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Bell’s inequalities for states with positive partial transpose

R. F. Werner* and M. M. Wolf
Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstraße 3, 38106 Braunschweig, Germany

~Received 15 October 1999; published 15 May 2000!

We study violations ofn-particle Bell inequalities~as developed by Mermin and Klyshko! under the as-
sumption that suitable partial transposes of the density operator are positive. If all transposes with respect to a
partition of the system intop subsystems are positive, the best upper bound on the violation is 2(n2p)/2. In
particular, if the partial transposes with respect to all subsystems are positive, the inequalities are satisfied. This
is supporting evidence for a recent conjecture by Peres that positivity of partial transposes could be equivalent
to the existence of local classical models.

PACS number~s!: 03.65.Bz, 03.67.2a
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I. INTRODUCTION

One of the basic questions asked early in the developm
of quantum information theory was about the nature of
tanglement. Extreme cases were always clear enough: a
qubit singlet state was the paradigm of the entangled s
@1#, whereas product states and mixtures thereof were o
ously not, but merely ‘‘classically correlated’’@2#. But in the
wide range between it was hardly clear where a meanin
boundary between the entangled and the nonentangled c
be drawn. Still today, some boundaries are not comple
known, although, of course, general structural knowled
about entanglement has increased dramatically in the
few years. The present paper is devoted to settling the r
tionship between two entanglement properties discusse
the literature.

To fix ideas we will start by recalling some properties o
might identify with ‘‘entanglement’’ and the known relation
between them. For simplicity in this introduction, we w
choose the setting of bipartite quantum systems, i.e., qu
tum systems whose Hilbert space is written as a tensor p
uct H5H1^ H2. Moreover, we consider finite dimension
spaces only, leaving the appropriate extensions to infi
dimensions to the reader. All properties listed refer to a d
sity matrix r on this space. It turns out to be simpler
define the entanglement properties in terms of there ne
tions, i.e., the various degrees of ‘‘classicalness.’’

(S) A state is calledseparableor ‘‘classically corre-
lated,’’ if it can be written as a convex combination of tens
product states. Otherwise, it is simply called ‘‘entangled.

(B) Before 1990 perhaps the only mathematically sh
criteria for entanglement were the Bell inequalities in th
Clauser-Horn-Shimony-Holt~CHSH! form @3#. A state is
said to satisfy theseBell inequalitiesif, for any choice of
operatorsAi ,Ai8 on Hi ( i 51,2) with 21<Ai ,Ai8<1, we
have

tr r@A1^ ~A21A28!1A18^ ~A22A28!#<2. ~1!

It is easy to see that (S)⇒(B).
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(M ) Bell’s inequalities are traditionally derived from a
assumption about the existence of local hidden variab
The same assumptions lead to an infinite hierarchy of co
lation inequalities@4#, and it seems natural to base a noti
of entanglement not on an arbitrary choice of inequa
~e.g., CHSH! from this hierarchy. So we say thatr admits a
local classical model, if it satisfies all inequalities from this
hierarchy. Then (S)⇒(M )⇒(B). It was shown in@2# that
(M )⇒” (S), and this was perhaps the first indication that d
ferent types of entanglement might have to be distinguish

(U) A key step for the development of entangleme
theory was a paper by Popescu@5#, showing that by suitable
local filtering operations applied to maybe several copies o
givenr, one could sometimes obtain a new stater8 violating
a Bell inequality, even thoughr admitted a local hidden
variable model, and hence satisfied the full hierarchy of B
inequalities. Let us call a stateundistillable, if it is impos-
sible to obtain from it a two-qubit state violating the CHS
inequality, by any process of local quantum operations~i.e.,
operations acting only on one subsystem!, perhaps allowing
classical communication and several copies of the state a
input. What Popescu showed was that (M )⇒” (U).

(P) The idea of distillation was later taken to muc
greater sophistication@6#, and for a while the natural conjec
ture seemed to be not only that (S)⇒(U) ~which is trivial to
see!, but that these two should be equivalent. The coun
example was provided in@7#. These authors used a proper
(P), which had been proposed by Peres@8# as a necessary
condition for separability@i.e., (S)⇒(P)], which turned out
also to be sufficient in the qubit case@9#. This condition~P!
is thatr haspositive partial transpose, i.e., rT1 is a positive
semidefinite operator. Here the partial transposeAT1 of an
operatorA on H5H1^ H2 is defined in terms of matrix
elements with respect to some basis by

^kluAT1umn&5^mluAukn&. ~2!

