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We consider effects of a broadband squeezed reservoir on the second-order intensity correlation, and on
squeezing properties in the resonance fluorescence of a bichromatically driven two-level atom in a cavity of
moderateQ. Phase-dependent squeezed reservoir effects change the photon statistics, and lead to an amplifi-
cation of the degree of squeezing. Squeezed reservoir effects in the second-order correlationd{fi¢tpn
are determined by two-photon emission processes which can be enhanced or suppressed in dependence on the
squeezing phase.

PACS numbgs): 42.50.Ar, 42.50.Dv

I. INTRODUCTION dyne detection schemes. In contrast, intensity correlations
and squeezing properties in the resonance fluorescence of a
Atoms in squeezed light fields are of fundamental interesbichromatically driven two-level atom are not as familiar,
in atomic spectroscopy. This topic received a great stimulaalthough both already exhibit interesting features in an ordi-
tion when Gardinef1] showed that the two dipole quadra- nary vacuum([39,40. These properties differ distinctively
tures of a two-level atom in a squeezed vacuum field decafrom that of a monochromatically driven two-level atom.
at different rates. Carmichaet al.[2,3] examined the influ- The most remarkable feature are possible two-photon emis-
ence of squeezed light on the resonance fluorescence ofs&oon processes which crucially depend on the strength of the
single, monochromatically driven two-level atom, and anatom-bichromatic field interaction. These two-photon emis-
anomalous resonance fluorescence spectrum was predictsidns determine the unusual intensity correlations as well as
by Swain and co-worker§4—8|. Related problems in the the squeezing properti¢89,40.
absorption spectrum of a single monochromatically driven In this paper we discuss various aspects of squeezed res-
two-level atom have also been investigaf®d-20]. A gen-  ervoir effects in the bichromatically driven two-level atom:
eral overview about this topic was given in REZ1]. the second-order intensity correlatigi®(7) and the spec-
Squeezed reservoir effects in the resonance fluorescenteim of squeezing. In order to observe the squeezed reservoir
spectrum obichromaticallydriven two-level atoms were in- effects, we take a cavity environment into account. The cav-
vestigated in Refs[22,23, and the Autler-Townes probe- ity environment is required, as it is impractical to squeeze all
field absorption spectrum was analyzed in Ré€D]. How-  of the vacuum modes that interact with an atom. The sim-
ever, effects of squeezed reservoirs on the photon correlatiquiest situation to examine is thead cavity limit which al-
phenomenon as well as on squeezing properties in the restmws one to obtain an effective master equation. This effec-
nance fluorescence of bichromatically driven two-level tive master equation is formally equivalent to the free-space
atom have not yet been examined. On the other hand, thes&uation, but with cavity renormalized parametgt& —44].
effects are well known in the photon statistj@%,25, and in  Based on this modgllso see Fig. )1 we derive analytical
the squeezing propertig25-28 of a monochromatically solutions for the second-order correlations as well as for the
driven two-level atom. In view of recent experimental spectrum of squeezing. The assumptions which are necessary
progresses in the detection of squeezing in resonance flufer an analytical treatment are symmetrically detuned field
rescence, theoretical investigations of squeezing propertisomponentswg+ d and wy— 6 with respect to the atomic
are still of interes{29-32, although the experimental veri- transition frequency», of equal amplitudes. This allows us
fication of squeezing in the resonance fluorescence of # introduce theFlogquet statef the combined “atom plus
single atom has not yet been confirmg29]. However, re-  bichromatic field system,” and to perform a secular approxi-
cently, Lu and co-workerg30-32 verified squeezing in the mation in the derivation of the master equation which is
resonance fluorescence of a monochromatically drivefustified in the limit of resolved spectral linewidths. The
atomic beanwhich is equivalent to squeezing properties of asqueezed reservoir may change the photon statistics from
single atom for scatteringn the forward directionof the  super- to sub-Poissonian statistics in dependence on the
many-atom phase-dependent fluorescence spi&3ta squeezing phase. This is naturally manifested in the second-
Most studies of squeezing properties in resonance fluoresrder correlation function as well. In addition, the degree of
cence light considered a single two-level atom which is in-squeezing in the resonance fluorescence can be enhanced or
teracting with anonochromatidriving field. Theoretical in- suppressed in dependence on the squeezing phase, similar to
vestigations were performed on total squeeZiB8g—37, as  what occurs as in a monochromatic driving field cf28|.
well as on spectral component squeezjB8@,38 in homo-  However, the enhancement of squeezing is not as strong as
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frequenciesw,, = wy— 6 and w, = wy+ 8, which aresym-
R= metrically detuned from the atomic transition frequensy.
Squeezed E(t)= EORqeinLt72i<b+ ei“’lLt)_ (1)
Vacuum
Under these circumstances the Floquet states are given in the
rotating-wave approximation d47-5Q

|D1(1)=As(D)] 1) —iA(t)e 0! g,),

|D,(t))=—iA% (1) e1) +As(t)e 0 py), (2

Aq(t)= cog (&/2) sin(ot+D)],

A,(t)= sin(&/2)sin(st+P)]e '?.

