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Microscopic theory of polarization properties of optically anisotropic vertical-cavity
surface-emitting lasers

D. Burak,1,* J. V. Moloney,2 and R. Binder1
1Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

2Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721
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The polarization eigenmodes of vertical-cavity surface-emitting lasers~VCSELs! are investigated theoreti-
cally. The study is based on a first-principles theory and includes a microscopic model for the optically active
quantum well and a vectorial solution of the VCSEL cavity mode problem. The theory is evaluated for an
anisotropically strained GaAs quantum well structure, interacting with two orthogonally polarized VCSEL
eigenmodes. The dependence of the calculated input-output characteristics and polarization stability criteria on
microscopic input parameters such as the value of the strain are discussed for various levels of sophistication
of the microscopic many-body effects used in the analysis. The results of the stability analysis are consistent
with recent experimental observations of polarization switching, suggesting that anisotropic strain of the active
quantum well may be a dominant factor in those observations.

PACS number~s!: 42.55.Px, 42.55.Sa
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I. INTRODUCTION

Due to their rapidly increasing importance in commerc
applications, vertical-cavity surface-emitting lasers~VC-
SELs! are currently the subject of numerous experimen
and theoretical investigations~for a recent comprehensiv
review of VCSEL properties see, e.g., Ref.@1#!. Cylindri-
cally symmetric VCSELs offer beam shapes that make th
clearly advantageous in comparison to conventional e
emitting lasers, but, on the other hand, they exhibit polari
tion instabilities in the input-output characteristics@2–6#,
which is a limiting factor in polarization-sensitive applic
tions, such as optical interconnects, optical communicat
optical signal processing, and magneto-optic memories.
forts have been made to control the polarization by use
anisotropic cavity geometry@7,8#, amorphous@9# or metal/
dielectric@10# gratings on the top mirror, trench etching@11#,
cavity tilting @12#, fractional-layer superlattices@13#, aniso-
tropic oxide aperture@14#, external uniaxial strain applied t
the structure@15#, and optically active quantum wells grow
on misoriented substrates@16#. Also, quantum wire@17# and
quantum dot@18# VCSELs have been demonstrated to e
hibit relatively good polarization selectivity. Most of thes
approaches, however, require usually some additional
growth or implantation, which may make the commerc
production of these structures more difficult.

It has been demonstrated experimentally that pract
VCSELs emit linearly polarized light with preference of th
polarization direction along the@110# or @11̄0# crystallo-
graphic axes@2,3,19,20#. Depending on the operating cond
tions, like pumping current and temperature, bistability b
tween two linearly polarized states of the same fundame
Gaussian-like transverse mode has been demonstrated@3,20#.
The preference for a particular polarization indicates

*Present address: Agilent Technologies, 350 W. Trimble Rd.,
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presence of residual anisotropies in the structure, which m
result from unintentional residual strain left after the grow
process. As a matter of fact, it is possible by applying,
example, additional strain~via the ‘‘hot-spot technique’’@21#
or ‘‘local burning’’ @22#! to manipulate the dominant bire
fringence anisotropy at will~i.e., to cancel or magnify it! and
therefore to control the output polarization state of light.
these experiments the anisotropy due to dichroism was fo
to be much smaller than that due to birefringence. A simp
fied coupled-mode model, based on a combination of lin
anisotropies and polarization eigenmode properties, was
posed to obtain phenomenological explanations of obser
phenomena@23#.