Equivalently,

S (
a

Aa ^ BaD T1

5(
a

Aa
T

^ Ba , ~3!

where the superscriptT stands for transposition in the give
basis. It was shown that (P)⇒(U), and the counterexampl
©2000 The American Physical Society02-1
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in @7# worked by establishing~U! and not-(S) in this ex-
ample. States of this kind are now calledbound entangled.

There are further interesting properties, like usefulness
teleportation@10#, but the above are sufficient for explainin
the problem addressed in this paper. To summarize,
known that (S)⇒(P)⇒(U) and (S)⇒(M )⇒(B). For pure
states all conditions are equivalent, and for systems of
qubits (U)⇒(S), but (M )⇒” (S).

For multipartite systems, i.e., systems with Hilbert spa
H1^ H2^ •••^ Hn , the properties (S),(M ),(U) immedi-
ately make sense. For~B! there may be several choices
inequalities following from (M ). The inequalities we use in
this paper are discussed in detail in the next section. Pa
transposition~P! is an intrinsically bipartite concept. Th
strongest version of~P! in multipartite systems is the one w
use below: the positivity of partial transposes with respec
every subsystem.

Then the implication chains (S)⇒(P)⇒(U) and
(S)⇒(M )⇒(B) hold as in the bipartite case. However, n
direct relations are known so far between these chains, e
in the bipartite case. It seems likely that the violation of~B!
is a fairly strong property, perhaps implying distillability
This certainly seems to be the intuition of Peres in@11#, who
conjectures that

~M !⇔~P!. ~4!

We will refer to this statement asPeres’ conjecture. It should
be noted, however, that neither we nor Peres have give
sharp mathematical formulation, particularly of the way t
model is required to cover not only one pair but also ten
products and distillation processes. Some such conditio
certainly needed~and implicitly assumed by Peres!, because
otherwise the implication (M )⇒(P) would already fail for
two qubits@2#. It is not entirely clear from@11# how strongly
Peres is committed to Eq.~4!. We are not completely con
vinced. However, we do follow Peres’ lead in seeing here
interesting line of inquiry. Indeed, the present paper is
voted to proving one special instance of the conjectu
namely, the implication (P)⇒(B), for general multipartite
systems, where~P! is taken as the positivity ofeverypartial
transpose, and~B! is taken as then particle generalization o
the CHSH inequality proposed by Mermin@12#, and further
developed by Ardehali@13#, Belinskii and Klyshko@15#, and
others@14,16#.

II. MERMIN’S GENERALIZATION
OF THE CHSH INEQUALITIES

Like the CHSH inequalities, Mermin’sn-party generali-
zation refers to correlation experiments, in which each of
parties is given one subsystem of a larger system and ha
choice of two61-valued observables to be measured on
The expectations of such an observable are given in quan
mechanics by a Hermitian operatorA with spectrum in
@21,1#, and with a choice ofAk ,Ak8 at sitek the raw experi-
mental data are the 2n expectation values of the form
tr(rA1^ A28^ •••An) with all possible choicesAk vs Ak8 at
all the sites.
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If we look only at a single site, the possible pairs of e
pectation values~with fixed A,A8 but variabler) lie in a
square. It will be very useful for the construction of the i
equalities and the proof of our result to consider this squ
as a set in the complex plane: after a suitable linear trans
mation ~a p/4 rotation and a dilation! we can take it as the
squareS with the corners61 and6 i . The pair of expecta-
tion values ofA andA8 is thus replaced by the single com
plex number tr(ra), where

a5 1
2 @~A1A8!1 i ~A82A!# ~5!

5e2 ip/4~A1 iA8!/A2. ~6!

