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Time of arrival in the presence of interactions
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We introduce a formalism for the calculation of the time of arrivat a space point for particles traveling
through interacting media. We develop a general formulation that employs quantum canonical transformations
from the free to the interacting cases to computethe context of the positive-operator-valued measures. We
then compute the probability distribution in the times of arrival at a point for particles that have undergone
reflection, transmission or tunneling off finite potential barriers. For narrow Gaussian initial wave packets we
obtain multimodal time distribution of the reflected packets and a combination of the Hartman effect with
unexpected retardation in tunneling. We also employ explicitly our formalism to deal with arrivals in the
interaction region for the step and linear potentials.

PACS numbgs): 03.65.Bz, 03.65.Ca, 03.65.Nk

[. INTRODUCTION ers[12] that could be used as almost ideal detectors for TOA
[13]. On the other hand, there are explicit constructions of a
In this paper we work out a theoretical framework to com-self-adjoint(albeit in a pre-Hilbert spagel OA operator for
pute the time in which a particle that moves through an inthe nonrelativistic free particle in one space dimension
teracting medium arrives at a given point. In the constructiorj14,15 and for the relativistic free particle in three dimen-
of this framework we will have to deal with problems of a sions(3D) [16], both avoiding the Pauli problem. There is
very different kind that we introduce now. also an alternative formulatiofl7] as a positive-operator-
First, there is the nature of time in quantum mechanics. lvalued measuréPOVM). Finally, the TOA has been mea-
appears as the external evolution parameter in the ‘Schreured in high precision experimenjts8,19 on the arrival of
dinger and Heisenberg equations, common to both systemg/o entangled photons produced by parametric down-
and observers alike. However, time arises in many instancesonversion, one of which has undergone tunneling through a
(transitions, decays, arrivals, gtas a property of the physi- photonic band gagPBG). The experimental results that
cal systems. The attempts to promote time to the category ahow superluminal tunneling neatly identify the Hartman ef-
observable soon encounter the obstruction detected by Paddct [21] and the Wigner time delaj22] (or phase timgas
[1]: A self-adjoint time operator implies an unbounded en-the physically relevant mechanisms for the tunneling time
ergy spectrum. This was soon related to the uncertainty reand TOA, respectively. Whether these results apply only to
lation for time and energy, whose status and physical mearphotons and are due to the specific properties of the PBG
ing produced some controversigs-5], and is still a subject used, or can be extended to other particles and barriers, can-
of elucidation today(see, for instance[6] and [7]). The not be decided due to the lack of a satisfactory theory of the
question remains unresolved for closed quantum systems, €60A at a space point through interacting media.
pecially in the case of quantum gravity, whose formulation is  The third question is thus the tunneling time, for which
pervaded by the so-called problem of tifrgd. there are three main proposals. Wigner introduced the phase
Second, there is the definition of the time of arrival time in his analysi$22] of the relationship between retarda-
(TOA), which is probably the simplest candidate time to be-tion, interaction range, and scattering phase shifts. Buttiker
come a property of therriving) physical system, rather than and Landauer introduced the traversal tifi#8] in their
a mere external parameter. Due to its conceptual simplicitystudy of tunneling through a time-dependent barrier. Soon
it has been used in many cases to illustrate different probafter, Buttiker used the Larmor precession as a cl@X,
lems related to the role of time in quantum theory. Allcockidentifying the dwell[25], traversal, and reflection times as
analyzed[9] extensively the difficulties met by the TOA, three characteristic times describing the interaction of par-
concluding that they were insurmountable. The present situticles with a barrier. Recent reviews that include these and
ation is ambiguous. On the one hand, there are theoreticather approaches, discussing TOA and tunneling times from
analyses[10,11] of the TOA suggesting that it cannot be a modern, unified perspective, can be foun{2é] and[27].
precisely defined and measured in quantum mechanics. Thighe light shed on these questions by the two photon experi-
contradicts the possibility of devising high efficiency absorb-ments is revised 28] and[29].
The main progress, quoted before, towards the formula-
tion of a quantum TOA operator has been its explicit con-
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We extend here our previous unpublished req@, taking  ordinary glass in the path of one of the photons. Of great
now proper care of the dependence on the arrival poskion interest is the dependence »avhereV(x)>0, i.e. with the
that we consider placed in front of the interaction region,detector within the range of the interaction, and also the time
within it, and behind it(if spatially finite). of arrival for E>V, in which classically there is no reflec-
The plan of the work is as follows. In Sec. Il we constructtion. Some of these questions are studied in the final sections
a TOA formalism of general validity. The starting point is of this paper.
the case of the free particle. There, a suitable canonical trans- In classical mechanics particles move along the trajecto-
formation, the quantum version of the Jacobi-Lie transformariesH (g, p) =const ag increases. This allows us to work out
tion of classical mechanics, gives the TOA in interactingt,, the time of arrival at the poirg(t) =x, by identifying the
media[even at points wher®(x) #0]. In Sec. lll we con- point (g,p) of phase space where the particle is(say) t
sider an initial state consisting of a narrow Gaussian wave=0, and then by following the trajectory that passes by it, up
packet prepared at the left of the interaction region and movto the arrival atx. The mathematical translation of this pro-
ing towards it. A quasiclassical study of the TOA at a pointcedure is given by the equation of time:
xin the interaction region is first carried out. Then we turn to
the full guantum-mechanical treatment. We first analyze the ,
o . . ) m (x dq
arrival in the presence of a step potential. Section IV is de- t,(q,p)=sgr(p) \ﬁf ' 1)
voted to the study of the TOA at points behind square barri- 2 Jq\H(q,p)—V(q")
ers. We detect, in different instances, saturation of and de-

partures from the Hartman effect. The caseat the left of  \yhich is discussed at length in many textbooks, and whose
the interacting region is characterized by tpessibly inter-  existence conditions and characterization as a function of the

fering) contributions coming from the incident and the re- phase-space variables are outlined in Appendix A. We sim-
flected wave packets. This situation is treated in Sec. Vply note here that,(q,p) is canonically conjugate to the

where we deal separately with the case of total reﬂeCtiori-Iamiltonian{tx(q,p),H(q,p)}:—1.

(very high barriers which has an analog in classical me-  Thjs equation is a troublesome starting point for quanti-
chanics, and with the case of partial reflection, a pure quanzation. First, it involves &path integral of operators and
tum phenomenon with very rich structure in the time do-ghoyld be treated accordingly. Second, it only applies to val-

main. Finally, we summarize our results in Sec. VI. ues ofx that are classically within the reach af,p), while
In Appendix A we show how the TOA can be treated as & quantum mechanics all values ofare attainable. Classi-

