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Time of arrival in the presence of interactions
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We introduce a formalism for the calculation of the time of arrivalt at a space point for particles traveling
through interacting media. We develop a general formulation that employs quantum canonical transformations
from the free to the interacting cases to computet in the context of the positive-operator-valued measures. We
then compute the probability distribution in the times of arrival at a point for particles that have undergone
reflection, transmission or tunneling off finite potential barriers. For narrow Gaussian initial wave packets we
obtain multimodal time distribution of the reflected packets and a combination of the Hartman effect with
unexpected retardation in tunneling. We also employ explicitly our formalism to deal with arrivals in the
interaction region for the step and linear potentials.

PACS number~s!: 03.65.Bz, 03.65.Ca, 03.65.Nk
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I. INTRODUCTION

In this paper we work out a theoretical framework to co
pute the time in which a particle that moves through an
teracting medium arrives at a given point. In the construct
of this framework we will have to deal with problems of
very different kind that we introduce now.

First, there is the nature of time in quantum mechanics
appears as the external evolution parameter in the Sc¨-
dinger and Heisenberg equations, common to both syst
and observers alike. However, time arises in many instan
~transitions, decays, arrivals, etc.! as a property of the physi
cal systems. The attempts to promote time to the categor
observable soon encounter the obstruction detected by P
@1#: A self-adjoint time operator implies an unbounded e
ergy spectrum. This was soon related to the uncertainty
lation for time and energy, whose status and physical me
ing produced some controversies@2–5#, and is still a subject
of elucidation today~see, for instance,@6# and @7#!. The
question remains unresolved for closed quantum systems
pecially in the case of quantum gravity, whose formulation
pervaded by the so-called problem of time@8#.

Second, there is the definition of the time of arriv
~TOA!, which is probably the simplest candidate time to b
come a property of the~arriving! physical system, rather tha
a mere external parameter. Due to its conceptual simplic
it has been used in many cases to illustrate different pr
lems related to the role of time in quantum theory. Allco
analyzed@9# extensively the difficulties met by the TOA
concluding that they were insurmountable. The present s
ation is ambiguous. On the one hand, there are theore
analyses@10,11# of the TOA suggesting that it cannot b
precisely defined and measured in quantum mechanics.
contradicts the possibility of devising high efficiency abso
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ers@12# that could be used as almost ideal detectors for T
@13#. On the other hand, there are explicit constructions o
self-adjoint~albeit in a pre-Hilbert space! TOA operator for
the nonrelativistic free particle in one space dimens
@14,15# and for the relativistic free particle in three dime
sions ~3D! @16#, both avoiding the Pauli problem. There
also an alternative formulation@17# as a positive-operator
valued measure~POVM!. Finally, the TOA has been mea
sured in high precision experiments@18,19# on the arrival of
two entangled photons produced by parametric dow
conversion, one of which has undergone tunneling throug
photonic band gap~PBG!. The experimental results tha
show superluminal tunneling neatly identify the Hartman
fect @21# and the Wigner time delay@22# ~or phase time! as
the physically relevant mechanisms for the tunneling ti
and TOA, respectively. Whether these results apply only
photons and are due to the specific properties of the P
used, or can be extended to other particles and barriers,
not be decided due to the lack of a satisfactory theory of
TOA at a space point through interacting media.

The third question is thus the tunneling time, for whic
there are three main proposals. Wigner introduced the ph
time in his analysis@22# of the relationship between retarda
tion, interaction range, and scattering phase shifts. Butt
and Landauer introduced the traversal time@23# in their
study of tunneling through a time-dependent barrier. So
after, Buttiker used the Larmor precession as a clock@24#,
identifying the dwell@25#, traversal, and reflection times a
three characteristic times describing the interaction of p
ticles with a barrier. Recent reviews that include these a
other approaches, discussing TOA and tunneling times fr
a modern, unified perspective, can be found in@26# and@27#.
The light shed on these questions by the two photon exp
ments is revised in@28# and @29#.

The main progress, quoted before, towards the formu
tion of a quantum TOA operator has been its explicit co
struction for a particle moving freely in one space dime
sion. In this paper, we confront the problem of extending t
formalism to the case of the presence of an interaction
tential affecting a region of the one-dimensional~1D! space.
©2000 The American Physical Society01-1
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We extend here our previous unpublished results@30#, taking
now proper care of the dependence on the arrival positiox
that we consider placed in front of the interaction regio
within it, and behind it~if spatially finite!.

The plan of the work is as follows. In Sec. II we constru
a TOA formalism of general validity. The starting point
the case of the free particle. There, a suitable canonical tr
formation, the quantum version of the Jacobi-Lie transform
tion of classical mechanics, gives the TOA in interacti
media@even at points whereV(x)Þ0]. In Sec. III we con-
sider an initial state consisting of a narrow Gaussian w
packet prepared at the left of the interaction region and m
ing towards it. A quasiclassical study of the TOA at a po
x in the interaction region is first carried out. Then we turn
the full quantum-mechanical treatment. We first analyze
arrival in the presence of a step potential. Section IV is
voted to the study of the TOA at points behind square ba
ers. We detect, in different instances, saturation of and
partures from the Hartman effect. The case ofx at the left of
the interacting region is characterized by the~possibly inter-
fering! contributions coming from the incident and the r
flected wave packets. This situation is treated in Sec.
where we deal separately with the case of total reflec
~very high barriers!, which has an analog in classical m
chanics, and with the case of partial reflection, a pure qu
tum phenomenon with very rich structure in the time d
main. Finally, we summarize our results in Sec. VI.

In Appendix A we show how the TOA can be treated a
derived quantity in the phase space of classical Hamilton
systems in the case where these are integrable. A shor
view of the construction and properties of the quantum TO
operator for free particles is presented in Appendix B
completeness.

II. TIME-OF-ARRIVAL FORMALISM

To measure the time of arrival of a free particle at a po
x, one would~a! place a detector atx, ~b! prepare the initial
stateuc& of the particle att50, and then~c! record with a
clock the timet when the detector clicks. The value oft gives
the TOA of the stateuc& at x. Repeating this procedure wit
identically prepared initial states, one would get the proba
ity distribution in times of arrival atx. Of course, the results
would depend on the initial state chosen, which stores all
information regarding the initial distribution in positions an
momenta of the particle.

We want to determine the effect on these times o
position-dependent interaction between the particle and
medium, which we describe by a potential energyV(q). For
instance, to disclose the effect of climbing~or tunneling
through! a potential barrier, one would simply put the barri
in between the detector and the initial state, and then rec
the new times of arrival. With an initial state identical to th
prepared for the free case, any difference in the probab
distributions should be an effect of the barrier. Several qu
tions can be investigated by changing the properties of
barrier: its height or width if it is rectangular, even its ve
form. This has been explicitly done in the two photon expe
ments at Berkeley, by putting alternatively a mirror and
06210
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ordinary glass in the path of one of the photons. Of gr
interest is the dependence onx whereV(x).0, i.e. with the
detector within the range of the interaction, and also the ti
of arrival for E.V, in which classically there is no reflec
tion. Some of these questions are studied in the final sect
of this paper.

In classical mechanics particles move along the trajec
riesH(q,p)5const ast increases. This allows us to work ou
tx , the time of arrival at the pointq(t)5x, by identifying the
point (q,p) of phase space where the particle is at~say! t
50, and then by following the trajectory that passes by it,
to the arrival atx. The mathematical translation of this pro
cedure is given by the equation of time:

tx~q,p!5sgn~p!Am

2 Eq

x dq8

AH~q,p!2V~q8!
, ~1!

which is discussed at length in many textbooks, and wh
existence conditions and characterization as a function of
phase-space variables are outlined in Appendix A. We s
ply note here thattx(q,p) is canonically conjugate to the
Hamiltonian$tx(q,p),H(q,p)%521.

