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Casimir and van der Waals forces between two plates or a sphergens) above a plate
made of real metals
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The Casimir and van der Waals forces acting between two metallic plates or a @phgrabove a plate are
calculated, accounting for the finite conductivity of the metals. A simple formalism of surface modes is briefly
presented which makes it possible to obtain a generalization of the Lifshitz results for the case of two
semispaces covered by thin layers. Additional clarification of the regularization procedure provides the means
to obtain reliable results not only for the force but also for the energy density. This, in turn, leads to the value
of the force for the configuration of a spheilens above a plate, both of which are covered by additional
layers. The Casimir interaction between Al and Au test bodies is recalculated using tabulated optical data for
the complex refractive index of these metals. The computations turn out to be in agreement with perturbation
theory up to fourth order in the relative penetration depth of electromagnetic zero-point oscillations into the
metal. The disagreements between the results recently presented in the literature are resolved. The Casimir
force between Al bodies covered by thin Au layers is computed, and the possibility of neglecting spatial
dispersion effects is discussed as a function of the layer thickness. The van der Waals force is calculated
including the transition region to the Casimir force. The pure nonretarded van der Waals force law between Al
and Au bodies is shown to be restricted to a very narrow distance interval from 0.5 (@r4onm. More
exact values of the Hamaker constant for Al and Au are determined.

PACS numbds): 12.20.Ds, 03.76:k, 78.20—e

[. INTRODUCTION are situated. Hence nonzero correlations of the induced
atomic dipole moments arise once more, resulting in the Ca-
Recently, considerable attention has been focused on traimir force (which is also known as the retarded van der
van der Waals and Casimir forces acting between macroWVaals force.
scopic bodies. As for the van der Waals force, interest in it As is shown in[4,7,8], the corrections to the Casimir
has quickened Owing to its app“cation in atomic force mi_force due to the f|n|te ConductiVitY of the metal.and Surfa.CG
croscopy (see, e.g., the monograph,2] and references roughness play an important role in the proper interpretation
therein. Interest in the Casimir force was rekindled after Of the measurement data. Temperature corrections, are neg-

new experimentg3,4] where it was measured more precisely 19iP1€ in the measurement range(} 7,8 (the data of 3] do
in the case of metallic test bodies. not support the presence of finite conductivity, surface

It is common knowledge that both forces are connecte&oughness’ and temperature corrections which results in dis-
with the existence of zero-point vacuum oscillations of thedgreement with the theoretically estimated values of these

o ._correctiong 7] in the measurement range[&]). In [4,7] the
elegtromagngtlc fields,6]. For .closely spaced macroscopic values of the finite conductivity corrections to the Casimir
bodies, the virtual photon emitted by an atom of one bod

h f th d bodv during its lifeti ThX‘orce were found by the use of a perturbation expansion in
reaches an atom of the second body during its litetime. The,o yo|ative penetration depth of electromagnetic zero-point

correlated oscillations of the instantaneous induced dipolgggijations into the metal, which starts from the general Lif-
moments of those atoms give rise to the nonretarded van dgk;i, formula[9—11. The parameter of this expansion is
Waals force. The Casimir force arises when the distance b /(2 ), where\,, is the effective plasma frequency of the
tween two bodies is so large that the virtual photon emittegsjectrons andh is the distance between interacting bodies.
by an atom of one body cannot reach the second body duringote that the coefficient near the first-order correction was
its lifetime. Nevertheless, the correlation of the quantizedpbtained in12,13 and near the second-order ond 1] for
electromagnetic field in the vacuum state is not equal to zeréhe configuration of two plane parallel plates.[B15] the
at two points where the atoms belonging to different bodiesesults of[12,13 and, correspondingly,14] were modified
for the configuration of a spherical lens above a plate. To do
this the proximity force theoreifil6] was applied. The coef-
*On leave from North-West Polytechnical Institute, St. Peters-ficients to the third- and fourth-order terms of that expansion

burg, Russia. Electronic address: galina@GK1372.spb.edu were first obtained if17] for both configurations.
"Present address: Institute for Theoretical Physics, Leipzig Uni- In applications to atomic force microscopy and the van
versity, Augustusplatz 10/11, 04109, Leipzig, Germany. der Waals force, the Lifshitz formula and plasma model were
*Electronic address: umar.mohideen@ucr.edu used in[18,19 for different configurations of a tip above a

80n leave from A. Friedmann Laboratory for Theoretical Physics,plate. In[20,21], density-functional theory along with the
St. Petersburg, Russia. Electronic address: mostep@fisica.ufpb.bplasma model was used in the calculation of the van der
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Waals force. A more complicated analytical representation Z4
for the dielectric permittivitythe Drude model with approxi-
mate account of absorption bandsas used if22] to cal-
culate the van der Waals force with the Lifshitz formula
between objects covered with a chromium layer.

The parameters of the plasma and Drude mo@#&sma g (w)
wavelength, electronic relaxation frequeh@re not known
very precisely. Because of this, [23] the attempt was un-
dertaken to apply Lifshitz formalism numerically to gold, >
copper, and aluminurgsee alsd24]). The tabulated data for
the frequency-dependent complex refractive index of these
metals were used together with the dispersion relation to cal- & (w) 1‘d
culate the values of dielectric permittivity on the imaginary +
frequency axis. Thereupon the Casimir force was calculated
in [23] for configurations of two plates and a spherical lens
above a plate in a distance range from 0.5 to 2.5 um.

The same Co_mputatlon based on the_L'fSh'tZ_ f(_)r_mallsm and FIG. 1. The configuration of two semispaces with a dielectric
tabulated optical data for the dielectric permittivity was '€~ hermittivity &,(w) covered by layers of thicknesbwith a permit-

peated in[25] in a distance rf’;\ngg from 04m to 10 um. tivity e,(w). The space separation between the layees is
The two sets of results are in disagreemége alsd 26]).