derived q_uantity in the phase space of 'classical Hamiltonialga"y, the particle propagates without reflection up to the
systems in the case_where these are integrable. A short "Riring pointqo [V(qo)=E], where it is completely re-
view of the construction and properties of the quantum TOAfjgcted. There is no further penetration beyond this point.
operator for free particles is presented in Appendix B forthe sjtyation is different in quantum mechanics: there may
completeness. be tunneling beyond, and partial reflection before reaching
it. These phenomena cannot be accounted for by (EX.
Il. TIME-OF-ARRIVAL FORMALISM which gives complex numpers for these cases. Now, note
that both tunneling and partial reflection are absent from the
To measure the time of arrival of a free particle at a pointmotion of free particles, whose time of arrival has been suc-
X, one would(a) place a detector at, (b) prepare the initial cessfully quantized as mentioned in the Introduction. In ad-
state|¢) of the particle at=0, and then(c) record with a  dition, all the positions are within the reach of the free par-
clock the timet when the detector clicks. The valuetafives  ticle. Summarizing, everything points to the free time of
the TOA of the statéy) atx. Repeating this procedure with arrival as a main clue to solve the problem.
identically prepared initial states, one would get the probabil- In this work we do not attempt the straightforward quan-
ity distribution in times of arrival ak. Of course, the results tization of the classical expressi¢h). Instead, we will con-
would depend on the initial state chosen, which stores all thetruct the solution to the interacting case taking as a starting
information regarding the initial distribution in positions and point the well known results that apply to the free case. The
momenta of the particle. aim is to produce the quantum version of the Lie transfor-
We want to determine the effect on these times of amation from the actual flow in phase space to the canonically
position-dependent interaction between the particle and thequivalent parallel flow of constant velocity translations. In
medium, which we describe by a potential enexty). For  other words, we shall use the quantum version of the canoni-
instance, to disclose the effect of climbifgr tunneling cal transformation to action-angle variables. The Lie
through a potential barrier, one would simply put the barrier procedure—which we sketch for completeness in Appendix
in between the detector and the initial state, and then record—has a property that will be the central part of our con-
the new times of arrival. With an initial state identical to that struction. Namely, it permits us to define time as a derived
prepared for the free case, any difference in the probabilityariable in phase space in terms of the free action-angle vari-
distributions should be an effect of the barrier. Several quesables as well as, alternative and equivalently, in terms of the
tions can be investigated by changing the properties of theriginal positions and momenta. Obviously, both definitions
barrier: its height or width if it is rectangular, even its very give the same result as we show explicitly in E45). Our
form. This has been explicitly done in the two photon experi-use of the Lie procedure in the quantum case can be de-
ments at Berkeley, by putting alternatively a mirror and anscribed as the combination of stef@—(c) below.
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(a) The quantization of the time of arriva} of the free E(EEFUTE(q,p)U:F(q,p),
particle. This is an old problem in guantum mechanics,
whose solution in terms of a positive-operator-valued mea- S =
sure we describe in Appendix B. G(q,p)=U"G(a,p)U=0G(q,p),
(b) The construction of the quantum canonical transfor-

Hamiltonian H, to the case of interest with Hamiltonian Parred operators in terms of the unbarred ones, while the first

Ho+V(q). U is given by the Mder wave operator as we equality comes from the straight application of E¢S). to
show in Secs. 1A and I B. the left-hand side. BeindJ a unitary transformation, the

(c) The application of the canonical transformationto spectra of the canonically transformed operators have to co-
the time-of-arrival operator, to get the time-of-arrival op- Incide, thatis,
eratort in the presence of the interaction potentidh), that _ _
is, t=UtoU". This is what we do in Sec. Il B, where we also o(@)=c(q)=R, o(p)=c(p)=R,
address the interpretation of the resulting formalism. (7
o(F)=c(F), o(G)=0(G),

6

A. Implicit quantum canonical transformations

Classical canonical transformation§=a(q,p), E where the _second row stands becabsndF, G andG are
also unitarily related operators.

=P(a.p) in phase space can be defined implicitly by the use The above relations enable us to build the operﬁor

of auxiliar functionsF,G,E,Ein the following way: — ) —
y g way onceF, G, andF are given. We assume thktand F are
E(EEF F(q,p) self-adjoint operators, with the eigenstates corresponding to
’ Y 2 the same eigenvalue; given by

G(a,p)=G(q,p).

FIf)=x(f),  FIf)=f). tS)
It is easy to work out the following relation among Poisson L
brackets: They form orthogonal and complete bases satisfying
(F.Glipl0.Plp=IF Gy O qslrs)=agona. 3 [ avdrssi-n,
In these conditions, the transformation is canonifa., 9

{a,p}qp=1) if and only if
(FS[f's")= e SN—N)), 2 f d¢[Ts)(fs|=1I,
S a(\)

{FvG}ﬁz{F!G}qp- 4
(10)

This relation has the additional property of fixing one of the
four functionsF,G,F,G, once the other three are given. We Where we allow for some degenerahat has to be the same
can choos& andG as the free-particle Hamiltonian and time for bothF andF) labeled bys. We have also assumed that
of arrival, respectively. Then, iF is the complete Hamil- 1S continuous, whilesis a discrete index. These assumptions

= could be changed straightforwardly if it were necessary.
Now, an operatol satisfying the first row of Eq(6) can be
given simply as

tonianH, G will be the corresponding TOA, given by Eq.
(1) along the classical trajectories.

Canonical transformations were introduced by Dirac in
guantum mechanicg31] by the use of unitary transforma-
tionsU (UUT=UTU=1). If the operatorsy,p are canoni- u=>, f dn¢|fs)(fs]|. (12)
cally transformed fronmg,p, then there is a unitary transfor- s Joly)

mationU such that . . . o .
It is straightforward to verify that it is unitary. We can now

q_: utqu, proceed to the sough'gor result: the definition®in terms
(5) of G usingU, that is,G=UGU". The full-fledged expres-
a: U'pu. sion is

Then one can define implicitly quantum canonical transfor- G _ J dh.dho [fs)(fslG £'s'V(f's’
mations, like the classical ones. This possibility has been (@.p) SES: oy T [fs)(TsIGla.p)[f’s")(Fs,

thoroughly analyzed and developed. The main results of the (12
method are collected if82], where one can also find refer-

ences to other relevant literature. The transformatibiis ~ which constitutes our main result in the quantum canonical
given by formalism.
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B. Definition of the time of arrival case by the canonical transformation. Much of the difference
between the classic and quantum cases is hidden here, in
particular the quantum capability to undergo classically for-
bidden jumps in phase space.

Summarizing, in the interacting case we have a TOA op-
erator given by

We will now apply the above to the case whéras the

free HamiltonianH, F is the complete HamiltoniaHl, and

G is the time of arrival of the free particle EB1). Then,
we haveHo=UTHU andIIy(x)=U'TI(x)U. In Appendix

B we have summarized the TOA formalism for the free par-
ticle, given by the positive-operator-valued measBgg of 4o
Eq. (B6). Accordingly, the POVMP of the interacting case IXZZ f dt t|txs)(txs|, (16)
will be given by[cf. Eq. (6)] s J-o

PIT(X);ty,t)=UPo(Ilo(x);ty,t)UT. (13  where
Finally, the time-of-arrival operator in the presence of inter- va
actions(the G of our problem is given by |tX5>:(F) eIy x). 17)
t(H.I1(0)=Uto(Ho, o))V 14 pbove we have introduced the projectorIl
(i) Fixing U by the relation between both Hamiltonians Eq (B5) by the canonical transformatids). We now have
leads to two different solutions: the tools necessary for a physical interpretation in terms of a
POVM: Given an arbitrary statg¢ att=0, its time of arrival
o at a positionx has to be, according to E¢L6),
V=3 | delEs)ESOl-0), @9

1 o
W= S [P, as

which are the Mbler operators connecting the Hilbert space
Hin andH,,,; Of free-particle states to the Hilbert spakieof
the bound and scattering states. These operators are onljth the standard interpretation &F (x| y)|? as the(yet
isometric in the presence of bound states, because the corfignnormalizediprobability density that the stafes) arrives at
spondence between statesHnand free states cannot be one x in the timet. The probability of arriving ak at any time is
to one. In this paper we will consider only well-behaved then P(x)= Jdt= (txs|¢)|?, giving a normalized probabil-
potentiald V(q)=0Vq] that vanish at the spatial infinity, for ity density in times of arrival
which the Madler operators are unitary because there is one
free state for each scattering state. In this case, the intertwin-
ing relationsHQ . = . H, can be set in the usual fort P(t,x)= P( P E [(txs|)? (19
=0.HeQL . In addition, we shall adhere to the standard
conventions, choosingl ., [with E=lim _o+(E+i€)] in
Eqg. (15), which gives signal propagation forward in time.
The results that would be obtained wi€ly _ would corre-
spond to the time reversal of the actual situationr I§ the
time-reversal operator, P(_y(IL(x);ty,t5)= 7P (I1(X);
—t,,—ty)7". For notational simplicity, we will omit this la-
bel (+) wherever possible.