This equation is a troublesome starting point for quan
zation. First, it involves a~path! integral of operators and
should be treated accordingly. Second, it only applies to v
ues ofx that are classically within the reach of (q,p), while
in quantum mechanics all values ofx are attainable. Classi
cally, the particle propagates without reflection up to t
turning point q0 @V(q0)5E#, where it is completely re-
flected. There is no further penetration beyond this po
The situation is different in quantum mechanics: there m
be tunneling beyondq0 and partial reflection before reachin
it. These phenomena cannot be accounted for by Eq.~1!,
which gives complex numbers for these cases. Now, n
that both tunneling and partial reflection are absent from
motion of free particles, whose time of arrival has been s
cessfully quantized as mentioned in the Introduction. In
dition, all the positions are within the reach of the free p
ticle. Summarizing, everything points to the free time
arrival as a main clue to solve the problem.

In this work we do not attempt the straightforward qua
tization of the classical expression~1!. Instead, we will con-
struct the solution to the interacting case taking as a star
point the well known results that apply to the free case. T
aim is to produce the quantum version of the Lie transf
mation from the actual flow in phase space to the canonic
equivalent parallel flow of constant velocity translations.
other words, we shall use the quantum version of the can
cal transformation to action-angle variables. The L
procedure—which we sketch for completeness in Appen
A—has a property that will be the central part of our co
struction. Namely, it permits us to define time as a deriv
variable in phase space in terms of the free action-angle v
ables as well as, alternative and equivalently, in terms of
original positions and momenta. Obviously, both definitio
give the same result as we show explicitly in Eq.~A5!. Our
use of the Lie procedure in the quantum case can be
scribed as the combination of steps~a!–~c! below.
1-2
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TIME OF ARRIVAL IN THE PRESENCE OF INTERACTIONS PHYSICAL REVIEW A61 062101
~a! The quantization of the time of arrivalt0 of the free
particle. This is an old problem in quantum mechani
whose solution in terms of a positive-operator-valued m
sure we describe in Appendix B.

~b! The construction of the quantum canonical transf
mation U that connects the free-particle dynamics w
Hamiltonian H0 to the case of interest with Hamiltonia
H01V(q). U is given by the Mo¨ller wave operator as we
show in Secs. II A and II B.

~c! The application of the canonical transformationU to
the time-of-arrival operatort0 to get the time-of-arrival op-
eratort in the presence of the interaction potentialV(q), that
is, t5Ut0U†. This is what we do in Sec. II B, where we als
address the interpretation of the resulting formalism.

A. Implicit quantum canonical transformations

Classical canonical transformationsq̄5q̄(q,p), p̄

5 p̄(q,p) in phase space can be defined implicitly by the u
of auxiliary functionsF,G,F̄,Ḡ in the following way:

F̄~ q̄,p̄!5F~q,p!,
~2!

Ḡ~ q̄,p̄!5G~q,p!.

It is easy to work out the following relation among Poiss
brackets:

$F̄,Ḡ% q̄p̄$q̄,p̄%qp5$F,G%qp . ~3!

In these conditions, the transformation is canonical~i.e.,

$q̄,p̄%qp51) if and only if

$F̄,Ḡ% q̄p̄5$F,G%qp . ~4!

This relation has the additional property of fixing one of t
four functionsF,G,F̄,Ḡ, once the other three are given. W
can chooseF andG as the free-particle Hamiltonian and tim
of arrival, respectively. Then, ifF̄ is the complete Hamil-
tonianH, Ḡ will be the corresponding TOAtx given by Eq.
~1! along the classical trajectories.

Canonical transformations were introduced by Dirac
quantum mechanics@31# by the use of unitary transforma
tions U (UU†5U†U51). If the operatorsq̄,p̄ are canoni-
cally transformed fromq,p, then there is a unitary transfor
mationU such that

q̄5U†qU,
~5!

p̄5U†pU.

Then one can define implicitly quantum canonical transf
mations, like the classical ones. This possibility has b
thoroughly analyzed and developed. The main results of
method are collected in@32#, where one can also find refe
ences to other relevant literature. The transformationU is
given by
06210
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F̄~ q̄,p̄!5U†F̄~q,p!U5F~q,p!,
~6!

Ḡ~ q̄,p̄!5U†Ḡ~q,p!U5G~q,p!,

where the last equality in each row is the definition of t
barred operators in terms of the unbarred ones, while the
equality comes from the straight application of Eqs.~5! to
the left-hand side. BeingU a unitary transformation, the
spectra of the canonically transformed operators have to
incide, that is,

s~ q̄!5s~q!5R, s~ p̄!5s~p!5R,
~7!

s~ F̄!5s~F!, s~Ḡ!5s~G!,

where the second row stands becauseF andF̄, G andḠ are
also unitarily related operators.

The above relations enable us to build the operatorḠ
onceF, G, and F̄ are given. We assume thatF and F̄ are
self-adjoint operators, with the eigenstates correspondin
the same eigenvaluel f given by

F̄u f̄ &5l f u f̄ &, Fu f &5l f u f &. ~8!

They form orthogonal and complete bases satisfying

^ f su f 8s8&5dss8d~l f2l f8!, (
s
E

s(l)
dl f u f s&^ f su5P,

~9!

^ f̄ su f̄ 8s8&5dss8d~l f2l f8!, (
s
E

s(l)
dl f u f̄ s&^ f̄ su5P,

~10!

where we allow for some degeneracy~that has to be the sam
for bothF andF̄) labeled bys. We have also assumed thatl
is continuous, whiles is a discrete index. These assumptio
could be changed straightforwardly if it were necessa
Now, an operatorU satisfying the first row of Eq.~6! can be
given simply as

U5(
s
E

s(l)
dl f u f̄ s&^ f su. ~11!

It is straightforward to verify that it is unitary. We can no
proceed to the sought for result: the definition ofḠ in terms
of G using U, that is,Ḡ5UGU†. The full-fledged expres-
sion is

Ḡ~q,p!5(
ss8

E
s(l)

dl fdl f 8u f̄ s&^ f suG~q,p!u f 8s8&^ f̄ 8s8u,

~12!

which constitutes our main result in the quantum canon
formalism.
1-3
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B. Definition of the time of arrival

We will now apply the above to the case whereF is the
free HamiltonianH0 , F̄ is the complete HamiltonianH, and
G is the time of arrival of the free particle Eq.~B1!. Then,
we haveH05U†HU and P0(x)5U†P(x)U. In Appendix
B we have summarized the TOA formalism for the free p
ticle, given by the positive-operator-valued measureP0 of
Eq. ~B6!. Accordingly, the POVMP of the interacting case
will be given by @cf. Eq. ~6!#

P„P~x!;t1 ,t2…5UP0„P0~x!;t1 ,t2…U
†. ~13!

Finally, the time-of-arrival operator in the presence of int
actions~the Ḡ of our problem! is given by

t„H,P~x!…5Ut0„H0 ,P0~x!…U†. ~14!

Three comments are in order here.
~i! Fixing U by the relation between both Hamiltonian

leads to two different solutions:

U (6)5(
s
E

0

`

dEuEs~6 !&^Es0u5V (6) , ~15!

which are the Mo¨ller operators connecting the Hilbert spa
Hin andHout of free-particle states to the Hilbert spaceH of
the bound and scattering states. These operators are
isometric in the presence of bound states, because the c
spondence between states inH and free states cannot be on
to one. In this paper we will consider only well-behav
potentials@V(q)>0;q# that vanish at the spatial infinity, fo
which the Möller operators are unitary because there is o
free state for each scattering state. In this case, the intert
ing relationsHV65V6H0 can be set in the usual formH
5V6H0V6

† . In addition, we shall adhere to the standa
conventions, choosingV (1) @with E5 lime→01(E1 i e)] in
Eq. ~15!, which gives signal propagation forward in tim
The results that would be obtained withV (2) would corre-
spond to the time reversal of the actual situation. Ift is the
time-reversal operator, P(2)„P(x);t1 ,t2…5tP(1)„P(x);
2t2 ,2t1…t

†. For notational simplicity, we will omit this la-
bel (1) wherever possible.

