
rce,

RAPID COMMUNICATIONS

PHYSICAL REVIEW A, VOLUME 61, 061601~R!
Ideal gases in time-dependent traps
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We investigate, theoretically, the properties of an ideal trapped gas in a time-dependent harmonic potential.
Using a scaling formalism, we are able to present exact analytical results for two important classes of experi-
ments: free expansion of the gas upon release of the trap and the response of the gas to a harmonic modulation
of the trapping potential. We present specific results relevant to current experiments on trapped fermions.
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Recently, the onset of Fermi degeneracy has been
served for a trapped ultracold spin-polarized gas of40K at-
oms @1#. Such a weakly interacting, quantum-degener
Fermi-Dirac gas provides a new platform for exploring fu
damental quantum many-body physics, and several theo
cal studies of the equilibrium properties of these gases h
been published@2#.

One class of experiments that is compatible with stand
atom trapping protocols, and which has gleaned valuable
formation on the dynamics of dilute Bose-Einstein cond
sates~BECs!, involves monitoring the response of the gas
a change in trapping potential. For example, transient mo
lation of the trapping potential induces free ringing of t
gas, which in the case of BECs has led to a direct deter
nation of low-lying regions of the quasiparticle spectrum@3#.
Complete release of the trapping potential enables on
view the free expansion of the gas; early on, this establis
the essential validity of the time-dependent Gross-Pitae
equation for describing the dynamics of the present gen
tion of gaseous BECs@4#, a matter that has subsequen
been put to stringent quantitative tests@5#.

A trapped, single-component gas of ultracold fermion
atoms can, for experiments of current interest, be consid
ideal ~noninteracting!, since binary atomic collisions ca
only occur in partial waves of angular momentuml .0,
which are strongly suppressed by the centrifugal barrier@6#.
This Rapid Communication presents a theoretical study
the dynamics of such an ideal gas in a time-dependent
monic trap. Using a scaling formalism similar to that whi
has been successfully applied to trapped BECs@7#, we derive
exact results for the above-mentioned excitation spect
copy and release experiments. In the cases studied here
only effect of quantum statistics is to establish the init
equilibrium distribution of particles in the trap; the subs
quent time evolution of this distribution, under changes
the trapping potential that preserve its harmonicity, is rig
ously equivalent to that of an ensemble of noninteract
particles, independent of statistics. We present a simple
mula that describes the free expansion of such an ideal
and our results suggest an alternative approach to the p
lem of quantitative thermometry in the nanokelvin regim
Due to their weak pair interactions, single-component Fer
Dirac gases are attractive candidates for nanokelvin t
mometry; with an improved theoretical understanding
finite-temperature properties of BECs@8#, which are much
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more robust candidates for experiment at present, we
envisage a direct comparison of temperatures of ultrac
Bose-Einstein and Fermi-Dirac gases. We also examin
detail the nonlinear response of the gas to a harmonic o
lation of the trapping frequency. This reveals a domain
driving frequencies and amplitudes that generates a reso
response of the gas. Since interactions in general pla
smaller role for Fermi-Dirac vs Bose-Einstein systems,
present approach may provide a useful starting point for c
sideration of the dynamics of multiple-component Fer
gases.

We start with a derivation of the equations describing
scaling properties of an ideal gas trapped in a time-depen
harmonic potential. Consider a classical particle of massm
trapped in a potentialV(r ,t)5m( jv j (t)

2r j
2/2 with j

5x,y,z denoting the three spatial dimensions. We
v j (t)5v0 j for t<0, i.e., the trap potential is constan
prior to t50. Newton’s law is then expressed byk̇ j

52mv j (t)
2r j , with kj5mẋj . By invoking a scaling trans-

formation,qj5r j /g j (t) andpj5g j (t)kj2g j̇ (t)mrj , we ob-
tain ]t j

pj52mv0 j
2 qj , with t j (t)5* tdt8g j (t8)

22, where

the scaling parametersg j (t) satisfy the equations

g̈ j~ t !5
v0 j

2

g j~ t !3
2v j~ t !2g j~ t !. ~1!