(i) The reduction of the problem to a sort of free-particle
problem by means of a canonical transformation as done in
Eq. (14) should not be a surprise. On the contrary, this is the

normalization that has been used in ELB). Note that in the
cases in whichP(x) vanishes, this conditional probability is
devoid of meaning: If there are no arrivals at all, there are no
arrivals in any finite(or infinitesima) interval of time.

The above equationd8) and (19) can be given a form
that is very useful for computation, while throwing some
light on the physical meaning of the different quantities in-
volved. By using explicitly Eq(17), one gets

1/4 *
quantum counterpart of the classical situation where the tra- p(x)= 2 |de<2_E) (x|Es(+))(Es(+)|¢>]
jectories of completely integrable phase-space flows can be m
straightened out to those of a free particle by means of a oE’| V4
canonical transformation. The quantum transformation de- de'(_ (x|E’s(+)><E’s(+)|¢)]
scribed above and in Sec. Il A corresponds to the classical m
Lie transformation of Appendix A that carries out this
stretching. Concretely, EGA5) is the classic analog to Eq. X f dte (E-ENt
(14).

(i) x is the actual detector position in the interacting 12
case. Therefore, the argumentstah Eq. (14) have to be =27 f dE(F) [(X|ES(+))ES(+)[¢)].
I1(x)=|x){(x| andH. This gives for the argument df, an s
objectIIy(x)=QI(x)Q which is not a position projector. (20
Instead, it collects all the states of the free particle that add
up to produce the position eigenstdse of the interacting Using a similar procedure, one gets for E#8)
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i 2E\ 12 A. The quasiclassical case
(vitdyy=— P(x) z f dE(F) We start with the simple but illustrative case where the
. potential departs from 0 for positiveewith V(0)=0, and is
. d so smooth that the WKB method is valid. Then, fir
X{UX[ES(+)NES(+)]#)} dE >V(x) and to lowest order, one can neglect the exponen-
tially small reflection that would vanish classically, getting
X{(X|Es(+))Es(+)|¢)} energy eigenstates of the form
2 2E\ 2 m
= _P(X) 25 f dE(H |<X|ES(+)> <X|Er(+)>~0(—x) ﬁ eiPx
<(ES+ ) )P argx(ES( ) i)
— X ifoda p(a
dE + 0(x) 270X e'ld , (24)
+argEs(+)[4)}. @1 where p(q)=+v2mE—V(q)]. To this order and with a
properly normalized wave packet such as ours, &)
Ill. THE ENTRANCE INTO THE INTERACTION REGION gives

We start here to analyze the theoretical predictions of our * p -~ )
formalism. To begin with, we consider the simple case of anP ()= 0(=X)+6(X)P.(x), P, (x)= fo dpﬁl Y(p)]
initial Gaussian state prepared &0 in a zone where (25)
V(q)=0, and directed towards the interaction region. This

wave packet) of width Aq=25'is centered atjp<<0—well  sq that p/p(x)]|7(p)|? is the (unnormalized probability of

to the left of the onset of the interaction—with mean mo-rrival at the poink with momentunp(x). For the probabil-
mentumpo>0. In Conf|gurat|0n and momentum spaces Wer[y in times of arrival one gets

have
0(—Xx)| (= o 2
1/4 P(t,X)w(Z_Tr)‘ fo dp e EG(p)
<Q|l/f>:( 2) e‘52F’§e—[(q—qo/25)—i5po]2,
27wd 0(x) o m [t £ o] 2
(22 + m . dE —p(x)lp(p)e oda p(@l|
2\ L
=|— —5°(p—Ppo)°—ipq s
(ol =( 22| e -, )

which is the same as that of free particles XerO as corre-

respectively. For appropriate values @f, p,, and s, such sponds to this order of approximation in which reflection
that o> 1 and|qo|> 8, almost all the packet is initially at neglecteq,. SO that there is no information abdut the left
the left of the origin and moving with positive momentum of the origin. Finally,

towards the right. We use this simplifying assumptitime . m

neglect of the Gau55|a_n’s tall_s W_|t_h> O,p<0_) in our quali- (Yt )~ 0(_X)j dpl(p)|2—={x—qo}

tative arguments, and in the intuitive descriptions of the pro- 0 p

cesses that we will develop below. This will be indicated

S

explicitly in the formulas by the use of instead of=. n 0(x) fxdp P (D)2

However, we shall work with the full expressiof&2) wher- Pi(x)Jo "p(X)

ever necessary in the calculations. For simplicity, we con- % d

sider that the potential vanishes to the left of the origin. % _%Hﬂf _q) (27)
Preparing the stat¢r as mentioned above witl(q)~0 for p oP(q)

q>0, and its Fourier transforr#(p)~0 for p<0, we have

Theref f i he TOA of the f
(ES(+)| )~ 8. (m/2E) “F(p), so that erefore, for negativex we recover the TOA of the free

particle. What the above expression givesxor0 is merely
the classical time of arrival &, Eq. (1), for initial conditions

) - ,p) weighted by the probability of these conditions.
(txs w>~6s,f dEe EUXEN(+)p), (29  ((oP) weldhted byhe probabily

B. Step potential and Hartman effect

valid for the full range of values of. Now, the initial state In general, the approximations that led to E2¢) do not

contributes to the time of arrival(2l) a quantity hold. For instance, reflection has to be taken into account, or
d/dEarg Es(+)|#)~—mqgy/p, the same as that in the free V is such that the semiclassical approximation is no longer
case. valid, etc. In any case, the particle may eventually reach a
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pointq whereE=V(q). Any further penetration beyond that arrival vanishes(exponentially beyond the distance\x
point is a quantum phenomenon worth investigating in terms=1/p’ associated through the uncertainty principle to the
of the TOA. We address this question by considering a stegifferenceAE between the energy of the step and the energy
potential V(q)= 6(q)V intercepting the path of the wave of the particle. One then expects to detect a relative of this
packety. We will then analyze the fate of the components ofphenomenon in the time of arrival. In fact, the time spent

the wave packet witlp>p,,=+2mV and withp<p,,. Clas-

from 0 to x is given here through nf/p)(dargr_/dp)

sically, a particle in the first group will arrive with momen- =m/pp’, which is independent of the distangewhich is

tum p’=/[p?—P2| at the pointsx>0, while one in the
second group will bounce back @t=0, without penetrating
to the right. In the quantum case, one hasXer0 a super-

position of both reflection and transmission, regardless of p

p/py, while for x>0 one has

1/4 ) )
e FYHE-V)T. P~

(txs|y)~

5SI'
— dE(E
+0(V—E)T_e " 3(p), (28)

whereT-=2p/(p+p’) andT_=2p/(p+ip’). Then,

* _ Pv , ~
P<x>~fp aplT Bp)+ [ ap e 2T )
Vv
29

is the probability of arrival ak, while

m
[

1/4 _ _
—) e EUQE—-V)T.eP X

1
P(t,X)~ s—— oE

27P(X)
2

+O(V—E)T_e P*}y(p) (30)

replaced byAx. This is a case of the Hartman effect that
here arises from the change

p X
p+ip’

in!
elP'x_,

, (32
p+p

in the energy eigenstates @scrossespy from above. In
short, the effect is a consequence of the fact that the phase is
independent ok for p<py,.