~ii ! The reduction of the problem to a sort of free-partic
problem by means of a canonical transformation as don
Eq. ~14! should not be a surprise. On the contrary, this is
quantum counterpart of the classical situation where the
jectories of completely integrable phase-space flows can
straightened out to those of a free particle by means o
canonical transformation. The quantum transformation
scribed above and in Sec. II A corresponds to the class
Lie transformation of Appendix A that carries out th
stretching. Concretely, Eq.~A5! is the classic analog to Eq
~14!.

~iii ! x is the actual detector position in the interacti
case. Therefore, the arguments oft in Eq. ~14! have to be
P(x)5ux&^xu and H. This gives for the argument oft0 an
objectP0(x)5V†P(x)V which is not a position projector
Instead, it collects all the states of the free particle that
up to produce the position eigenstateux& of the interacting
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case by the canonical transformation. Much of the differen
between the classic and quantum cases is hidden her
particular the quantum capability to undergo classically f
bidden jumps in phase space.

Summarizing, in the interacting case we have a TOA o
erator given by

tx5(
s
E

2`

1`

dt tutxs&^txsu, ~16!

where

utxs&5S 2H

m D 1/4

eiHtPsux&. ~17!

Above we have introduced the projectorPs
5*dE uEs(1)&^Es(1)u, which is obtained from thePs0 of
Eq. ~B5! by the canonical transformation~15!. We now have
the tools necessary for a physical interpretation in terms o
POVM: Given an arbitrary statec at t50, its time of arrival
at a positionx has to be, according to Eq.~16!,

^cutxuc&5
1

P~x! (
s
E

2`

1`

dt tz^txsuc& z2, ~18!

with the standard interpretation of(sz^txsuc& z2 as the~yet
unnormalized! probability density that the stateuc& arrives at
x in the timet. The probability of arriving atx at any time is
then P(x)5*dt(sz^txsuc& z2, giving a normalized probabil-
ity density in times of arrival

P~ t,x!5
1

P~x! (
s

z^txsuc& z2 ~19!

normalization that has been used in Eq.~18!. Note that in the
cases in whichP(x) vanishes, this conditional probability i
devoid of meaning: If there are no arrivals at all, there are
arrivals in any finite~or infinitesimal! interval of time.

The above equations~18! and ~19! can be given a form
that is very useful for computation, while throwing som
light on the physical meaning of the different quantities
volved. By using explicitly Eq.~17!, one gets

P~x!5(
s

H E dES 2E

m D 1/4

^xuEs~1 !&^Es~1 !uc&J *

3H E dE8S 2E8

m D 1/4

^xuE8s~1 !&^E8s~1 !uc&J
3E dt e2 i (E2E8)t

52p(
s
E dES 2E

m D 1/2

z^xuEs~1 !&^Es~1 !uc& z2.

~20!

Using a similar procedure, one gets for Eq.~18!
1-4
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^cutxuc&52
ip

P~x! (
s
E dES 2E

m D 1/2

3$^xuEs~1 !&^Es~1 !uc&%*
dJ

dE

3$^xuEs~1 !&^Es~1 !uc&%

5
2p

P~x! (
s
E dES 2E

m D 1/2

z^xuEs~1 !&

3^Es~1 !uc& z2
d

dE
$arĝ xuEs~1 !&

1arĝ Es~1 !uc&%. ~21!

III. THE ENTRANCE INTO THE INTERACTION REGION

We start here to analyze the theoretical predictions of
formalism. To begin with, we consider the simple case of
initial Gaussian state prepared att50 in a zone where
V(q)50, and directed towards the interaction region. T
wave packetc of width Dq52d is centered atq0,0—well
to the left of the onset of the interaction—with mean m
mentump0.0. In configuration and momentum spaces
have

^quc&5S 1

2pd2D 1/4

e2d2p0
2
e2[(q2q0/2d)2 idp0] 2

,

~22!

^puc&5S 2d2

p D 1/4

e2d2(p2p0)22 ipq0,

respectively. For appropriate values ofq0 , p0, andd, such
that p0d@1 anduq0u@d, almost all the packet is initially a
the left of the origin and moving with positive momentu
towards the right. We use this simplifying assumption~the
neglect of the Gaussian’s tails withq.0,p,0) in our quali-
tative arguments, and in the intuitive descriptions of the p
cesses that we will develop below. This will be indicat
explicitly in the formulas by the use of' instead of5.
However, we shall work with the full expressions~22! wher-
ever necessary in the calculations. For simplicity, we c
sider that the potential vanishes to the left of the orig
Preparing the statec as mentioned above withc(q)'0 for
q.0, and its Fourier transformc̃(p)'0 for p,0, we have

^Es(1)uc&'dsr(m/2E)1/4c̃(p), so that

^txsuc&'dsrE dE e2 iEt^xuEr~1 !&c̃~p!, ~23!

valid for the full range of values ofx. Now, the initial state
contributes to the time of arrival~21! a quantity
d/dEarĝ Es(1)uc&'2mq0 /p, the same as that in the fre
case.
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A. The quasiclassical case

We start with the simple but illustrative case where t
potential departs from 0 for positiveq with V(0)50, and is
so smooth that the WKB method is valid. Then, forE
.V(x) and to lowest order, one can neglect the expon
tially small reflection that would vanish classically, gettin
energy eigenstates of the form

^xuEr~1 !&'u~2x!A m

2pp
eipx

1u~x!A m

2pp~x!
ei *0

xdq p(q), ~24!

where p(q)5A2m@E2V(q)#. To this order and with a
properly normalized wave packet such as ours, Eq.~20!
gives

P~x!'u~2x!1u~x!P1~x!, P1~x!5E
0

`

dp
p

p~x!
uc̃~p!u2

~25!

so that@p/p(x)#uc̃(p)u2 is the~unnormalized! probability of
arrival at the pointx with momentump(x). For the probabil-
ity in times of arrival one gets

P~ t,x!'
u~2x!

2p U E
0

`

dp e2 iEtc̃~p!U2

1
u~x!

2pP1~x! U E0

`

dEA m

p~x!
c̃~p!e2 i [Et2*0

xdq p(q)]U2

,

~26!

which is the same as that of free particles forx,0 as corre-
sponds to this order of approximation in which reflection
neglected, so that there is no information aboutV at the left
of the origin. Finally,

^cutxuc&'u~2x!E
0

`

dpuc̃~p!u2
m

p
$x2q0%

1
u~x!

P1~x!
E

0

`

dp
p

p~x!
uc̃~p!u2

3H 2
mq0

p
1mE

0

x dq

p~q!J . ~27!

Therefore, for negativex we recover the TOA of the free
particle. What the above expression gives forx.0 is merely
the classical time of arrival atx, Eq.~1!, for initial conditions
(q0 ,p) weighted by the probability of these conditions.