In quantum mechanics, the Heisenberg equation for a no
teracting gas in a time-dependent harmonic potential ta
the formi\] tĉ(r ,t)5@2(\2/2m)¹21V(r ,t)#ĉ(r ,t), where
ĉ(r ) is the field operator for an atom at positionr , which
obeys the usual Fermi-Dirac anticommutation relations. T
quantum-mechanical analog of the classical rescaling
scribed above is obtained by writing@7#

ĉ~r ,t !5
F̂„q~ t !…

Agxgygz

expS im(
j

r j
2ġ j /2\g j D , ~2!

with qj (t)5r j /g j (t) as defined previously. If eachg j satis-
fies Eq.~1!, by writing F̂„q(t)…5P j f̂„qj (t)…, we obtain

i\]t j
f̂„qj~ t !…5F2

\2

2m
]qj

2 1
1

2
mv0 j

2 qj
2G f̂„qj~ t !…. ~3!
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Thus the time-dependent problem has been reduced to
trivial case of evolution in a time-independent harmonic tr
in the rescaled variables (t j ,qj ). Determination of these
variables requires only the solution of the three ordinary
coupled differential equations expressed by Eq.~1!. From
Eq. ~2!, it follows that the densityr(r ,t) of the gas for a
given timet is given by

r~r ,t ![^ĉ†~r ,t !ĉ~r ,t !&5
1

gx~ t !gy~ t !gz~ t !
r0„q~ t !…,

~4!

where r0(r ) is the particle density fort50. Thus we can
calculater(r ,t) for any timet.0 for modulated frequencie
v j (t) by solving Eq.~1!, subject to the boundary condition
g j (0)51 andġ j50. It has been shown previously@7# that
Eq. ~1! also describes a two-dimensional, nonideal BEC s
ject to isotropic variations of the trap potential, with Eq.~4!
also being applicable ifr0 is obtained by a solution of the
Gross-Pitaevski equation.

We now analyze the solution of Eq.~1! for two cases of
experimental relevance: free expansion of the gas upon
lease of the trapping potential and response of the ga
harmonic modulation of the trapping potential.

To model a free expansion experiment, we takev j (t)
50 for t.0. Solving Eq.~1! with the requirement that the
gas be in equilibrium fort<0, we obtaing j (t)51 for t
<0 and

g j~ t !5A11v0 j
2 t2 ~5!

for t.0. The time-dependent width of the cloud aft
the trap has been dropped is given by@^ r̂ j

2&(t)#1/2

5g j (t)@^ r̂ j
2&(0)#1/2. To describe the aspect ratioa(t) of a

cylindrically symmetric cloud, we find

a~ t ![A^x2&~ t !

^z2&~ t !
5a~0!A11v0x

2 t2

11v0z
2 t2

. ~6!

We now apply these results to an ideal gas in two limiti
cases.

We first treat the case ofT50, with the chemical poten
tial mF(T50)/\v0 j@1 for j 5x,y,z. This corresponds to
the semiclassical limit appropriate to current experiments
which the number of atomsN is greater than a few hundred
In this limit, the initial density profile is well described b
the Thomas-Fermi~TF! approximation@2#. This gives the
integrated densityr(x,z,t)[*dyr(r ,t),

r~x,z,t !5
mmF

4p\3v0ygxgz
F12

x2/gx
21lz

2z2/gz
2

RF
2 G 2

, ~7!

with lz[v0z /v0x and RF5A2mF /mv0x
2 . We see that the

cloud becomes isotropic forv0 j t@1. This is consistent with
the initial isotropic momentum distribution implicit in the T
approximation. We havea(0)5lz and Eq.~6! yields a(t)
→1 ast→`. In Fig. 1, we plota(t) as given in Eq.~6! for
T50, mF(T50)520\v0x , andt50 ~a! andt520/v0x ~b!.
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We have takenlz519.5/137 andly[v0y /v0x51 corre-
sponding to current experiments on trapped40K atoms@1#.

Note thata(0)5lz for any initial density distribution of
the form r0(r )5 f (( jv0 j

2 r j
2). Such initial distributions will

become isotropic in a free expansion experiment. For
stance, forT.TF[mF(T50)/kB , the density is well de-
scribed by a classical Gaussian profile, i.e.,r0(r )}exp
@2b(mF2m(jv0j

2 r j
2/2)#, and Fig. 1 thus describes a trapp

gas of fermions for anyT within the TF approximation. This
means that one cannot detect the onset of Fermi degene
by looking at the aspect ratio of the expanding gas.

As an example wherer0(r )Þ f (( jv0 j
2 r j

2), we now con-
sider a case withmF /\v0x,3/2 such that only one level is
occupied in thex direction andmF /\v0 j@1 for j 5y,z. The
gas is initially strongly confined in thex direction. The inte-
grated density profile is then

r~x,z,t !}e2x2/ l h
2gx

2S 12
mv0z

2 z2/gz
2

2mF2\v0x
D 3/2

~8!

for t>0, yielding a(0)5A3\v0xlz /A2mF2\v0x. In Fig.
1, we plot the aspect ratio for a free expansion formF
5\v0x and ly5lz51/50 using Eq.~6!. We havea(0)
5A3/50 anda(t)→A3 for t→`. The gas, which is initially
strongly confined in thex direction will for v0 j t@1 become
most confined in they, andz directions. This is, of course, a
direct reflection of the uncertainty relation giving higher a
erage momentum in thex direction. However, observation o
such a quantum effect requires a highly anisotropic trap.
the case of 104 trapped atoms we would requirely5lz
.1/250. The anisotropy of the expanded cloud is due to
Heisenberg uncertainty principle, whose effect for Ferm
Dirac particles diminishes asN increases and numerou
quantum states become populated. This contrasts with
Bose-Einstein case, where there is a macroscopic popula
of a single initial quantum state and the anisotropy is p
served with increasingN.

