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Casimir and van der Waals forces between two plates or a sphere„lens… above a plate
made of real metals
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The Casimir and van der Waals forces acting between two metallic plates or a sphere~lens! above a plate are
calculated, accounting for the finite conductivity of the metals. A simple formalism of surface modes is briefly
presented which makes it possible to obtain a generalization of the Lifshitz results for the case of two
semispaces covered by thin layers. Additional clarification of the regularization procedure provides the means
to obtain reliable results not only for the force but also for the energy density. This, in turn, leads to the value
of the force for the configuration of a sphere~lens! above a plate, both of which are covered by additional
layers. The Casimir interaction between Al and Au test bodies is recalculated using tabulated optical data for
the complex refractive index of these metals. The computations turn out to be in agreement with perturbation
theory up to fourth order in the relative penetration depth of electromagnetic zero-point oscillations into the
metal. The disagreements between the results recently presented in the literature are resolved. The Casimir
force between Al bodies covered by thin Au layers is computed, and the possibility of neglecting spatial
dispersion effects is discussed as a function of the layer thickness. The van der Waals force is calculated
including the transition region to the Casimir force. The pure nonretarded van der Waals force law between Al
and Au bodies is shown to be restricted to a very narrow distance interval from 0.5 nm to~2–4! nm. More
exact values of the Hamaker constant for Al and Au are determined.

PACS number~s!: 12.20.Ds, 03.70.1k, 78.20.2e
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I. INTRODUCTION

Recently, considerable attention has been focused on
van der Waals and Casimir forces acting between ma
scopic bodies. As for the van der Waals force, interest i
has quickened owing to its application in atomic force m
croscopy ~see, e.g., the monographs@1,2# and references
therein!. Interest in the Casimir force was rekindled aft
new experiments@3,4# where it was measured more precise
in the case of metallic test bodies.

It is common knowledge that both forces are connec
with the existence of zero-point vacuum oscillations of t
electromagnetic field@5,6#. For closely spaced macroscop
bodies, the virtual photon emitted by an atom of one bo
reaches an atom of the second body during its lifetime. T
correlated oscillations of the instantaneous induced dip
moments of those atoms give rise to the nonretarded van
Waals force. The Casimir force arises when the distance
tween two bodies is so large that the virtual photon emit
by an atom of one body cannot reach the second body du
its lifetime. Nevertheless, the correlation of the quantiz
electromagnetic field in the vacuum state is not equal to z
at two points where the atoms belonging to different bod
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are situated. Hence nonzero correlations of the indu
atomic dipole moments arise once more, resulting in the
simir force ~which is also known as the retarded van d
Waals force!.

As is shown in @4,7,8#, the corrections to the Casimi
force due to the finite conductivity of the metal and surfa
roughness play an important role in the proper interpreta
of the measurement data. Temperature corrections, are
ligible in the measurement range of@4,7,8# ~the data of@3# do
not support the presence of finite conductivity, surfa
roughness, and temperature corrections which results in
agreement with the theoretically estimated values of th
corrections@7# in the measurement range of@3#!. In @4,7# the
values of the finite conductivity corrections to the Casim
force were found by the use of a perturbation expansion
the relative penetration depth of electromagnetic zero-p
oscillations into the metal, which starts from the general L
shitz formula @9–11#. The parameter of this expansion
lp /(2pa), wherelp is the effective plasma frequency of th
electrons anda is the distance between interacting bodie
Note that the coefficient near the first-order correction w
obtained in@12,13# and near the second-order one in@14# for
the configuration of two plane parallel plates. In@3,15# the
results of@12,13# and, correspondingly,@14# were modified
for the configuration of a spherical lens above a plate. To
this the proximity force theorem@16# was applied. The coef-
ficients to the third- and fourth-order terms of that expans
were first obtained in@17# for both configurations.

In applications to atomic force microscopy and the v
der Waals force, the Lifshitz formula and plasma model w
used in@18,19# for different configurations of a tip above
plate. In @20,21#, density-functional theory along with th
plasma model was used in the calculation of the van
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KLIMCHITSKAYA, MOHIDEEN, AND MOSTEPANENKO PHYSICAL REVIEW A 61 062107
Waals force. A more complicated analytical representat
for the dielectric permittivity~the Drude model with approxi
mate account of absorption bands! was used in@22# to cal-
culate the van der Waals force with the Lifshitz formu
between objects covered with a chromium layer.

The parameters of the plasma and Drude models~plasma
wavelength, electronic relaxation frequency! are not known
very precisely. Because of this, in@23# the attempt was un
dertaken to apply Lifshitz formalism numerically to gol
copper, and aluminum~see also@24#!. The tabulated data fo
the frequency-dependent complex refractive index of th
metals were used together with the dispersion relation to
culate the values of dielectric permittivity on the imagina
frequency axis. Thereupon the Casimir force was calcula
in @23# for configurations of two plates and a spherical le
above a plate in a distance range from 0.05mm to 2.5 mm.
The same computation based on the Lifshitz formalism
tabulated optical data for the dielectric permittivity was r
peated in@25# in a distance range from 0.1mm to 10 mm.
The two sets of results are in disagreement~see also@26#!.
Note that the higher-order perturbative calculations of@17# in
their application range are in agreement with@25,26# but also
disagree with@23,24#.