B. Step potential and Hartman effect

In general, the approximations that led to Eq.~24! do not
hold. For instance, reflection has to be taken into accoun
V is such that the semiclassical approximation is no lon
valid, etc. In any case, the particle may eventually reac
1-5
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point q whereE5V(q). Any further penetration beyond tha
point is a quantum phenomenon worth investigating in ter
of the TOA. We address this question by considering a s
potential V(q)5u(q)V intercepting the path of the wav
packetc. We will then analyze the fate of the components
the wave packet withp.pV5A2mV and withp,pV . Clas-
sically, a particle in the first group will arrive with momen
tum p85Aup22PV

2 u at the pointsx.0, while one in the
second group will bounce back atq50, without penetrating
to the right. In the quantum case, one has forx,0 a super-
position of both reflection and transmission, regardless
p/pV , while for x.0 one has

^txsuc&'
dsr

A2p
E dES m

2ED 1/4

e2 iEt$u~E2V!T.eip8x

1u~V2E!T,e2p8x%c̃~p!, ~28!

whereT.52p/(p1p8) andT,52p/(p1 ip8). Then,

P~x!'E
pV

`

dpuT.c̃~p!u21E
0

pV
dp e22p8xuT,c̃~p!u2

~29!

is the probability of arrival atx, while

P~ t,x!'
1

2pP~x!
U E dES m

2ED 1/4

e2 iEt$u~E2V!T.eip8x

1u~V2E!T,e2p8x%c̃~p!U2

~30!

gives the probability distribution in TOA of the particles th
arrive at this point. Finally,

^cutxuc&'
1

P~x! F EpV

`

dpuT.c̃~p!u2

3H 2
mq0

p
1

mx

p8
1

m

p

darg~T.!

dp J
1E

0

pV
dp e22p8xuT,c̃~p!u2

3H 2
mq0

p
1

m

p

darg~T,!

dp J G . ~31!

In the case of low potential stepspV!p0 @cf. Eq. ~22!#,
where one can neglect the integrals over the interval@0,pV#,
the probability of arrival reduces to the average of the tra
mision coefficientuT.u2, which is independent ofx as cor-
responds to a transmitted free particle.T. is real in this case,
so that^cutxuc& is given by averaging overp the time spent
to go fromq0 to 0 at momentump plus the time spent to go
from 0 to x at momentump8. The only effect of the step is
the reduction of the momentum fromp to p8.

In the opposite case wherepV@p0, only the integrals
over @0,pV# give a sizeable contribution. The probability o
06210
s
p

f

f

-

arrival vanishes~exponentially! beyond the distanceDx
51/p8 associated through the uncertainty principle to t
differenceDE between the energy of the step and the ene
of the particle. One then expects to detect a relative of
phenomenon in the time of arrival. In fact, the time spe
from 0 to x is given here through (m/p)(dargT, /dp)
5m/pp8, which is independent of the distancex, which is
replaced byDx. This is a case of the Hartman effect th
here arises from the change

p

p1p8
eip8x→ p

p1 ip8
e2p8x ~32!

in the energy eigenstates asp crossespV from above. In
short, the effect is a consequence of the fact that the pha
independent ofx for p,pV .

In the general case one should take into account b
contributions to Eq.~31!. The relative importance of the sec
ond contribution on the right-hand side would depend
p02pV and will always decrease exponentially with increa
ing x. However, a proper analysis of this situation calls fo
description of particles better than that provided by fi
quantization and wave packets. We will defer this quest
to the next section where we discuss tunneling, the insta
where the particle may reappear again beyond some po

IV. ARRIVAL AT THE OTHER SIDE

In this section we will study the modification of the time
of arrival of quantum particles that traverse potential ba
ers. Our treatment depends on the current understandin
the tunneling and dwell times. The literature is full ofad hoc
heuristic arguments often disconnected from the stand
mathematical and interpretative apparatus of quantum
chanics, whose value is therefore difficult to assess, a
their comparison with experiment. Here, we will follow th
standard quantum-mechanical treatment of Sec. II.

The time of arrival at a pointx will now be given through
a probability amplitude

^txsuc&5E dES 2E

m D 1/4

e2 iEt^xuEs~1 !&^Es~1 !uc&.

~33!

We prepare the initial state as usual@as a rightmover at the
left of the barrier, cf. above Eq.~23!#. We again can approxi-
mate ^Es(1)uc&'d rs(m/2E)1/4c̃(p). The scattering state
of relevance in Eq.~33! is given by

^quEr~1 !&5A m

2pp
u~2q!@eipq1R~p!e2 ipq#

1u~q!u~a2q!A~q,p!1u~q2a!T~p!eipq.

~34!

This expression is valid for an arbitrary potential barrier co
tained in the range (0,a), whereA(q,p) solves the appropri-
ate Schro¨dinger equation with energyE5p2/2m. Also, T(p)
andR(p) are the transmission and reflection coefficients
1-6
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the barrier. For a barrier of infinite range, the first and th
terms on the right-hand side of Eq.~34! should be better
understood as asymptotic limits.

Finally, in the case wherex is at the right of the barrier
the amplitude can be approximately given by

^txsuc&'
dsr

A2p
E dES m

2ED 1/4

e2 i (Et2px)T~p!c̃~p!.

~35!

The normalized probability density in times of arrival atx
counts all the particles eventually recorded atx and only
them, that is, the transmitted particles. According to Eq.~19!
it is given by

P~ t,x!5
1

P~x! (
s

z^txsuc& z2

'
1

2pP~x!
U E dES m

2ED 1/4

e2 i (Et2px)T~p!c̃~p!U2

,

~36!

where we have normalized dividing byP(x) the total prob-
ability of arrival atx in whatever timet,

P~x!5(
s
E

2`

1`

dtz^txsuc& z2'E
0

1`

dpuT~p!c̃~p!u2

~37!

which is independent ofx in cases like this, wherex is be-
yond the range of the potential. In addition, it approximat
simplifies to uT(p0)u2 for narrow wave packets with mea
momentump0 not too close~from above or below! to the
barrier momentumpV5A2mV. After a straightforward cal-
culation we get for the average time of arrival at the oth
side of the barrier

^cutxuc&'2
i

2P~x!
E dEF S m

2ED 1/4

eipxT~p!c~p!*
dJ

dE

3F S m

2ED 1/4

eipxT~p!c̃~p!G , ~38!

which can be written as

^cutxuc&'
1

P~x!
E

0

`

dpuT~p!c̃~p!u2
m

p

3H x2q01
d arg„T~p!…

dp J , ~39!

an expression that has appeared before in the literature s
times supported by heuristic arguments alone. It can be
derstood as the average value of the Wigner time@22# over
the transmitted state.

We will illustrate the predictions of the formalism for
simple square barrier of heightV and widtha. The transmis-
sion coefficient is in this case
06210
r

e-
n-

T~p!5
2pp8e2 ipa

2pp8cosp8a2 i ~p21p82!sinp8a
, ~40!

where p85Ap22pV
2, that is, imaginary forp below pV .

Note the contribution2pa to the phase ofT(p). This will
subtract a terma to the path lengthx2q0 that appears in Eq
~39!. The barrier has effective zero width or, in other word
it is traversed instantaneously. This is the Hartman effect
barriers. To be precise, the effect is not complete; it is co
pensated by the other dependences inp8a present in the
phase ofT(p). In fact, it disappears for (pV /p)→0, where
all the a dependences of the phase cancel out, as was t
expected because the barrier effectively vanishes in
limit. In the opposite case (p/pV)→0 the effect saturates an
there is an advancema/p in the time of arrival of transmitted
plane waves, which turns into unexpected results for in
mediate barrier momenta.

We present our results for the time of arrival of the tran
mitted particles in Figs. 1 and 2. We consider the same in
state in both cases, namely the Gaussian wave packet o
~22! with q05230,p052, d510, andm51 ~we always use
the natural units of the problem with\51). We have com-
puted the time of arrival of the wave packet atx550 for an
assortment of potential heights and widths, and have cho
the contents of those figures to highlight the most import
results.