Note that the higher-order perturbative calculationgldf in
their application range are in agreement Wizb,26 but also
disagree wit23,24.

&(®)

d

- _ ]

— o —]
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aluminum surfaces covered by thin gold layers. In Sec. V the
van der Waals force is calculated in both configurations and
IIhe transition region to the Casimir force is examined. Sec-

In this paper we present a brief derivation of the van de VI q f the H K
Waals and Casimir energy densities and forces between twWiPn V! contains a determination of the Hamaker constant
it alues for aluminum and gold. In Sec. VIl we present con-

parallel metallic plates or a plate and a sphere covered wi N
thin layers of another metdthe configuration used in the clusions and discussion, in particular, of possible applica-
experimentg4,8]). Two plates of sufficient thickness can be tions of Fhe results obtained in gx_perlmental mvestlgat_lons of
modeled by two semispaces with some gap between thentEe Casimir force and for_ obtaining stron_ger cor_15tramts on
The case of multilayered plane walls was considerd@T. the constants of hypothetical long-range interactions.

In contrast td 27], where the removal of the infinities of the
zero-point energy was not considered, we present explicitly
the details of the regularization procedure and its physica
justification. We next perform an independent computation
using tabulated optical data for the frequency-dependent We consider first two semispaces bounded by planes
complex refractive index of aluminum and gold with the goal (x,y) and filled with material having a frequency-dependent
of resolving the disagreement between earlier results. Outielectric permittivity e,(w). Let the planes bounding the
results turn out to be in agreement wittb,26 with a pre-  semispaces be covered by layers of thickriessade of an-
cision of computational error less than 1%. Also, the influ-other material with a dielectric permittivity;(w). The mag-
ence of the thin covering metallic layers on the Casimir forcenetic permeabilities of both materials are taken to be equal to
is determined. The range of applicability and exceptions taunity. The region of thicknesa between the layersee Fig.
using the bulk metal optical data for the dielectric permittiv- 1) is empty space. According {@8,29 van der Waals and

ity of the thin metallic layers are discussed. For smaller disCasimir forces for such a configuration can be found by con-
tances the intermediat@ransition region between the Ca- sideration of the surface modes for which w0, curlE
simir and van der Waals forces is examined. It is shown that-0, The infinite zero-point energy of the electromagnetic
the transition region is very wide, ranging from several na-ield, dependent oa andd, is given by[5,27]

nometers to hundreds of nanometers. The pure van der

Waals regime for aluminum and gold is restricted to separa-

I. VAN DER WAALS AND CASIMIR FORCES BETWEEN
LAYERED SURFACES: GENERAL FORMALISM

tions in the interval from 0.5 nm t62—4) nm only. More E(ad)=14 (o®+ (2) 1)
exact values of the Hamaker constant for aluminum and gold 2h o @it

are determined with the use of the computational data ob-

tained.

The paper is organized as follows. In Sec. Il the generaHere w(l 2 are the proper frequencies of the surface modes
formalism is briefly presented, giving the Casimir and vanwith two different polarizations of the electric fielgarallel
der Waals forces including the effect of covering layers onand perpendicular to the plane formed kbyand thez axis,
the surface of interacting bodig$wo plates or a sphere respectively, andk is the two-dimensional propagation vec-
above a plate In Sec. lll the influence of the finite conduc- tor in thexy plane.
tivity of the metal on the Casimir force is reexamined. Sec- For the vacuum energy density per unit area of the bound-
tion IV contains a calculation of the Casimir force betweening planes(which is also infinit¢ one obtains from Eq(l)
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Now we introduce a new variablé= —iw in Eqgs.(5) and

E(a,d) A (= X
&a,d)= e EJ; k dk}n: (0N+w@), (2 (7). The result is
. . . 1 (- 2
wherel is the side length of the bounding plane. The fre- > C(,(lvz)z_f din AQ2)j +_J d (8)
quencies of the surface modes.;? are found from the > Oki o). ¢ o+ c, &

boundary conditions for the electric field and magnetic in-

duction imposed at the poinis= —a/2—d, —a/2, a/2, and  where both contributions on the right-hand side diverge. To
a/2+d [27]. These boundary conditions for each polariza-remove the divergences we use a regularization procedure
tion lead to a system of eight linear homogeneous equationghat goes back to the original Casimir papaf] (see also
The requirements that these equations have nontrivial solli6,28]). The idea of this procedure is that the regularized
tions are physical vacuum energy density vanishes for infinitely sepa-

L rated interacting bodies. From Ed8) and(8) it follows that
AD(wil)=e” R 2] (r iy pefid—r g e~ Fd)2efo?

_ - _ 1 (= 2
— (g 1R =rig e h)%e =0, (3 iim > wff?=o— f £dinal i)+ - f dé, (9)
a—o N * Ci
AB @) =e"Re@ 29 (q) 7R~ q 076 1) %eR0?
(qaheRI— glge Rud)2eRor] =0, where the asymptotic behavior 4f?) ata— is given by

Here the following notations are introduced: AP =eRomRa)a=2Rad(r iy efad—r e )2,
. . (10
lap=RagpTRgeq, du=RaERg, “ ASCZ):e(RO—R2)a—2R2d(ql+Oq1+2eRld_qioqize—Rld)2_
2
RZ=K2—¢ @ go=1, @=0,1,2. Now the regularized physical quantities are found with the
@ 2’ ' T help of Egs.(8)—(10):
Note that to obtain Eq93) we set the determinants of the L Lo
linear system of equations equal to zero and do not perform (2 w(k,ﬁ )> EE w(k,h )— lim E w(k,lhz)
any additional transformations. This is the reason why Egs. " reg a—e
(3) do not coincide with the corresponding equations of . (12);
[5,27], where some transformations were used that are not :if ¢d Inw. (12)
equivalent in the limif w|— (see below. 2m ) AL g)