In the general case one should take into account both
contributions to Eq(31). The relative importance of the sec-
ond contribution on the right-hand side would depend on
po— py and will always decrease exponentially with increas-
ing X. However, a proper analysis of this situation calls for a
description of particles better than that provided by first
quantization and wave packets. We will defer this question
to the next section where we discuss tunneling, the instance
where the particle may reappear again beyond some point.

IV. ARRIVAL AT THE OTHER SIDE

In this section we will study the modification of the times
of arrival of quantum particles that traverse potential barri-
ers. Our treatment depends on the current understanding of
the tunneling and dwell times. The literature is fullaaf hoc

gives the probability distribution in TOA of the particles that heuristic arguments often disconnected from the standard

arrive at this point. Finally,

1
<¢|txlw>~m

f:dpm?ﬂ(p)lz

m d T
oM mx mdargT.)
P p’ P dp

P , ~
+ fo Ydp e T _Y(p)|?

><{_quJerarg(TQ] . @31

p p dp

In the case of low potential stegs,<p, [cf. Eq. (22)],
where one can neglect the integrals over the intgrdgd, ],

the probability of arrival reduces to the average of the tran

mision coefficien T-|2, which is independent af as cor-
responds to a transmitted free particle. is real in this case,
so that(¢|t,| ) is given by averaging ovey the time spent

to go fromqg to 0 at momentunp plus the time spent to go
from 0 to x at momentunmp’. The only effect of the step is

the reduction of the momentum fromto p’.
In the opposite case whemg,>p,, only the integrals

mathematical and interpretative apparatus of quantum me-
chanics, whose value is therefore difficult to assess, as is
their comparison with experiment. Here, we will follow the
standard quantum-mechanical treatment of Sec. Il.

The time of arrival at a point will now be given through
a probability amplitude

2E 1/4 .
(s = [ 08| 55| e e ) ESCH ).
(33

We prepare the initial state as usiiaé a rightmover at the
left of the barrier, cf. above E@23)]. We again can approxi-

mate (Es(+)|¢)~ 6,s(M/2E)Y44(p). The scattering state
of relevance in Eq(33) is given by

[ m ) .
S- (q|Er(+)>= Z—WG(—q)[e'pQ+R(p)e—|pq]

+6(q)6(a—q)A(q,p)+ 6(q—a)T(p)e'Pa.
(34)
This expression is valid for an arbitrary potential barrier con-

tained in the range (8), whereA(q,p) solves the appropri-
ate Schrdinger equation with energg=p?/2m. Also, T(p)

over[0,py] give a sizeable contribution. The probability of and R(p) are the transmission and reflection coefficients of
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the barrier. For a barrier of infinite range, the first and third

terms on the right-hand side of E(4) should be better
understood as asymptotic limits.

Finally, in the case wherr is at the right of the barrier,
the amplitude can be approximately given by

1/4
e 'EUPIT(p)i(p).

(35

(s~ == | ae| 72|
Xs| )y~ —
Va2 2E
The normalized probability density in times of arrival »at
counts all the particles eventually recordedxaand only

them, that is, the transmitted particles. According to @)
it is given by

1

P(t.X)= gy 2 Kixslnl?

1 2

~27P(x)

m 1/4 (E ) ~
—1 t—pXx
de<—2E) e PIT(p)¢(p)

(36)
where we have normalized dividing #(x) the total prob-
ability of arrival atx in whatever time,

+oo +oo ~
P()=2 f dtl(txs| g~ fo dp|T(p)s(p)|?
(37

which is independent of in cases like this, wherg is be-
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Time of arrival
N
>
s

2 2.2 2.4 2.6
Barrier height

FIG. 1. Average time of arrival at the other side of a barrier of
fixed widtha= 15 as a function of the barrier momentypy. The
parameters of the initial Gaussian wave packet gye —30,,
=2,0=10m=1, and the arrival at=50, in units withA=1. The
solid line is the quantum averagg9), the dashed line is the phase
time with momentunp,. The asymptote to the lefp(,—0) is the
time of arrival for free particlest=40), the one to the right is the
Hartman timety(a) =ty,— (ma/py) =32.5.

zpp/e—ipa
T(p)=

, 40
2pp’cosp’a—i(p?+p’?)sinp’a 49

where p’ = \/pz—pvz, that is, imaginary forp below py,.
Note the contribution—pa to the phase off (p). This will
subtract a terna to the path lengtlx—qg that appears in Eq.
(39). The barrier has effective zero width or, in other words,

yond the range of the potential. In addition, it approximatelyit js traversed instantaneously. This is the Hartman effect for

simplifies to|T(pg)|?
momentump, not too close(from above or belowto the
barrier momentunpy=vy2mV. After a straightforward cal-

for narrow wave packets with mean parriers, To be precise, the effect is not complete; it is com-

pensated by the other dependencespia present in the
phase ofT(p). In fact, it disappears forp, /p)—0, where

culation we get for the average time of arrival at the Othera” the a dependences of the phase cancel Out, as was to be

side of the barrier

i m\v4 a’
(vltd)~— ZP(X)f dE[(E) ePT(P)Y(P)* 52

m\ Y4 -
X E) e'pXT(p)w(p)}, (38)
which can be written as
<¢f|tx|¢>w%f:dpmpm(mlzg
X X—(Qo+ %‘;(p))} (39

expected because the barrier effectively vanishes in this
limit. In the opposite casep(py)— 0 the effect saturates and
there is an advanaaa/p in the time of arrival of transmitted
plane waves, which turns into unexpected results for inter-
mediate barrier momenta.

We present our results for the time of arrival of the trans-
mitted particles in Figs. 1 and 2. We consider the same initial
state in both cases, namely the Gaussian wave packet of Eq.
(22) with gg= —30,pg=2, 6= 10, andm=1 (we always use
the natural units of the problem with=1). We have com-
puted the time of arrival of the wave packetat 50 for an
assortment of potential heights and widths, and have chosen
the contents of those figures to highlight the most important
results.

We show the time of arrival at the other side of a barrier
of momentumpy, in the rangea=(1.6,2.6) in Fig. 1. For

an expression that has appeared before in the literature somigcident plane waves with momentupg, the barrier would
times supported by heuristic arguments alone. It can be urbe crossed over fopy<py, and tunneled through fop,

derstood as the average value of the Wigner ti2® over
the transmitted state.