We show the time of arrival at the other side of a barr
of momentumpV in the rangea5(1.6,2.6) in Fig. 1. For
incident plane waves with momentump0, the barrier would
be crossed over forpV,p0, and tunneled through forpV
.p0. Some retardation would be expected in the first ca
just because the travel over the barrier would be slower t
the free travel. This is clearly seen at the left ofp0 in the
figure. Classically, the delay would grow from zero~time t0)
to infinity aspV grows from 0 top0. The quantum behavio

FIG. 1. Average time of arrival at the other side of a barrier
fixed width a515 as a function of the barrier momentumpV . The
parameters of the initial Gaussian wave packet areq05230,p0

52,d510,m51, and the arrival atx550, in units with\51. The
solid line is the quantum average~39!, the dashed line is the phas
time with momentump0. The asymptote to the left (pV→0) is the
time of arrival for free particles (t0540), the one to the right is the
Hartman timetH(a)5t02(ma/p0)532.5.
1-7
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is similar, with the oscillations of the phase time swept aw
by the average that remains finite. To the right ofp0, there is
a dramatic difference between the Wigner result, which
mediately sticks to the Hartman predictiontH , and the wave-
packet result, for which the time continues to increase up
a certain barrier height and then, suddenly, drops totH . This
strange behavior can be explained in the following mann
Not being monoenergetic, the wave packet has momen
components above and belowpV . The first of these cross
above the barrier, get retarded, and are responsible for
high time value forpV just to the right ofp0. However, as
the barrier continues to grow, they become an ever le
part of the packet. The other parts of the packet~the compo-
nents with momentump,pV) tunnel through the barrier
and experience the Hartman advance. They would arrivex
in a time tH . Their relative importance in the wave pack
increases steadily aspV continues to grow and, eventually
they overcome the retarded components and the proces
comes pure tunneling. Then, the time of arrival drops totH .
We have numerically checked this behavior, which we ha
analyzed for several values of the barrier width in the ran
~2,30!. All the results are similar: Monotonic growth of th
time frompV50 ~wheret5t0) up topV'2.5, wheret drops
suddenly totH . The general trend is a slow increase in t
value of the barrier momentumpV at which the drop takes
place, which shifts from about 2.2 to 2.7 asa changes from
10 to 30. The maximum value of the time of arrival^tx& that
is obtained just before the drop also increases; it is aroun
for a510 and around 450 fora520.

We show in Fig. 2 the average time of arrival and t
Wigner ~phase! time as a function of the barrier widtha in
the rangea5(0,15). We display the predictions for differen
barrier heightspV50, 1.6, 1.8, 2.2, 2.3, 2.4, and 2.6. For th
free case (pV50 or a50) all the results converge tot0
540. We now discuss the solid lines^tx&. The oscillatory
curves abovet0 correspond topV,p0. They get steeper a
their momenta approachp0 from below. The curves tha
stand partially belowt0 correspond topV.p0 ~tunneling!.

FIG. 2. Average times of arrival at the other side of a barrier
a function of the barrier widtha. The initial wave packet is the sam
as in Fig. 1, and againx550. We show the predictions forpV

50,1.6,1.8,2.2,2.3,2.4,2.6. The solid lines are the quantum a
ages~39!, the dashed lines are the corresponding Wigner times
a particle with momentump0.
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They share a similar behavior: As the barrier width gro
from a50, the time of arrival decreases, practically satur
ing the Hartman timet(a)'tH(a)5t02(ma/p0). Then sud-
denly, at a certain width~that increases withpV), the average
time jumps dramatically to values that correspond to a lo
retardation. Note that the jump forpV52.6 lies outside the
range of the figure. This behavior is complementary to t
shown in Fig. 1. Here, forpV.p0 and moderatea, tunneling
is the dominant phenomenon and the time average tend
reproducetH . However, as the barrier gets wider, tunnelin
gets more and more depressed. In comparison, the inte
of the retarded components that pass over the barrier is
sically independent ofa. They get relatively more and mor
important and eventually overcome tunneling, giving rise
the observed transition. In practice, for wide enough barrie
the probability of tunneling vanishes, and the other side
be reached only by the very improbable and very slow tra
over the barrier. This behavior has been noticed indep
dently in @33#, and explained in the same way. In additio
we have the tools to check these explanations. In particu
the first product of our formalism isP(t,x), the probability
distribution in times of arrival atx. Our numerical analysis
for x550 and the differentpV’s anda’s that we are discuss
ing here shows similar almost Gaussian shapes for these
tributions, as correspond to the initial wave packets chos
and similar widths for theseP(t,x), whose maxima are
placed close to the corresponding mean values^tx&. As ex-
pected, the probabilities get numerically smaller as the c
responding events become more and more unlikely. In sh
these distributions give the best support for the validity
the explanation offered here for this striking behavior, whi
can be understood only after weighing the obtained time
arrival with the relative probability of the actual event
which it corresponds.

V. QUANTUM REFLECTIONS

Having analyzed the modifications introduced by t
transmission phenomena in the time of arrival at the ot
side of the potential barriers, we turn to the case of reflect
We divide the analysis into the two seemingly different ca
in which there is classical reflection and in which it is abse
The first case is characterized by the presence of at leas
turning point in the path of the particle. The second one
characterized by the absence of any of them. Quantum
chanically there could be some transmission in the first c
and some reflection in the second one. Accordingly, we se
rate the discussion that follows into the two main disjo
cases that cover all the possibilities. These are the case
which the potential energy grows to infinity somewhere~to-
tal reflection! and the case in which it is bounded everywhe
~with partial reflection and transmission!.

A. The case of total reflection

The potential energy could grow unbound, thus reflect
any conceivable incoming state. We consider here a mo
tonic potential energy that vanishes forq→2` and goes to
infinity for q→` so that limq→1`^quE&50. This removes

s

r-
r
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TIME OF ARRIVAL IN THE PRESENCE OF INTERACTIONS PHYSICAL REVIEW A61 062101
the degeneracy of the energy eigenstates. As no state
arrive from the right,^quEl(1)&50. The eigenstatesuE&
will contain the same amount of positive and negative m
menta, so that their asymptotic form normalized to one tr
eling particle per unit time is limq→2`^quE&
51/A2p(m/2E)1/4cos@pq1d(E)#, where d(E) is the phase
shift. This also fixes completely the eigenstates for finite v
ues ofq.

The time of arrival at an arbitrary pointx is now

^cutxuc&5
2p

P~x!
E dEA2E

m
z^xuE&^Euc& z2

d

dE

3$arĝ xuE&1arĝ Euc&%, ~41!

which is the average of a quantity independent ofx. This
comes about because in the present situation the refle
coefficientR5exp(22id) is unimodular. Then, the net cur
rent density vanishes, so that arg^xuE& is independent ofx.
This is the quantum version of the classical result that
sum of the times of arrival atx of the incoming and returning
particles is twice the TOA at the turning point, and so
independent ofx. Obviously this ceases whenuRu becomes
smaller than 1~so that the net current density is finite!, some-
thing that is possible only whenV is finite everywhere. Even
then, the classical result is recovered from the quantum c
in the limit (E/V)!1, whereuRu→1.

The individual times of arrival of the incoming and th
returning particles can be obtained straightforwardly by w
ing the energy eigenstates as

^quE&5
1

A2p
S m

2ED 1/4

M ~q,E!cosf~q,E!, ~42!

whereM is a real function with limq→2`M (q,E)51, which
vanishes faster than an exponential forq→1` to satisfy the
asymptotic form of the Schro¨dinger equation. The state i
thus written as the superposition at each point of an inco
ing and a reflected wave with equal amplitudes, so that
net current vanishes everywhere. The phasef is fixed by
limq→2`f(q,E)5pq1d(E) to match the asymptotic form
of the eigenstate discussed above. Its derivative gives
two opposite velocity fieldsv6(q,E)56df(q,E)/mdq in-
terfering atq. We recall that this exact expression is valid f
all the potentials of the form we are considering here. T
probability of ever arriving atx and the TOA can be given b
straightforward application of Eqs.~20! and ~21! by

P~x!5E dE M2~x,E!cos2f~x,E!z^Euc& z2, ~43!