Summation in Eq(2) over the solutions of Eq3) can be

performed with the help of the argument principle which wasThey can be transformed to a more convenient form with the
applied for this purpose if28]. According to this principle, help of integration by parts,

1 —i
> w(k152)=—.( f wdIn AL o) 1 (= AL(jg)
LU PR R (2 a)f(l’z)) :—f déin———-, (12)
n n . 2m) - Agolvz)(i &)
+f wdIn A<1'2>(w)), (5 _ . ,
C, where the term outside the integral vanishes.
To obtain the physical, regularized Casimir energy den-

whereC, is a semicircle of infinite radius in the right half of sjty one should substitute the regularized quantitie into
the complexw plane with its center at the origin. Notice that £q (2) instead of Eq(8) with the result

the functionsA*?(w), defined in Egs(3), have no poles.
For this reason the sum over their poles is absent from Eq.

ﬁ o o
(5). & ad=—f kdkfd InQ4(i &) +In Qi
The second integral in the right-hand side of ES). is regl &) 47?J)o 0 finQu(19+InQ19)],
simply calculated with the natural supposition that (13
de, (w

fim e, (@) =1, lim et g e Where

w— X w— % d(l)

e AWy
along any radial direction in the complexplane. The result Qq(i&)= NORPS
is infinite, and does not depend an AZ(i8)

o R0 iy e Rad|
f wdlin A<1'2>(w):4f do. ) =1- 1+° 1+2 — 1012 | e 2R,
c. c. Fiof 1287 — Myl
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AP ig) &
)= k2=>-(p2—1). 15
RIO= 1@, il (15
- QuoaeRe— g e Rl 2 Cma In terms ofp,¢ the Casimir energy densit§l3) takes the
=1— e <o, form

Qigd12™ ! — qr e
(14) h [~ "2 : -
Eregla,d)= a22), P dp . £7dE[InQq(i18) +InQy(i8)],
In Eq. (13) the fact thatQ, , are even functions of has been T

) 16
taken into account. (16)

For the convenience of numerical calculations below wewhere a more detailed representation for the functiQag
introduce the new variablg instead ofk defined by, from Eq.(14) is

_ 2
Qui8)=1 (Ki—e1p)(e2K +21Ky) —(Ky+e1p) (62K —e1Kz)e ngld/C) —2¢palc
1 — 1 _ 1
(Ki+e1p)(e2Ki+e1Ky) = (Ki—e1p) (K, —,Ky)e™ 2Kadle
17
Qu(i§)=1- (K= p)(K1+Kz) = (K +p)(Ky— Kz)e_ngld/C) 2e*2§pa/c
’ (K1+P) (Ky+Kp) = (Ky = p) (K — Kp)e ™ 2éKadre '
|
Here all permittivities depend ot and This expression coincides with Lifshitz res{@—11] for the
force per unit area between semispaces with a dielectric per-
K —k (i§)=\/T(i)=ER ( r.nit.ti'vity g, If the covering layers are absent. To obtain this
=K (1§)=1\p g,(1€ £ i£), limiting case from Eq.(19) one should putd=0 and &,
19 2
a=1,2. 5
Fl(a)=— f 2d f 3d
For a=0 one hap=CcR,/¢, which is equivalent to Eq15). 4a) 2m%cd)1 Par, ¢ dg
Notice that the expressiorn$3) and(16) give us the finite 5 1
values of the Casimir energy density which is in less com- % { K2+82p) engaIc_l}
mon use than the force. Thus [i] no finite expression for Ko—esp

the energy density is presented for two semispacef2Th

the omission of infinities is performed implicitly, namely in- J{
stead of Eqs(3) the result of their division by the terms

containing expiR,a) was presented. The coefficient near

expRqa), however, turns into infinity o€, . In other words  The corresponding quantity for the energy density follows
Egs.(3) are divided by infinity. As a result the integral along from Eqg. (16):

C, is equal to zero ih27] and the quantity2) would seem

Ko+p
Ka—p

2
) e2§palc_ 1

-1
] : (20

to be finite. Fortunately, this implicit division is equivalent to 3 o =
the regularization procedure explicitly presented above. That 5reg(a)=—4 > zf p dpf §&°d¢
is why the final results obtained |27] are indeed correct. In Tt 0
[11] the energy density is not considered at all. _ 2
L . - Ko—€2p|° 5.0y
From Eqg.(16) it is easy to obtain the Casimir force per X{In|1— K Teonpl © cpalc
unit area acting between semispaces covered with layers: 2T eP
Ko—p)?
9 . (a.d +In[1— g~ 2¢palc ] (21
Fogad=- eI 20 Katp

The other possible method to obtain the force between semi-
___ J’wpzdpjmgs‘ de spacesbut with a permittivitys,) is to consider the limit
27%cdJ1 0 d—o in Eq. (19. In this limit we obtain once more the

) ) results(20) and (21), whereK,,s, are replaced b¥K,,e;.
1-Qq(i§) 1-Qy(i¢) (19 Note also that we do not take into account the effect of
Qq(i¢) Q,(i¢) nonzero-point temperature, which is negligible éo€4¢/T.
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The independent expression for the physical energy den- a2 ke 3 he
sity is especially important because it allows one to obtain an FOa)=— 520 =" FO(@)=— ——R—. (23
approximate value of the force for the configuration of a a

sphere(or a spherical lensabove a semispace. Both bodies _ )
To calculate numerically the corrections to E3) due to

can be covered with layers of another material. According to,~ ~" =
the proximity force theorem, this force is the finite conductivity of a metal we use the tabulated data

for the complex index of refraction+ik as a function of
frequency[34]. The values of dielectric permittivity along