However, from a theoretical point of view, semiconduct
lasers are nonlinear systems, where nonlinear gain disper
and saturation plays a significant role in the mode selec
processes. The first, simplified, VCSEL model that accou
for these effects in a phenomenological way was propo
by San Miguel, Feng, and Moloney~SFM! @24#. Underlying
that theory is the assumption that the dynamics of optica
anisotropic VCSELs can be described by rate equatio
where the cavity can be assumed to be uniform in the tra
verse direction and the optical response of the material
be modeled by the interaction of two coupled two-level s
tems. Because of its simplicity, this model allows for t
prediction of the basic dynamical behavior of the system a
function of the phenomenological input parameters. In t
way a number of issues have been addressed, including
larization instabilities and polarization state selecti
@24,25#, the influence of magnetic field on polarization d
namics@26#, the role of the various type of optical anisotro
pies on polarization selection@27#, noise-induced polariza
tion hopping and the role of carrier dynamics in this proce
@28#, and the influence of quantum noise on polarizati
fluctuation@29#. The predictive potential of this approach h
been recently confirmed in the context of polarizati
switching@30,31,6#. Also, polarization dynamics of VCSEL
including the onset and the polarization of higher-ord
modes has been studied@32–34#.
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Despite the success in predicting polarization selec
and switching phenomena, the above mentioned models
not account for three important aspects of VCSEL structu
The first aspect is that in a semiconductor laser, as alre
recognized in Ref.@24#, the optical transitions take plac
between electrons in conduction and holes in valence ba
with Coulomb interactions modifying the strength of the
transitions@35# ~a generalization of the SFM model to th
case of a microscopically calculated linewidth enhancem
factor, within the free-carrier approximation, has been p
sented in Ref.@36#!. Under many realistic conditions, non
equilibrium many-body effects can be observed in the em
sion characteristics@37,38#, especially under ultrashor
excitation conditions. Thus a microscopic description of V
SELs is necessary in order to fully understand its com
cated spatiospectral dynamics~see Refs.@39,40# and refer-
ences therein!. The microscopic description is also require
to formulate a self-consistent approach to temperature eff
@41# and to understand their role in spatiotemporal patt
formation @42#. In addition to Coulomb interactions, sem
conductor quantum wells contain specific band-structure
fects. In a GaAs quantum well, for example, band-mixi
effects yield momentum-dependent optical selection ru
This effect cannot be incorporated into a two-level mod
These two additional coupling mechanisms modify the pr
erties of polarization eigenmodes, and therefore, can mo
significantly the results of the recently proposed method
an estimation of spin-flip relaxation rates in VCSELs@43#.
The model developed in this paper allows us to study
properties and stability of polarization eigenmodes of V
SELs with microscopic effects of band-mixing and Coulom
interactions between the electron and the hole plasma ta
into account in a self-consistent way.

The second aspect that needs to be considered in a
tematic way is of purely electromagnetic nature and conce
the role played by the distributed Bragg reflectors~DBRs! in
mode formation and selection phenomena, especially
higher-order modes of index-guided~or oxide! cavities are
considered. One should point out that for index-guided~or
oxide! cavities one cannot use the scalar orLP mode ap-
proximation, as it is common practice for gain-guided ca
ties, since only full vectorial hybrid modes satisfy all th
necessary boundary conditions in the transverse directio
each cavity layer. Therefore only the solutions of the vect
Maxwell equations characterize properly the thre
dimensional ~3D! vectorial pattern, eigenfrequencies, a
modal losses~including diffraction and scattering loss!. Such
vectorial solutions have been obtained recently by mean
plane-wave expansions@44#, general mode expansions@45#,
vectorial weighted index@46#, hybrid mode expansion
@47,48#, finite-element method@49#, and finite difference
time domain@50# techniques. In this paper we incorpora
the vectorial nature of cold-cavity eigenmodes of realis
VCSEL structures@47,48# into the polarization-sensitive
many-body microscopic description of a running laser~the
preliminary model including only the free-carrier descripti
of a semiconductor quantum well has been presented in
@51#!.

The third aspect that will be discussed in this paper is
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origin of optical anisotropies. A potential source of the op
cal anisotropy of VCSELs is unintentional anisotropic stra
For simplicity, we assume that the dominant anisotropic
fects are created by the active layer, which consists o
spacer and a quantum well~QW!. Then we apply the theory
of uniaxially strained QWs@52–56#, which has been gener
alized to include many-body effects@57,58# and evaluated
for the case of ultrashort pulse propagation in Ref.@59#. In
this paper we derive the analytical expression for the stea
state susceptibility tensor of anisotropic QWs that is valid
high-quality VCSEL structures. In order to analyze the s
bility properties of VCSEL polarization eigenmodes o
needs to know the steady-state response function of a q
tum well. The direct time integration of evolution equation
as it is a common practice in existing microscopic models
VCSELs @37,38,40#, would lead only to stable solutions
leaving the unstable solutions out of the analysis.

Within the SFM model one can understand switchi
from one polarization eigenstate to another by studying
stability properties: If one eigenstate becomes unstable t
as a result of internal fluctuations, the laser output switc
to another state@24,25,27#. The physical mechanism pro
posed to explain polarization switching in systems w
dominant birefringence@6,30# is that~in addition to residual
linear anisotropies! nonlinear anisotropies arise as a result
an effective frequency shift of the nonlasing mode. At so
pumping level the frequency of the nonlasing mode overl
with that of the lasing mode, which then enables switchi
Another mechanism of polarization switching was demo
strated in terms of heating of the device and the result
shifts in the relative tuning of the cavity resonance with
spect to the semiconductor gain spectrum@19,20#. It is be-
yond the scope of this paper to answer the question of wh
of these mechanisms is dominant in practical VCSEL str
tures. We would like to emphasis that the theory presente
this paper lays the foundation for future investigations
cluding self-consistent incorporation of thermal effects@41#
into the analysis and for a study of the role of nonline
anisotropies and heating on polarization switching simu
neously.

