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Ideal gases in time-dependent traps
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We investigate, theoretically, the properties of an ideal trapped gas in a time-dependent harmonic potential.
Using a scaling formalism, we are able to present exact analytical results for two important classes of experi-
ments: free expansion of the gas upon release of the trap and the response of the gas to a harmonic modulation
of the trapping potential. We present specific results relevant to current experiments on trapped fermions.

PACS numbds): 05.30.Fk

Recently, the onset of Fermi degeneracy has been obwore robust candidates for experiment at present, we can
served for a trapped ultracold spin-polarized gas'®f at-  envisage a direct comparison of temperatures of ultracold
oms [1]. Such a weakly interacting, quantum-degeneraté3ose-Einstein and Fermi-Dirac gases. We also examine in
Fermi-Dirac gas provides a new platform for exploring fun- detail the nonlinear response of the gas to a harmonic oscil-
damental quantum many-body physics, and several theoref@tion of the trapping frequency. This reveals a domain of
cal studies of the equilibrium properties of these gases havéliving frequencies and amplitudes that generates a resonant
been published?]. response of the gas. Since interactions in general play a

One class of experiments that is compatible with standargmaller role for Fermi-Dirac vs Bose-Einstein systems, the
atom trapping protocols, and which has gleaned valuable inPresent approach may provide a useful starting point for con-
formation on the dynamics of dilute Bose-Einstein condensideration of the dynamics of multiple-component Fermi
sateg BEC9), involves monitoring the response of the gas to9ases.

a change in trapping potential. For example, transient modu- We start with a derivation of the equations describing the
lation of the trapping potential induces free ringing of thescaling properties of an ideal gas trapped in a time-dependent
gas, which in the case of BECs has led to a direct determibarmonic potential. Consider a classical particle of nrass
nation of low-lying regions of the quasiparticle spectri8h  trapped in a potentialV(r,t)=mz;w;(t)?rf/2 with j
Complete release of the trapping potential enables one teX,y,z denoting the three spatial dimensions. We set
view the free expansion of the gas; early on, this established;(t) = wo; for t<O0, i.e., the trap potential is constant
the essential validity of the time-dependent Gross-Pitaevskirior to t=0. Newton’s law is then expressed tiy]
equation for describing the dynamics of the present genera- _
tion of gaseous BEC§4|, a matter that has subsequentl . -
been pu% to stringent gﬁ]antitative tefHs. | ’ formation,g;=r; /Q/i(t) andp; = yj(t)ktj_,yj(t)m,rjz’ we ob-

A trapped, single-component gas of ultracold fermionic®@N @7 Pi=—Mwod;, with 7j(t) =/ dt'5;(t") "%, where
atoms can, for experiments of current interest, be considereifie scaling parameterg(t) satisfy the equations
ideal (noninteracting, since binary atomic collisions can
only occur in partial waves of angular momentum 0, . g 5
which are strongly suppressed by the centrifugal baf6ér ()= W‘ @;j(1)%y;(1). @
This Rapid Communication presents a theoretical study of Y
tmhgn?é,r:;rg'CSS?;QSL;CQCZMSGSLn%Zﬁ;g ii%ﬁ?z;igﬁﬁgﬁmi:ﬂh guantum mechanics, the Heisenberg equation for a nonin-

' : . teracting gas in a time-dependent harmonic potential takes
has been successfully applied to trapped BECQswe derive S - ) ) -
exact results for the above-mentioned excitation spectrodh® formizid (r,t)=[—(A%2m)V=+V(r,t) J(r,t), where
copy and release experiments. In the cases studied here, t#ér) is the field operator for an atom at position which
only effect of quantum statistics is to establish the initialobeys the usual Fermi-Dirac anticommutation relations. The
equilibrium distribution of particles in the trap; the subse-quantum-mechanical analog of the classical rescaling de-
quent time evolution of this distribution, under changes ofscribed above is obtained by writidd]
the trapping potential that preserve its harmonicity, is rigor-
ously equivalent to that of an ensemble of noninteracting - d(q(t)) ) 5
particles, independent of statistics. We present a simple for- 1//(r,t)=\/:ex ImZ rivil2h 7,->, @
mula that describes the free expansion of such an ideal gas, YxYy7z .
land our resu!ts suggest an altern_atlve approach fo the_ pro9\/'ith gi(t)=r;/v(t) as defined previously. If eacp satis-
em of quantitative thermometry in the nanokelvin regime. . J JEARE - U
Due to their weak pair interactions, single-component Fermifies Eq.(1), by writing ®(q(t))=11; $(q;(t)), we obtain
Dirac gases are attractive candidates for nanokelvin ther-
mometry; with an improved theoretical understanding of i%9 <A;’>(q<(t))=[
finite-temperature properties of BEC8], which are much il