In this paper we present a brief derivation of the van
Waals and Casimir energy densities and forces between
parallel metallic plates or a plate and a sphere covered
thin layers of another metal~the configuration used in th
experiments@4,8#!. Two plates of sufficient thickness can b
modeled by two semispaces with some gap between th
The case of multilayered plane walls was considered in@27#.
In contrast to@27#, where the removal of the infinities of th
zero-point energy was not considered, we present explic
the details of the regularization procedure and its phys
justification. We next perform an independent computat
using tabulated optical data for the frequency-depend
complex refractive index of aluminum and gold with the go
of resolving the disagreement between earlier results.
results turn out to be in agreement with@25,26# with a pre-
cision of computational error less than 1%. Also, the infl
ence of the thin covering metallic layers on the Casimir fo
is determined. The range of applicability and exceptions
using the bulk metal optical data for the dielectric permitt
ity of the thin metallic layers are discussed. For smaller d
tances the intermediate~transition! region between the Ca
simir and van der Waals forces is examined. It is shown t
the transition region is very wide, ranging from several n
nometers to hundreds of nanometers. The pure van
Waals regime for aluminum and gold is restricted to sepa
tions in the interval from 0.5 nm to~2–4! nm only. More
exact values of the Hamaker constant for aluminum and g
are determined with the use of the computational data
tained.

The paper is organized as follows. In Sec. II the gene
formalism is briefly presented, giving the Casimir and v
der Waals forces including the effect of covering layers
the surface of interacting bodies~two plates or a sphere
above a plate!. In Sec. III the influence of the finite conduc
tivity of the metal on the Casimir force is reexamined. Se
tion IV contains a calculation of the Casimir force betwe
06210
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aluminum surfaces covered by thin gold layers. In Sec. V
van der Waals force is calculated in both configurations a
the transition region to the Casimir force is examined. S
tion VI contains a determination of the Hamaker const
values for aluminum and gold. In Sec. VII we present co
clusions and discussion, in particular, of possible appli
tions of the results obtained in experimental investigations
the Casimir force and for obtaining stronger constraints
the constants of hypothetical long-range interactions.

II. VAN DER WAALS AND CASIMIR FORCES BETWEEN
LAYERED SURFACES: GENERAL FORMALISM

We consider first two semispaces bounded by pla
(x,y) and filled with material having a frequency-depende
dielectric permittivity «2(v). Let the planes bounding th
semispaces be covered by layers of thicknessd made of an-
other material with a dielectric permittivity«1(v). The mag-
netic permeabilities of both materials are taken to be equa
unity. The region of thicknessa between the layers~see Fig.
1! is empty space. According to@28,29# van der Waals and
Casimir forces for such a configuration can be found by c
sideration of the surface modes for which divE50, curlE
50. The infinite zero-point energy of the electromagne
field, dependent ona andd, is given by@5,27#

E~a,d!5 1
2 \(

k,n
~vk,n

(1)1vk,n
(2)!. ~1!

Herevk,n
(1,2) are the proper frequencies of the surface mo

with two different polarizations of the electric field~parallel
and perpendicular to the plane formed byk and thez axis,
respectively!, andk is the two-dimensional propagation ve
tor in thexy plane.

For the vacuum energy density per unit area of the bou
ing planes~which is also infinite! one obtains from Eq.~1!

FIG. 1. The configuration of two semispaces with a dielect
permittivity «2(v) covered by layers of thicknessd with a permit-
tivity «1(v). The space separation between the layers isa.
7-2
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E~a,d!5
E~a,d!

L2
5

\

4pE0

`

k dk(
n

~vk,n
(1)1vk,n

(2)!, ~2!

whereL is the side length of the bounding plane. The fr
quencies of the surface modesvk,n

(1,2) are found from the
boundary conditions for the electric field and magnetic
duction imposed at the pointsz52a/22d, 2a/2, a/2, and
a/21d @27#. These boundary conditions for each polariz
tion lead to a system of eight linear homogeneous equati
The requirements that these equations have nontrivial s
tions are

D (1)~vk,n
(1)![e2R2(a12d)@~r 10

1 r 12
1 eR1d2r 10

2 r 12
2 e2R1d!2eR0a

2~r 10
2 r 12

1 eR1d2r 10
1 r 12

2 e2R1d!2e2R0a#50, ~3!

D (2)~vk,n
(2)![e2R2(a12d)@~q10

1 q12
1 eR1d2q10

2 q12
2 e2R1d!2eR0a

2~q10
2 q12

1 eR1d2q10
1 q12

2 e2R1d!2e2R0a#50.

Here the following notations are introduced:

r ab
6 5Ra«b6Rb«a , qab

6 5Ra6Rb ,
~4!

Ra
25k22«a

v2

c2
, «051, a50, 1, 2.

Note that to obtain Eqs.~3! we set the determinants of th
linear system of equations equal to zero and do not perf
any additional transformations. This is the reason why E
~3! do not coincide with the corresponding equations
@5,27#, where some transformations were used that are
equivalent in the limituvu→` ~see below!.

Summation in Eq.~2! over the solutions of Eq.~3! can be
performed with the help of the argument principle which w
applied for this purpose in@28#. According to this principle,

(
n

vk,n
(1,2)5

1

2p i S Ei`

2 i`

vd ln D (1,2)~v!

1E
C1

vd ln D (1,2)~v! D , ~5!

whereC1 is a semicircle of infinite radius in the right half o
the complexv plane with its center at the origin. Notice th
the functionsD (1,2)(v), defined in Eqs.~3!, have no poles.
For this reason the sum over their poles is absent from
~5!.

The second integral in the right-hand side of Eq.~5! is
simply calculated with the natural supposition that

lim
v→`

«a~v!51, lim
v→`

d«a~v!

dv
50 ~6!

along any radial direction in the complexv plane. The result
is infinite, and does not depend ona:

E
C1

v d ln D (1,2)~v!54E
C1

dv. ~7!
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Now we introduce a new variablej52 iv in Eqs. ~5! and
~7!. The result is

(
n

vk,n
(1,2)5

1

2p È
2`

j d ln D (1,2)~ i j!1
2

pEC1

dj, ~8!

where both contributions on the right-hand side diverge.
remove the divergences we use a regularization proce
that goes back to the original Casimir paper@30# ~see also
@6,28#!. The idea of this procedure is that the regulariz
physical vacuum energy density vanishes for infinitely se
rated interacting bodies. From Eqs.~3! and~8! it follows that

lim
a→`

(
n

vk,n
(1,2)5

1

2p È
2`

j d ln D`
(1,2)~ i j!1

2

pEC1

dj, ~9!

where the asymptotic behavior ofD (1,2) at a→` is given by

D`
(1)5e(R02R2)a22R2d~r 10

1 r 12
1 eR1d2r 10

2 r 12
2 e2R1d!2,

~10!
D`

(2)5e(R02R2)a22R2d~q10
1 q12

1 eR1d2q10
2 q12

2 e2R1d!2.