The idea of this transformation is that the squareS has a
special property: products of complex numberszkPS lie
again in S. This is evident for the corners~they form a
group! and follows for the full square by convex combin
tion. Suppose now thatr5 ^ k51

n rk is a product state. Then
the operator b5 ^ k51

n ak has expectation tr(r b)
5)k51

n tr(rkak)PS. Since the expectation is linear inr, the
same follows for any separable state, i.e., any convex c
bination of product states. The statement ‘‘tr(r b)PS’’ is
essentiallyMermin’s inequality, although not yet written as
an inequality. Note that the argument given here implies a
that this statement~written out in correlation expressions in
volving Ak ,Ak8) holds in any local classical model, becau
in a classical theory every pure state of a composite syste
automatically a product, and hence every state is separa
Thus Mermin’s inequality indeed belongs to the broad c
egory of Bell’s inequalities.

To write ‘‘tr( r b)PS’’ as a bona fide set of inequalities
we just have to undo the transformation~5!, i.e., we intro-
duce operatorsB,B8 such that Eq.~5! is satisfied with
(b,B,B8) substituted for (a,A,A8). The operatorsB,B8 are
usually calledBell operators, and Mermin’s inequality sim-
ply becomes

utr~r B!u<1 or utr~r B8!u<1. ~7!

Writing out B andB8 explicitly in terms of tensor products
of Ak ,Ak8 gives the usual CHSH inequality~1! for n52, and
becomes arbitrarily cumbersome for largen. It is also not
helpful for our purpose. The above derivation also gets rid
the case distinction ‘‘n odd/even,’’ which has troubled the
early derivations. In fact, Mermin@12# first missed a factor
A2 for evenn, which was later obtained by Ardehali@13#,
who in turn missed the same factor for oddn. Inequalities
equally sharp for even and oddn were established in@14#
and @15#.

III. VIOLATIONS OF MERMIN’S INEQUALITY
IN QUANTUM MECHANICS

The idea of combiningA,A8 in the non-Hermitian opera
tor a has a long tradition for the CHSH case@17#. Its power
is not only in organizing the inequalities~only linear trans-
formations among operators are needed for that purpose!, but
in the possibility of bringing in the noncommutative alg
2-2
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braic structure of quantum mechanics to analyze the po
bility of violations in the quantum case. In this section w
discuss these violations, at the same time building up
machinery needed in the proof of our result. We will ne
the following expressions:

a* a5 1
2 ~A21A82!1

i

2
@A,A8#, ~8!

aa* 5 1
2 ~A21A82!2

i

2
@A,A8#, ~9!

a22a* 25 i ~A822A2!. ~10!

It is clear from the first line that although tr(r a) lies in S,
and hence in the unit circle for allr, the operator norm
iai5ia* ai1/2 may be greater than 1. Therefore, the ten
product operatorb may have a norm increasing expone
tially with n. This is the key to the quantum violations o
Mermin’s inequality.

The largest possible commutators, i.e., operators satu
ing the obvious boundi@A,A8#i<2iAiiA8i are just Pauli
matrices. A good choice isAk5(sx1sy)/A2 andAk85(sx

2sy)/A2 for all k. Then ak5A2v, where v5( 1
0

0
0 ). It is

readily verified thatv ^ n acts in the two-dimensional spac
spanned bye1

^ n and e2
^ n exactly asv acts in the space

spanned by the two basis vectorse1 ,e2PC2. With the same
identification of two-dimensional subspacesb52n/2v ^ n acts
like 2(n21)/2a, so the possible expectations tr(r b) with r
supported in this subspace span the exponentially enla
square 2(n21)/2S.

In order to show that 2(n21)/2 is the maximal possible
violation ~in analogy with Cirel’son’s bound@18# for the
CHSH inequality!, but also in preparation for the proof o
our main result, it is useful to consider the following gene
technique for getting upper bounds on tr(r b). It has been
used in the CHSH case by Landau@19#, among others. Note
first that tr(r B) and tr(r B8) are affine functionals of eac
Ak or Ak8 . Hence, if we maximize the expectations of Be
operators by varying someAk or Ak8 , keepingr fixed, we
may as well takeAk extremal in the convex set of Hermitia
operators with21<Ak<1. That is to say, we may assum
Ak

25Ak8
251 for all k. Taking tensor products of Eq.~8! and

expanding the product we find

b* b5 ^
k51

n S 11
i

2
@Ak ,Ak8# D

5(
b

^
kPb

i

2
@Ak ,Ak8#, ~11!