mwj(t)zr]- , with kj=m$<j . By invoking a scaling trans-

2
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Thus the time-dependent problem has been reduced to the
trivial case of evolution in a time-independent harmonic trap

in the rescaled variablesr{(,q;). Determination of these ; . ;
variables requires only the solution of the three ordinary un- - SRS SO e ST S .
coupled differential equations expressed by EQ. From 5 :
Eqg. (2), it follows that the densityp(r,t) of the gas for a : : :
given timet is given by = A T S _

p(r, = (r,t)i(r )= (1),

1
707,070 70 e .
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where po(r) is the particle density fot=0. Thus we can
calculatep(r,t) for any timet>0 for modulated frequencies
w;(t) by solving Eq.(1), subject to the boundary conditions
¥j(0)=1 andy;=0. It has been shown previoudly] that . . .
Eq. (1) also describes a two-dimensional, nonideal BEC sub- FIG. 1. The aspect ratio for a freely expanding gas. The solid
ject to isotropic variations of the trap potential, with E4) ~ lineis forA,=19.5/137,Ay=1 andug =20k wo, . The dashed line
also being applicable ip, is obtained by a solution of the S for Az=Ay=1/50 andug=fiwoy.

Gross-Pitaevski equation.

We now analyze the solution of E¢L) for two cases of W€ have takem,=19.5/137 and\,=wq,/wo,=1 corre-
experimental relevance: free expansion of the gas upon réPonding to current experiments on trappeid atoms[1].
lease of the trapping potential and response of the gas to Note thata(0)=X\, f2c>r2any initial density distribution of
harmonic modulation of the trapping potential. the form po(r)=f(Z;wg;r{). Such initial distributions will -

To model a free expansion experiment, we takgt) become isotropic in a free expansion experiment. For in-
=0 for t>0. Solving Eq.(1) with the requirement that the Stance, forT>Te=pug(T=0)/kg, the density is well de-
gas be in equilibrium fot<0, we obtainy;(t)=1 for t ~ Scribed by a classical Gaussian profile, i.pe(r)=exp

100

<0 and [—B(ue—mzjwri/2)], and Fig. 1 thus describes a trapped
gas of fermions for anyl within the TF approximation. This
y(H)=+1+ wéjtz (5) means that one cannot detect the onset of Fermi degeneracy

by looking at the aspect ratio of the expanding gas.
for t>0. The time-dependent width of the cloud after ~ As an example wherpg(r)#f(=;w5;r?), we now con-

the trap has been dropped is given t[;{?f)(t)]l’2 sider a case withug /7w, <3/2 such that only one level is

— 7j(t)[(sz>(0)]1’2. To describe the aspect ratig(t) of a  occupied in thecdirection andur /7.we;>1 forj=y,z. The
cylindrically symmetric cloud, we find gas is initially strongly confined in thedirection. The inte-
grated density profile is then

N CSION 1+ wg,t? 2 2/.2)\302
«0=\ By OV e © p(xlz,t)(xexznﬁyi(l_ mog:2 vz) ©

2pur— ooy

We now apply these results to an ideal gas in two Iimitingfor t=0, yielding 2(0)= 3%
] - 0x

cases. N,/ \2ug—hwgy. In Fig.

We first treat the case af=0, with the chemical poten- i hv;/)e pellcr)]tdtre:a;\siegsgatlljc;irf]or é f(rg)e \?\;f a;]nas\llc;r;(ig)r

tial up(T=0)/fwe>1 for j=x,y,z. This corresponds to _\/5/05?0 andealt Z\/§ fort oogThg' as. which is initiall

the semiclassical limit appropriate to current experiments in_ (1) — {—ee. The gas, which 1S initially

which the number of atomi is greater than a few hundred. strongly cpnfmgd in the d|regt|on'W|II for ‘.‘)Oi.t>l become

In this limit, the initial density profile is well described by most conflne_d in thy, andz dlrectlons. Th's '?'.Of course, a

the Thomas-Ferm{TF) approximation[2]. This gives the direct reflection of_the uncertainty relation giving hlgher av-

integrated densitp(x,z,t)=[dyp(r,t) erage momentum in thedirection. However, observation of
" PR, such a quantum effect requires a highly anisotropic trap. For

2/ 2132527272 the case of 1D trapped atoms we would requing, =\

X2y +N\5zZ7] . : z
p(X,z,t)= Mir RS 22 Yz , (79 =1/250. The anisotropy of the expanded cloud is due to the
477h3w0y7x72 Re Heisenberg uncertainty principle, whose effect for Fermi-

Dirac particles diminishes a8l increases and numerous
with \,= g,/ ey and Re=\2ur/mw3,. We see that the guantum states become populated. This contrasts with the
cloud becomes isotropic fasyt>1. This is consistent with  Bose-Einstein case, where there is a macroscopic population
the initial isotropic momentum distribution implicit in the TF of a single initial quantum state and the anisotropy is pre-
approximation. We have/(0)=\, and Eq.(6) yields «(t) served with increasingyl.