Fsi(@,d)=2mREe4(a,d) the imaginary axes can be expressed throughe (la)
=2nk with the help of the dispersion relatiga 1]

AR (= o
J IOOllfJJO E2delInQu(i&) +IN Qi 6)],

" omc)s wlme(w)

2 o
o e(i&)=1+ Wfo oy do. (24)
) ) _ ) Here the complete tabulated refractive indices extending
whereR s the sphere radius ar@, , are defined in Eq17).  from 0.04 eV to 10000 eV for Al and from 0.1 eV to 10 000
In the absence of layer§.q(a,d) should be replaced by ev for Au from [34] are used to calculate la(w). For
Ereg(a) from Eq. (21). frequencies below 0.04 eV in the case of Al and below 0.1
Although the expressiofR2) is not exact it allows calcu- ey in the case of Au, the tabulated values[8#] can be
lation of the force with a very high accuracy. As was shownextrapolated using the free electron Drude model. In this

in [6] (see also[31,32) the proximity force theorem is case, the dielectric permittivity along the imaginary axis is
equivalent to additive summation of interatomic van defrepresented as

Waals and Casimir force potentials with a subsequent nor-

malization of the interaction constant. As was showh38] wSa
the accuracy of such a method is very higje relative error e, (1§)=1+ £+ (29

of the results obtained is less than 0.Q%ifthe configuration
corresponds closely to two semispaces, which is the case fgy

a spherdlens of a large radiusk>a above a semispace. | ojayation frequencyw,=12.5 eV andy=0.063 eV were

In the following sections the above general results will be, g0 for the case of Al based on the last results in Table XI
used for computation of the Casimir and van der Waal,, 1, 394 of[34]. In the case of Au, the analysis is not as
forces acting between real metals. straightforward, but proceeding in the manner outlined in

[25] we obtain w,=9.0 eV andy=0.035 eV. While the
Il INELUENCE OF EINITE CONDUCTIVITY values ofq)p an_d y bgsed on optical data from various
ON THE CASIMIR EORCE sources mlght differ slightly, we _have founq that the result-
ing numerically computed Casimir forces differ by less than

Let us first consider semispaces made of aluminum of%. In fact, if for Al metalw,=11.5 eV andy=0.05 eV are
gold. Aluminum-covered interacting bodi€a plate and a used as iff25], the differences are extremely small. Of the
lens were used in the experimenrit$,8] because of its high values tabulated below, only the value of the force in the
reflectivity for wavelengthgplate-sphere separationiarger  case of a sphere and a semispace atuhb separation is
than 100 nm. The thickness of the Al covering layer was 300ncreased by 0.1%, which on round-off to the second signifi-
nm. This is significantly greater than the effective penetracant figure leads to an increase of 1%. The results of numeri-
tion depth of the electromagnetic zero-point oscillations intocal integration of Eq.(24) for Al (solid curve and Au
Al, which is do=\,/(27)~17nm (see the Introduction  (dashed curveare presented in Fig. 2 on a logarithmic scale.
That is why the Al layer can be considered as infinitely thickAs is seen from Fig. 2, the dielectric permittivity along the
and modeled by a semispace. In the experini@hthe test imaginary axis decreases monotonically with increasing fre-
bodies were covered by a 500 nm Au layer, which also camuency[in distinction to Ime(w) which possesses peaks
be considered as infinitely thick. @] and[8] the Al sur- corresponding to interband absorpfjon
faces were covered, respectively, @ 20 nm andd=8 nm The obtained values of the dielectric permittivity along
sputtered Au/Pd layers to reduce the oxidation processes ihe imaginary axis were substituted into E¢80) and (22)

Al and the effect of any associated electrostatic charges. THeéaking account of Eq(21)] to calculate the Casimir force
influence of such additional thin layers on the Casimir forceacting between real metals in configurations of two semi-
is discussed in Sec. IV. spaces ¢S and a spher@ens above a semispacsl). Nu-

The values of the force per unit area for the configurationmerical integration was done from an upper limit of* v/
of two semispaces and the force for a sphere above a sentb a lower limit of 10 © eV. Changes in the upper limit or
space are given by Eq20) and Egs.(21) and (22). For a  lower limit by a factor of 10 led to changes of less than
distancea much larger than the characteristic wavelength 0f0.25% in the Casimir force. If the trapezoidal rule is used in
absorption spectra of the semispace mateNgl,Eqs.(20)  the numerical integration of Eq&4) the corresponding Ca-
and(21) lead[11] to the following results in the case of an simir force decreases by a factor less than 0.5%. The results
ideal metal €,— ) are presented in Fig.(® (two semispacgsand in Fig. 3b)

herew,,=(27c)/\,, is the plasma frequency andis the
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FIG. 2. The dielectric permittivity as a function of imaginary
frequency for Al(solid line) and Au(dashed ling

)
k-4

for a sphere above a semispace by the solid lingsdterial
of the test bodies is aluminunand 2(material is golg. On
the vertical axis the relative forde,/F 2 is plotted in Fig.
3(a) and F/F®) in Fig. 3b). These quantities provide a
sense of the correction factors to the Casimir force due to th :
effect of finite conductivity. In the horizontal axis the space &
separation is plotted in the range 0.1gxin. We do not
present the results for larger distances because then the te
perature corrections to the Casimir force become significan o5 L L L L L L L L
At room temperature the temperature corrections contribut o1 0z 08 o4 05 06 07T 08 08 10

only 2.6% of F{Y ata=1 um, but ata=3 um they con- (b) a (um)

tribute 47% Oﬂ:(scl))* and ata=5um 129% Ongl)) [35]. Itis FIG. 3. The correction factor to the Casimir force due to finite
seen that the relative force for Al is larger than for Au at theconductivity of the metal as a function of the surface separation.
same separation, as it should be because of the better reflethe solid lines 1 and 2 represent the computational results for Al
tivity properties of Al. and Au, respectively, in the configuration of two semispaegand

for a spherdlens above a semispadb). The dashed lines 1 and 2
represent the perturbation correction factor up to the fourth order
for Al and Au, respectively.