>po. Some retardation would be expected in the first case,

just because the travel over the barrier would be slower than

We will illustrate the predictions of the formalism for a the free travel. This is clearly seen at the leftmf in the

simple square barrier of heightand widtha. The transmis-
sion coefficient is in this case

figure. Classically, the delay would grow from zdtone ty)
to infinity aspy, grows from 0 top,. The quantum behavior
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They share a similar behavior: As the barrier width grows
from a=0, the time of arrival decreases, practically saturat-
ing the Hartman time(a) ~ty(a) =to— (ma/py). Then sud-
denly, at a certain widtkthat increases with,,), the average
time jumps dramatically to values that correspond to a long
retardation. Note that the jump far,=2.6 lies outside the
range of the figure. This behavior is complementary to that
shown in Fig. 1. Here, fop,,>pg and moderate, tunneling
is the dominant phenomenon and the time average tends to
reproducety . However, as the barrier gets wider, tunneling
gets more and more depressed. In comparison, the intensity
of the retarded components that pass over the barrier is ba-
10 12 11 sically independent od. They get relatively more and more
important and eventually overcome tunneling, giving rise to
FIG. 2. Average times of arrival at the other side of a barrier asthe observed transition. In practice, for wide enough barriers,
a function of the barrier width. The initial wave packet is the same the probability of tunneling vanishes, and the other side can
as in Fig. 1, and agaix=50. We show the predictions fgs,  be reached only by the very improbable and very slow travel
=0,1.6,1.8,2.2,2.3,2.4,2.6. The solid lines are the quantum avewver the barrier. This behavior has been noticed indepen-
ages(39), the dashed lines are the corresponding Wigner times fodently in[33], and explained in the same way. In addition,
a particle with momentunp,,. we have the tools to check these explanations. In particular,
the first product of our formalism iB(t,x), the probability
is similar, with the oscillations of the phase time swept awaydistribution in times of arrival ak. Our numerical analysis
by the average that remains finite. To the righpgf there is  for x=50 and the differenp,’s anda’s that we are discuss-
a dramatic difference between the Wigner result, which im-ing here shows similar almost Gaussian shapes for these dis-
mediately sticks to the Hartman predictign, and the wave- tributions, as correspond to the initial wave packets chosen,
packet result, for which the time continues to increase up tand similar widths for theseéP(t,x), whose maxima are
a certain barrier height and then, suddenly, dropstoThis  placed close to the corresponding mean vakigs As ex-
strange behavior can be explained in the following mannerpected, the probabilities get numerically smaller as the cor-
Not being monoenergetic, the wave packet has momentunesponding events become more and more unlikely. In short,
components above and belagw,. The first of these cross these distributions give the best support for the validity of
above the barrier, get retarded, and are responsible for th&e explanation offered here for this striking behavior, which
high time value forp,, just to the right ofp,. However, as can be understood only after weighing the obtained time of
the barrier continues to grow, they become an ever lessetrrival with the relative probability of the actual event to
part of the packet. The other parts of the padkie¢ compo-  which it corresponds.
nents with momentunp<py) tunnel through the barrier,
and experience the Hartman advance. They would arrixe at
in a timety . Their relative importance in the wave packet V. QUANTUM REFLECTIONS

increases steadily gs, continues to grow and, eventually,  Haying analyzed the modifications introduced by the
they overcome the retarded components and the process kgansmission phenomena in the time of arrival at the other
comes pure tunneling. Then, the time of arrival dropsto  sjde of the potential barriers, we turn to the case of reflection.
We have numerically checked this behavior, which we haveye divide the analysis into the two seemingly different cases
analyzed for several values of the barrier width in the rangen which there is classical reflection and in which it is absent.
(2,30. All the results are similar: Monotonic growth of the The first case is characterized by the presence of at least one
time fromp, =0 (wheret=t,) up topy~2.5, wheret drops  turning point in the path of the particle. The second one is
suddenly toty. The general trend is a slow increase in thecharacterized by the absence of any of them. Quantum me-
value of the barrier momentupy at which the drop takes chanically there could be some transmission in the first case
place, which shifts from about 2.2 to 2.7 aghanges from  and some reflection in the second one. Accordingly, we sepa-
10 to 30. The maximum value of the time of arriya}) that  rate the discussion that follows into the two main disjoint
is obtained just before the drop also increases; it is around 9ases that cover all the possibilities. These are the cases in
for a=10 and around 450 faa= 20. which the potential energy grows to infinity somewhée

We show in Fig. 2 the average time of arrival and theta| reflection and the case in which it is bounded everywhere
Wigner (phase time as a function of the barrier width in (with partial reflection and transmissipn

the rangea=(0,15). We display the predictions for different

barrier heightpy=0, 1.6, 1.8, 2.2, 2.3, 2.4, and 2.6. For the _

free case [fy=0 or a=0) all the results converge th, A. The case of total reflection

=40. We now discuss the solid lin€s,). The oscillatory The potential energy could grow unbound, thus reflecting
curves abové, correspond ty<py. They get steeper as any conceivable incoming state. We consider here a mono-
their momenta approach, from below. The curves that tonic potential energy that vanishes fipr+ — and goes to
stand partially belowt, correspond topy>p, (tunneling.  infinity for g— so that lim,_,;..(q|E)=0. This removes

50

45

Time of arrival

35

2 4 6 8
Barrier thickness
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the degeneracy of the energy eigenstates. As no state me
arrive from the right,(q|EI(+))=0. The eigenstatetE)
will contain the same amount of positive and negative mo-
menta, so that their asymptotic form normalized to one trav-
eling particle per wunit time is lig,_.(q|E)
=1/\2m(m/2E)Y*cog pg+ &E)], where 8(E) is the phase
shift. This also fixes completely the eigenstates for finite val-
ues ofq.

The time of arrival at an arbitrary pointis now

T d
(o= 2| a2 e El e

x {arg x|E) +arg E| )}, (42) ' Time of arrival

o o . FIG. 3. Probability distributiorP(t,x) in times of arrival atx,
which is the average of a quantity independentxoflhis  ¢or y—q. (solid line), x=0.5q, (dashed ling and at the classical
comes about because in the present situation the reflecthnming pointx=E/f (dot-dashed line The vertical lines corre-
coefficientR=exp(—2ié) is unimodular. Then, the net cur- spond tot=0 and to the classical turning time, respectively. The
rent density vanishes, so that @{F) is independent ok. distributions are bimodal, with the two peaks corresponding to in-
This is the quantum version of the classical result that theidence and reflection getting closer asapproaches the turning
sum of the times of arrival at of the incoming and returning point.
particles is twice the TOA at the turning point, and so is
independent ok. Obviously this ceases wheR| becomes d
smaller than 1so that the net current density is finitsome- ti(X,E)= EW(X,E) +argE[4)}, (45
thing that is possible only whevi is finite everywhere. Even
then, the classical result is recovered from the quantum case d
in the limit (E/V)<1, where|R|—1. t,(X,E)= —={— ¢(x,E) +arg E| )}, (46)

The individual times of arrival of the incoming and the dE
returning particles can be obtained straightforwardly by writ-
ing the energy eigenstates as

Probability density
N

whose sum is explicitlk independent.