Now the regularized physical quantities are found with t
help of Eqs.~8!–~10!:

S (
n

vk,n
(1,2)D

reg

[(
n

vk,n
(1,2)2 lim

a→`
(

n
vk,n

(1,2)

5
1

2p È
2`

j d ln
D (1,2)~ i j!

D`
(1,2)~ i j!

. ~11!

They can be transformed to a more convenient form with
help of integration by parts,

S (
n

vk,n
(1,2)D

reg

5
1

2pE2`

`

dj ln
D (1,2)~ i j!

D`
(1,2)~ i j!

, ~12!

where the term outside the integral vanishes.
To obtain the physical, regularized Casimir energy de

sity one should substitute the regularized quantities~12! into
Eq. ~2! instead of Eq.~8! with the result

Ereg~a,d!5
\

4p2E0

`

k dkE
0

`

dj@ ln Q1~ i j!1 ln Q2~ i j!#,

~13!

where

Q1~ i j![
D (1)~ i j!

D`
(1)~ i j!

512S r 10
2 r 12

1 eR1d2r 10
1 r 12

2 e2R1d

r 10
1 r 12

1 eR1d2r 10
2 r 12

2 e2R1dD 2

e22R0a,
7-3
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Q2~ i j![
D (2)~ i j!

D`
(2)~ i j!

512S q10
2 q12

1 eR1d2q10
1 q12

2 e2R1d

q10
1 q12

1 eR1d2q10
2 q12

2 e2R1dD 2

e22R0a.

~14!

In Eq. ~13! the fact thatQ1,2 are even functions ofj has been
taken into account.

For the convenience of numerical calculations below
introduce the new variablep instead ofk defined by,
m

-
s
ar

g

to
h

r
s:

06210
e

k25
j2

c2
~p221!. ~15!

In terms of p,j the Casimir energy density~13! takes the
form

Ereg~a,d!5
\

4p2c2E1

`

p dpE
0

`

j2 dj@ ln Q1~ i j!1 ln Q2~ i j!#,

~16!

where a more detailed representation for the functionsQ1,2
from Eq. ~14! is
Q1~ i j!512S ~K12«1p!~«2K11«1K2!2~K11«1p!~«2K12«1K2!e22jK1d/c

~K11«1p!~«2K11«1K2!2~K12«1p!~«2K12«1K2!e22jK1d/cD 2

e22jpa/c,

~17!

Q2~ i j!512S ~K12p!~K11K2!2~K11p!~K12K2!e22jK1d/c

~K11p!~K11K2!2~K12p!~K12K2!e22jK1d/cD 2

e22jpa/c.
per-
is

ws

mi-

of
Here all permittivities depend oni j and

Ka5Ka~ i j![Ap2211«a~ i j!5
c

j
Ra~ i j!,

~18!
a51, 2.

Fora50 one hasp5cR0 /j, which is equivalent to Eq.~15!.
Notice that the expressions~13! and~16! give us the finite

values of the Casimir energy density which is in less co
mon use than the force. Thus in@5# no finite expression for
the energy density is presented for two semispaces. In@27#
the omission of infinities is performed implicitly, namely in
stead of Eqs.~3! the result of their division by the term
containing exp(R0a) was presented. The coefficient ne
exp(R0a), however, turns into infinity onC1 . In other words
Eqs.~3! are divided by infinity. As a result the integral alon
C1 is equal to zero in@27# and the quantity~2! would seem
to be finite. Fortunately, this implicit division is equivalent
the regularization procedure explicitly presented above. T
is why the final results obtained in@27# are indeed correct. In
@11# the energy density is not considered at all.

From Eq.~16! it is easy to obtain the Casimir force pe
unit area acting between semispaces covered with layer

Fss~a,d!52
]Ereg~a,d!

]a

52
\

2p2c3E1

`

p2 dpE
0

`

j3 dj

3S 12Q1~ i j!

Q1~ i j!
1

12Q2~ i j!

Q2~ i j! D . ~19!
-

at

This expression coincides with Lifshitz result@9–11# for the
force per unit area between semispaces with a dielectric
mittivity «2 if the covering layers are absent. To obtain th
limiting case from Eq.~19! one should putd50 and «1
5«2,

Fss~a!52
\

2p2c3E1

`

p2 dpE
0

`

j3 dj

3H F S K21«2p

K22«2pD 2

e2jpa/c21G21

1F S K21p

K22pD 2

e2jpa/c21G21J . ~20!

The corresponding quantity for the energy density follo
from Eq. ~16!:

Ereg~a!5
\

4p2c2E1

`

p dpE
0

`

j2 dj

3H lnF12S K22«2p

K21«2pD 2

e22jpa/cG
1 lnF12S K22p

K21pD 2

e22jpa/cG J . ~21!

The other possible method to obtain the force between se
spaces~but with a permittivity«1) is to consider the limit
d→` in Eq. ~19!. In this limit we obtain once more the
results~20! and ~21!, whereK2 ,«2 are replaced byK1 ,«1.
Note also that we do not take into account the effect
nonzero-point temperature, which is negligible fora!\c/T.
7-4
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The independent expression for the physical energy d
sity is especially important because it allows one to obtain
approximate value of the force for the configuration of
sphere~or a spherical lens! above a semispace. Both bodi
can be covered with layers of another material. According
the proximity force theorem, this force is

Fsl~a,d!52pREreg~a,d!