This paper is organized as follows. Section II contains
details of the VCSEL structure considered in this paper a
the model equations used for analysis. Section III conta
the results of strain-induced steady-state refractive index
gain anisotropies in QWs. The input-output~I/O! character-
istics of VCSELs operating in the linearly polarized mo
regime and their stability properties are discussed in Secs
and V, respectively. The physical mechanism leading to
larization switching is discussed in Sec. VI. Section VII su
marizes the paper. In Appendices A and B we present de
of the derivations of the optical and electronic parts of o
model, respectively.

II. MODEL EQUATIONS OF ANISOTROPIC VCSELS

As mentioned in the Introduction, in order to study th
polarization properties of anisotropic VCSELs one sho
develop a model that takes into account the dynamics
vectorial eigenmodes of realistic structures coupled to
9-2
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MICROSCOPIC THEORY OF POLARIZATION . . . PHYSICAL REVIEW A61 053809
dynamics of electrons and holes in QW bands. In this sec
we present a set of simplified equations describing the t
evolution of the electromagnetic fields and carrier densi
in anisotropic VCSELs. In the most general case one sho
consider a multitransverse-mode field dynamics coupled
spatiospectral evolution of carrier densities, which descri
a polarization-dependent mode selection processes due t
spatial~modal gain overlap! and spectral~modal gain supres
sion! hole burning. For the case of anisotropic quantum we
such equations are derived in Appendices A and B for fie
and carrier densities, respectively. However, in this paper
focus on a simplified case of a small-diameter VCSEL op
ating close to the lasing threshold, which allows us to lim
the analysis to the case of two fundamental, orthogon
polarized modes. Thus one can neglect the effects of sp
hole burning and the appropriate equations are presente
Sec. II B.

A. The cavity structure

We begin our study by considering a cylindrical air-po
index-guided cos-typel cavity grown on a GaAs substrat
and designed to be at resonance atl0'0.851 mm. The
room-temperature material parameters are taken from
@60#. The central, optically active part of the cavity consis
of a l-thick spacer layer of Al0.05Ga0.95As barrier material
with refractive index nS53.658 and aLQW510A-thick
GaAs quantum well. We neglect the small change of
average refractive index due to the presence of the thin
layer. The front mirror consists of a distributed Bragg refle
tor ~DBR! with NF526 pairs of Al0.3Ga0.7As/AlAs layers
with nL5nAlAs52.99 ~low! and nH5nAl0.3

Ga0.7As53.47

~high! refractive indices. The rear DBR consists onNR534
pairs of layers. Note thatNR.NF , which prevents the leak
age of light into the substrate. The cavity radius is assum
to beR52 mm, which leads to the modified resonant wav
length ~due to cavity-induced blue shift, see Ref.@48#! for
the fundamentalHE11 eigenmodelR

HE11'0.849 mm and the

photon life-timetphot
HE11'1.46 ps.

B. Model equations for optical fields and carrier densities

The optical characterization of the VCSEL structure d
scribed in Sec. II A involves finding a complete set of ve
torial eigenmodes directly from Maxwell equations. T
theory of cold-cavity vectorial eigenmodes of index-guid
VCSELs has been presented in Refs.@47,48#. In this section
we present results of the application of this theory to
running laser. Within the two-mode approximation, the ev
lution equations for the field amplitudes inside the quantu
well layer are given by~see Appendix A for details of the
derivation!

dAx

dt
5ve@xB

HE119Ax1 i ~xQW
xx Ax2xQW

xy Ay!#, ~1!

dAy

dt
5ve@xB

HE119Ay1 i ~2xQW
yx Ax1xQW

yy Ay!#, ~2!
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whereAx/y is the field amplitude ofx/y polarized fundamen-
tal hybrid HE11 mode, ve52pv0 /(114pxB), v0, and

x
B

HE119 denote the cold-cavity frequency and modal loss of
HE11 mode, respectively,xB is a background susceptibility
of the quantum well material, andxQW

i j , (i , j 5x,y) are the
elements of the susceptibility tensor describing optical g
and electronic contributions to the refractive index of anis
tropically strained quantum wells.