To illustrate these results, we consider now the case of a
potential that vanishes at the left of the origin and is linear at
the right, i.e.V(q) = 6(q) fg, wheref is the force exerted on
the particle. This could be a model fofeharged particle in
a constant electric field, or in the gravity field of the Earth. In
whereM is a real function with ling_, .M (q,E)=1, which this case one getsl and ¢ in terms of the Airy function Al
vanishes faster than an exponentialder + = to satisfy the ~and its derivative Aj,
asymptotic form of the Schdinger equation. The state is M(Q.E
thus written as the superposition at each point of an incom- (a.E)
ing and a reflected wave with equal amplitudes, so that the 1 for q<0
net current vanishes everywhere. The phésés fixed by
limg_.—.#(q,E)=pg+ (E) to match the asymptotic form [Ai(2)]2+ ﬁ
of the eigenstate discussed above. Its derivative gives the =
two opposite velocity fields .. (g,E)=+d¢(q,E)/mdqin- ;
terfering atg. We recall that this exact expression is valid for [Ai(Z0) ]2+ —
all the potentials of the form we are considering here. The P
probability of ever arriving ak and the TOA can be given by (47)
straightforward application of Eq$20) and(21) by

1 1/4
(alE)= E(E) M(q,E)cosg(q,E), (42

2
[AI'(2)]?

2
[Ai"(zo)]?

for g>0,

where z=k;q— p?/k? ,zo= — p?/k? with k;=(2mf)*3. For
the phase one has

kai’(zO)>
arctan — ———| for g=0
'6 p Ai(zo) a

1 _
(Wt )= 55— f dE M2(x,E)cog(x,E) #(a.B)= KA’ (2)
2P(x) arctar( -
pAi(2)

P(x)=f dE M%(x,E)cogo(x,E)(E| )2, (43)

(48)
) for g>0
XEIWPIt(,E) + (%, E)], (44)
so the phase shift is given simply B(E) = ¢(0,E).
which is the weighted average over energies of the times of We present in Figs. 3 and 4 our results for the the case of
arrival of the incoming and the reflected waves: a force of nominal valué=100, being the parameters of the
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0.6 0<P;=<1,0sPg=<1, with P;+Pr=1. The case of total re-
flection analyzed in the preceding section is one of close
0.5 correspondence between the classical and the quantum re-

sults, as we showed there. Interesting departures from the
classical behavior arise when there is no classical reflection.

\ We will analyze this case here.

To fix ideas, we consider a well behaved potential energy
V(g)=0 V finite g, which vanishes at the spatial infinity
faster thanq ™. In these conditions the energy eigenstates

Time of arrival
o
w

o1 can be written everywhere as a well defined superposition of
transmittedd(q,E) and reflectedb (q,E) waves, charac-
0 terized by the positive or negative value of their currents:
N “Detector position ° —i2m@3(d/dg)®)=0 and —i/2m(®L(d/dq)D e

<0, with different amplitudes®,|+#|® . as corresponds

FIG. 4. Average time of arrival for different detector positions. 4 thjs case of partial reflection. The eigenstates of interest
The vertical lines correspond to=q,, x=0, andx=E/f, respec- can be written as

tively. The solid line is the classical time, the dashed line is the
guantum average df (lower par} and oft, (upper part m
<q|EI’>= m{q)tr(qu)J’_q)ref(an)}- (49)
initial Gaussian wave pack&?2) qo=—2,po=10,6=1, and
m=1. For the normalized probability distributions in times These waves are univocally determined by their asymptotic

of arrival (19), we get pairs of peaks of equal heights—asconditions, namely
correspond to total reflection—that tend to merge into one as

the detector is displaced towards the classical turning point.  im ®(q,E)=€"9,  lim ®(q,E)=T(E)e',
This behavior of the peaks is also observed for the averaged 9~~~ 4=t

times of arrival, which follow the classical times. The small (50)
deviat_ions from the parabolip fo_rm are negligibl_e in_compari- lim q)ref(q,E):R(E)efi[pq+2§(E)], lim ®,(q,E)=0
son with the widths of the distributions shown in Fig. 3. We 4, e

have explored numerically the details that change uninterest-

ingly according to the values df,p,,d, etc., so we do not as is the case for an incoming rightmové8). The results of
show them here. The general picture is always the same: #e preceding section are recovered in the limit where
the far left (qo|>E/f) the potential acts as an infinite height T(E)—0, which is the case only if the potential energy
wall. The only sizeable consequences of the actual strengtrows to infinity somewhere.

of the force are felt at positions between the origin and the If we prepare our initial Gaussian staggq) at a point
turning point, where they resemble the classical effects. Paft=0, where the potential energy is smooth enough, and
of this comes from the fact that here position and energykeep the initial momentunp,>0 large enough to consider
combine into only a variableg—E/f. But the resemblance % (p)~0 for p<0, we can use the approximations

arises because total reflection is always present here, quan-

tum as well as classically. This will be more clear in the next \/ﬁ N ~

section, where we consider partial reflection that lacks a clas- (Esly)~drs Eq)tr(% B)ly(p)l

sical analog.
m .
~5:s \Ee'p‘w Hp)l. (51

In classical mechanics a potential interaction energyWe have used the second of these already in(E8). It is
speeds up or slows down the particles according to the localalid whenV(q)=0 for g in the gy neighborhood where
value of the forcd=(q) = —dV(q)/dq. Accelerated or decel- (q) is sizeable. We assume this is the case in what follows.
erated, the particles continue to move along the same path One of the biggest consequences of the superposition of
without reversing the direction. Only when one of them in-transmitted and reflected components that makes up the
tercepts a turning poirji.e., a pointq whereE=V(q)] does eigenstatd49) is that it leads to the inescapable presence of
the particle bounce back or, in other words, is reflected withinterferences. In fact, the probability of presence at a pgint
probability Pr=1. In the absence of these points, the par-and other quantities depending on it, contains the sum
ticle is always transmitted with probabilitPr=1. Thus, |(g|Er)[?=|®y|?+|® 1°+2 Re@,Dr,), whose last term
most of the timeP+=1,Pr=0. Only at the turning points is the interference term. One could say that, everywhere in its
doesP;=0,Pr=1. motion through the interaction region, the quantum particle

Quantum dynamics offers a very different perspective ofwill be found in an evolving entangled state of transmitted
the motion of the particles. The Scldiager equation implies and reflected components. This can be traced back math-
that at every point where the potential energy is finite, theematically to the continuity of the solutions of the Schro
particle is partially transmitted and partially reflected, that is,dinger equation and of their first derivatives, and to the as-

B. Partial reflections
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sociated Wronskian theorem. Physically, this may introduce  °°
all sorts of interpretative difficulties in the analysis of par- 0.06 008
ticle motion. 0.04 0.08
Summarizing, interferences pervade the realm of quantun oo
motion. They will show up in almost every quantum- /\
mechanical situation. Our analysis of the time of arrival is £ 5 o 100 180 20 s T TR C T
not an exception. We have avoided referring to them until &
now by focusing on very specific cases. These were as fol& °° 0.003
lows: The choice in Sec. Il A. of a very smooth potential 0.002 .
analyzable semiclassically by the WKB method, which ne-  o.cos 0.0015
glects reflection; the analysis in Sec. IlIC of the time of ~ °° \/ St \/\
arrival at points located at the other side of the barrier, where o AR N ES————|

® =0, so that any interference with the transmitted wave

vanishes; and finally, the analysis made in the preceding sec- Time

tion, where we just ignored the effects due to the overlap of g, 5. probability distributionP(t,x) in times of arrival for
incoming and reflected waves R(t,x), and the lack of a reflection from finite potential barriers. The initial wave packet is
clear-cut separation betweg¢nandt, in the presence of in- the Gaussian one witm=1,p,=2,6=10, placed atg,= —150.
terferences. To be precise, we dealt with reflection withoutrhe arrival position is ak=—100. The upper left figure is for a
paying the attention due to these subtleties. We repair thearrier widtha=4 andp,=2.2. At its right is the casa=4 and

omission here. py=1.9, which is enlarged in the lower left part for the rartge
The amplitude in time of arrival at a positiorwithin the ~ =[100,18Q. An illustrative case of multimodal reflection distribu-
interaction range can be given by using E@®) and(51) in tion is shown at the lower right part, which correspondsptp
Eq. (33), =1.9 anda=6. The vertical grid lines correspond to the phase
times of the incident wave'Po* and of the reflected waves: 'Po*
(txs| ) ={Au(t,X) + A t,X) } for py>py and the superposition spijae™P* for p,, < po.