5
\R

2pc2E1

`

p dpE
0

`

j2 dj@ ln Q1~ i j!1 ln Q2~ i j!#,

~22!

whereR is the sphere radius andQ1,2 are defined in Eq.~17!.
In the absence of layersEreg(a,d) should be replaced by
Ereg(a) from Eq. ~21!.

Although the expression~22! is not exact it allows calcu-
lation of the force with a very high accuracy. As was sho
in @6# ~see also@31,32#! the proximity force theorem is
equivalent to additive summation of interatomic van d
Waals and Casimir force potentials with a subsequent n
malization of the interaction constant. As was shown in@33#
the accuracy of such a method is very high~the relative error
of the results obtained is less than 0.01%! if the configuration
corresponds closely to two semispaces, which is the cas
a sphere~lens! of a large radiusR@a above a semispace.

In the following sections the above general results will
used for computation of the Casimir and van der Wa
forces acting between real metals.

III. INFLUENCE OF FINITE CONDUCTIVITY
ON THE CASIMIR FORCE

Let us first consider semispaces made of aluminum
gold. Aluminum-covered interacting bodies~a plate and a
lens! were used in the experiments@4,8# because of its high
reflectivity for wavelengths~plate-sphere separations! larger
than 100 nm. The thickness of the Al covering layer was 3
nm. This is significantly greater than the effective penet
tion depth of the electromagnetic zero-point oscillations i
Al, which is d05lp /(2p)'17 nm ~see the Introduction!.
That is why the Al layer can be considered as infinitely th
and modeled by a semispace. In the experiment@3# the test
bodies were covered by a 500 nm Au layer, which also
be considered as infinitely thick. In@4# and @8# the Al sur-
faces were covered, respectively, byd,20 nm andd58 nm
sputtered Au/Pd layers to reduce the oxidation processe
Al and the effect of any associated electrostatic charges.
influence of such additional thin layers on the Casimir fo
is discussed in Sec. IV.

The values of the force per unit area for the configurat
of two semispaces and the force for a sphere above a s
space are given by Eq.~20! and Eqs.~21! and ~22!. For a
distancea much larger than the characteristic wavelength
absorption spectra of the semispace material,l0, Eqs. ~20!
and ~21! lead @11# to the following results in the case of a
ideal metal («2→`)
06210
n-
n

o

r
r-

for

s

r

0
-

o

n

in
he
e

n
i-

f

Fss
(0)~a!52

p2

240

\c

a4
, Fsl

(0)~a!52
p3

360
R

\c

a3
. ~23!

To calculate numerically the corrections to Eq.~23! due to
the finite conductivity of a metal we use the tabulated d
for the complex index of refractionn1 ik as a function of
frequency@34#. The values of dielectric permittivity along
the imaginary axes can be expressed through Im«(v)
52nk with the help of the dispersion relation@11#

«~ i j!511
2

pE0

`v Im «~v!

v21j2
dv. ~24!

Here the complete tabulated refractive indices extend
from 0.04 eV to 10 000 eV for Al and from 0.1 eV to 10 00
eV for Au from @34# are used to calculate Im«(v). For
frequencies below 0.04 eV in the case of Al and below
eV in the case of Au, the tabulated values of@34# can be
extrapolated using the free electron Drude model. In t
case, the dielectric permittivity along the imaginary axis
represented as

«a~ i j!511
vpa

2

j~j1g!
, ~25!

wherevpa5(2pc)/lpa is the plasma frequency andg is the
relaxation frequency.vp512.5 eV andg50.063 eV were
used for the case of Al based on the last results in Table
on p. 394 of@34#. In the case of Au, the analysis is not a
straightforward, but proceeding in the manner outlined
@25# we obtain vp59.0 eV andg50.035 eV. While the
values of vp and g based on optical data from variou
sources might differ slightly, we have found that the resu
ing numerically computed Casimir forces differ by less th
1%. In fact, if for Al metalvp511.5 eV andg50.05 eV are
used as in@25#, the differences are extremely small. Of th
values tabulated below, only the value of the force in t
case of a sphere and a semispace at 0.5mm separation is
increased by 0.1%, which on round-off to the second sign
cant figure leads to an increase of 1%. The results of num
cal integration of Eq.~24! for Al ~solid curve! and Au
~dashed curve! are presented in Fig. 2 on a logarithmic sca
As is seen from Fig. 2, the dielectric permittivity along th
imaginary axis decreases monotonically with increasing
quency @in distinction to Im«(v) which possesses peak
corresponding to interband absorption#.

The obtained values of the dielectric permittivity alon
the imaginary axis were substituted into Eqs.~20! and ~22!
@taking account of Eq.~21!# to calculate the Casimir force
acting between real metals in configurations of two se
spaces (ss) and a sphere~lens! above a semispace (sl). Nu-
merical integration was done from an upper limit of 104 eV
to a lower limit of 1026 eV. Changes in the upper limit o
lower limit by a factor of 10 led to changes of less th
0.25% in the Casimir force. If the trapezoidal rule is used
the numerical integration of Eqs.~24! the corresponding Ca
simir force decreases by a factor less than 0.5%. The res
are presented in Fig. 3~a! ~two semispaces! and in Fig. 3~b!
7-5
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for a sphere above a semispace by the solid lines 1~material
of the test bodies is aluminum! and 2~material is gold!. On
the vertical axis the relative forceFss/Fss

(0) is plotted in Fig.
3~a! and Fsl /Fsl

(0) in Fig. 3~b!. These quantities provide
sense of the correction factors to the Casimir force due to
effect of finite conductivity. In the horizontal axis the spa
separation is plotted in the range 0.1–1mm. We do not
present the results for larger distances because then the
perature corrections to the Casimir force become signific
At room temperature the temperature corrections contrib
only 2.6% ofFsl

(0) at a51 mm, but ata53 mm they con-
tribute 47% ofFsl

(0) , and ata55 mm 129% ofFsl
(0) @35#. It is

seen that the relative force for Al is larger than for Au at t
same separation, as it should be because of the better re
tivity properties of Al.