The polarization-dependent optical gain in semicond
tors is determined by lasing transitions between conduc
and valence bands. The band structure near the band ga
be calculated using thek"p Luttinger-Kohn theory@57,61#.
The conduction and the valence bands can be classified
cording to the value of the effective total angular moment
J. Spin 1/2 electrons occupy the conduction bands with to
angular momentumJ51/2 ~here the orbital angular momen
tum is zero!, whereas holes can occupy three different v
lence bands: heavy-hole~hh! and light-hole~lh! band, both
with angular momentumJ53/2, and the split-off band with
angular momentumJ51/2. Because the split-off band has
much lower energy than the hh and lh bands, it can be
regarded in the analysis. The hh and lh band are degene
at zero momentum in bulk semiconductors. However,
quantum wells the 3D translation symmetry is broken, wh
leads to a splitting between hh and lh bands: the hh b
associated withj 563/2 ~wherej is thez component of the
angular momentum! has a higher energy at zero momentu
The schematics of the quantum well band structure and
tical transitions connecting the conduction and valence ba
considered in this paper is shown in Fig. 1. We assume
the quantum well is thin enough so that only the lowe
subband of each band has to be taken into account.
optical transitions at the zone center are associated with
cularly polarized electric field components and are indica
by V6 . The change of the valence band curvature is due

FIG. 1. Schematic of the in-plane band structure of a quan
well @kx and ky indicate (kx,0) and (0,ky) directions in reciprocal
space, respectively#. Shown are two conduction bands (61/2) and

two valence bands (63/2). V6 denotesmeW 6•EW , see Eqs.~B5! and
~B7!, and both spin subsystems are coupled via spin-flip relaxa
rates of electronsgspin-f l ip

(e) and of holesgspin-f l ip
(h) . The transforma-

tion elementsu andv are defined in the text.
9-3
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band-mixing effects described by the Luttinger Hamiltonia
Additionally, the coupling between both spin subsystems
to spin-flip relaxation interactions has been indicated
horizontal lines. In this paper we incorporate phenome
logically the spin-flip relaxation processes to the semic
ductor Bloch equations within the relaxation rate approxim
tion.

The optical response of quantum well is determined
the time evolution equations for in-plane momentum
solved distribution functions describing electrons~super-
script e! in the conduction~subscripts61/2) and holes~su-
perscript h) in the heavy-hole~subscripts 63/2 and a
‘‘tilde’’ over f ) bands, which are given by~see Appendix B
for details of the derivation!

d

dt
f 61/2 ,61/2

e 52gR
e f 61/2 ,61/2

e 2gS
e~ f 61/2 ,61/2

e 2 f 71/271/2
e !

2gF
e~ f 61/2 ,61/2

e 2n61/2
e !1S d

dt
f 61/2 ,61/2

e D
p

1S d

dt
f 61/2 ,61/2

e D
s

~3!

d

dt
f̃ 63/2 ,63/2

h 52gR
h f̃ 63/2 ,63/2

h 2gS
h~ f̃ 63/2 ,63/2

h 2 f̃ 73/273/2
h !

2gF
h~ f̃ 63/2 ,63/2

h 2n 63/2
h !1S d

dt
f̃ 63/2 ,63/2

h D
p

1S d

dt
f̃ 63/2 ,63/2

h D
s

. ~4!

The meaning of the various terms in Eqs.~3!–~4! is as fol-
lows: gR

a (a5e/h) is the recombination rate describin
nonradiative processes,gS

a is the spin-flip relaxation rate
gF

a5\/T2 is the carrier-carrier scattering rate and descri
relaxation of actual carrier distributions towards correspo
ing Fermi distributionsn6 i /2

a , which are normalized such tha

(
kW

f̃ 6 i /2 ,6 i /2
a ~kW !5(

kW
n6 i /2

a ~kW !. ~5!

The pumping term, which takes into account heating of c
riers due to Pauli blocking, is given by@38#

S d

dt
f̃ 6 i /2 ,61/2

a D
p

5
j h 6 i /2

a

e

Fa~12 f 6 i /2 ,6 i /2
a !

1/L2(
k

F (a)

, ~6!

where j is a pumping current,h 61/2
a is the pumping effi-

ciency, normalized such that the amount of electrons
holes entering the active region per unit time is the same,Fa

is a Fermi distribution representing the pumped carrie
Throughout this paper we used distributionsFa correspond-
ing to the pumping carrier density 131013/cm2 ~a detailed
discussion of how the pumping density influences las
characteristics can be found in Ref.@38#!. