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Bell's inequalities for states with positive partial transpose
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We study violations ofh-particle Bell inequalitiegas developed by Mermin and Klyshkander the as-
sumption that suitable partial transposes of the density operator are positive. If all transposes with respect to a
partition of the system int@ subsystems are positive, the best upper bound on the violatioff i€”2. In
particular, if the partial transposes with respect to all subsystems are positive, the inequalities are satisfied. This
is supporting evidence for a recent conjecture by Peres that positivity of partial transposes could be equivalent
to the existence of local classical models.

PACS numbds): 03.65.Bz, 03.67-a

. INTRODUCTION (M) Bell's inequalities are traditionally derived from an
assumption about the existence of local hidden variables.

One of the basic questions asked early in the developmenthe same assumptions lead to an infinite hierarchy of corre-
of quantum information theory was about the nature of eniation inequalitieg4], and it seems natural to base a notion
tanglement. Extreme cases were always clear enough: a tws§ entanglement not on an arbitrary choice of inequality
qubit singlet state was the paradigm of the entangled statg.g., CHSH from this hierarchy. So we say thatadmits a
[1], whereas product states and mixtures thereof were obviocal classical modelif it satisfies all inequalities from this
ously not, but merely “classically correlated2]. Butin the  hierarchy. Then $)=(M)=(B). It was shown in[2] that
wide range between it was hardly clear where a meaningfulM)=(S), and this was perhaps the first indication that dif-
boundary between the entangled and the nonentangled coulgrent types of entanglement might have to be distinguished.
be drawn. Still today, some boundaries are not completely (U) A key step for the development of entanglement
known, although, of course, general structural knowledgeheory was a paper by Popegdl, showing that by suitable
about entanglement has increased dramatically in the lasgcal filtering operations applied to maybe several copies of a
few years. The present paper is devoted to settling the relajivenp, one could sometimes obtain a new siateviolating
tionship between two entanglement properties discussed ig Bell inequality, even thougl admitted a local hidden
the literature. variable model, and hence satisfied the full hierarchy of Bell

To fix ideas we will start by recalling some properties onejnequalities. Let us call a statendistillable if it is impos-
might identify with “entanglement” and the known relations sjple to obtain from it a two-qubit state violating the CHSH
between them. For simplicity in this introduction, we will inequality, by any process of local quantum operati6ires,
choose the setting of bipartite quantum systems, i.e., qual’b'perations acting only on one Subsysleperhaps allowing
tum systems whose Hilbert space is written as a tensor progiassical communication and several copies of the state as an
uct H="H,®H,. Moreover, we consider finite dimensional jnput. What Popescu showed was thit)& (U).
spaces only, leaving the appropriate extensions to infinite (p) The idea of distillation was later taken to much
dimensions to the reader. All properties listed refer to a dengreater sophisticatiof6], and for a while the natural conjec-
sity matrix p on this space. It turns out to be simpler to tyre seemed to be not only tha)& (U) (which is trivial to
define the entanglement properties in terms of there negageg, but that these two should be equivalent. The counter-
tions, i.e., the various degrees of “classicalness.” example was provided if7]. These authors used a property

(S) A state is calledseparableor “classically corre-  (p), which had been proposed by Pef&% as a necessary
lated,” if it can be written as a convex combination of tensor cgndition for separabilityi.e., (S)=(P)], which turned out
product states. Otherwise, it is simply called “entangled.” a|so to be sufficient in the qubit caf@]. This condition(P)

(B) Before 1990 perhaps the only mathematically sharps thatp haspositive partial transpose.e., p™t is a positive
Criteria fOI’ entanglement were the Be” inequa”ties in theirsemidefinite Operator_ Here the partial transpége Of an
Clauser-Horn-Shimony-Hol{CHSH) form [3]. A state is  gperatorA on H="H,®™H, is defined in terms of matrix
operatorsA; , Al on H; (i=1,2) with —1<A; A/<1, we
have (KI|AT1|mn)=(ml|A|kn). 2

Equivalently,

(2 A,®B,

tr p[Ar® (Ap+ AL + AL @ (A—A))]<2. (1)

Ty
=> AleB,, (3)

It is easy to see thatSj=(B).

where the superscrift stands for transposition in the given
*Electronic address: r.werner@tu-bs.de, mm.wolf@tu-bs.de  basis. It was shown thaP)=(U), and the counterexample
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in [7] worked by establishingU) and not-§) in this ex- If we look only at a single site, the possible pairs of ex-
ample. States of this kind are now calledund entangled  pectation valuegwith fixed A,A’ but variablep) lie in a
There are further interesting properties, like usefulness fosquare. It will be very useful for the construction of the in-
teleportation[ 10], but the above are sufficient for explaining equalities and the proof of our result to consider this square
the problem addressed in this paper. To summarize, it ias a set in the complex plane: after a suitable linear transfor-
known that §)=(P)=(U) and (§=(M)=(B). For pure  mation(a 7/4 rotation and a dilationwe can take it as the
states all conditions are equivalent, and for systems of twequareS with the cornerst1 and=*i. The pair of expecta-
qubits U)=(S), but (M)=4(S). tion values ofA andA’ is thus replaced by the single com-
For multipartite systems, i.e., systems with Hilbert spaceplex number trpa), where
Hi®H,® - - - ®H,, the properties $),(M),(U) immedi-

ately make sense. F@B) there may be several choices of a=3[(A+A")+i(A'-A)] %)
inequalities following from M). The inequalities we use in _
this paper are discussed in detail in the next section. Partial =e YA+ iA’)/\/E. (6)

transposition(P) is an intrinsically bipartite concept. The
strongest version diP) in multipartite systems is the one we The idea of this transformation is that the squardas a
use below: the positivity of partial transposes with respect tspecial property: products of complex numbegsE S lie
every subsystem. again inS. This is evident for the corneréhey form a
Then the implication chains §y=(P)=(U) and group and follows for the full square by convex combina-
(S)=(M)=(B) hold as in the bipartite case. However, no tion. Suppose now that=®_,p is a product state. Then
direct relations are known so far between these chains, evehe operator b=®y;_,a, has expectation tp(b)
in the bipartite case. It seems likely that the violationBf :HE: 1tr(piay) € S. Since the expectation is linear jin the
is a fairly strong property, perhaps implying distillability. same follows for any separable state, i.e., any convex com-
This certainly seems to be the intuition of Pere$liif, who  pination of product states. The statement jth) € S” is
conjectures that essentiallyMermin’s inequality although not yet written as
an inequality. Note that the argument given here implies also
(M)=(P). (4 that this statemeritvritten out in correlation expressions in-
) _ _ volving A, ,A;) holds in any local classical model, because
We will refer to this statement @eres’ conjecturelt should iy 3 classical theory every pure state of a composite system is
be noted, however, that neither we nor Peres have given g,tomatically a product, and hence every state is separable.

sharp mathematical formulation, particularly of the way theThys Mermin's inequality indeed belongs to the broad cat-
model is required to cover not only one pair but also tensoggory of Bell’'s inequalities.

products and distillation processes. Some such condition is™ T4 \yrite “tr(pb) e S” as a bona fide set of inequalities,
certainly neededand implicitly assumed by Pengdbecause e just have to undo the transformatiés), i.e., we intro-
otherwise the implicationNl)=(P) would already fail for  §ce operatorsB,B’ such that Eq.(5) is satisfied with
two qubits[2]. It is not entirely clear froni11] how strongly (b,B,B’) substituted for §,A,A’). The operator®,B’ are