TABLE I. The correction factor to the Casimir force due to th
finite conductivity of the metal from the results of different autho
and the present paper in configurations of two semispaces (ss) and
a sphere~lens! above a semispace (sl).

Test
bodies Metal

a
(mm) @23,24#

F/F (0)

Perturbation
theeory

@17#
Computation

@25,26#
This
paper

ss Al 0.1 0.557 0.55 0.55 0.56
sl Al 0.1 0.651 0.63 0.62 0.61
ss Au 0.1 0.48 0.49 0.62
sl Au 0.1 0.55 0.56 0.60
ss Al 0.5 0.85 0.84 0.84
sl Al 0.5 0.88 0.87 0.88
ss Au 0.5 0.657 0.81 0.81 0.81
sl Au 0.5 0.719 0.85 0.85 0.85
sl Au 0.6 0.78 0.87 0.87 0.87
ss Al 3 0.96 0.96 0.97
sl Al 3 0.97 0.97 0.98
ss Au 3 0.96 0.95 0.96
sl Au 3 0.97 0.96 0.97

FIG. 2. The dielectric permittivity as a function of imagina
frequency for Al~solid line! and Au ~dashed line!.
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It is interesting to compare the results obtained with tho
of Refs. @23,24# and @25,26# where similar computations
were performed~in @25,26# analytical expressions equivalen
to Eqs. ~20! and ~21! were used; in@23,24#, however, the
energy density between plates was obtained by nume
integration of the force, which can lead to some additio
error!. All the results for the several values of distance b
tween the test bodies are presented in Table I.

As Table I shows, our calculational results~column 6! are
in agreement with@25,26# ~column 5! up to 0.01. At the
same time the results of@23,24# ~column 4! for Au are in
disagreement with both@25,26# and this paper. The result
for Al are presented in@23# at a50.1 mm only. Note that the
results ata53 mm ~the last four lines of Table I! are valid
only at zero temperature. They do not take into account te
perature corrections, which are significant for such sepa
tion. Also, the results of@23,24# for Cu-covered bodies are in
disagreement with@25,26#. We do not consider Cu here be
cause the outer surfaces in the recent experiments were
ered with thick layers of Au@3# and Al @4,8#. The hypothesis
of @24# that a Au film of 0.5 mm thickness could signifi-

FIG. 3. The correction factor to the Casimir force due to fin
conductivity of the metal as a function of the surface separat
The solid lines 1 and 2 represent the computational results fo
and Au, respectively, in the configuration of two semispaces~a! and
for a sphere~lens! above a semispace~b!. The dashed lines 1 and
represent the perturbation correction factor up to the fourth or
for Al and Au, respectively.
7-6
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cantly diffuse into a Cu layer of the same thickness at ro
temperatures seems unlikely. In any case it is not nee
because the dielectric permittivities of Au and Cu along
imaginary axis are almost the same@17,25,26# and, conse-
quently, will also lead to the same Casimir force.

The computational results obtained here are in go
agreement with analytical perturbation expansions of the
simir force in powers of relative penetration depthd0
5lp /(2p) of the electromagnetic zero-point oscillation
into the metal. Representation~25! with g50 is applicable
for wavelengths~space separations! larger thanlpa ~the cor-
rections due to relaxation processes are small for dista
a<5 mm). It can be substituted into Eqs.~20! and~21! to get
the perturbation expansion. According to the results of R
@17# the relative Casimir force with finite conductivity co
rections up to the fourth power is

Fss~a!

Fss
(0)~a!

512
16

3

d0

a
124

d0
2

a2
2

640

7 S 12
p2

210D d0
3

a3

1
2800

9 S 12
163p2

7350 D d0
4

a4
~26!

for two semispaces and

Fsl~a!

Fsl
(0)~a!

5124
d0

a
1

72

5

d0
2

a2
2

320

7 S 12
p2

210D d0
3

a3

1
400

3 S 12
163p2

7350 D d0
4

a4
~27!

for a sphere~lens! above a semispace.
In Fig. 3~a! ~two semispaces! the dashed line 1 represen

the results obtained by Eq.~26! for Al with lp5107 nm
~which corresponds tovp511.5 eV!, and the dashed line 2
the results obtained by Eq.~26! for Au with lp5136 nm
(vp59 eV! @25#. In Fig. 3~b! the dashed lines 1 and 2 rep
resent the perturbation results obtained for Al and Au by
~27! for a lens above a semispace. As we can see from
last column of Table I, the perturbation results are in go
agreement~up to 0.01! with computations for all distance
larger thanlp . Only at a50.1mm for Au are there larger
deviations becauselp1[lp

Au.0.1mm.

IV. CASIMIR FORCE BETWEEN LAYERED SURFACES

In this section we consider the influence of thin ou
metallic layers on the Casimir force value. Let the sem
paces made of Al («2) be covered by Au («1) layers as
shown in Fig. 1. For the configuration of a sphere abov
plate such a covering made of Au/Pd was used in exp
ments@4,8# with different values of the layer thicknessd. In
this case the Casimir force is given by Eqs.~19! and ~22!,
where the quantitiesQ1,2( i j) are expressed by Eqs.~17! and
~18!. The computational results for«a( i j) are obtained in
Sec. III from Eq.~24!. Substituting them into Eqs.~19! and
~22! and performing a numerical integration in the same w
as above one obtains the Casimir force including the ef
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of covering layers. The computational results for a config
ration of two semispaces are shown in Fig. 4~a!. Here the
solid lines represent once more the Casimir force betw
semispaces of pure Al and Au, respectively, the dashed
dotted lines are for the cases of Au layers of thicknessd
520 nm andd530 nm covering Al. When the layers ar
present, the space separationa is measured from their oute
surfaces according to Eqs.~19! and ~22!. In Fig. 4~b! the
analogous results with the same notations are presente
the configuration of a sphere~lens! above a semispace.