^cutxuc&5
1

2P~x!
E dE M2~x,E!cos2f~x,E!

3 z^Euc& z2@ t i~x,E!1t r~x,E!#, ~44!

which is the weighted average over energies of the time
arrival of the incoming and the reflected waves:
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t i~x,E!5
d

dE
$f~x,E!1arĝ Euc&%, ~45!

t r~x,E!5
d

dE
$2f~x,E!1arĝ Euc&%, ~46!

whose sum is explicitlyx independent.
To illustrate these results, we consider now the case

potential that vanishes at the left of the origin and is linea
the right, i.e.,V(q)5u(q) f q, wheref is the force exerted on
the particle. This could be a model for a~charged! particle in
a constant electric field, or in the gravity field of the Earth.
this case one getsM andf in terms of the Airy function Ai
and its derivative Ai8,

M ~q,E!

55
1 for q<0

A @Ai ~z!#21S kf

p D 2

@Ai 8~z!#2

@Ai ~z0!#21S kf

p D 2

@Ai 8~z0!#2

for q.0,

~47!

where z5kfq2p2/kf
2 ,z052p2/kf

2 with kf5(2m f)1/3. For
the phase one has

f~q,E!5H arctanS 2
kfAi 8~z0!

p Ai ~z0! D for q<0

arctanS 2
kfAi 8~z!

p Ai ~z! D for q.0

~48!

so the phase shift is given simply byd(E)5f(0,E).
We present in Figs. 3 and 4 our results for the the cas

a force of nominal valuef 5100, being the parameters of th

FIG. 3. Probability distributionP(t,x) in times of arrival atx,
for x5q0 ~solid line!, x50.5q0 ~dashed line!, and at the classica
turning point x5E/ f ~dot-dashed line!. The vertical lines corre-
spond tot50 and to the classical turning time, respectively. T
distributions are bimodal, with the two peaks corresponding to
cidence and reflection getting closer asx approaches the turning
point.
1-9
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initial Gaussian wave packet~22! q0522,p0510,d51, and
m51. For the normalized probability distributions in time
of arrival ~19!, we get pairs of peaks of equal heights—
correspond to total reflection—that tend to merge into one
the detector is displaced towards the classical turning po
This behavior of the peaks is also observed for the avera
times of arrival, which follow the classical times. The sm
deviations from the parabolic form are negligible in compa
son with the widths of the distributions shown in Fig. 3. W
have explored numerically the details that change uninter
ingly according to the values off ,p0 ,d, etc., so we do not
show them here. The general picture is always the sam
the far left (uq0u@E/ f ) the potential acts as an infinite heig
wall. The only sizeable consequences of the actual stre
of the force are felt at positions between the origin and
turning point, where they resemble the classical effects.
of this comes from the fact that here position and ene
combine into only a variableq2E/ f . But the resemblance
arises because total reflection is always present here, q
tum as well as classically. This will be more clear in the ne
section, where we consider partial reflection that lacks a c
sical analog.

B. Partial reflections

In classical mechanics a potential interaction ene
speeds up or slows down the particles according to the l
value of the forceF(q)52]V(q)/]q. Accelerated or decel
erated, the particles continue to move along the same
without reversing the direction. Only when one of them
tercepts a turning point@i.e., a pointq whereE5V(q)] does
the particle bounce back or, in other words, is reflected w
probability PR51. In the absence of these points, the p
ticle is always transmitted with probabilityPT51. Thus,
most of the timePT51,PR50. Only at the turning points
doesPT50,PR51.

Quantum dynamics offers a very different perspective
the motion of the particles. The Schro¨dinger equation implies
that at every point where the potential energy is finite,
particle is partially transmitted and partially reflected, that

FIG. 4. Average time of arrival for different detector position
The vertical lines correspond tox5q0 , x50, andx5E/ f , respec-
tively. The solid line is the classical time, the dashed line is
quantum average oft i ~lower part! and of t r ~upper part!.
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0<PT<1,0<PR<1, with PT1PR51. The case of total re-
flection analyzed in the preceding section is one of clo
correspondence between the classical and the quantum
sults, as we showed there. Interesting departures from
classical behavior arise when there is no classical reflect
We will analyze this case here.

To fix ideas, we consider a well behaved potential ene
V(q)>0 ; finite q, which vanishes at the spatial infinit
faster thanq21. In these conditions the energy eigensta
can be written everywhere as a well defined superpositio
transmittedF tr(q,E) and reflectedF ref(q,E) waves, charac-
terized by the positive or negative value of their curren
2 i /2m„F tr* (dJ/dq)F tr)>0 and 2 i /2m„F ref* (dJ/dq)F ref…

<0, with different amplitudesuF truÞuF refu as corresponds
to this case of partial reflection. The eigenstates of inte
can be written as

^quEr&5A m

2pp
$F tr~q,E!1F ref~q,E!%. ~49!

These waves are univocally determined by their asympt
conditions, namely

lim
q→2`

F tr~q,E!5eipq, lim
q→1`

F tr~q,E!5T~E!eipq,

~50!

lim
q→2`

F ref~q,E!5R~E!e2 i [ pq12d(E)] , lim
q→1`

F ref~q,E!50

as is the case for an incoming rightmover~49!. The results of
the preceding section are recovered in the limit wh
T(E)→0, which is the case only if the potential energ
grows to infinity somewhere.

If we prepare our initial Gaussian statec(q) at a point
q5q0 where the potential energy is smooth enough, a
keep the initial momentump0.0 large enough to conside
c̃(p)'0 for p,0, we can use the approximations

^Esuc&'d rsAm

p
F tr* ~q0 ,E!uc̃~p!u

'd rsAm

p
e2 ipq0uc̃~p!u. ~51!

We have used the second of these already in Eq.~23!. It is
valid when V(q)'0 for q in the q0 neighborhood where
c(q) is sizeable. We assume this is the case in what follo

One of the biggest consequences of the superpositio
transmitted and reflected components that makes up
eigenstate~49! is that it leads to the inescapable presence
interferences. In fact, the probability of presence at a poinq,
and other quantities depending on it, contains the s
z^quEr& z2}uF tru21uF refu212 Re(F trF ref* ), whose last term
is the interference term. One could say that, everywhere in
motion through the interaction region, the quantum parti
will be found in an evolving entangled state of transmitt
and reflected components. This can be traced back m
ematically to the continuity of the solutions of the Schr¨-
dinger equation and of their first derivatives, and to the

e
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sociated Wronskian theorem. Physically, this may introd
all sorts of interpretative difficulties in the analysis of pa
ticle motion.

Summarizing, interferences pervade the realm of quan
motion. They will show up in almost every quantum
mechanical situation. Our analysis of the time of arrival
not an exception. We have avoided referring to them u
now by focusing on very specific cases. These were as
lows: The choice in Sec. III A. of a very smooth potent
analyzable semiclassically by the WKB method, which n
glects reflection; the analysis in Sec. III C of the time
arrival at points located at the other side of the barrier, wh
F ref50, so that any interference with the transmitted wa
vanishes; and finally, the analysis made in the preceding
tion, where we just ignored the effects due to the overlap
incoming and reflected waves inP(t,x), and the lack of a
clear-cut separation betweent i and t r in the presence of in-
terferences. To be precise, we dealt with reflection with
paying the attention due to these subtleties. We repair
omission here.

The amplitude in time of arrival at a positionx within the
interaction range can be given by using Eqs.~49! and~51! in
Eq. ~33!,

^txsuc&5$Atr~ t,x!1Aref~ t,x!%

'
dsr

A2p
E

0

`

dpAp

m
uc̃~p!u

3e2 i (Et1pq0)$F tr~x,E!1F ref~x,E!%. ~52!