Peres is committed to E¢4). We are not completely con- gyally calledBell operators and Mermin’s inequality sim-
vinced. However, we do follow Peres’ lead in seeing here amy|y hecomes

interesting line of inquiry. Indeed, the present paper is de-

voted to proving one special instance of the conjecture, [tr(pB)|<1 or |tr(pB')|<1. (7)
namely, the implication R)=(B), for general multipartite

systems, wheréP) is taken as the positivity odverypartial ~ Writing out B andB’ explicitly in terms of tensor products
transpose, an(B) is taken as the particle generalization of of A, ,A; gives the usual CHSH inequality) for n=2, and
the CHSH inequality proposed by Mermii2], and further  pecomes arbitrarily cumbersome for largelt is also not
developed by Ardehalil3], Belinskii and Klyshkd 15], and  helpful for our purpose. The above derivation also gets rid of

others[14,16. the case distinction # odd/even,” which has troubled the
early derivations. In fact, Mermifl2] first missed a factor

Il. MERMIN'S GENERALIZATION \J2 for evenn, which was later obtained by Ardehdl3],

OF THE CHSH INEQUALITIES who in turn missed the same factor for oddInequalities

_ ) N _ ~equally sharp for even and oddwere established if14]
Like the CHSH inequalities, Mermin’s-party generali- and[15].

zation refers to correlation experiments, in which each of the
parties is given one subsystem of a larger system and has the
choice of two=* 1-valued observables to be measured on it.
The expectations of such an observable are given in quantum
mechanics by a Hermitian operatér with spectrum in The idea of combiningh,A’ in the non-Hermitian opera-
[ —1,1], and with a choice oA, Ay at sitek the raw experi-  tor a has a long tradition for the CHSH cafk7]. Its power
mental data are the "2expectation values of the form is not only in organizing the inequalitigenly linear trans-
tr(pA1®@A;® - - -A,) with all possible choices\, vs A at  formations among operators are needed for that pujpbse
all the sites. in the possibility of bringing in the noncommutative alge-

Ill. VIOLATIONS OF MERMIN’S INEQUALITY
IN QUANTUM MECHANICS
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braic structure of quantum mechanics to analyze the possid0), to (b,B,B’) this time, we find thaB>=B’?. In fact, by
bility of violations in the quantum case. In this section we adding Eqs(8) and(9) and inserting Eq(11), we get
discuss these violations, at the same time building up the o o1

machinery needed in the proof of our result. We will need B°=B'“=;(b*b+bb*)

the following expressions:

i !
: :ﬁ%en X SLAGALL
ko 1/p2 12y 4 ’ kep
a*a=3(A“+A )+2[A,A 1, (8) (12
i By the variance inequalitjtr(p B)|?><tr(p B?), the expecta-
aa*=1(A’+A'?)— E[A,A’], (9)  tion of the right hand side is an upper bound on the square of
largest violation of Mermin’s inequality. There are two im-
i mediate applications: since each term in the sum has norm at
a’—a*?=i(A’2-A?). (10 -
most 1, the norm of the sum is bounded by the number of
. o L terms, i.e., 27 1. This shows the analog of Cirel’son’s in-
It is clear from the first line that although @) lies in S, equality, i.e., that the violation discussed above is indeed

and hence in the unit circle for ap, the operator norm - P
lal[=[[a* Y2 may be greater thanbl Thererf)ore the tensormaX|maI. The second application is to the case that all com-
product operatob may have a norrr{ increasing; exponen-mUtators vanish. Then only the term 8= survives, and

. . o 2 = there is no violation of the inequality. Our result to be stated
tially \.N',th M- Th'S. is the key to the quantum violations of and proved in the next section is a refinement of this idea.
Mermin’s inequality.

The largest possible commutators, i.e., operators saturat-
ing the obvious bound[A,A’][|<2|AJ[||A’|| are just Pauli
matrices. A good choice 8= (o, + ay)/\/f andA,=(oy
- ay)/\/E for all k. Then a,=+2v, wherev=(%9). It is We now apply the technique of the previous section to the
readily verified thaty®" acts in the two-dimensional space partial transpose. More specifically, for any density operator
spanned byef" and ed" exactly asv acts in the space p and any subsetC{1,...n}, let p'« denote the partial
spanned by the two basis vectas e, (2. With the same  transpose of all sites belonging to Suppose now that'«
identification of two-dimensional subspades 2"% ®" acts IS positive semidefinite and hence again a density matrix.
like 20"~D/23, so the possible expectationstif) with p  Then we can apply the variance inequalitygtb- andB'e,
supported in this subspace span the exponentially enlargebtaining
square £ V’2s,