As Fig. 4 shows, a Au layer ofd520 nm thickness sig-
nificantly decreases the relative Casimir force between
surfaces. With this layer the force approaches the value
pure Au semispaces. For a thicker Au layer ofd530 nm the
relative Casimir force is scarcely affected by the underly
Al. For example, at a space separationa5300 nm in the
configuration of two semispaces we haveFss/Fss

(0)50.773
for pure Al, Fss/Fss

(0)50.727 for Al with a 20 nm Au layer,
Fss/Fss

(0)50.723 for Al with a 30 nm Au layer, and
Fss/Fss

(0)50.720 for pure Au. In the same way for the co
figuration of a sphere above a semispace the results

FIG. 4. The correction factor to the Casimir force due to fin
conductivity of the metal as a function of the surface separation
Al test bodies covered by thin layers of Au. The dashed lines r
resent the results for a layer thicknessd520 nm and the dotted lines
for d530 nm. The case of the configuration of two semispace
shown in~a! and for a sphere~lens! above a semispace in~b!. The
solid lines represent the results for pure Al and Au test bodies.
7-7
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Fsl /Fsl
(0)50.817 ~pure Al!, 0.780 ~Al with a 20 nm Au

layer!, 0.776 ~Al with a 30 nm Au layer!, and 0.774~pure
Au!. Both limiting casesd→` and d→0 were considered
and the results are shown to coincide with those of Sec.

Let us now discuss the application range of the res
obtained for the case of covering layers. First, from a th
retical standpoint, the main question concerns the la
thicknesses to which the formulas~19! and ~22! and the
above computations can be applied. In the derivation of S
II the spatial dispersion is neglected and, as a conseque
the dielectric permittivities«a depend only onv and not on
the wave vectork. In other words the field of vacuum osci
lations is considered as time dependent but space hom
neous. Except for the thickness of the skin layerd0 the main
parameters of our problem are the velocity of the electr
on the Fermi surface,vF , the characteristic frequency of th
oscillation field,v, and the mean free path of the electronsl.
For the considered region of high frequencies~micrometer
distances between the test bodies! the following conditions
are valid@36#:

vF

v
,d0! l . ~28!

Note that the quantityvF /v in the left-hand side of Eq.~28!
is the distance traveled by an electron during one period
the field, so that the first inequality is equivalent to the
sumption of spatial homogeneity of the oscillating field. Us
ally the corresponding frequencies start from the far infra
part of the spectrum, which means that the space separ
a;100mm @6#. The region of high frequencies is restricte
to the short-wave optical or near ultraviolet parts of the sp
trum, which correspond to surface separations of sev
hundred nanometers. For smaller distances absorption ba
the photoelectric effect, and other physical phenom
should be taken into account. For these phenomena, the
eral Eqs.~19! and~22! are still valid, however, if one substi
tutes the experimental tabulated data with the dielectric p
mittivity along the imaginary axis incorporating all thes
phenomena.

Now let us include one more physical parameter—
thicknessd of the additional, i.e., Au, covering layer. It i
evident that Eqs.~19! and~22! are applicable only for layers
of such thickness that

vF

v
,d. ~29!

Otherwise an electron goes out of the thin layer during o
period of the oscillating field and the approximation of spa
homogeneity is not valid. Ifd is so small that the inequality
~29! is violated, the spatial dispersion should be taken i
account, which means that the dielectric permittivity wou
depend not only on frequency but on a wave vector a
«15«1(v,k). So, if ~29! is violated, the situation is analo
gous to the anomalous skin effect where only space dis
sion is important and the inequalities below are valid:
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d0~v!,
vF

v
, d0~v!, l . ~30!

In our case, however, the role ofd0 is played by the layer
thicknessd ~the influence of nonlocality effects on the va
der Waals force is discussed in@37,38#!.

From Eqs.~28! and~29! it follows that for pure Au layers
(lp'136 nm! the space dispersion can be neglected only
d>25230 nm. For thinner layers a more general theory ta
ing into account nonlocal effects should be developed to
culate the Casimir force. Thus for such thin layers the b
tabulated data of the dielectric permittivity depending on
on frequency cannot be used~see the experimental invest
gation @39#, demonstrating that for Au the bulk values o
dielectric constants can be obtained only from films who
thickness is about 30 nm or more!. That is why the dashed
lines in Fig. 4 (d520 nm layers! are subject to correction
due to the influence of spatial dispersion, whereas the s
lines represent the final result. From an experimental sta
point thin layers of order a few nanometers grown by eva
ration or sputtering techniques are highly porous. This
particularly so in the case of sputtered coatings as show
@40#. The nature of the porosity is a function of the mater
and the underlying substrate. Thus it should be noted that
theory presented here, which used the bulk tabulated data
«1, cannot be applied to calculate the influence of thin co
ering layers ofd,20 nm@4,7# and ofd58 nm @8,41# on the
Casimir force. The measured high transparency of such
ers for the characteristic frequencies@4,7# corresponds to a
larger change of the force than what follows from Eqs.~19!
and ~22!. This is in agreement with the qualitative analys
above.