where the sum is over all subsetsb,$1, . . . ,n%, and only
factors different from1 are written in the tensor product. I
particular, the term forb5B is 1. For bb* we get a similar
sum with an additional factor (21)ubu, whereubu denotes the
cardinality of the setb. From Eq.~10! we findak

25ak*
2 and

b25b* 2 by taking tensor products. Again by applying E
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~10!, to (b,B,B8) this time, we find thatB25B82. In fact, by
adding Eqs.~8! and ~9! and inserting Eq.~11!, we get

B25B825 1
2 ~b* b1bb* !

5 (
b even

^
kPb

i

2
@Ak ,Ak8#.

~12!

By the variance inequalityutr(r B)u2<tr(r B2), the expecta-
tion of the right hand side is an upper bound on the squar
largest violation of Mermin’s inequality. There are two im
mediate applications: since each term in the sum has nor
most 1, the norm of the sum is bounded by the number
terms, i.e., 2n21. This shows the analog of Cirel’son’s in
equality, i.e., that the violation discussed above is inde
maximal. The second application is to the case that all co
mutators vanish. Then only the term forb5B survives, and
there is no violation of the inequality. Our result to be stat
and proved in the next section is a refinement of this ide

IV. POSITIVE PARTIAL TRANSPOSES
AND MAIN RESULT

We now apply the technique of the previous section to
partial transpose. More specifically, for any density opera
r and any subseta,$1, . . . ,n%, let rTa denote the partial
transpose of all sites belonging toa. Suppose now thatrTa

is positive semidefinite and hence again a density mat
Then we can apply the variance inequality torTa andBTa,
obtaining

~ tr rB!25~ tr rTaBTa!2<tr@rTa~BTa!2#

<tr$r@~BTa!2#Ta%. ~13!

We note that@AT,A8T#T52@A,A8# and thus

@~BTa!2#Ta5 (
b even

~21! uaùbu ^
kPb

i

2
@Ak ,Ak8#. ~14!

Note that it does not matter whether we transposea or its
complement.

Now consider a partition of$1, . . . ,n% into p nonempty
and disjoint subsetsa1 , . . . ,ap . Let us denote byP the
collection of all unions of these basic sets together with
empty set, so thatP has 2p elements. We assume thatrTa

>0 for all aPP. For p51 this is no constraint at all, be
cause the full transpose ofr is always positive. At the othe
extreme, forp5n, this assumption means the positivity o
every partial transpose.

We now take the expectation value of Eq.~14! and aver-
age over the 2p resulting terms. The coefficient of thebth
term then becomes

22p (
aPP

~21! uaùbu522p )
m51

p

@11~21! uamùbu#, ~15!

which is proved by writing the sum overP as a sum overp
two-valued variables, labeling the alternative ‘‘am,a or
2-3
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am,” a, ’’ and using that the parity (21)uaùbu is the product
of the parities corresponding to theam . Clearly, the expres-
sion ~15! is 1 if and only if uamùbu is even for allm and
zero otherwise. Let us call such setsb ‘‘ P even.’’ There are

)
m

2uamu2152n2p ~16!

such sets. Hence we get the bound

~ tr rB!2< (
b P even

trS r ^
kPb

i

2
@Ak ,Ak8# D

<2n2p. ~17!

That this bound is optimal is evident by evaluating it on
tensor product of pure states maximally violating Mermin
s

J.

v

A

06210
inequality for each partition elementam , i.e., states as dis
cussed in Sec. III.

To summarize, we have established the best bound

utr~rB!u<2(n2p)/2 ~18!

on violations of Mermin’s inequalities, under the assumpti
that the partial transposesrTa are positive for all
a,$1, . . . ,n% subordinated to a partition intop subsets. This
includes three special cases: Forp51 it is the analog of
Cirel’son’s inequality, forp5n it proves our claim that the
inequalities are satisfied if, all partial transposes are posit
and for partitions of the form$1%, . . . ,$m%,$m11, . . .n%,
we obtain the result of Gisin and Bechmann-Pasquinu
@16# using Mermin’s inequalities to test for the numberm of
independent qubits.
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