FIG. 1. A schematic representation of the physical system undeHere £=2V, /(% 6) is the dimensionless interaction param-
consideration. A bichromatically driven two-level atom in a cavity eter withVy=|d-E,|, d is the dipole moment of the atomic
is illuminated by a broadband squeezed vacuum througriie)  yansition, and ¢,) and|e,) denote the atomic ground and
input mirror. The atom. is pumped by the bichromatic flgld frqm the excited states, respectively.
open sides of the cavity. The decay rate of the atom into different 5 \qitions hetween the Floquet states can be induced if
modes than. the cavity m.Odes Is characterized/byhile the cavity the combined atom plus bichromatic field system interacts
decay rate is denoted witk. with an electromagnetic reservoir. The specific case we are

. o interested in is the situation where the reservoir is in a
in the monochromatic driving field case. All these featuresyy eezed vacuum state. In order to observe squeezed reser-

can be understood .as_the influence o_f a squeezed reservoir Qbi- effects in free space, it is necessary to squeeze all of the
the two-photon emission processes in the resonance fluoregac,ym modes that interact with an atom, a situation which
cence of a bichromatically driven Mo-level atom. In order to;q experimentally not feasible, although a few schemes were
observe these squeezed reservoir effects, however, we ha?’@cently suggested which allows one to mimic such a
to point out that the bichromatic driving field as well as thesqueezed reservoir environment by means of more conve-
squeezed vacuum field and, if we are interested in theyent method§52-54. In contrast, the cavity environments
squeezing properties, the local oscillator field has to be genynere only those modes centered around the privileged cav-
erated from a common laser source in order to maintain thg,, mode need be squeezed, provides a much more realistic
phase relations between them. This is surely an experimentafenarig for an experimental investigation of squeezed reser-
challenge, but it should be possible to realize. In particularyr effects. The two-level atom within the cavity is driven

the bichromatic driving field can easily be realized with thep,y, 1he pichromatic field through the open sides of the cavity.
help of an acousto-optical modulator, since it can be undery, aqdition it is illuminated by the broadband squeezed
stood as a 100% amplitude-modulated field where the centrgly - ,um through one mirror, as shown in Fig. 1.

component is suppressed. The broadband squeezed reservoir is characterized by pa-

This paper is organized as follows: In Sec. Il we introduce;ymeteray andM through relations between the creation and
the Floquet states of the combined “two-level atom plusynninilation operators of the vacuum reservoir:

bichromatic field” system. We derive the master equation in

the Floguet state representation and the secular approxima- (a(wy)al (@) =[N(wq)+1]8(w1— w,),
tion. In Sec. lll we consider squeezed reservoir effects on the &)
second-order intensity correlation function. Section IV deals (a(w1)a(w2))=M(w1) 8205~ w1~ ).

with the effects of a squeezed reservoir on the photon statis-

tics pased on the Mandél p_arametef45,4@. In Sec. V we HereN(w,) is the number of photons with frequenay in

consider squeezed reservoir effects on total squeezing, andjRe relevant mode of the reservoil) (wy) =|M (w,)|e?

Sec. VI on the spectrum of squeezing. We conclude andparacterizes the photon correlations in the squeezed reser-

summarize in Sec. V. voir, and ws is the carrier frequency of the broadband
squeezed field which is chosen to be= wy. The squeezing

Il. MASTER EQUATION IN FLOQUET-STATE phaseV is defined as

REPRESENTATION
V=0-20, (4)

It is well known that the interaction of a two-level atom
with a bichromatic driving field yields to Floquet stafgg¥—  where® is the phase which appears in the bichromatic driv-
50] or analogous dressed stafésl]|. These Floquet states ing field. The magnitudéM|=|M (wq)| of photon correla-
have analytical expressions if the field consists of two comtions in the squeezed reservoir is bounded above by its value
ponents withequal amplitudes, and a relative phade at  for a minimum uncertainty state and a given photon number
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N(wg) in the squeezed reservoir. It is convenient to intro- wo Vo o 21D (o Bt
duce a paramete where 0< =<1, which enables us to H(t)=— o+ ﬁ(ﬂ[e'(“’o 2P gl (vom o))
write the relation
Vv . . .
+ ﬁo__[eﬂ(wo-%— 5)t+2|d>+e—|(w0—5)t], (8)
M| = 7[N(N+1)]*2 5

which describes the coherent evolution of the bichromati-
cally driven two-level atom. We solve the master equation

tions in the squeezed reservoir, i.e., the casel corre- (7) in the interaction picture and in the Floquet-state basis

sponds to the reservoir being in an ideal squeezed state. Tll;ﬁee Eq.(2)]. In fdd't'on’ we adopt the secular approxima-
cavity damping is characterized with the cavity-damping pation [6>y+ y.= y., for a reservoir with mean photon num-
rameterx, and the atom decays spontaneously by the dampeerN: 6>(N+1)y.+ y], which leads to similar results as in
ing ratey to the vacuum modes through the open sides of thdRef. [23], where the free-space squeezed reservoir situation
cavity (see Fig. 1 is treated. We rewrite the equations of motion for the re-
In this paper we are interested in the simplest situation t¢luced density matrix elements in the Floquet-state represen-
examine squeezed reservoir effects, i.e.lthe cavity limit  tation in the formo,5(t) =(0,4(t)) =(pa(t)| B){a|) where
This allows us to obtain equations which are formally|a) and|B) are the Floquet states of the systenta0 [see
equivalent to the free-space situation, but with cavity-Eq.(2)]. We obtain for the population elemeifis,,(t)] and
renormalized parametefgl1-44. The bad cavity limit is the transition elementss,4(t), with a+ B]:
defined by the relations

