin
occupation probability may be acceptable. However, thi%plitting for the conduction electrong‘Rashba” effec)
small error becomes a very serious problem that cannot bghich can be treated as an extended DP channel. For holes,
overcome by currently available error correction schemes foﬁowever, the EY mechanism is the dominant process. An
a long quantum computation, leading to the constraint thahqgitional complication is that in a quantum dot produced by
the double occupation probability must be kept very low. modulating electric fields through lithographic gates, the
confining electric field produces a mixing between the
spin-up and -down statg# addition to the basic splitting
arising from the lack of inversion symmetry in GaAhe

It has been pointed out that the spin-based quantum-ddtoundaries and the interfaces are also known to cause spin
guantum computer, in principle, satisfies the necessary anelaxation. Indeed, these additional spin-relaxation channels
sufficient conditions required for quantum computirigf]. may actually be the dominant processes for electrons con-

D. Various aspects of a quantum-dot quantum computer
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fined in the quantum dots, because the wave functions fospace, and can thus be treated as an isolated system. This is
these electrons are built from tH&point Bloch functions, the whole idea behind using the exchange coupling for the
where the underlying Bloch function 8type, which has no purpose of quantum gating. Moreover, as long as the Heisen-
spin-orbit coupling. Since the DP channel depends on th&erg Hamiltonian can be used to describe the quantum-dot
effective field produced by the spin-orbit coupliighich ~ two-spin system, the spin singlet and triplet states are always
vanishes at th& poin), and an external magnetic field may the exact eigenstates. The only important parameter for state
also help limit the DP channel, electron spin relaxation in g€velution is the time integral of the HamiltonigiH(7)d,
quantum dot should be quite wegnd probably arises pri- a_md the exchgnge coupling should be turned on for as short_ a
marily from the interface-boundary scattering, the confiningime @s possible to produce an ultrafast gate. However, this
electric field, and perhaps the Rashba effect t|m_e cannot be top shor_t as to make the ;ystem “leaky.”
When electron spin relaxation originating from the spin-L_JS'_”g the' uncertainty principle, we can estimate the 'Iower
orbit coupling(DP channelis largely suppressed, other re- limit of this turn-on time 7. Recall that the next excited
laxation channels have to be carefully considered. In particuState of our two-electron system is about 8 meV above the
lar, interface-boundary-scattering-induced spin relaxatiofground states. Thus the lower limit of, is about GE~8
needs to be considered. In addition, it has been pointed olpeV is the energy dlfference'between the next excited state
[39] that nuclear spins may affect electronic spin relaxatior@Nd the ground singlet and triplet states
through the hyperfine |nteract|_on. This spin-relaxation qhan- r.5>#/5E~0.1 ps. 17)
nel can, however, be substantially suppressed by applying an P
external magnetic field or through the Overhauser effect to
dynamically polarize the nuclear spif89]. These issues re- Therefore, as long as the gating timgis longer than 1 ps in
quire more carefuland quantitative considerations before the current configuration, the coupled-dot system is well iso-
QDQC architecture questions can be seriously considered.lated, so that the higher excited states can be safely ne-
If the spin-orbit coupling is strong so that electron spin byglected, and the gating action can be considered adiabatic.
itself is no longer a good quantum number, then one musthis is critical for QC operation. Again a compromise is
consider the total angular momentulnwhich involves both  needed here to optimize a fast gating time and adiabaticity.