In order to show that @ 12 is the maximal possible
violation (in analogy with Cirel'son’s bound18] for the <tr{p[(BTe)2]Ta} (13
CHSH inequality, but also in preparation for the proof of =he '
our main result, it is useful to consider the following general\ye note thaf AT,A’T]"=—[A,A’] and thus
technique for getting upper bounds onptlf). It has been
used in the CHSH case by Landgif], among others. Note i )
first that tr(p B) and tr(p B’) are affine functionals of each [(BT“)z]T“:ﬂgen(_l)lmm ® E[Ak’Ak]- (14
Ay or A;. Hence, if we maximize the expectations of Bell kep
operators by varying som&, or A, keepingp fixed, we  Note that it does not matter whether we transpaser its
may as well taked, extremal in the convex set of Hermitian complement.

IV. POSITIVE PARTIAL TRANSPOSES
AND MAIN RESULT

(trpB)2=(tr pTeBTe)2<tr[ pT(BTe)?]

operators with—1<A,=<1. That is to say, we may assume  Now consider a partition of1, ... n} into p nonempty
AZ=A,?=1 for all k. Taking tensor products of E¢8) and  and disjoint subsets,, . .. . Let us denote byP the
expanding the product we find collection of all unions of these basic sets together with the

empty set, so thaP has 2 elements. We assume that«
=0 for all e P. For p=1 this is no constraint at all, be-

n i
* _ !
b*b= & (1+ z[Ak 'Ak]) cause the full transpose pfis always positive. At the other

k=1 extreme, forp=n, this assumption means the positivity of
. every partial transpose.
:2 R I—[A ALl (12) We now take the expectation value of E§4) and aver-
kMKl . ..
B kEBZ age over the 2 resulting terms. The coefficient of théth
term then becomes
where the sum is over all subseg<" {1, ... n}, and only )
factors different froml are written in the tensor product. In
; : - -p —1)lenBl=o-p —1)lemn gl

particular, the term fog=J is 1. Forbb* we get a similar 2 EP( 1 2 ngl [1+(=1) 1 (19

sum with an additional factor 1)#!, where| 8| denotes the
cardinality of the seB. From Eq.(10) we findaZ=af? and  which is proved by writing the sum ové? as a sum ovep
b2=Db*2 by taking tensor products. Again by applying Eq. two-valued variables, labeling the alternativer:C « or

062102-3



R. F. WERNER AND M. M. WOLF PHYSICAL REVIEW A61 062102

amn@ a,” and using that the parity € 1)‘”‘”/3| is the product inequality for each partition element,,, i.e., states as dis-
of the parities corresponding to the,. Clearly, the expres- cussed in Sec. lll.

sion (15) is 1 if and only if|a,N 8| is even for allm and To summarize, we have established the best bound
zero otherwise. Let us call such s¢s' P even.” There are

|tr(pB)|<2("" P2 (18
IT 2lenl=1=2n-p (16)

" on violations of Mermin’s inequalities, under the assumption

such sets. Hence we get the bound that the partial transposeg'« are positive for all

aC{1, ... n} subordinated to a partition infpsubsets. This

[ includes three special cases: Ror1 it is the analog of

2 _ ’
(trpB) $,3 ;eventr( P k(zjﬁ 2[Ak'Ak]) Cirel'son’s inequality, forp=n it proves our claim that the

inequalities are satisfied if, all partial transposes are positive,
<2n-p (17)  and for partitions of the forn{1}, ... {m},{m+1,...n},
we obtain the result of Gisin and Bechmann-Pasquinucci
That this bound is optimal is evident by evaluating it on a[16] using Mermin’s inequalities to test for the numberof
tensor product of pure states maximally violating Mermin’sindependent qubits.
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