The role of spatial dispersion was also neglected in@42#,
where an attempt was made to describe theoretically the
fluence of thin metallic covering layers on the Casimir for
in experiments@4,8#. Also, the bulk materials properties wer
used for the Au/Pd films. As shown in@43#, the resistivity of
sputtered Au/Pd films even of 60 nm thickness has b
shown to be extremely high, of order 2000V cm. In @42# it
was concluded that the maximum possible theoretical va
of the force including the covering layers are significan
smaller than the measured ones. The data of@4,8#, however,
are shown to be consistent with a theory neglecting the
fluence of layers. In@4,8# the surface separations are calc
lated from the Al surfaces. Including the thickness of t
covering layers reduces the distance between the outer
faces, which is now smaller than the distance between the
surfaces. Thus, contrary to@42#, the theoretical value of the
force should increase when the presence of the layers is
cluded. The error made in@42# can be traced to the follow
ing. The authors of@42# changed the data of@8# ‘‘by shifting
all the points to larger separations by 2h516 nm’’ ~where
h58 nm is the layer thickness in@8#! instead of shifting to
smaller separations by 16 nm as based on@8#. If the correct
shift is done then the theoretical values of the force, inclu
ing the effect of covering layers, are not smaller than
experimental values. Hence the conclusion in@42# about the
probable influence of new hypothetical attractions based
the experiments@4,8# is unsubstantiated.
7-8
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V. VAN DER WAALS FORCE AND INTERMEDIATE
REGION

As we see from Figs. 3 and 4, at room temperature
Casimir force does not follow its ideal field-theoretical e
pression~23!. For space separations less thana51 mm the
corrections due to the finite conductivity of the metal a
rather large@thus, ata51 mm they are around 7–9 % for
lens above a semispace, and 10–12 % for two semispace
a50.1mm, around 38–44 % (sl), and 45–52 % (ss)]. For
a.1 mm the temperature corrections increase very quic
~see Sec. III!. Actually, the range presented in Figs. 3 and
is the beginning of a transition with decreasinga from the
Casimir force to the van der Waals force. Our aim is
investigate the intermediate region in more detail for sma
a and to find values ofa where the pure~nonretarded! van
der Waals regime starts. To do this for the case when
additional covering layers are present we numerically eva
ate the integrals in Eqs.~20!–~22! for a,100 nm.

The computational results obtained by the same pro
dures as in Sec. III are presented in Figs. 5~a! for two semi-

FIG. 5. The absolute value of the van der Waals force a
function of surface separation is shown on a logarithmic scale.
solid lines represent the results for Al and the dashed lines repre
the case of Au. The configuration of two semispaces is shown in~a!
and that for a sphere~lens! above a semispace in~b!.
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spaces and 5~b! for a sphere above a semispace. In bo
figures the solid line represents the results for aluminum
bodies, and the dashed line for gold ones. The absolute
ues of the van der Waals force and surface separationa are
plotted along the vertical and horizontal axes on a logar
mic scale. The asymptotic expressions in the limit ofa
!l0 following from Eqs.~20!–~22! are @11#

Fss
(0)~a!52

H

6pa3
, Fsl

(0)~a!52
HR

6a2
. ~31!

Here it is important to note that the Hamaker constantH is
dependent on the material properties of the boundaries an
unknown a priori. This is in contrast to the ideal Casim
force limit of Eq.~23! ~obtained fora@l0) which is material
independent and is a function of\ andc only. Thus it is not
reasonable to express the van der Waals force as a
relative to Eq.~31!. The asymptotic behavior described b
Eq. ~31! will be used below to determine the value ofH.

The computations were performed with a stepDa55 nm
in the interval 10 nm<a<100 nm,Da51 nm in the interval
4 nm<a<10 nm, Da50.2 nm in the interval 2 nm
<a<4 nm, and Da50.1 nm for 0.5 nm<a<2 nm. At a
5100 nm the force values coincide with those in Fig. 3. F
a,0.5 nm the repulsive exchange forces dominate. As
seen from Fig. 5 for both configurations and the two met
under consideration~Al and Au! the range of purely van de
Waals force described by Eqs.~31! turns out to be extremely
narrow. It extends from 0.5 nm to 2–4 nm only. For larg
distances the transition from the force-distance depende
;a23 to the dependence;a24 begins~for two semispaces!
and from the dependence;a22 to ;a23 ~for a lens above a
semispace!. This conclusion is in qualitative agreement wi
the results of@18#, where the van der Waals force between
metallic sample and the metallic tip of an atomic force m
croscope was calculated~our choice of a sphere is formall
equivalent to the paraboloidal tip considered in@18#!. Calcu-
lation in @18# was performed by numerical integration of
Lifshitz-type equation for the force with the permittivity o
the metal given by the plasma model@Eq. ~25! with g50].
Strictly speaking, the plasma model is not applicable foa
!l0 ~see Sec. III!. That is why we have used the tabulate
optical data for the complex refractive index in our comp
tations. However, the correct conclusion about the extrem
narrow distance range of the purely van der Waals region
metals is obtainable by using the plasma model to repre
their dielectric properties. Note that for dielectric test bod
the pure van der Waals regime extends to larger distan
For example, in the configuration of two crossed mica cyl
ders~which is formally equivalent to a sphere above a sem
space! the van der Waals regime extends from 1.4 nm
12 nm, as was experimentally shown in@44#.

VI. DETERMINATION OF HAMAKER CONSTANTS
FOR Al AND Au

The results of the previous section make it possible
determine the values of the Hamaker constantH from Eq.
~31! for aluminum and gold. Let us start with the configur

a
e
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tion of two semispaces. As we see from the computatio
results presented in Fig. 5~a! ~solid curve! the asymptotic
regime for Al extends here froma50.5 nm toa54 nm. We
use a narrower interval 0.5 nm–2 nm for the determination
n and H. The power indexn of the force-distance relation
given by the first formula of Eq.~31! is equal ton53.02
60.01 in the interval considered. To obtain this value
slopes between adjacent points, i.e., 0.5–0.6 nm, 0.6–
nm, etc., were calculated and then the average and the
dard deviation were found. The corresponding mean valu
the Hamaker constant is

Hss
Al5~3.6760.02!310219J. ~32!

Considering the computational results for Au@dashed curve
of Fig. 5~a!# we find the asymptotic regime in a narrow
interval 0.5 nm–2 nm with the power indexn53.0460.02.
The mean value of the Hamaker constant turns out to
equal to

Hss
Au5~4.4960.07!310219J. ~33!