elative force F_/ F

TABLE I. The correction factor to the Casimir force due to the
finite conductivity of the metal from the results of different authors
and the present paper in configurations of two semispa®safid

: It is interesting to compare the results obtained with those
a sphergleng above a semispacsl].

of Refs.[23,24 and [25,26 where similar computations

) were performedin [25,26 analytical expressions equivalent
Perturbation to Egs.(20) and (21) were used; in23,24], however, the
Test a Computation This  theeory energy density between plates was obtained by numerical
bodies Metal (um) [23,24 [25,26 paper [17] integration of the force, which can lead to some additional

erron. All the results for the several values of distance be-

ss Al 01 0557 0.55 0.55 0.56 tween the test bodies are presented in Table I.

sl Al 01 0651 0.63 0.62 0.61 As Table | shows, our calculational result®lumn 6 are

ss  Au 01 0.48 0.49 0.62 in agreement with 25,26 (column 5 up to 0.01. At the

sl Au 01 0.55 0.56 0.60 same time the results ¢£3,24 (column 4 for Au are in

ss Al 05 0.85 0.84 0.84 disagreement with botf25,26 and this paper. The results
sl Al 05 0.88 0.87 0.88 for Al are presented if23] ata=0.1 um only. Note that the

ss Au 05 0.657 0.81 0.81 0.81 results ata=3 um (the last four lines of Table) lare valid

sl Au 05 0.719 0.85 0.85 0.85 only at zero temperature. They do not take into account tem-
sl Au 0.6 0.78 0.87 0.87 0.87 perature corrections, which are significant for such separa-
ss Al 3 0.96 0.96 0.97 tion. Also, the results di23,24] for Cu-covered bodies are in

sl Al 3 0.97 0.97 0.98 disagreement witli25,26. We do not consider Cu here be-
ss Au 3 0.96 0.95 0.96 cause the outer surfaces in the recent experiments were cov-
sl Au 3 0.97 0.96 0.97 ered with thick layers of A(i3] and Al[4,8]. The hypothesis

of [24] that a Au film of 0.5 um thickness could signifi-
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cantly diffuse into a Cu layer of the same thickness at roor 19 T T T T T T T T
temperatures seems unlikely. In any case it is not neede
because the dielectric permittivities of Au and Cu along the o9
imaginary axis are almost the sarf£7,25,26 and, conse-
quently, will also lead to the same Casimir force.

The computational results obtained here are in gooc
agreement with analytical perturbation expansions of the Ce
simir force in powers of relative penetration depth
=\p/(2m) of the electromagnetic zero-point oscillations

0.8 |-

F_1

2
0.7

—Al

Relative force

0.6 Au
into the metal. Representatid@5) with y=0 is applicable ---= d=20nm
for wavelengthgspace separatioptarger tham ,, (the cor- osll e d=30nm
rections due to relaxation processes are small for distance
a<5 um). It can be substituted into EqR0) and(21) to get o0 . . L L L L L L
the perturbation expansion. According to the results of Ref 1 02 03 04 05 06 07 08 09 10
[17] the relative Casimir force with finite conductivity cor- (@) a (pm)
rections up to the fourth power is 10 . . . . . . . .
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400/  163x7?\5; (b) a(um)
+3| 1~ 355 2 (27)
3 7350/ a FIG. 4. The correction factor to the Casimir force due to finite
_ conductivity of the metal as a function of the surface separation for
for a spherglens above a semispace. Al test bodies covered by thin layers of Au. The dashed lines rep-

In Fig. 3@ (two semispacgshe dashed line 1 represents resent the results for a layer thickness 20 nm and the dotted lines
the results obtained by Eq26) for Al with \,=107 nm  for d=30nm. The case of the configuration of two semispaces is
(which corresponds ta,=11.5 eV}, and the dashed line 2 shown in(a and for a spherélens above a semispace ib). The
the results obtained by E¢26) for Au with \,=136 nm  solid lines represent the results for pure Al and Au test bodies.
(wp=9eV) [25]. In Fig. 3b) the dashed lines 1 and 2 rep- . . .
resent the perturbation results obtained for Al and Au by Equ covering layers. The computational results for a configu-

(27) for a lens above a semispace. As we can see from th.ré':“ﬁ.On .Of two semispaces are shown in EiQa).4 Here the
last column of Table | ; : dSO|Id lines represent once more the Casimir force between

, the perturbation results are in goo . :
agreementup to 0.02 with computations for all distances SemISpaces of pure Al and Au, respectively, the dgshed and
larger than\,. Only ata=0.1.m for Au are there larger dotted lines are for the cases of Au layers of thickness
deviations bgcauske — AU~ 0 1um =20nm andd=30nm covering Al. When the layers are
pL—"%p Saladlls present, the space separateis measured from their outer

surfaces according to Eq§l9) and (22). In Fig. 4(b) the
analogous results with the same notations are presented for