spin and orbital degrees of freedom. Such a mixing by itselfCalculations of the kind carried out in our paper can provide
would not be a disaster for quantum computing, sidean  quantitative estimates for such required QDQC architectural
now replace electron spin to serve as the qubit. However, theptimization.
“spin” relaxation time will then be in the same order of  According to Fig. 6, the exchange couplidgdepends
magnitude as the momentum relaxation time, which is gendquite sensitively on the magnetic fiel. If a sequential
erally very short ¢ picoseconds or lesén semiconductors, —pulse algorithm is used, one does not need to worry about the
which could be disastrous from the QC perspective. It is thugnterplay between the exchange interaction and the local
imperative to choose materials with small spin-orbit couplingmagnetic field. On the other hand, if a parallel pulse scheme
for the purpose of electron-spin quantum computing—IS used[48], one has to take into consideration the effect of
otherwise decoherence problem makes QC operations inthe inhomogeneous magnetic field on the exchange coupling.
possible. Intuitively, the average field exchange coupling may be suf-
Even if spin relaxation can be neglectéidr example, ficient in many cases, because the single-electron wave-
because of long spin coherence timehere are many other function radius decreases slowly as the magnetic field in-
factors that can affect the performance of a quantum comereasestg=+#Ac/eB. If the average field is around zero, the
puter. For example, based on our molecular-orbital calculafield inhomogeneity may lead to a larger change in the ex-
tion, the exchange coupling in a coupled-dot system is foung¢hange coupling, and will have to be taken into account.
to be large enough for fast picosecond switching. However, Throughout our calculation we have neglected the Zee-
one has to be careful in exploiting the possibility of fastman splitting of the electronic levels. This splitting cannot be
switching. Indeed, to produce the best structure for the purignored in a real unitary evolution. For instance, in R88]
pose of quantum computing, a compromise needs to ba pulse sequence was given for a controliex-(cNOT) gate
achieved between an optimal gating time and an optima(the sequence as given is a conditional phase shift, which can
error rate that should both be as small as possible. As wke easily transformed into @noT operation. If a finite B
learned from our calculations and from general argumentdjeld is present during the swap action, an additional phase
exchange coupling decreases exponentially quickly as thdue to Zeeman splitting of the triplet states will show up in
two dots are pulled apart. Consequently, to have a largethe electron spin states. An opposiefield with the same
exchange couplingwhich means a shorter gating timéhe  strength has to be applied to the two electrons for the same
dots should preferably be close to each other, which, howamount of time as the swap gate to correct this phase error.
ever, increases the overlap between the electron wave fun&or GaAs, the Zeeman splitting is about 0.03 meV/T. If a dot
tions, leading to an enhanced double occupation probabilitygystem has an exchange coupling of 0.1 meV and the two
which means higher error rate. A compromise in the QDQGCspins experience a magnetic field difference of 1 T, the cor-
architecture will therefore be needed. responding difference in the Zeeman splitting would be 0.03
As shown in our molecular-orbital calculation, the sub-meV, about 30% of the exchange coupling, which is a sig-
space of the total Hilbert space containing the ground singletificant number. Since an error rate below $@s needed for
and triplet states is well separated from the rest of the Hilberthe currently available error correction schemes to be effec-
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tive, one has to be able to control the magnitude of the ex-  (§¢2)=(¢?)—(¢)?