The quantityn measures the degree of two-photon correla

o11(t) = —T15(o15() — 05y, 9

k>g>vy with C=g%«kvy finite, (6) )= =T o). (10

whereg denotes the coupling constant of the two-level atom™€"® o1, is the steady-state population of the Floguet state
with the cavity mode. In addition, we assume tiatx, so | P1)- The decay rated’s, and T'y;, and the steady-state
that all of the atomic dynamicégoverned by the Floguet POPulation inversiom\ obey
state$ occur within the decay rate. In the bad cavity limit ~ ~
the cavity field de_cay dominates, and the cavity field re- Flzzﬁ[s—Jo(zg)]JrE
sponse to the continuum modes is much faster than that pro- 8 8
duced by its interaction with the atom. Thus the atom always

Cc
e 7/ {2N[5-36(26)]

experiences the cavity mode in the state produced by the +2|M[[1-Jo(2¢) Jeos ¥}, (1D

vacuum reservoir. The assumption of a broadband squeezed 1-34(28) 1

input implies that the bandwidth of squeezing has to be larger | =7, | —— || 2N— =22 5 | N+ = +|M COS@)

compared to the cavity damping rate Although this as- C+1 2 2

sumption is difficult to realize experimentally, we restrict 1-3,(28)

ourselves to examining this situation, as we are interested in +§,c 1— #} (12)

analytical results. However, it seems to be worthwhile to 4

investigate finite bandwidth effects in this system, since the

characteristic two-photon emissions appear exclusively in _ S_ s_~ Jo(é)
A=o071—0=7c . (13

the central peak component of the resonance fluorescence '

spectrum.

The system can be described by the following masteNVe recall that the squeezing phaewas defined in Ec(4).

cavity-mode variablef41-44): contains a cavity-modified decay raje. The factorC/(1

+C), with C=1./v, which appears in the above expres-
sions, is the ratio of the spontaneous emission into the cavity

pa=—i[H(1),pal+ Ye(N+1) (20 _ppcs —pacso_ mode to the total spontaneous decay rate y(1+ C). This
uantity is sometimes referred to as tBevalue 8=C/(1
—0,0-pp) T YN0 ppo_—ppo_o.—0_0,pp) iC) ofythe cavity systenid1—44. v pret
— Y M(20, ppaG 4 —ppC T — T T pp) - We may introduce the foIIowin_g cavity-modified quanti-
tiesN. and M aseffectivesqueezing parameters:
—¥M(20_ppad_—pad_0_—0_0_pp)

C
T Y20 _pp0 L —ppO O~ 0LO_pp). () Ne=77¢cN (14
Here o, and o_ are the usual Pauli spih-operators,y, _ C
it e Me=-—=M, (15
=g/ k, andH(t) is given by 1+C
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which are experienced by the atom in the bad cavity limit ) 1 - .
[41-44: An important consequence of these expressions is ~ 9¥(7)=1+ m(Fl(T)e_ W+Fy(r)e” 127, (23
the fact that we cannot have a perfectly correldtathimum

uncertainty squeezing in the bad cavity limji#1—44 A2 57 St
1o F(T)=1—2AJO(§)+7 J0(2§cos?)+J0 2§sin7”,
— 1/2
|Mc|_[Nc Nc+m <[Nc(Nc+1)] . (16) (24)

, . - : A
When we define a cavity-modified squeezing parameter Fi(7)=—[Jo(£V5+4 coséT) +Jp(£E5—4 coséT) ]
=M /[N(Nc+1)]*2 we have 4

1 ot o7
0= 7n.<1. (17) —5(1+A2)[J0(2§cos7 +J0(2§sm?”
Thus the squeezed reservoir in the bad cavity limit cannot be 3
a perfectly correlated squeezed reservoir field, even when the + EJO(g)A, (25
input field into the cavity is in a perfectly correlated one. The
effective degree of correlations are necessarily reduced from
its value in the input-squeezed field as an effect of the re- Fo(r)= _{‘10(25 cosﬁ
maining unsqueezed reservoir modes which the atom expe- 2 2
riences through the open sides of the cavity.

_OT
—JO(Z§ sm;”

A
— Z[J0(§\/5+4 c0s67) —Jo(éV5—4 cosoT)].

(26)

Ill. TWO-TIME INTENSITY CORRELATION FUNCTION

We express expectation values of the radiation field in
terms of the positive- and negat|ve-fr+e)quency pa}r_t;s of thgye may already expect that this result is formally equivalent
Heisenberg-dipole moment operatd®*)(t) and D(7)(t)  to the result of the free-space situation in Ref39,40.
in the Floquet-state representation: However, the decay ratd%;; andl';,, as well as the steady-

q state population inversioA, which contain cavity modified
D))= 0 A()dC)(t)==A(t)e @0t 18 decay rates, differ from the free-space situation. It is clear
® aEE Qap(V)dap (V) 2 ®) (18 that the effects of the squeezed reservoir are manifested in
these expressions.