This gives for the probability of ever arriving atx Eq. ~20!
the sum of three terms: The two separated probabili
Ptr ,Pref of arriving with positive or with negative curren
density, and a quantum interference term, whose pres
deprives the previous two of direct physical meaning. W
thus getP(x)5Ptr(x)1Pref(x)1I (x) with

P tr
ref

~x!5E dtuA tr
ref

~ t,x!u2'E dpuc̃~p!u2uF tr
ref

~x,E!u2

~53!

and an interference term

I ~x!52E dt Re$Atr~ t,x!Aref* ~ t,x!%

'2E dpuc̃~p!u2Re$e2 ipq0F tr~x,E!F ref~x,E!* %.

~54!

The above quantities depend on the probabilities of tra
mission or reflection from the initial positionq0 to the actual
valuex. Consider a bounded potential barrier of finite ran
but otherwise arbitrary. Behind the barrierPref vanishes,
while Ptr is given by Eq.~37! with a value independent ofx,
but strongly dependent onp0 ,d and on the barrier’s heigh
and width. Forx at the left of the barrier,F tr5eipx ~what we
are denoting as transmission is incidence here!, but F ref
5R(E)e2 i [ px12d(E)] , and only when there is no reflectio
06210
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~no barrier! do the intereferences disappear. For the to
reflection case of the preceding section, we getPtr5Pref ,
while the interference term gives rise to the term cos$2@px
1d(E)#%, which builds up the factor cos2f that appears in
Eqs.~43! and ~44!. However, it does not prevent the defin
tion of the quantities~45! and ~46! that allowed to split the
TOA ~44! into two positive contributions interpretable as th
independent̂ tx& of an incoming packet and a reflected o
~Fig. 4!.

For finite barriers, reflection is always present with
energy-dependent coefficientR(E),1; it is less probable
than incidence, and tends to vanish as the barrier does
Fig. 5 we give the probability distributions of TOAP(t,x) at
a pointx, whose bumps indicate, as in Fig. 3, the arrival
incident and reflected parts of the time evolved initial wa
packet. This is the Gaussian one withm51,p052,d510,
placed atq052150. The arrival position is atx52100, far
from q0 to avoid interferences. The two upper figures are
a barrier of widtha54. At the left is the case wherepV
52.2, and at the right that withpV51.9. In both cases ther
is an incidence bump centered att5m(x2q0)/p0525 and a
structure to its right corresponding to reflection. ForpV
52.2, and for all the cases of total classical reflection (pV
.p0), the latter is a Gaussian-like bump shifted from t
classical value att5m(2x2q0)/p05125 by an amount
^m/p(df/dp)&. However, for pV51.9 ~in general forpV
,p0), the reflected distribution has a multibump shape d
ficult to understand in terms of the phase time or of any ot
approximation. In particular, neither the number of peaks
their heights and widths can be approximated by strai
stationary phase methods. Two illustrative cases of th
shapes are shown in some detail in the two examples of
lower part that correspond topV51.9 and two close widths
a54 anda56.

FIG. 5. Probability distributionP(t,x) in times of arrival for
reflection from finite potential barriers. The initial wave packet
the Gaussian one withm51,p052,d510, placed atq052150.
The arrival position is atx52100. The upper left figure is for a
barrier widtha54 andpV52.2. At its right is the casea54 and
pV51.9, which is enlarged in the lower left part for the ranget
5@100,180#. An illustrative case of multimodal reflection distribu
tion is shown at the lower right part, which corresponds topV

51.9 anda56. The vertical grid lines correspond to the pha
times of the incident waveeip0x and of the reflected waves:e2 ip0x

for pV.p0 and the superposition sinp08ae2ip0x for pV,p0.
1-11
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VI. CONCLUSIONS

We have worked out a formalism for obtaining the time
arrival at a space point of particles that move through in
acting media. Our construction follows a circuitous path:
desist from first computing the classical TOA of the pro
lem, and then quantizing it, a procedure that leads to a d
end. Instead, we start from the quantum TOA of the f
moving particle and then transform it canonically to the
teracting case. This is achieved by the use of the approp
Möller operator that implements the quantum version of
Jacobi-Lie canonical transformation to free translation co
dinates in phase space. In the classical case we have
transformation of Eq.~A2! whose quantum counterpart is

$H,H%→
V†

$H0 ,H0%, ~55!

whereH0 andH are the Hilbert spaces of the free and inte
acting particles, andH0 ,H are the respective Hamiltonia
operators in these spaces. For simplicity, we have only
dressed explicitly cases in which the transformations are
tary, which is the case whens(H)5s(H0). More general
situations that require isometric transformations deserv
separate treatment due to their physical relevance.

What we obtained here is a quantum formalism for
TOA in terms of a POVM given by

P~ t1 ,t2 ;x!5 (
s5r ,l

E
t1

t2
dtutxs&^txsu, ~56!

which measures the probability of arrival atx during the time
interval (t1 ,t2). The normalized probability distribution
P(t,x) was given in Eq.~19! of Sec. II B. Our results are
thus within the standard formalism of quantum mechan
and can be interpreted in the standard way. There is not
special that singles out our theoretical predictions as uns
able for comparison with the experimental results. On
contrary, our formalism predicts the result of actual expe
ments in the form of numeric values and statistics for
recorded events.

After the definition and theoretical analysis of Sec. II, w
have performed explicit and complete calculations for
cases of an unbounded linear potential, of the step poten
and of the square barrier. Our analysis of the quasiclass
case shows that in this limit the TOA is simply given by t
average of the classical time of Eq.~1! over the quasiclassi
cal wave function. In the case of reflection, and for the
rival point placed between the initial position of the wa
packet and the turning point (x,0), the probability distribu-
tion P(t,x) is governed by the quantum superposition of t
incident (Atr) and the reflected (Aref) wave packets. In the
case of total reflection, where both are equally proba
Ptr(x)5Pref(x), we have obtained separate positive^tx&
even when both amplitudes overlap. These were interpr
as the TOA’s of the incident and reflected particles, a
compared successfully with the classical prediction. For p
tial reflection, Pref(x),Ptr(x) nonoverlapping amplitude
are necessary to get separate average values for these
This problem is shared with the position and other operat
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It is not a defect of the formalism, but an effect of the inte
ferences. Fortunately enough, our formalism provides
with the probability distribution P(t,x) whose diverse
humps and bumps~Figs. 3 and 5! give the most complete
information of the posible experimental outcomes.

In the course of our numerical analysis, we have detec
that the phase timetf does not always give a good approx
mation to the most probable time of arrival. It provides a fi
estimate of the time spent in the transmission or reflecti
after subtracting the time of free flight. For transmitted wa
packets we have reobtained the advancement~i.e., a decrease
in the TOA! in the case of pure quantum tunneling. Th
phenomenon, predicted by Hartman a long time ago@21#, has
been experimentally evinced by the two-photon experime
at Berkeley@18,19# and the tunneling of optical pulses a
Wien @20#. However, our formalism predicts a striking de
parture from the Hartman bound, which we explain in det
in Sec. IV. Our results for square barriers neatly show
expected advancement roughly proportional to the widthDt
52ma/p ~Figs. 1 and 2!. However, whatever the mean en
ergy (E,V) of the incident wave packet, there is always
width a0 such that fora.a0 the ~very retarded! components
of the packet that stand above the barrier dominate over
~probabilistically very depressed! tunneled ones, giving an
overall effective strong retardation. In other words, when
barrier is wide enough, its width dominates over the Hartm
length Dx discussed above Eq.~32!, which has a purely
quantum origin. This restores the classical expectation o
tunneling and very long delays.