S [ \/B g (no barriej do the intereferences disappear. For the total
~ dp\/—|¢(p)| reflection case of the preceding section, we Bgt P,
V2o m while the interference term gives riseét; the term{2gsx
i(Et+ +8(E)]}, which builds up the factor c6g that appears in
xe (ETPRIDL(x,E) + el X.E)}. (62 Eqs.(4}3) and (44). However, it does not prevent the defini-
tion of the quantitieg45) and (46) that allowed to split the
;J' OA (44) into two positive contributions interpretable as the
independentt,) of an incoming packet and a reflected one

This gives for the probability of ever arriving atEq. (20)
the sum of three terms: The two separated probabilitie
Py, P Of arriving with positive or with negative current _:
density, and a quantum interference term, whose presenég'g' 4)'. . . o .
deprives the previous two of direct physical meaning. We For finite barriers, reflgcnon IS a_'W.aYS present with an
thus getP(xX) = Py(X) + Poof(X) + 1 (x) with energy—dependent coeff|C|e|ﬁt(E)§l, it is less p_robable
b than incidence, and tends to vanish as the barrier does. In
_ Fig. 5 we give the probability distributions of TOR(t,x) at
Ptr(X)zf dt|A[r(t,x)|2wf dpl#(p)|?|® «(x,E)|? a pointx, whose bumps indicate, as in Fig. 3, the arrival of
e ref ref (53  incident and reflected parts of the time evolved initial wave
packet. This is the Gaussian one with=1,py=2,6=10,
and an interference term placed atgy= —150. The arrival position is at=— 100, far
from g, to avoid interferences. The two upper figures are for
a barrier of widtha=4. At the left is the case wheng,
=2.2, and at the right that with,,=1.9. In both cases there
is an incidence bump centeredtatm(x—qg)/po=25 and a
wzf dp|7(p)|?Re{e™Phd (X, E) D o X, E)*}. structure to its right corresponding to reflection. Fay
=2.2, and for all the cases of total classical reflectipg (
(54) >po), the latter is a Gaussian-like bump shifted from the
classical value at=m(—x—qg)/po=125 by an amount
The above quantities depend on the probabilities of transtm/p(d¢/dp)). However, forp,=1.9 (in general forpy
mission or reflection from the initial positiogy, to the actual  <p,), the reflected distribution has a multibump shape dif-
valuex. Consider a bounded potential barrier of finite range ficult to understand in terms of the phase time or of any other
but otherwise arbitrary. Behind the barri€r.; vanishes, approximation. In particular, neither the number of peaks nor
while Py is given by Eq.(37) with a value independent of  their heights and widths can be approximated by straight
but strongly dependent op,,d and on the barrier's height stationary phase methods. Two illustrative cases of these
and width. Forx at the left of the barriep,,=€e'P* (what we  shapes are shown in some detail in the two examples of the
are denoting as_transmission is incidence hebeit ®;  lower part that correspond fo,= 1.9 and two close widths
=R(E)e~'IPX*28B)] and only when there is no reflection a=4 anda=6.

I[(x)= Zf dt Re{Ay(t,X)Ardt,x)}
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It is not a defect of the formalism, but an effect of the inter-
ferences. Fortunately enough, our formalism provides us

We have worked out a formalism for obtaining the time Ofwith the probability distribution P(t,x) whose diverse

arrival at a space point of particles that move through interhumps and bumpgFigs. 3 and 5 give the most complete
acting media. Our construction follows a circuitous path: Wejnformation of the posible experimental outcomes.

desist from first computing the classical TOA of the prob- | the course of our numerical analysis, we have detected
lem, and then quantizing it, a procedure that leads to a deagat the phase time,, does not always give a good approxi-
end. Instead, we start from the quantum TOA of the freemation to the most probable time of arrival. It provides a first
moving particle and then transform it canonically to the in-estimate of the time spent in the transmission or reflection,
teracting case. This is achieved by the use of the appropriatgfter subtracting the time of free flight. For transmitted wave
Moller operator that implements the quantum version of thepackets we have reobtained the advancertient a decrease
Jacobi-Lie canonical transformation to free translation coorin the TOA) in the case of pure quantum tunneling. This
dinates in phase space. In the classical case we have tpenomenon, predicted by Hartman a long time [@d, has
transformation of Eq(A2) whose quantum counterpart is  been experimentally evinced by the two-photon experiments
at Berkeley[18,19 and the tunneling of optical pulses at
Wien [20]. However, our formalism predicts a striking de-
parture from the Hartman bound, which we explain in detail
i , in Sec. IV. Our results for square barriers neatly show the
whereH, and’H are the Hilbert spaces of the free and inter- expected advancement roughly proportional to the wikith
acting particles, andHy,H are the respective Hamiltonian _ —malp (Figs. 1 and 2 However, whatever the mean en-
gperat%rs inl'th';else spaces. Ef)rhstirr]npt"dty’f we htave only ads v E<V) of the incident wave packet, there is always a
ressed explicitly cases in which the transformations are uni- .
tary, which is the case whesm(H)=0o(Hg). More general Ré‘?‘i:;ao such that fom=>a, the (very reta_rdebjcomponents
R o7 . ) packet that stand above the barrier dominate over the

situations that require isometric trar)sformatlons deserve forobabilistically very depressgdunneled ones, giving an
separate treatment due to their physical relevance. overall effective strong retardation. In other words, when the

What we obtained here is a quantum formalism for they 5 rier js wide enough, its width dominates over the Hartman
TOA in terms of a POVM given by length Ax discussed above Ed32), which has a purely
quantum origin. This restores the classical expectation of no
tunneling and very long delays.

We have also found another unanticipated phenomenon
. N ] ] ] for purely quantum reflection: the multiple bump structure
which measures the probability of arrivabatluring the time 3t appears whep,<p,. We have shown this structure in
interval (t;,t;). The normalized probability distribution Fig 5 which in some sense is a counterpart of the interfer-
P(t,x) was given in Eq.(19) of Sec. IIB. Our results are ence pattern that appears in multiple reflection of stationary
thus within the standard formalism of quantum mechanicsyaves. We think that this feature, even if less spectacular
and can be interpreted in the standard way. There is nothing,an the superluminal tunneling of photons, deserves experi-
special that singles out our theoretical predictions as unsuithental confirmation. An appropriate modification of the two-
able for comparison with the experimental results. On thebhoton experiments could serve this purpose. It would re-
ments in the form of numeric values and statistics for th%ntang'ed photonS’ and check for the presdmabsencb
recorded events. of the multiple dip structure in the number of coincidence