_ p —2idrq _ p The photon correlations in the resonance fluorescence of a
MO=[1+CM ]t +e "1~ Ct]ea(H +B(Y) bichromatically driven two-level atom were investigated in
X[011(t) = 025(1)]. (190  Refs. [39,4Q for cases of the interaction with an usual
vacuum and a thermal reservoir. Most remarkable are pos-
Here the coefficients are given by sible two-photon emission processes which may occur for
particular interaction parametegsleading to a strong super-
C(t)=2A%(t)— 1= cog ¢ sin(St+d)], (200 bunching effecfg®(7)>2] at characteristic delay times
This superbunching is a pure nonclassical effect which can-
B(t)=—2iAL(1)A,(t)=—ie~'® sinf £ sin(st+®)]. not be described within a classical theory as the condition

(21) |g®(0)—1|>|g‘®(7)—1|, which must be valid for all de-
lay times 7 within a classical theory, is violatel®5]. The
The matrix eIementd(iﬁ)(t):<<I>a(t)|a|(Dﬁ(t)> describe the  SuPer bunching determines the unusual photon statistics and

positive- and negative-frequency parts of the dipole-momen queezing properties, and beco_mes strongly suppres;ed n
in the Floguet-state representation. the presence of a thermal bath in cases of very small inter-

The normalized second-order intensity correlation func-2ction parameterg. We have showrj39,4 that the two-
tion g@(7) can be expressed as photon processes depend strongly on the steady-state popu-
lation inversionA, which is a comparatively complicated

, N (ONF (4 DN (E+ DIN(D) function of th_e int_eractio_n parameter in cor_nparison to
g@(t;t+7)= — n , (220 monochromatic driving field cases. In particular, unusual
NTONOYNT (T DN+ 7)) photon correlation effects appear whenever the absolute of

the steady-state population inversion displays a local maxi-
by taking into account the proportionality of the field opera- mum (A|=max). Therefore, we expect strong squeezed res-
tor in the far zone of the radiation field to the Heisenbergeryoir effects in the photon correlation phenomena if there
dipole-moment operator as well as E¢B8)—(21). The cor-  exists a squeezing-induced local maximum in the absolute of
relation function(22) can be investigated by applying the the steady-state population inversiph|. Another main ef-
quantum regression theorem, and E@.and (10). In the  fect of the squeezed reservoir is reflected in the decay rates
steady-state reginte>y,, for g(7) we obtain, in a similar  I';; andT";,, which differ significantly from their values in a
way as in Refs[39,40 typical reservoir as well as a thermal reservoir.
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FIG. 2. Second-order correlation function in dependence on dif- FIG. 4. Second-order correlation function in dependence on dif-
ferent reservoirs{a) a squeezed reservoir with squeezing phdise ferent reservoirs with interaction parameter 1.9 and detuning
=0, (b) a typical vacuum,(c) a thermal reservoir, andd) a  =10y,: (a) a squeezed reservoir with squeezing phitse0, (b) a
squeezed reservoir with squeezing phdse 7. The mean photon  typical vacuum(c) a thermal reservoir, and) a squeezed reservoir
numberN and the interaction parametérare given alN=0.015  with squeezing phas® = . The mean photon numbels obey
and §=1 in (A), N=0.035 and¢=1.2 in (B), N=0.15 and§  N=0.1in(A), N=0.25in(B), N=0.5in(C), andN=1 in (D), and
=1.2in(C), andN=0.25 andé=1.4 in (D), and the photon cor- the photon correlations in the squeezed reservoir| =] N(N
relations in the squeezed reservoir oy =[N(N+B)]1’2, with +ﬁ)]1/2, with the 8 value 8=C/(C+1)=10/11.
the B value B=C/(C+1)=10/11. The detuning is given asd ) ) )
—10%, . We display the second-order correlation functgf)( )
in dependence on different reservoirs and interaction param-
eters¢ in Figs. 2—4. The strongest squeezed reservoir effects
appear at small interaction parametérand small photon
numbersN. It is remarkable that the squeezed reservoir can
enhance or suppress the superbunching behavior in depen-
® dence on the squeezing phabe as shown in Figs. 2 and 3.

@ In particular, a squeezing phase ¥f=0 allows one to en-

&

g€ Fer = 0.18)

—®

) g€ Fer = 0.18)

~
~

©
&

[v]

[

(@)

(c)
d)

& Fer = 0.18)

4 8 ¢

hance the superbunching in the photon correlations, i.e., the
two-photon emissions, while a squeezing phaseVef 7
allows one to suppress these two-photon emissions. The ef-
fects are, however, restricted to a particular range of interac-
tion parameterg, and vanishes for larger numbers of pho-
tons in the reservoirs. This is shown in Fig. 3, where we
display the first maximum of the second-order correlation in
dependence on different reservoirs and interaction param-
etersé. The most obvious features of squeezed reservoir ef-
fects on the photon correlations can be summarized as fol-
lows: First, the squeezed reservoir effects are most
pronounced for interaction parametersapproximately be-
tween 1=¢/5<2. In this interaction range the differences in
the steady-state population inversidnbecome largest and,

in particular,|A| displays a local maximum induced by the

FIG. 3. Second-order correlation function in dependence on thédueezed reservoir with squeezing phése0, as shown in

interaction parametef and on different reservoirs atr=0.18:(a)
a squeezed reservoir with squeezing phdse0, (b) a typical