For the configuration of a sphere~lens! above a semispac
the results are presented in Fig. 5~b! ~solid curve for Al and
dashed curve for Au!. In both cases the asymptotic regio
extends froma50.5 nm to a52 nm only, with the mean
values of the power index in the second formula of Eq.~31!
n52.0460.02 ~Al ! and n52.0860.03 ~Au!. The corre-
sponding mean values of the Hamaker constant are

Hsl
Al5~3.6060.06!310219J,

~34!
Hsl

Au5~4.3160.14!310219J.

It is seen that in the case of Au and a sphere above a s
space configuration the behavior of the force shows less
cise agreement with the second formula of Eq.~31!.

The above results obtained for the two configurations
dependently give the possibility to derive new values of
Hamaker constant for Al and Au. Taking into account t
value of Eq.~32! and the first expression from Eq.~34! we
get

HAl5~3.660.1!310219J. ~35!

The absolute error here was chosen in such a way as to c
both permitted intervals in Eqs.~32! and ~34!.

For Au the tolerances of the second value from Eq.~34!
are two times wider than the permitted interval from E
~33!. That is why the most probable final value of the H
maker constant for gold can be estimated as

HAu5~4.460.2!310219J. ~36!

The decreased accuracy from Eq.~35! is explained by the
extremely narrow region of pure van der Waals force law
gold. These values ofH for gold are compatible with thos
obtained previously. For example, in@45# values between 2
and 4310219J were obtained using different procedures.
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VII. CONCLUSIONS AND DISCUSSION

General expressions have been obtained for both the
simir energy density and the force in the configuration of t
plates~semispaces! with different separations between them
The case where the surfaces were covered by thin la
made of another material was also considered. Additio
clarifications of the regularization procedure were give
This is important for obtaining a finite physical value for th
energy density. The latter quantity is very important for o
taining the Casimir force, for the configuration of a sphe
~lens! above a plate~semispace! which was used in recen
experiments. For this configuration a general expression
the Casimir force taking account of layers covering a le
and a semispace, was arrived at by use of the proximity fo
theorem.

The Casimir force was recalculated between Al and
test bodies for the configurations of two semispaces an
sphere~lens! above a semispace. The disagreement betw
the results of@23,24# and @25,26# was resolved in favor of
@25,26#. Additionally, computational results were compar
with the perturbation expansion up to fourth order in pow
of the relative penetration depth of electromagnetic ze
point oscillations into the metal. The perturbation results
also in agreement with@25,26# and with our computations
for space separations larger than a plasma wavelength o
metal under study~not much larger, as is to be expected fro
general considerations!. We have performed computations o
the Casimir force between Al test bodies covered by Au t
layers. A monotonic decrease of the correction factor to
Casimir force was observed with increase of the layer thi
ness. A qualitative analysis leads to the conclusion that
thickness of the layer should be large enough to allow
glect of the spatial dispersion of the dielectric permittivi
and the use of tabulated bulk optical data for the comp
refractive index. For the Au layers the minimal allowe
thickness for such an approximation was estimated ad
530 nm in agreement with the experimental evidence
@39#. For smaller layer thicknesses the tabulated bulk opt
data cannot be used. In this case, calculation of the Cas
force would require direct measurement of the complex
fractive index for the particular metal~not only the frequency
dependence but also its dependence on the wave vector!.

The van der Waals force was calculated between Al a
Au test bodies in configurations of two semispaces an
sphere~lens! above a semispace. The computations were p
formed starting from the same general expressions as in
case of the Casimir force and using the same numerical
cedure and tabulated optical data. The extremely narrow
gion where the pure nonretarded van der Waals power-
force acts was noted. This region extends froma50.5 nm to
a5224 nm only. For larger distances a wide transition r
gion starts, where the nonretarded van der Waals force
scribed by Eq.~31! gradually transforms into the retarde
van der Waals~Casimir! force from Eq.~23! when the space
separation approaches the valuea51 mm. The values of the
Casimir force given by Eq.~31! are never achieved at room
temperature~at a51 mm due to the finite conductivity of the
metal, while for larger distances the temperature correcti
7-10
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make a strong contribution!. Using the asymptotic region o
the pure nonretarded van der Waals force, values of the
maker constant for Al and Au were obtained. For Al t
reported accuracy corresponds to a relative error of 2.
and for Au it is around 4.5%.

The results obtained do not exhaust all the problems c
nected with the role of the finite conductivity of the metal
precision measurements of the Casimir force. The m
problem to be solved is investigation of corrections to
force due to thin covering layers. This would demand th
retical work on the generalization of the Lifshitz formalis
for the case when the spatial dispersion can be importan
addition to the frequency dependence. Also, new meas
ments of the complex refractive index are needed for
layers under consideration. What is more, the finite cond
tivity corrections to the Casimir force should be consider
together with the corrections due to the surface roughn
~see, e.g.,@7#, where the nonadditivity of both influentia
factors is demonstrated! and to finite temperature. This com
bined research is necessary for both applied and fundam
applications of the Casimir effect. It is known that measu
ments of the Casimir force provide the possibility to obta
to
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strong constraints for the constants of long-range interact
and light elementary particles predicted by the unified ga
theories, supersymmetry, and supergravity@6#. Such infor-
mation is unique and cannot be obtained even by mean
the most powerful modern accelerators. In Ref.@35# the con-
straints for Yukawa-type hypothetical interactions we
strengthened up to 30 times in some distance range on
basis of the Casimir force measurements of Ref.@3#. The
increased precision of the Casimir force in@4# provided the
possibility to strengthen constraints up to 140 times
Yukawa-type interactions at smaller distances@46#. It is
highly probable that new measurements of the Casimir fo
with increased accuracy will serve as an important alter
tive source of information about elementary particles a
fundamental interactions.
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