From a measurement of the density at any timet under
free expansion, it is straightforward to determine the init

FIG. 1. The aspect ratio for a freely expanding gas. The so
line is for lz519.5/137,ly51 andmF520\v0x . The dashed line
is for lz5ly51/50 andmF5\v0x .
1-2
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density distribution using Eqs.~4! and~5!. This suggests tha
a trapped, single-component Fermi-Dirac gas could serv
a low–temperature thermometer. Assuming the gas is
thermodynamic equilibrium fort<0, one could infer the
temperature of the gas from a knowledge of its density d
tribution, the calculation of which is a trivial problem o
summing over fractionally occupied trap levels@2#. Hence a
determination ofT is simply a matter of fitting a calculate
density to the measuredr(r ).

We now theoretically examine the nonlinear response
trapped gas to a harmonic modulation of the trapping po
tial. The noninteracting case treated here is in some se
opposite to the hydrodynamic limit we have treated el
where @9#. To model a typical experiment, we assume th
the trapping frequencies take the formv j (t)

25v0 j
2 @1

22h cos(vDt)# for t.0, with vD being the driving fre-
quency andh the driving amplitude. Instead of solving Eq
~1! with this form for v j (t), it turns out to be easier to g
back to the original classical equation of motionr̈ j
52v j (t)

2r j by using r j (t)5qj (t)g j (t) and qj (t)
5exp@6iv0jt(t)#. Thus by writingj j (t)5g j (t)exp@iv0jt(t)#
andx5vDt/2 we obtain

]x
2j j1@a22q cos~2x!#j j50 ~9!

with a54/ṽ2, q54h/ṽ2, andṽ5vD /v0 j . Equation~9! is
a variant of Mathieu’s equation, whose properties have b
extensively studied@10#. We consider the case when the tr
frequency is modulated during a finite interval 0,t<tD ,
and then returned to its original value. The subsequent
tion of the cloud is described by a solution of the tim
independent problemv j (t)5v0 j with arbitrary initial condi-
tions.

g j~ t !5AAE221 sin~2v0 j t1c!1E, ~10!

whereE5(v0 j
22ġ j

21g j
21g j

22)/2>1 is a conserved quantit
for t.tD , c5arcsin@(g0j

2 2E)/AE221#, and g0 j5g j (tD) is
the value ofg j (t) immediately after the modulation cease
Equation~10! has a discrete frequency spectrum~frequencies
of 2nv0 j with n50,1,2. . . ), asexpected for a noninteract
ing gas in a harmonic trap. The linear response limit is
covered by lettingE→11 in Eq. ~10! yield g j (t)51
1d sin(2v0jt).

In essence, the problem of predicting the response of
gas to a harmonic driving with frequencyvD and amplitude
h is reduced to an analysis of the well-known solutions
Mathieu’s equation. In the parameter space (a,q), there are
regions where the solutions of Eq.~9! are unstable, i.e., thei
amplitude increases exponentially with time. Also, there
stable regions where the solutions remain bounded. The
lutions on the boundaries between these regions are
Mathieu functions@10#. Using ug j (t)u5uj j (t)u, a54/ṽ2,
and q54h/ṽ2, this means that for certain regions in th
(vD ,h) space the response of the gas diverges as the dri
time tD increases, i.e., there is a resonant response, whe
in other regions the response of the gas remains finite for
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value of tD . For a5n2 with n50,1,2. . . , thesolutions to
Eq. ~9! diverge in time for an arbitrarily smallq @10#. Thus
for the fractions

vD52v0 j /n, n51,2,3. . . , ~11!

the response of the gas is resonant for an arbitrarily sm
driving amplitude and the amplitude of its oscillations w
diverge with the driving time. In terms of Eq.~10!, if the gas
remains trapped in the time-independent potentialv j (t)
5v0 j after the driving (t.tD), we haveE@1, and the os-
cillations of the gas will be large and contain many harmo
ics. The resonance forvD52v0 j is, of course, the usua
excitation frequency for an even-parity perturbation for
noninteracting gas. However, the resonances forvD
5v0 j ,2v0 j /3,v0 j /2, etc., do not correspond to new mode
They simply reflect the fact that for these driving freque
cies, the trapping potential is doing resonant work on the g

We now examine the width of the unstable~resonant!
regions aroundvD52v0 j /n for h→0. For thevD52v0 j
resonance, the unstable region of the Mathieu equatio
bounded by 12q,a,11q for q→0 @10#. This implies that
the response of the gas is divergent for driving frequenc
and amplitudes that satisfy

22h,ṽ,21h, h!1. ~12!