—1 ast—oo. In Fig. 1, we plota(t) as given in Eq(6) for From a measurement of the density at any timender
T=0, up(T=0)=20hwq,, andt=0 (a) andt=20/w,, (b).  free expansion, it is straightforward to determine the initial
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density distribution using Eq$4) and(5). This suggests that value ofty. Fora=n? with n=0,1,2. . ., thesolutions to
a trapped, single-component Fermi-Dirac gas could serve &sg. (9) diverge in time for an arbitrarily smadf [10]. Thus
a low-temperature thermometer. Assuming the gas is iffior the fractions
thermodynamic equilibrium fot<0, one could infer the
temperature of the gas from a knowledge of its density dis- wp=2wo;/Nn, N=123..., (13)
tribution, the calculation of which is a trivial problem of ) o
summing over fractionally occupied trap levgl. Hence a  the response of the gas is resonant for an arbitrarily small
determination ofT is simply a matter of fitting a calculated driving amplitude and the amplitude of its oscillations will
density to the measurga{r). dlverge with the dr!vmg t|m9. In.terms of E¢LO), if thg gas
We now theoretically examine the nonlinear response of #&mains trapped in the time-independent potentig(t)
trapped gas to a harmonic modulation of the trapping poten= @o; after the driving {>1p), we haveE>1, and the os-
tial. The noninteracting case treated here is in some sengdlations of the gas will be large and contain many harmon-
opposite to the hydrodynamic limit we have treated elseiCS- The resonance fobp=2wy; is, of course, the usual
where[9]. To model a typical experiment, we assume thatexcitation frequency for an even-parity perturbation for a
the trapping frequencies take the formj(t)2=w§j[1 noninteracting gas. However, the resonances fog
— 27 cos@pl)] for t>0, with wp being the driving fre- — ©0j»2@0j/3.wq;/2, €tc., do not correspond to new modes.
quency andy the driving amplitude. Instead of solving Eq. T_hey simply rgﬂect the _faqt tha_t for these driving frequen-
(1) with this form for w;(t), it turns out to be easier to go cies, the trapping potentlal is doing resonant work on the gas.
- . . - We now examine the width of the unstahlesonant
back to 2the ongma] classical equation of motian regions aroundop=2awo; /n for 7—0. For thewp= 2w,
=~ w7 by using r;()=0;();(t) and () egonance, the unstable region of the Mathieu equation is
=exd Tiwg7(t)]. Thus by writing &;(t) = yj(t)exdiog )]  pyunded by + q<a<1+q for g—0 [10]. This implies that
and x = wpt/2 we obtain the response of the gas is divergent for driving frequencies
2 B and amplitudes that satisfy
2¢+[a—2qcog2x)]¢=0 9)
2—p<w<2+7n, p<l. (12)
with a=4/0?, q=47/w?, andw=wp/wy; . Equation(9) is
a variant of Mathieu’s equation, whose properties have beehlence the resonance region of the gas for finite but small
extensively studiefl10]. We consider the case when the trap driving amplitude» has a reasonable width and should be
frequency is modulated during a finite intervak@<tp, relatively easy to access experimentally. Likewise, for the
and then returned to its original value. The subsequent mowp = w; resonance, the unstable region is bounded by
tion of the cloud is described by a solution of the time- 5
independent problem;(t) = wq; with arbitrary initial condi- 1-57216<w<1+ 5?6, p<1, (13
tions.
and it should be experimentally accessible. For the lower-
frequency resonanceswf=2wg;/n, Nn=3), it turns out
that the resonance regions are very narrows;es0 as the
) boundary lines between the stable and unstable solutions of
whereE=(wo,>y7+ ¥+ v °)/2=1 is a conserved quantity gq.(9) only differ by terms of ordeq? or higher[10]. These
for t>tp, c=arcsir[(ygj—E)/\/E2—1], and yo; = vj(tp) is resonances are therefore less attractive experimental candi-
the value ofy;(t) immediately after the modulation ceases. dates for small-amplitude driving. One could instead in-
Equation(10) has a discrete frequency spectrdnequencies crease the driving amplitude for a given frequencywp ;
of 2nwg; with n=0,1,2. . .), asexpected for a noninteract- for » sufficiently large, an unstable region is reached and the
ing gas in a harmonic trap. The linear response limit is retresponse of the gas diverges. The above results are illustrated
covered by lettingE—1, in Eq. (10 yield y;(t)=1 in Fig. 2, where we plot the response of the gas as a function
+ & sin(2wg;t). of driving frequencywp and amplituden. The lines in the
In essence, the problem of predicting the response of thplot separate regions where the response of the gas remains
gas to a harmonic driving with frequeney, and amplitude finite from regions where the oscillations of the gas diverge
7 is reduced to an analysis of the well-known solutions towith driving time. For example, if one modulates the external
Mathieu’s equation. In the parameter spaegqg, there are  potential with an off-resonance frequency@f 5/3, the re-
regions where the solutions of E@) are unstable, i.e., their sponse of the gas remains finite for small driving amplitudes,
amplitude increases exponentially with time. Also, there argyhereas it diverges fop=0.33. The plot is generated using
stable regions where the solutions remain bounded. The S@he well-known properties of the Mathieu equation and the