We have also found another unanticipated phenome
for purely quantum reflection: the multiple bump structu
that appears whenpV,p0. We have shown this structure i
Fig. 5, which in some sense is a counterpart of the inter
ence pattern that appears in multiple reflection of station
waves. We think that this feature, even if less spectac
than the superluminal tunneling of photons, deserves exp
mental confirmation. An appropriate modification of the tw
photon experiments could serve this purpose. It would
quire us to place a quantum mirror in the path of one of
entangled photons, and check for the presence~or absence!
of the multiple dip structure in the number of coinciden
counts predicted by the formalism.

All the examples above show that our construction o
quantum TOA operator suitable for the presence of inter
tions allows the exploration of many physical details in r
evant situations. Its extension to higher-dimensional ca
poses no conceptual difficulties and opens the possibility
treating new questions. Of great theoretical and experime
interest will be the extension of this formalism to the cases
which the Hamiltonian has bound states, where isome
~instead of simply unitary! transformations will be required
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APPENDIX A

In the modern literature@37#, a classical Hamiltonian sys
tem with n degrees of freedom is called completely int
1-12
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grable~in the manner as shown by Liouville! when it satis-
fies the conditions~a! and ~b! below.

~a! There are n compatible conservation law
F i(q1 , . . . ,qn ,p1 . . . ,pn ;t)5Ci , i 51, . . . ,n, that is,

~1! Ḟ i5$F i ,H%1
]F i

]t
50, ; i 51, . . . ,n,

~2! $F i ,F j%50, ; i , j 51, . . . ,n.
~b! The conservation laws definen isolating integrals that

can be written as
~1! F i5Ci⇒pi5f i(q1 , . . . ,qn ,C1 , . . . ,Cn ;t), ; i

51, . . . ,n,

~2!
]f i

]qj
5

]f j

]qi
; i , j 51, . . . ,n.

In these conditions, Hamilton equations define an in
grable flow, that is, a system of holonomic coordina
„q(t),p(t)… in phase space for each instant of time:

qi~ t !5qi~q0 ,p0 ;t !, i 51, . . . ,n,
~A1!

pi~ t !5pi~q0 ,p0 ;t !, i 51, . . . ,n.

In other words, given a set of initial conditions (q0 ,p0) of
the system, at each instant of timet the system arrives at
point „q(t),p(t)… in phase space. Conversely, these poi
define the corresponding times of arrival. In this case, ti
meets the requirements to qualify as a derived variable
phase space.

As Lie pointed out, for any arbitrary time there is a sp
cial choice of coordinates in phase space that mathematic
eliminates the effects of interactions from these integra
flows ~the new positions are ignorable coordinates!. More
simply, integrable systems are canonically equivalent to a
of translations~or circular motions! at constant speed. It i
customary to denote the variables that determine these tr
lations as action-angle variables, which strictly is appropri
only in the case of periodic systems, where the~closed! flow
lines are topologically equivalent to circles.

For integrable flows, there is a canonical transformat
~the Jacobi-Lie transformation!

$q,p;H~q,p!% →
W~q,P!

$Q,P;H̄~Q,P!% ~A2!

with H(q,p)5H̄(Q,P), which gives the free translation co
ordinatesP(t)5P andQ(t)5(P/m)t1Q of the translation
flow with H̄(Q,P)5P2/2m, in terms of the coordinates an
momenta „q(t),p(t)… of the actual flow with H(q,p)
5(p2/2m)1V(q). This transformation is of the form
W(q,P), that is, a function of the old coordinates and t
new momenta, so that

Q5
]W

]P
, p5

]W

]q
. ~A3!

Finally, W can be obtained explicitly as a complete integ
of the Hamilton-Jacobi equation:
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HS q,
]W

]q D5
P2

2m
. ~A4!

Now, the canonical relation among the new and the old v
ables is

P5sgn~p!A2mH~q,p!,

Q5E
0

q dq8

A12
V~q8!

H~q,p!

1Q0 ,

whereQ0 is a constant. As a byproduct, time gets defined
an equivalent manner in terms of the old variables or of
new ones. If the particle arrives atq(t)5x in the instant
t(x)5t, then

t~x!5
m

P
~X2Q!5sgn~p!E

q

x mdq8

A2m@H~q,p!2V~q8!#
,

~A5!

where X5]W(x,P)/]P @obviously, X5Q(t) by construc-
tion#. This duality, devoid of practical interest in the classic
domain, is at the foundations of the quantum method de
oped in this paper. Finally, note that for simplicity we ha
specialized the notation to the case of autonomous Ha
tonian systems with only one degree of freedom, all of th
trivially integrable@H(q,p)5E being the needed conserve
quantity#.

APPENDIX B

For free particles, Eq.~1! gives tx0(q,p)5m(x2q)/p,
which, in spite of its simplicity, presents some problems
quantization@3,14,16# whose solution we outline here. Firs
of all, it requires symmetrization:

tx0~q,p!5mS x

p
2

1

2 H q,
1

pJ
1
D 52e2 ipxAm

p
qAm

p
eipx.

~B1!

As is well known, the eigenstatesutxs0& of this operator in
the momentum representation can be given as (\51)

^putxs0&5u~sp!Aupu
m

expS i
p2

2m
t D ^pux&, ~B2!

where we uses5r for rightmovers (p.0) ands5 l for left-
movers (p,0.! The label 0 stands for the free case. Final
the argumentsp of the step function that appears in th
momentum representation is1p for s5r and 2p for s
5 l . The degeneracy of the energy with respect to the sign
the moment is explicitly shown by means of the labels in the
energy representation, where

^Es80utxs0&5ds8sS 2E

m D 1/4

eiEt^Es0ux&. ~B3!
1-13
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Summarizing, there is a time~of arrival atx) representa-
tion spanned by the eigenstates

utxs0&5S 2H0

m D 1/4

eiH 0tPs0ux&, ~B4!

wherePs0 projects on the subspace of rightmovers (s5r ) or
leftmovers (s5 l ), i.e.,

Ps05E
0

`

dEuEs0&^Es0u. ~B5!

These time eigenstates are not orthogonal, which in
past gave rise to serious doubts about their physical mean
The origin of this problem can be traced back to the fact t
Eq. ~B1! is not self-adjoint, that is,̂ wutx0c&Þ^tx0wuc&.
This was proved by Pauli@1# a long time ago and is due t
the lower bound on the energy spectrum. The probl
emerges as soon as one attempts integration by parts in
energy representation. Reference@27# is a recent illuminating
review of these and other related questions.

The measurement problem posed by this not self-adj
TOA operator can be solved by interpreting it in terms o
positive-operator-valued measure~POVM!, which only re-
quires the hermiticity oftx0 @i.e., tx05(tx0)* Á]. Here, in-
stead of a projector-valued spectral decomposition of
identity operator, one has the POVM
nd

. G

int

rin

06210
e
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P0„P~x!;t1 ,t2…5(
s
E

1

2

dtutxs0&^txs0u

5(
s
E

1

2

dtS 2H0

m D 1/4

eiH 0tPs0P~x!Ps0

3e2 iH 0tS 2H0

m D 1/4

, ~B6!

where P(x)5ux&^xu is the projector onx. Here, P0(1,2)2

ÞP0(1,2) becauseutxs0&^txs0u is not a projector, as the
states are not orthogonal, but where the limit ast→` of
P0(2t,1t) is the identity. The attained time operator is n
longer sharp, but is well suited for measurement. This so
tion has been implemented in@17# and extensively analyzed
in Refs. @34,35# and in the review@27#. In this POVM for-
mulation, the TOA is given by the spectral decomposition

t0„H0 ,P~x!…5E
2`

1`

dt tS 2H0

m D 1/4

eiH 0tP0~x!

3e2 iH 0tS 2H0

m D 1/4

, ~B7!

where P0(x)5(sPs0P(x)Ps0, which is not a projector
@36#.
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