change interaction up to that accuracy. Furthermore, any re-

sidual local-field effect has to be corrected continuously. 1 (et

Indeed, if in an actual structure the gating area is separated = ﬁJ'O fo<5~](7'1) 0J(7p))d7id T,
from the storage area, which means that all the spins have to

be transported to and from the gating area, one does not need trt [f/(v)]z

to worry about the stray magnetic field. Here the main prob- ~f f —2(5V( 71)OV(75))d T d 7).

lem would be the transportation of the spins. On the other oJo #

hand, if the spins are stored close to each other and the (18)

gating and storage areas are combined, the main problem
would be the effects of the local stray magnetic field. It isif |/ (V)| is bounded by a constant we can replace it by
straightforward to correct for the effect of a magnetic field onin the above expression. Furthermore, according to Nyquist
one spin. However, it is much less obvious how to correct fotheorem,
the gffect of an |nhorr_10gerjeous field on all but one spinin a (8V(71)8V( 1)) = ARKgT 8( 11— 7). (19
chain. From an engineering perspective, the modular ap-
proach of separating storage and gating areas is somewhdereR is the circuit resistance anflis the circuit tempera-
more promising. We anticipate that the inhomogeneous fieldure. We thus obtain the approximate expression for the
and the stray field problems to be significant obstacles iphase fluctuation:
producing a successful QDQC architecture. (5% ~ARKgT ot/ 12, (20)
When electron transport is needed in an architecture, elec-
tron labeling becomes very important. In a semiconductoin our calculation for double-quantum-dot QC architecture,
heterostructure, there always exist stray electrons, such a4 plays the role of external gate voltage. According to Fig.
those trapped in impurities and deep levels. If we move ouB, in the two higher-barrier cased,changes about 0.038
qubit electron around in a heterostructure, there is the dangeneV whenV, (the strength of the barrier Gaussian, not the
of losing this electron, and in its place, acquiring a strayeffective barrier heightchanges 1.83 meVa can be ob-
electron, so that all the spin information of the particulartained from this ratio as 0.021 eV/V. Assuming the swap
qubit is lost. The indistinguishable character of electrons begate is performed at 1 KsinceJ is in the order of 0.1 meV
comes an important issue in this context. Initially, when all~1 K, the experimental temperature can only be lower than
the electrons are trapped in their respective quantum dotd, K), and the transmission line connecting the gate to the
they are labeled and distinguishable. As soon as stray elecutside has an impedance of 80 the rate for phase fluc-
trons are present outside the dot electrons we have consitliation(542)/t is about 3.2 MHz. The phase error accrued
ered, Pauli exchange errors will occur from the indistinguish-during a swap gate is about 0.06%. This is quite a small error
ability of fermions and have to be correctptB]. This will which is of the same order of magnitude as the theoretical
be another significant obstacle for the QDQC architecture. tolerance of the currently available quantum error correction
Experimentally, it is easier to deal with multiple electrons codes. It should pose no problem to any demonstrative ex-
(instead of a single electrpin a quantum dot produced by periment. For a real quantum computer, this error rate needs
modulating electric fields. Here it is hoped that certain shelto be further lowered by lowering experimental temperature
structures existas we show in our resultsso that such a and turning up) more gently(which requires longer time but
quantum dot can be considered to be an effective $pin-produces smallew) in the QDQC operation.
system. Multiple electrons may, however, make the indistin- Indeed, the error discussed here, which originates from
guishability problem a more prominent issue. However, onghe interaction between the double dot and its external con-
needs to keep in mind that the important question here is theol, is relevant for all the other external “knobs” that are
spin state of the effective spifisystem, not the spin state of used to control the evolution of the double-dot states. To
any particular electron. We are currently pursuing multielec-design a practical QDQC, one has to identify all the possible
tron calculations in order to better understand these difficulexternal noise sources and tunes the system parameters ac-
and complex issues. cordingly so as to prevent these noises from overwhelming
If the exchange coupling is tuned by changing external the operations of the QDQC.
gate voltage in a QDQC, thermal fluctuatiofm any other
types of fluctuationsin the gate voltage will lead to fluctua- E. Future directions