After the definition and theoretical analysis of Sec. Il, we cgunts predicted by the formalism.
cases of an unbounded linear potential, of the step pOtemiaétJantum TOA operator suitable for the presence of interac-
and of the square barrier. Our analysis of the quasiclassicgpns allows the exploration of many physical details in rel-
case shows that in this limit the TOA is simply given by the gyant situations. Its extension to higher-dimensional cases
average of the classical time of ) over the quasiclassi- poses no conceptual difficulties and opens the possibility of
cal wave function. In the case of reflection, and for the arreating new questions. Of great theoretical and experimental
rival point placed between the initial position of the wave jnterest will be the extension of this formalism to the cases in
packet and the turning poink{0), the probability distribu-  \yhich the Hamiltonian has bound states, where isometric

tion P(t,x) is governed by the quantum superposition of the(instead of simply unitarytransformations will be required.
incident (A;) and the reflectedA,.;) wave packets. In the

case of total reflection, where both are equally probable
Pu(X)=P.(x), we have obtained separate positi{g)
even when both amplitudes overlap. These were interprete
as the TOA'’s of the incident and reflected particles, an
compared successfully with the classical prediction. For par-
tial reflection, P,.(X)<Py(X) nonoverlapping amplitudes
are necessary to get separate average values for these timesln the modern literaturg37], a classical Hamiltonian sys-
This problem is shared with the position and other operatorgem with n degrees of freedom is called completely inte-

of

{H,H}—{Ho.Ho}, (59

2
P(tl’t2;x):2:4| t dt|txs)(txs|, (56)
=SS
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grable(in the manner as shown by Liouvijlevhen it satis- IW p2
fies the conditionga) and (b) below. H(q,&— = 5m (A4)
. . q m
(@ There are n compatlble conservation laws
@i(qg, .- - On.P1 - - ’(FIJ)n )=Ci,i=1,...n, thatis, Now, the canonical relation among the new and the old vari-
(1) &={® H}+ Z1=0, V i=1,...pn, ables is
(2 {®;,®;}=0, V i,j=1,...n. P=sgr(p)v2mH(q,p),
(b) The conservation laws defimeisolating integrals that
can be written as q dg’
(D) <I> =Ci=pi=¢i(d1, ... 0n,Cq, ... .Cyit), Vi Q=f—+Q0,
=1,. 0 L V(g')
a¢| a(ﬁj - N H
2 —=—21V i,j=1,...n. (a.p)
@ Gq, 7,7

In these conditions, Hamilton equations define an intewhereQ, is a constant. As a byproduct, time gets defined in
grable flow, that is, a system of holonomic coordinatesan equivalent manner in terms of the old variables or of the

(a(t),p(t)) in phase space for each instant of time: new ones. If the particle arrives gft)=x in the instant
t(x)=t, then
(A1) X)=5(X=Q)=sgnp f —,
Pi()=pi(do.Poit), i=1,...n. P a\2m[H(q,p) ~V(a)]

(A5)

In other words, given a set of initial conditiongq,pg) of = where X=dW(x,P)/dP [obviously, X=Q(t) by construc-

the system, at each instant of tirh¢he system arrives at a tion]. This duality, devoid of practical interest in the classical

point (q(t),p(t)) in phase space. Conversely, these pointglomain, is at the foundations of the quantum method devel-

define the corresponding times of arrival. In this case, timeped in this paper. Finally, note that for simplicity we have

meets the requirements to qualify as a derived variable ispecialized the notation to the case of autonomous Hamil-

phase space. tonian systems with only one degree of freedom, all of them
As Lie pointed out, for any arbitrary time there is a spe-trivially integrable[ H(q,p) =E being the needed conserved

cial choice of coordinates in phase space that mathematicallyuantity.

eliminates the effects of interactions from these integrable

flows (the new positions are ignorable coordinategore APPENDIX B

simply, integrable systems are canonically equivalent to a set

of translations(or circular motiony at constant speed. It is ~ For free particles, Eq(1) gives t,o(q,p)=m(x—a)/p,

customary to denote the variables that determine these tranghich, in spite of its simplicity, presents some problems for

lations as action-angle variables, which strictly is appropriatéuantization3,14,1§ whose solution we outline here. First

only in the case of periodic systems, where ttiesed flow  of all, it requires symmetrization:

lines are topologically equivalent to circles.

For integrable flows, there is a canonical transformation (@.p)=m X 1 _ _eipx\/E \/E QiPX
(the Jacobi-Lie transformation bo(a.P p 2 &b P). - p a p '
(B1)
W(q,P)

As is well known, the eigenstatétxs0) of this operator in

{a.piH(a.p)} — {Q.PH(Q.P)} (A2) the momentum representation can be givenfas 1)

with H(g,p) =H(Q,P), which gives the free translation co- [Ipl
(9,p) =H(Q.P) J (p|txs0)= 6(sp) ex;{l—t (p|x), (B2)

ordinatesP(t)=P andQ(t)=(P/m)t+ Q of the translation
flow with ﬁ(Q,P) =P?/2m, in terms of the coordinates and
momenta (q(t),p(t)) of the actual flow with H(q,p) where we usa=r for rightmovers >0) ands=1 for left-
=(p%/2m)+V(q). This transformation is of the form movers £<0.) The label O stands for the free case. Finally,
W(q,P), that is, a function of the old coordinates and thethe argumentsp of the step function that appears in the

new momenta, so that momentum representation isp for s=r and —p for s
=|. The degeneracy of the energy with respect to the sign of
IJW IJW the moment is explicitly shown by means of the labal the
Q= op P~T aq (A3) energy representation, where
1/4
Finally, W can be obtained explicitly as a complete integral / _ 2_E iEt
of the Hamilton-Jacobi equation: (ES'0[txs0)=dys m| © (ESOx). (B3)
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Summarizing, there is a tim@f arrival atx) representa- 2
tion spanned by the eigenstates PO(H(X);tlth):g L dt|txs0)(txs0|
2 [2Hq\ Y
2Ho\ ¥4 = f dt(—o) eI IT(x)IT
|tXSO>=<TO) elHOtH50|X>, (B4) z 1 m solI(X)ITgo
2H0 1/4
—iHqt
wherell g, projects on the subspace of rightmovess-¢) or xe Mo (W) ' (B6)

leftmovers 6=1), i.e.,

where I1(x)=|x)(x| is the projector orx. Here, Py(1,2)?
o #Py(1,2) becausetxs0)(txs0| is not a projector, as the
Hson' dE|ES0)(ESO|. (B5  states are not orthogonal, but where the limittase of
0 Po(—t,+1t) is the identity. The attained time operator is no
) ] S longer sharp, but is well suited for measurement. This solu-
These time eigenstates are not orthogonal, which in thgon has been implemented 7] and extensively analyzed
past gave rise to serious doubts about their physical meaning, Refs.[34,35 and in the review27]. In this POVM for-
The origin of this problem can be traced back to the fact thap,jation, the TOA is given by the spectral decomposition
Eq. (B1) is not self-adjoint, that is{|t,o)#(twe|®).
This was proved by Paulil] a long time ago and is due to
the lower bound on the energy spectrum. The problem
emerges as soon as one attempts integration by parts in the to(Ho . I1(x)) = J’Mdtt 2Ho
energy representation. Referefi2&] is a recent illuminating oo —w m
review of these and other related questions. U4
The measurement problem posed by this not self-adjoint XeiHOt(ﬁ)
TOA operator can be solved by interpreting it in terms of a m '
positive-operator-valued measuf@OVM), which only re-
quires the hermiticity oft, [i.e., t,o=(t,0)* ']. Here, in-
stead of a projector-valued spectral decomposition of thevhere Py(x) =31, I1(x)I1,, which is not a projector
identity operator, one has the POVM [36].

1/4
eIHotrPO(X)

(B7)
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