In this section we consider the influence of thin outerthe configuration of a sphextens above a semispace.
metallic layers on the Casimir force value. Let the semis- AS Fig. 4 shows, a Au layer af=20nm thickness sig-
paces made of Ald,) be covered by Au ;) layers as nificantly de_creas_es the relative Casimir force between Al
shown in Fig. 1. For the configuration of a sphere above Surfaces. Wlt_h this layer the f_orce approaches the value for
plate such a covering made of Au/Pd was used in experiPuré Au semispaces. For a thicker Au layemsf 30 nm the
ments[4,8] with different values of the layer thicknessIn relative Casimir force is scarcely affegted by the u'nderlymg
this case the Casimir force is given by E(s9) and(22), Al For example, at a space separatiar300nm in the
where the quantitie®; £i ) are expressed by Eqe7) and ~ configuration of two semispaces we hakves/ F@=0.773
(18). The computational results for,(i£) are obtained in for pure Al, Fso/F{9=0.727 for Al with a 20 nm Au layer,
Sec. Il from Eq.(24). Substituting them into Eq€19) and ~ Fss/F¥=0.723 for Al with a 30 nm Au layer, and
(22) and performing a numerical integration in the same waM:SS/Fgg)zo.?ZO for pure Au. In the same way for the con-
as above one obtains the Casimir force including the effecfiguration of a sphere above a semispace the results are

IV. CASIMIR FORCE BETWEEN LAYERED SURFACES
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Fo/F=0.817 (pure A), 0.780 (Al with a 20nm Au e
layen, 0.776 (Al with a 30nm Au layey, and 0.774(pure So(w)<—~, So(w)<l. (30
Au). Both limiting casesd—oo andd—0 were considered
and the results are shown to coincide with those of Sec. lllin our case, however, the role &, is played by the layer
Let us now discuss the application range of the resultshicknessd (the influence of nonlocality effects on the van
obtained for the case of covering layers. First, from a theoder Waals force is discussed [i87,39).
retical standpoint, the main question concerns the layer From Eqs(28) and(29) it follows that for pure Au layers
thicknesses to which the formulgd9) and (22) and the (\p=136nm the space dispersion can be neglected only if
above computations can be applied. In the derivation of Seei=25—30 nm. For thinner layers a more general theory tak-
Il the spatial dispersion is neglected and, as a consequend@g into account nonlocal effects should be developed to cal-
the dielectric permittivities:, depend only onw and not on  culate the Casimir force. Thus for such thin layers the bulk
the wave vectok. In other words the field of vacuum oscil- tabulated data of the dielectric permittivity depending only
lations is considered as time dependent but space homogen frequency cannot be usésee the experimental investi-
neous. Except for the thickness of the skin laygthe main  gation [39], demonstrating that for Au the bulk values of
parameters of our problem are the velocity of the electronglielectric constants can be obtained only from films whose
on the Fermi surface;¢, the characteristic frequency of the thickness is about 30 nm or moréThat is why the dashed
oscillation field,w, and the mean free path of the electrdns, lines in Fig. 4 @d=20 nm layer} are subject to corrections
For the considered region of high frequenciesicrometer due to the influence of spatial dispersion, whereas the solid
distances between the test bodlidse following conditions lines represent the final result. From an experimental stand-
are valid[36]: point thin layers of order a few nanometers grown by evapo-
ration or sputtering techniques are highly porous. This is
Ve particularly so in the case of sputtered coatings as shown in
—< §p<l. (28 [40]. The nature of the porosity is a function of the material
@ and the underlying substrate. Thus it should be noted that the
theory presented here, which used the bulk tabulated data for
Note that the quantity -/ w in the left-hand side of E(28) &4, cannot be applied to calculate the influence of thin cov-
is the distance traveled by an electron during one period ogring layers ofd<20 nm[4,7] and ofd=8 nm[8,41] on the
the field, so that the first inequality is equivalent to the as-Casimir force. The measured high transparency of such lay-
sumption of spatial homogeneity of the oscillating field. Usu-ers for the characteristic frequencigg7] corresponds to a
ally the corresponding frequencies start from the far infraredarger change of the force than what follows from E@®)
part of the spectrum, which means that the space separati@md (22). This is in agreement with the qualitative analyses
a~100um [6]. The region of high frequencies is restricted above.
to the short-wave optical or near ultraviolet parts of the spec- The role of spatial dispersion was also neglectef4i),
trum, which correspond to surface separations of severalhere an attempt was made to describe theoretically the in-
hundred nanometers. For smaller distances absorption bandkience of thin metallic covering layers on the Casimir force
the photoelectric effect, and other physical phenomenin experiment$4,8]. Also, the bulk materials properties were
should be taken into account. For these phenomena, the gemsed for the Au/Pd films. As shown JA3], the resistivity of
eral Eqs(19) and(22) are still valid, however, if one substi- sputtered Au/Pd films even of 60 nm thickness has been
tutes the experimental tabulated data with the dielectric pershown to be extremely high, of order 200Dcm. In[42] it
mittivity along the imaginary axis incorporating all these was concluded that the maximum possible theoretical values
phenomena. of the force including the covering layers are significantly
Now let us include one more physical parameter—thesmaller than the measured ones. The datgt ], however,
thicknessd of the additional, i.e., Au, covering layer. It is are shown to be consistent with a theory neglecting the in-
evident that Eqs(19) and(22) are applicable only for layers fluence of layers. I1i4,8] the surface separations are calcu-
of such thickness that lated from the Al surfaces. Including the thickness of the
covering layers reduces the distance between the outer sur-
v faces, which is now smaller than the distance between the Al
—<d. (290  surfaces. Thus, contrary {d2], the theoretical value of the
force should increase when the presence of the layers is in-
cluded. The error made i%2] can be traced to the follow-
Otherwise an electron goes out of the thin layer during oneéng. The authors of42] changed the data ¢8] by shifting
period of the oscillating field and the approximation of spaceall the points to larger separations byy216 nm” (where
homogeneity is not valid. Il is so small that the inequality h=8 nm is the layer thickness ii8]) instead of shifting to
(29 is violated, the spatial dispersion should be taken intassmaller separations by 16 nm as based&n|f the correct
account, which means that the dielectric permittivity wouldshift is done then the theoretical values of the force, includ-
depend not only on frequency but on a wave vector alsoing the effect of covering layers, are not smaller than the
e1=e1(w,Kk). So, if (29) is violated, the situation is analo- experimental values. Hence the conclusioi4g] about the
gous to the anomalous skin effect where only space dispeprobable influence of new hypothetical attractions based on
sion is important and the inequalities below are valid: the experiment$4,8] is unsubstantiated.
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spaces and (b) for a sphere above a semispace. In both
figures the solid line represents the results for aluminum test
bodies, and the dashed line for gold ones. The absolute val-
ues of the van der Waals force and surface separatiare
plotted along the vertical and horizontal axes on a logarith-
mic scale. The asymptotic expressions in the limit aof
<)\ following from Egs.(20)—(22) are[11]
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Here it is important to note that the Hamaker constdris
dependent on the material properties of the boundaries and is
unknown a priori. This is in contrast to the ideal Casimir
force limit of Eq.(23) (obtained fora>\ ) which is material
independent and is a function #fandc only. Thus it is not
10° prrrr —rrr ———rr reasonable to express the van der Waals force as a ratio