Fig. 5. This explains the enhancement of two-photon emis-
sions in the resonance fluorescence. Second, the absolute of

vacuum,(c) a thermal reservoir, an@l) a squeezed reservoir with the steady-state population inversidy] becomes reduced in
squeezing phas# = . The mean photon number for the squeezedthe squeezed reservoir with squeezing phéfse = (again

and thermal reservoirs alé=0.01 in(A), N=0.1in(B) N=0.3in

see Fig. 5, explaining the suppression of two-photon emis-

(©), andN=1 in (D), and the photon correlations in the squeezedsions in the photon correlations. In addition, the range of

reservoir obey|M|=[N(N+ 8)]*2 with the 8 value 8=C/(C

+1)=10/11. The detuning is given a%= 10y, .

interaction parameteswhere squeezed reservoir effects oc-
cur depends on the photon number, i.e., for a larger number
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A a) A® (B) TABLE I. The normalized Mande paramete® (T) in depen-
dence on different reservoirs, a usual vaculv), a thermal res-
ervoir (TR), a squeezed reservoir with squeezing ph#se0 (SR-
¥=0), and a squeezed reservoir with squeezing pHaser (SR-
V=qm). We recognize parameters in which phase-dependent
squeezed reservoir effects completely change the photon statistics.

@
)
(c) c)
d) d)
0 i g \ £ o0 i ; \ ¢
Parameters uv TR SRe=0 SRY¥Y =7
(a; /(a;
% )
@

0.6 0.6

Q) © 2@ (D) £§&=1.0,N=0.01 177 150 2.23 1.04
£=19,N=0.01 0.22 0.12 0.34 0.04

06 0} @ £=1.0,N=0.1 1.77  0.33 1.20 -0.02
£=1.2,N=0.1 1.37 0.43 1.45 0.07

/ \ £=19,N=0.1 0.22 0.12 0.34 0.04

0 3 § \f 0 7 g \‘ ¢=10,N=025 177 -0.19 0.20 -0.32
v v £=1.4,N=0.25 0.97 0.07 0.78 —-0.10
£=1.9,N=0.25 0.22 0.04 0.28 —0.02

FIG. 5. Steady-state population inversidnin dependence on §=1.0,N=05 177 -0.36 —-0.26 —-0.37
the interaction parametegrand on different reservoirs with detun- §=1.4,N=0.5 097 -0.11 0.25 —-0.16
ing 6=10y.: () a squeezed reservoir with squeezing phase §=1.5N=05 0.79  —0.08 0.78 —0.10
=0, (b) a typical vacuum,(c) a thermal reservoir, andd) a  §=1.9,N=0.5 022 -0.02 0.16 —0.04

squeezed reservoir with squeezing phdse 7. The mean photon
numberN is N=0.01 in(A), N=0.03 in(B), N=0.05 in(C), and
N=0.1in(D), and the photon correlations in the squeezed reservoideviation of the variance of the photon numb®e(N)

are [M|=[N(N+pB)]"% with the beta value=C/(C+1)  =(N2?)—(N)? from a Poissonian variance. The Mandg!
=10/11. factor is defined ap45,46
of photons in the squeezed reservoir the squeezed reservoir V(N)—(N) (N)
effects become less and less important, and more interest- = TZF(VT% (27)
ingly are shifted into ranges of stronger interaction param-
eters.

where

In Fig. 4 we display the second-order correlation function
at interaction parameteés where squeezed reservoir effects ; I
in the decay rateE ;; andI";, become most pronounced. We O(T)= f d (1_ l) @(rn-1 28
realize that the fast oscillations in the second-order correla- (M -7 ! T (g7 (n) = 1], (28)
tion function can be dramatically damped in dependence on

the squeezing phasé, especially for¥’=7. On the other Here T is the counting time interval during which photons
hand, these oscillations can be enhanced in the presence ofa collected. The Mand€) factor ©(T) is larger than zero
squeezed reservoir with squeezing phéitse. In this inter- - jf the photon statistics are super-Poissonian, zero, if the sta-
action range and at comparatively large photon numbers, thgstics are Poissonian, and smaller than zero if the statistics
differences between thermal and squeezed reservoirs are legg syb-Poissonian.
obvious. Nevertheless the dependence on the squeezing |t is quite obvious to connect super-Poissonian photon
phase¥ of the second-order correlation function persistsstatistics with two-photon emissions into the resonance fluo-
even for a large number of reservoir photons, as shown iRescencd39,40. The contribution of these two-photon pro-
Fig. 4. In this context, we remark that usually effects of acegses is dominant ig®(7) if the absolute of the steady-
squeezed rese.rvoir become.s negligible for a large squeezingate population inversiorfA| displays a maximum in
phaseW =, with an exception discussed in Rg56]. dependence o# [39,40. Thus squeezed reservoir effects in
the photon-counting statistics are manifested in the steady-
state population inversioA, which can be strongly manipu-
lated in the presence of a squeezed reservoir, as shown in
The second-order correlation function exhibits interestingFigs. 5. Interestingly, there are ranges of interaction param-
properties in dependence on the field strength and on resesters¢ where it is possible to change the photon statistics
voir properties, as we have shown already. Thus we expedtom super- to sub-Poissonian in dependence on the squeez-
squeezed reservoir effects on the photon-counting statistigeag phase¥ . In particular, the photon statistics become sub-
as well. The second-order correlation function allows one td?oissonian due to the presence of a squeezed reservoir with a
analyze the mean-squared fluctuations in the photon numbsgueezing phas¥ = =, while the photon statistics are super-
and, consequently, to determine whether the photon statistid3oissonian in squeezed reservoirs with a squeezing phase
are sub- or super-Poissonian. This decision can be made with =0, as well as in thermal reservoirs and a usual vacuum.
the help of the Mande® factor[45,46 which describes the This is displayed in Table I.