Hence the resonance region of the gas for finite but sm
driving amplitudeh has a reasonable width and should
relatively easy to access experimentally. Likewise, for
vD5v0 j resonance, the unstable region is bounded by

125h2/6,ṽ,11h2/6, h!1, ~13!

and it should be experimentally accessible. For the low
frequency resonances (vD52v0 j /n, n>3), it turns out
that the resonance regions are very narrow forh→0 as the
boundary lines between the stable and unstable solution
Eq. ~9! only differ by terms of orderq3 or higher@10#. These
resonances are therefore less attractive experimental ca
dates for small-amplitude driving. One could instead
crease the driving amplitudeh for a given frequencyvD ;
for h sufficiently large, an unstable region is reached and
response of the gas diverges. The above results are illustr
in Fig. 2, where we plot the response of the gas as a func
of driving frequencyvD and amplitudeh. The lines in the
plot separate regions where the response of the gas rem
finite from regions where the oscillations of the gas diver
with driving time. For example, if one modulates the extern
potential with an off-resonance frequency ofṽ55/3, the re-
sponse of the gas remains finite for small driving amplitud
whereas it diverges forh*0.33. The plot is generated usin
the well-known properties of the Mathieu equation and
mapping (a,q)→(4/ṽ2,4h/ṽ2). Note the unstable~reso-
nance! regions forh→0 for vD52v0 j /n. The regions have
zero width forh→0 for n>3 as predicted above. For in
creasing driving amplitudeh, the unstable regions grow a
expected. ForvD→0, the response of the gas forh&0.5 is
finite, whereas it diverges forh*0.5. Physically, this corre-
1-3
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sponds to the fact that forvD /v0i!1 andh,0.5, the gas
returns adiabatically to its initial state after one period of tr
modulation, and there is no net work done. Contrary to th
for h.0.5 the trapping potential becomes inverted for c
tain times, resulting in a divergent response of the gas. M
ematically, the transition region forh.0.5 comes from the
fact that for a;2q the even and odd periodic solution
~Mathieu functions! of Eq. ~9! start to differ in ‘‘energy’’
~the Mathieu characteristic valuea @10#!, as the tunneling
between successive minima of the potential cos(2x) becomes
significant.

It should be noted that the above results are valid for
ideal gas~Bose or Fermi! at anyT. They are in that sens
universal: The effects of quantum statistics and finite te
perature enter the problem only through the initial distrib
tion of the gas. It is worth noting that, if one chooses

FIG. 2. The regions of stability/unstability for the response o
noninteracting gas to a modulation of the trapping potential w
frequencyvD and amplitudeh.
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describe the results of this section in the language of per
bation theory, our scaling formalism provides resu
summed to infinite order in powers of the characteristic
rameter of the perturbation~the driving amplitude!. It is valid
even in such highly nonlinear cases as when the trapp
potential is inverted for certain times (h.0.5). Equation
~11! clearly indicates that the analysis contains nonlinear
namics: The resonance atvD52v0 j /n for n51 can easily
be explained within linear response theory. However,
resonances forn>2 are due to divergencies in increasin
orders in perturbation theory and they are nontrivial. Hen
we believe that it would be of interest to experimenta
verify the analysis presented here as an example of e
results concerning nonlinear dynamics.

In conclusion, using a scaling formalism we have be
able to derive analytical results for the dynamics of ide
gases trapped in time-dependent harmonic traps. We h
concentrated on two important classes of experiments.
free expansion, we showed how the initial density profile
the gas can easily be determined from a measurement o
density profile at any timet after the trap has been droppe
We have proposed a low-temperature thermometer base
these results. Also, we showed how the problem of determ
ing the nonlinear response of the gas to a harmonic mod
tion of the trapping frequency can be mapped to an anal
of the well-known properties of the solutions to Mathieu
equation. We identified regions in (vD ,h) space where the
response of the gas was divergent with the modulation ti
In particular, we were able to predict nontrivial unstable
gions for h→0, reflecting the fact that the trap is doin
resonant work on the gas. Since ultracold spin-polarized
mions are noninteracting to a very good approximation,
results should be directly relevant for current experiments
this very active field of research.

We thank Y. Castin and D. Jin for useful discussions.
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