E relative to Eq.(31). The asymptotic behavior described by
Eq. (31) will be used below to determine the value tof

The computations were performed with a step=5 nm
in the interval 10 nnrca<100 nm,Aa=1 nm in the interval
4nm<a<10nm, Aa=0.2nm in the interval 2nm
<as<4nm, andAa=0.1nm for 0.5nm=a<2nm. At a
=100 nm the force values coincide with those in Fig. 3. For
a<0.5nm the repulsive exchange forces dominate. As is
seen from Fig. 5 for both configurations and the two metals
under consideratiofAl and Au) the range of purely van der
Waals force described by Eq&1) turns out to be extremely
narrow. It extends from 0.5nm to 2—4 nm only. For larger
00 0 o distances the transition from the force-distance dependence

3 _4 : )
b) a(um) ~a" ° to the dependence a beglns_(for two semispaces

and from the dependeneea 2 to ~a 3 (for a lens above a

FIG. 5. The absolute value of the van der Waals force as &emispace This conclusion is in qualitative agreement with
function of surface separation is shown on a logarithmic scale. Théhe results of18], where the van der Waals force between a
solid lines represent the results for Al and the dashed lines represeftetallic sample and the metallic tip of an atomic force mi-
the case of Au. The configuration of two semispaces is showa in croscope was calculatgdur choice of a sphere is formally

van der Waals force F_ per unit area (N/mz)

-
(=]

E

van der Waals force F_ per unit radius (N/m)

and that for a spheréens above a semispace ). equivalent to the paraboloidal tip considered18]). Calcu-
lation in [18] was performed by numerical integration of a
V. VAN DER WAALS FORCE AND INTERMEDIATE Lifshitz-type equation for the force with the permittivity of
REGION the metal given by the plasma modé&q. (25) with y=0].

Strictly speaking, the plasma model is not applicable&or

As we see from Figs. 3 and 4, at room temperature the<) , (see Sec. I)l. That is why we have used the tabulated
Casimir force does not follow its ideal field-theoretical ex- Optical data for the Comp|ex refractive index in our compu-
pression(23). For space separations less trenlum the  tations. However, the correct conclusion about the extremely
corrections due to the finite CondUCtiVity of the metal arénarrow distance range of the pure|y van der Waals region for
rather largethus, ata=1 um they are around 7-9% for a metals is obtainable by using the plasma model to represent
lens above a semispace, and 10-12 % for two semispaces;tkir dielectric properties. Note that for dielectric test bodies
a=0.1um, around 38-44%¢(), and 45-52% ¢9)]. For  the pure van der Waals regime extends to larger distances.
a>1um the temperature corrections increase very quicklyFor example, in the configuration of two crossed mica cylin-
(see Sec. ). Actually, the range presented in Figs. 3 and 4ders(which is formally equivalent to a sphere above a semi-
is the beginning of a transition with decreasiagrom the Space the van der Waals regime extends from 1.4nm to
Casimir force to the van der Waals force. Our aim is t012 nm, as was experimentally shown[#4].
investigate the intermediate region in more detail for smaller

a and to find v_alues of where the pure{nonretarde)jvan V1. DETERMINATION OF HAMAKER CONSTANTS

der Waals regime starts. To do this for the case when no FOR Al AND Au

additional covering layers are present we numerically evalu-

ate the integrals in Eq$20)—(22) for a<<100 nm. The results of the previous section make it possible to

The computational results obtained by the same procedetermine the values of the Hamaker constdnfrom Eg.
dures as in Sec. Il are presented in Fig®) %or two semi-  (31) for aluminum and gold. Let us start with the configura-
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tion of two semispaces. As we see from the computational VIl. CONCLUSIONS AND DISCUSSION

results presented in Fig.(® (solid curve the asymptotic . .
regime for Al extends here from=0.5 nm toa=4 nm. We General expressions have been obtained for both the Ca-

use a narrower interval 0.5 nm—2 nm for the determination 0§imir energy density and the force in the configuration of two
n and H. The power indexn of the force-distance relation plates(semispaceswith different separations between. them.
given by the first formula of Eq(31) is equal ton=3.02 The case where the sqrfaces were cove.red by thln_lgyers
+0.01 in the interval considered. To obtain this value the™ade of another material was also considered. Additional
slopes between adjacent points, i.e., 0.5-0.6 nm, 0.6—0§arifications of the regularization procedure were given.
nm, etc., were calculated and then the average and the stahbis is important for obtaining a finite physical value for the
dard deviation were found. The corresponding mean value gthergy density. The latter quantity is very important for ob-

the Hamaker constant is taining the Casimir force, for the configuration of a sphere
(lens above a platgsemispacewhich was used in recent
HQ'S:(3.67t 0.02x10 *°J. (32 experiments. For this configuration a general expression for

the Casimir force taking account of layers covering a lens
Considering the computational results for fdashed curve and a semispace, was arrived at by use of the proximity force
of Fig. 5@)] we find the asymptotic regime in a narrower theorem.

interval 0.5nm-2nm with the power index=3.04+0.02. The Casimir force was recalculated between Al and Au
The mean value of the Hamaker constant turns out to beest bodies for the configurations of two semispaces and a
equal to sphere(lens above a semispace. The disagreement between
A o the results 91[23,24] and [25,2(_5] was resolved in favor of
Hgs=(4.49+0.07X 10 *J. (33 [25,26. Additionally, computational results were compared

with the perturbation expansion up to fourth order in powers
For the configuration of a sphefeens above a semispace of the relative penetration depth of electromagnetic zero-
the results are presented in Figbp(solid curve for Aland  point oscillations into the metal. The perturbation results are
dashed curve for Au In both cases the asymptotic region also in agreement with25,26/ and with our computations
extends froma=0.5nm toa=2nm only, with the mean for space separations larger than a plasma wavelength of the
values of the power index in the second formula of B31)  metal under studgnot much larger, as is to be expected from
n=2.04+0.02 (Al) and n=2.08+0.03 (Au). The corre- general considerationsWe have performed computations of

sponding mean values of the Hamaker constant are the Casimir force between Al test bodies covered by Au thin
layers. A monotonic decrease of the correction factor to the

H4 = (3.60+0.06) < 10 9], Casimir force was observed with increase of the layer thick-

(34  ness. A qualitative analysis leads to the conclusion that the

H§|“=(4.31t 0.14 <10 °J. thickness of the layer should be large enough to allow ne-

glect of the spatial dispersion of the dielectric permittivity
It is seen that in the case of Au and a sphere above a semnd the use of tabulated bulk optical data for the complex
space configuration the behavior of the force shows less préefractive index. For the Au layers the minimal allowed
cise agreement with the second formula of E&Y). thickness for such an approximation was estimatedd as
The above results obtained for the two configurations in-=30nm in agreement with the experimental evidence of
dependently give the possibility to derive new values of thd 39]. For smaller layer thicknesses the tabulated bulk optical
Hamaker constant for Al and Au. Taking into account thedata cannot be used. In this case, calculation of the Casimir
value of Eq.(32) and the first expression from E(B4) we  force would require direct measurement of the complex re-
get fractive index for the particular metéhot only the frequency
dependence but also its dependence on the wave yector
HA'=(3.6+0.1)x 10 *°J. (35 The van der Waals force was calculated between Al and
Au test bodies in configurations of two semispaces and a
The absolute error here was chosen in such a way as to covepherglens above a semispace. The computations were per-
both permitted intervals in Eq$32) and (34). formed starting from the same general expressions as in the
For Au the tolerances of the second value from 8¢)  case of the Casimir force and using the same numerical pro-
are two times wider than the permitted interval from Eg.cedure and tabulated optical data. The extremely narrow re-
(33). That is why the most probable final value of the Ha-gion where the pure nonretarded van der Waals power-law

maker constant for gold can be estimated as force acts was noted. This region extends fr@m0.5 nm to
a=2—4nm only. For larger distances a wide transition re-
HAY=(4.4+0.2)x 10 1°J. (36)  gion starts, where the nonretarded van der Waals force de-

scribed by Eq.(31) gradually transforms into the retarded
The decreased accuracy from E@5) is explained by the van der WaalgCasimip force from Eq.(23) when the space
extremely narrow region of pure van der Waals force law forseparation approaches the vahre 1 um. The values of the
gold. These values dfl for gold are compatible with those Casimir force given by Eq31) are never achieved at room
obtained previously. For example, [iA5] values between 2 temperaturéata=1 um due to the finite conductivity of the
and 4x 10 1°J were obtained using different procedures. metal, while for larger distances the temperature corrections
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make a strong contributignUsing the asymptotic region of strong constraints for the constants of long-range interactions
the pure nonretarded van der Waals force, values of the Hand light elementary particles predicted by the unified gauge
maker constant for Al and Au were obtained. For Al thetheories, supersymmetry, and supergrayy. Such infor-
reported accuracy corresponds to a relative error of 2.8%mation is unique and cannot be obtained even by means of
and for Au it is around 4.5%. the most powerful modern accelerators. In R8§] the con-

The results obtained do not exhaust all the problems constraints for Yukawa-type hypothetical interactions were
nected with the role of the finite conductivity of the metal in strengthened up to 30 times in some distance range on the
precision measurements of the Casimir force. The maiyasis of the Casimir force measurements of R&f. The
problem to be solved is investigation of corrections to thejncreased precision of the Casimir force[#] provided the
force due to thin covering layers. This would demand theo'possibility to strengthen constraints up to 140 times on
retical work on the generalization of the Lifshitz formalism Yukawa-type interactions at smaller distandés$]. It is
for the case when the spatial dispersion can be important, iRighly probable that new measurements of the Casimir force
addition to the frequency dependence. Also, new measuregith increased accuracy will serve as an important alterna-

ments of the complex refractive index are needed for theive source of information about elementary particles and
layers under consideration. What is more, the finite conducfyndamental interactions.

tivity corrections to the Casimir force should be considered,
together with the corrections due to the surface roughness
(see, e.g.[7], where the nonadditivity of both influential
factors is demonstratednd to finite temperature. This com-
bined research is necessary for both applied and fundamental G.L.K. and V.M.M. are grateful to the members of the
applications of the Casimir effect. It is known that measure-Department of Physics of the Federal University of Paraiba,
ments of the Casimir force provide the possibility to obtainwhere this work was partly done, for their hospitality.
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