lutions on the boundaries between these regions~are tr}ﬂappmg 6,q) — (4/w?,47/®?). Note the unstablereso-
Mathieu functions[10]. Using |;(t)|=|£;(t)], a=4/o®,  nance regions fory— 0 for wp=2wg; /n. The regions have
and q=47/w?, this means that for certain regions in the zero width for —0 for n=3 as predicted above. For in-
(wp ,7) space the response of the gas diverges as the drivingreasing driving amplitudey, the unstable regions grow as
time tp increases, i.e., there is a resonant response, whereagpected. Fowp— 0, the response of the gas fg=0.5 is
in other regions the response of the gas remains finite for anfinite, whereas it diverges fop=0.5. Physically, this corre-
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r ; "Unstable Regions | des_cribe the results of thi; section in.the Iangugge of pertur-
0.9 4 F B LA AN . i bation theory, our scaling formalism provides results
: : : summed to infinite order in powers of the characteristic pa-
081 | rameter of the perturbatidithe driving amplitudg It is valid
0711t : : ] even in such highly nonlinear cases as when the trapping
0611 AN SR VTN ¥ A ] potential is inverted for certain timesy¢0.5). Equation
: : (11) clearly indicates that the analysis contains nonlinear dy-
SOSENTR N[\ 1 namics: The resonance ab=2wg;/n for n=1 can easily
0.4 : : : : 1 be explained within linear response theory. However, the
0.3t g A I N Y AU S | resonances fon=2 are due to divergencies in increasing
: ; : : orders in perturbation theory and they are nontrivial. Hence
0.2 . : : i :
: : : we believe that it would be of interest to experimentally
OAR| 1t . verify the analysis presented here as an example of exact
0 : ; : results concerning nonlinear dynamics.
0.5 1 BE 2 25 In conclusion, using a scaling formalism we have been
Do

able to derive analytical results for the dynamics of ideal
FIG. 2. The regions of stability/unstability for the response of a92S€S trapped in time-dependent harmonic traps. We have
noninteracting gas to a modulation of the trapping potential withconcentrated on two important classes of experiments. For
frequencywp, and amplituder. free expansion, we showed how the initial density profile of
the gas can easily be determined from a measurement of the
sponds to the fact that fapp /wg <1 and 7<0.5, the gas density profile at any timé after the trap has been dropped.
returns adiabatically to its initial state after one period of trap/Ve have proposed a low-temperature thermometer based on
modulation, and there is no net work done. Contrary to thisthese results. Also, we showed how the problem of determin-
for »>0.5 the trapping potential becomes inverted for cer-Ng the nonlinear response of the gas to a harmonic modula-
tain times, resulting in a divergent response of the gas. MatHion of the trapping frequency can be mapped to an analysis
ema‘[ica”y, the transition region fcw:OS comes from the of the well-known prOpertIeS of the solutions to Mathieu’s
fact that fora~2q the even and odd periodic solutions €quation. We identified regions in , 7) space where the
(Mathieu functions of Eq. (9) start to differ in “energy”  response of the gas was dlvergent_wnh the_ r_nodulatlon time.
(the Mathieu characteristic value [10]), as the tunneling N particular, we were able to predict nontrivial unstable re-
between successive minima of the potential cgst2comes  gions for 7—0, reflecting the fact that the trap is doing
significant. resonant work on the gas. Since ultracold spin-polarized fer-
It should be noted that the above results are valid for anyMions are noninteracting to a very good approximation, our
ideal gas(Bose or Fermiat anyT. They are in that sense results should be directly relevant for current experiments in
universal: The effects of quantum statistics and finite temthis very active field of research.
perature enter the problem only through the initial distribu-

tion of the gas. It is worth noting that, if one chooses to We thank Y. Castin and D. Jin for useful discussions.
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