tions inJ, thus causing phase errors in the swap gate that is |, yhe current paper we studied in detail the Hilbert-space
crucial for two-qubit operations. Here we estimate this erorgy,cryre for a two-electron two-dot artificial hydrogen mol-
by assuming a simple thermahite) noise[17]. _ecule situation. It is important to emphasize that detailed
Assuming thad=f(V), whereJ is the exchange coupling  hegretical calculations of the type carried out in this paper
andV is the gate voltage that controls the valuelparound i pe critical in determining the feasibility and practicality
any partlcylar valueVo, J can be expressed a¥(V)  of | the proposed semiconductor-based solid state QC ar-
=J(Vo) +f'(V)|v,(V—Vo). During a swap gate between chitecture§14,16,17, not just the spin-based QDQC consid-
two quantum dots, the phase of the electronic spin wavered in our work. Given this crucial importance of theory in
function evolves agh= [(J(7)d7/%. Thus the fluctuation in  providing the QC architectural basis, it is quite surprising
the phasep is that no such detailed calculations have earlier been reported
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in the literature in spite of very extensive research activity inof the lowest singlet and triplet states—the exchange cou-
the subject of QC. Indeed, there are many other theoreticailing, the double occupation probability of the lowest states,
guestions that need to be answered for the quantum-datnd the relative energy scales of these states. We find that in
guantum computer architecture. For example, an accurate deur chosen configuration and for reasonable GaAs dot-based
scription of the confinement potential is an important ingre-parameters the exchange coupling has a maximum of about
dient of a quantum computer, as quantum computation red.2—1.1 meV at zero magnetic field as we vary the central
quires an exact knowledge of the qubit wave functions. Inbarrier height from about 9.61-3.38 meV when the dots are
addition, currently there is no systematic calculation of spinseparated by 30 nm. When the interdot separation increases
relaxation in GaAs quantum dots, which will clearly be to 40 nm, the exchange coupling decreases to below 0.3
needed for a better understanding of spin coherence issuesneV. There exists a singlet-triplet crossing for all the cases
As for further improving the calculation of electron ex- for an applied magnetic field of about 4 T, above which the
change coupling in the two-dot configuration, the main prob-riplet state becomes the ground state of the two-electron
lem is to obtain a more accurate description of electron corsystem. At zero magnetic field, the double occupation prob-
relations. In the approaches we used in the current paper, thability in the ground singlet state is found to be as large as
UHF method self-consistently evaluated single-particle wave2% with a 3.38-meV central barrier when the two dots are
functions, but only a single Slater determinant is used as theeparated by 30 nm, and as small as 1.7% with a 11.03-meV
two-electron wave function. No two-electron correlation is central barrier when the interdot distance is 40 nm. Both the
included. On the other hand, the molecular-orbital methodexchange coupling and the double occupation probability
uses a small number of rigid single-electron wave functiondave similar dependence on the interdot distance and the
(harmonic-well single-particle orbitgls but many two- central barrier height at zero magnetic field, so that it is
electron orbitals are included to minimize the energy of thedifficult to have a configuration with large exchange cou-
system. To improve upon the results obtained here, a selpling and vanishing double occupation probabilityhich
consistent calculation with Cl is needed. That is, one cammeans a vanishingly small error ratéAt finite magnetic
solve the Hartree-Fock equations self-consistently, then usield, on the other hand, it is possible to have a fii@koeit
these HF wave functions as an improved basis to form aegative exchange coupling and a small double occupation
number of Slater determinantmstead of just one as in the probability simultaneously. We discuss in detail the neces-
HF calculation. The two-electron problem can then be sary conditions for the validity of the effective-mass
solved on the basis of these Slater determinants. Generallgnvelope-function approach, finding this approximation to be
the larger the basis the more accurate is the result. Furthevalid for our problem. We also discuss the applicability of
more, a linear-combination-of-atomic-orbital approach canvarious quantum-chemical approaches in the current context
be used to partially solve the dilemma in the choice of gaugeof quantum-dot quantum computation in dealing with few-
Such CI calculations, which we are currently pursuing, areslectron problems, such as the Hartree-Fock self-consistent-
notoriously computationally demanding, and real progressield method, the molecular-orbital method, the Heisenberg
toward truly realistic calculations is expected to be slow. model, and the Hubbard model. In particular, we point out
As it is very difficult to precisely trap a single electron in that a configuration-interaction calculation is needed for any
each quantum dot, one can consider using multielectrorealistic description of electron wave functions. The differ-
quantum dots as effective spinqubits. Thus an important ence between the non-product form of a Slater determinant
problem would be to study a multielectron two-dot and a truly entangled state is discussed. The presence of
system—in other words, a quantum dot,Nar Cl,, or oth-  singlet-triplet crossing in a coupled-dot system is also stud-
ers molecule instead of 5 The objective of such a calcu- ied. In addition, we discuss various important issues in
lation is twofold. First, at certain fillings there might exist quantum-dot quantum computing, such as controls needed,
effective spins states for a multielectron system, so that thespin decoherence channels in semiconductors, adiabatic tran-
“single-electron” quantum-dot requirement in the current sitions, and errors in spin evolution. Our results should form
proposal can be relaxed. Second, such a calculation is alsb reasonable semirealistic basis for discussing spin-based
relevant in the general study of quantum dots. We are curquantum-dot quantum computer architectures, and should
rently pursuing such calculations as well. also be useful for various studies of quantum dot artificial
molecule systems.

VI. CONCLUSION
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