IV. PHOTON STATISTICS
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Qr=0,6 =7/2)/3 (&)  Qr=00=r/2)/4 (B) whereAE=E—(E). Total squeezing occurs whenev@(
=0,0) is smaller than zerd36]. The time evolution of
Q(7,0) describes the progressive loss of negative correla-

/ tions with increasing delay time. Thus a knowledge of the

@D OO D ®»@

0.2;
0.

[V}

functional form ofQ(7,®) allows one to calculate effects of
finite detection times on measurable squeeZidg]. More

1 7 3 interesting, the Fourier transformation@f{r,®) determines
the spectral component squeezing of the signal figd,

=0,6=7/2)/3 (D)

(=4

o

[

o
(=2

"

=0,6=7/2)/5. ©

-~

Q Q

04 @O ©® @O O \I’(w,@)=J Q(7,0)e“dr, (30
0.4 e

~
3

>

02 squeezing is obtained ¥ (w,®)<0 for appropriate values
of w and the phas@ of the local oscillatof37], and will be
0 w 08 1> ¢ the subject of Sec. VI.
We express Eq(29) in terms of the Heisenberg dipole-

FIG. 6. Total squeezing in dependence on the interaction paranrfnoment 0perat0|’$18)_and_(19), a_nd under the assumption
eter ¢ and on different reservoirs with detuningfy,=10: (8 a  Of the secular approximation derive, fQ(7,®),
squeezed reservoir with squeezing phake=0, (b) a typical ~
vacuum,(c) a thermal reservoir, an@l) a squeezed reservoir with _Yc e ra— CTaor
squeezing phas¥ = 7. The mean photon numbers dde= 0.003 in Q(7.0) _7([l+ COC(t+7)—2A%(&)]e " »
(A), N=0.01 in (B), N=0.05 in(C), andN=0.1 in (D), and the
photon correlations in the squeezed reservoir ofdy=[N(N +B*(t)B(t+7)(1—-A%)e "1+ cog20)
+ B)1¥2, with the 8 value 8=C/(1+C)=10/11.

02 / in dependence on the relative an@e Spectral component
L1 /

A

X{[1-C(t)C(t+7)]e "127—B*(t)B(t+ 7)

It is clear that for larger photon numbers squeezed reser- o 1
voir effects become negligible in comparison to thermal res- X(1-A%e "u7), (3D
ervoir effects. For large photon numbers the photon statistics

in the resonance fluorescence are sub-Poissonian, indepe¥tereQ(,®) is renormalized to the total outgoing fluy
dent of the reservoirs. This, again, is a result of the behaviopf the resonance fluorescence light, as usa@27,38,58

of the steady-state population inversipk|, which is com- The overline denotes averaging over the fast oscillations pro-
paratively small in reservoirs with large photon numbers reortional toé or multiplies of 6 with respect ta, and

gardless what kind of reservoir is present. Consequently, 1 , ,
two-photon emissions into the resonance fluorescence arec(t)c(t+7):_[J0 2¢ cos( 5=+, 2§sin( 5_)”,
suppressed. The change from super- to sub-Poissonian statis- 2 2 2
tics is again an effect of a large squeezing phdse , 1

hich is generally unusual in squeezed reser . B R : T T
which is g y unusual in squeez Vi B*(t)B(H—r):E[JO 2§sm(5§) ~J, zgco<5§m.

V. TOTAL SQUEEZING IN THE RESONANCE LIGHT ) )
We consider the two quadrature components of the signal

In this section we are interested in the situation whersield in phase @ =0) or out of phase® = 7/2) to the strong

squeezing is detected in terms of normally ordered variancegcal oscillator, and, foQ(7=0,0=7/2), i.e., the out-of-
of the phase quadratures, which requires a direct homodyrphase component, we obtain

ing of the total radiation field as a local oscillator without

frequency filtering57]. We denote this type of squeezing as A

total squeezing. An alternative detection scheme which mea- Q| 7=0,0= 5) :?{2—2AJ0(§)—A2[1—J0(2§)]}.
sures the squeezing spectrum requires the fluorescent field to 32)
be first frequency filtered and then homodyned with a strong

local oscillator field[30-32. This situation is generally Similarly, for the in-phase quadrature element of the signal
known as spectral component squeezing, and will be the sulfield, we derive

ject of Sec. Ill.
Squeezing in the signal beam is conveniently connected Q(r= o,@):o):}C[l_AJO(g)]_ (33
with the normalized intensity correlation functigp(r,®),
which can be expressed E37,46 The in-phase quadrature component of the signal fig8l
_ cannot be squeezed regardless of what kind of reservoir is
Q(7,0)=[(AETHHAEN (t+7))e' 0" present. However, the out-of-phase compor{@at displays
(-) (-) squeezing.
TARTDART (L 7)) We have plotted the normalized total squeezing in depen-
X @ 1[0+ 1) =201 4 ¢ c], (290  dence or¢ and different reservoirs in Figs. 6. Total squeez-
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ing occurs in a range of small dimensionless interaction pa- o
rameter &/ y. Interestingly, in the presence of a squeezed
reservoir withW =0, total squeezing can be enhanced, and
the range of interaction parametefsn which total squeez-

ing occurs can also be enlarged. This is possible for small
photon number#\, and is vanishing for larger photon num- -o.1j
bers. In comparison, total squeezing can be greatly sup- i :
pressed in the presence of a squeezed reservoir with g, Qr,6=1/2/4
squeezing phas® = 1. The differences in total squeezing o Ame=r/h/k
occur due to the influences of the different reservoirs on the ]

steady-state population inversian(see Fig. 5. The steady-
state population inversiod is responsible for two-photon ‘
emission processes which determine the squeezing propertieg 1|t
in the resonance fluorescence. The presence of a thermi |
reservoir, and especially of a squeezed reservoir with squeez, : T
ing phase¥ = r, strongly suppresses the probability of two- )

photon emissions, leading to a decrease of total squeezing, as FiG, 7. Temporal behavior d(r,® = /2)/7. in dependence
shown in Figs. 6. In contrast, t,hese two-photon EMISSIONg, gifferent reservoirs with detuning/y.= 10: (a) a squeezed res-
can become more pronounced in a squeezed reservoir Withygir with squeezing phas® =0, (b) a typical vacuum,c) a
W=0, and this is responsible for the enhancement of thenermal bath, andd) a squeezed reservoir with squeezing phase

squeezing e_ffects. _ ) ¥ = 7. The mean photon numbers in the reservoirs and the interac-
Another important feature in connection of measurabléjon parameteré are given asé=0.85 andN=0.003 in (A), &

total squeezing is the temporal behavior of the relevant nor=0.9 andN=0.01 in (B), £=0.95 andN=0.02 in (C), and ¢
malized correlation functiolQ(7,0), which allows one to =1.1 andN=0.05 in (D), and the photon correlations in the
consider questions of influences of finite detection times osqueezed reservoir obéy |=[N(N+ 8)]*2, with the 8 value 8
squeezing[36]. The temporal correlation function out of =C/(C+1)=10/11.

phase to the strong local oscillator is given as

can be enhancedor suppressedin the presence of a

T o~ v squeezed reservoir. The normalized, dimensionless spectral
Q( 7,0= E) =7 (C(OC(t+7)—AJg(§))e 127 component squeezing fé = /2 out of phase to the strong
local oscillator, which we denote aB,,(w) and which is
+B*(t1)B(t+7)(1—A?%)e Tu7]. (34  given as the Fourier transform Qf( 7,® = /2), provides for

a measure of the degree of squeezing:
We recognize fast oscillations of the order 8f2 in the

correlation function in dependence ar(see Fig. 7. In par- _ P a_ T

ticular, the correlation furertion becomes mugch morF:a nega- q)22(w)_f dre™’Q| 7.0= 2)

tive for 7~2/5 in comparison tar=0. Such a behavior has a o

positive consequence on the observation of squeezing in -~ 2

resonance fluorescence if we take finite detection times into _q;w [J29(6) = 8q.0hJo(£)]

account. These oscillations can be greatly enhanced or sup-

pressed in the presence of a squeezed reservoir in depen- 2T 1,7¢ = )

dence on the squeezing phaBe Here again, the effects of XKe—— % 2 " _2 J2q+1(8)
(w—20q6)°+I'], a=-=

the squeezed reservoir are most pronounced for small photon

numbers as well as in a range of small interaction param- 2Ty
eters, as shown in Fig. 7. The oscillations are manifestations X (1—A?) mre > (35
of two-photon emission processes which can be amplified or [o—(29+1)5]°+T1,

suppressed in dependence on the squeezing phaskthe ) )
squeezed reservoir. It is important that this behavior of théVe recognize that spectral component squeezing occurs ex-

correlation function is absent in the resonance fluorescenc@usively in the central componeri=0 of the resonance

of a monochromatically driven atom. Here the temporal pefluorescence spectrum. When we take into account the secu-
havior of the correlation function is determined by the Rabi-lar approximation conditiod>y, we may reduce Eq35),
frequency, which has to be smaller than the decay yaite ~ around the frequency=0, into

order to observe squeezing. Consequently no oscillations oc-

cur during a time interval 3/ [37]. D ,(0)~2[I5()— AJo(€)1(7e /T 12). (36)

We display®,,(0) in dependence df and on different res-

ervoirs in Fig. 8. The spectral component squeezing displays
In this section we investigate squeezed reservoir effecta similar dependence on the interaction paramétas the

on the spectrum of squeezing, and if the degree of squeezirgobability of two-photon emission processes does, i.e., the

VI. SPECTRAL COMPONENT SQUEEZING
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0 4 8 ~¢ 4 e stronger interaction parametefs 2.5 the effects of thermal
VV 0 V\5 and squeezed reservoirs on spectral component squeezing
(A V (B) become negligible. More interestingly, we can enhance the
degree of squeezing in the presence of a squeezed reservoir
with a squeezing phas& =0 for certain interaction param-
eters and small photon numbers, as shown in Figs. 8. In
contrast the degree of squeezing can be strongly suppressed
in the case of a squeezing phaselof . These properties,
again, can be understood as effects of the squeezed reservoir
on the steady-state population inversidrwhich determines
the probability of two-photon emission into the resonance
fluorescence which are responsible for the squeezing proper-
ties.
We finally note that the normalized spectral component
squeezing®,;(w) of the quadrature component in phase
with the strong, local oscillator,

-0.4 IeN

(0}

(d)

-0.4 ©

(b)
(2)

D22(0)

FIG. 8. Spectral component squeeziffig,(w=0) in depen- _
dence on the interaction paramegeand on different reservoirga) D (0)=2[1—-AJo( (T 127/ (w*+ Ffz)], (37)
a squeezed reservoir with squeezing phdse0, (b) a typical
vacuum,(c) a thermal reservoir, an@) a squeezed reservoir with cannot be squeezed in the whole frequency range regardless
squeezing phas@ = . The photon number in the squeezed anof what kind of reservoir is present, and regardless of the
thermal reservoirs obe$A) N=0.003,(B) N=0.01,(C) N=0.02,  interaction parameteg. The effects of the squeezed reservoir

and (D) N=0.05, and the photon correlations in the squeezed respn this component are therefore not of particular interest.
ervoir are |[M|=[N(N+B)]*2 with the 8 value B=C(C+1)
=10/11.

. . . VIl. SUMMARY AND CONCLUSIONS
steady-state population inversidn shows the same depen-

dence on the interaction paramet€r{39,40. This is the We have studied squeezed reservoir effects on quantum
strongest evidence to connect the squeezing properties witiatistical and squeezing properties of the resonance fluores-
the two-photon emission processes into the central compaence of a single, bichromatically driven two-level atom. We
nent of the resonance fluorescence. In this context it is cledrave shown significant influences of a squeezed reservoir on
that spectral component squeezing can only be observed the photon correlation phenomena, on photon-counting sta-
the central peak of the spectrum. Thus it seems to be distics, and on squeezing properties which depend on the
particular interest to consider finite bandwidth effects of themean number of photons in the cavity and on the interaction
squeezed reservoir on squeezing properties of the resonanpgarameteré of the bichromatic atom-field interaction. We
fluorescence, however, this is not the subject of this papefurther demonstrated the influence of a squeezed reservoir on
We recall that this behavior is in contrast to squeezing propthe degree of squeezing, and showed that a squeezed reser-
erties in the resonance fluorescence of a monochromaticallyoir allows one to enhance or suppress the degree of squeez-
driven atom, where the frequency range of the spectral comng in the resonance fluorescence in dependence on the
ponent squeezing depends strongly on the interaction pararsgueezing phas#. Manipulations of the steady-state popu-
eter¢, i.e., the Rabi frequench37]. lation inversion by different reservoirs are responsible for all
We are interested in the effects of different reservoirs orthese effects. The steady-state population inversion deter-
spectral component squeezing of the out-of-phase quadratuneines the probability of two-photon emissions in the reso-
component. Again, phase-dependent squeezed reservoir efance fluorescence and these two-photon emissions specify
fects allow one to enhance or suppress the magnitude @il nonclassical effects in the resonance light emitted by the
squeezing in dependence on the squeezing plgsespe- bichromatically driven two-level atom. Further effects are
cially in the range of small photon numbers. This is similarmanifested by the influences of different reservoirs on the
to squeezed reservoir effects on squeezing properties of gecay rates of the Floquet states. Interestingly, these effects
monochromatically driven two-level atorf27]. However, remain even for a large squeezing phake 7, which is
the squeezed reservoir cannot enhance the degree of squegenerally unusual in squeezed reservoirs.
ing as strongly as in the monochromatic driving field case. With respect to the recent experiment of Turcheitel.
The effects of squeezed and thermal reservoirs are shown [89], who realized the atom-squeezed-vacuum interaction in
Fig. 8. Because thermal and squeezed reservoir effects lealde bad cavity limit, the proposed squeezed reservoir effects
to a dropping of the strong superbunching behavior for veryon photon correlations as well as on squeezing properties
small interaction parametets and, therefore, to a termina- should be realizable. There it was also shown that many
tion of the two-photon emissions, we expect no squeezingsqueezed reservoir effects in the free-space situation can be
This is demonstrated in Fig. 8 where the spectral componertdarried over to the cavity situation in the bad cavity limit.
squeezing is plotted in thermal and squeezed reservoirs farhus they verified in some sense the formally identical mas-
different photon numbers as a function &f Further, for ter equation of the free-space squeezed reservoir and the
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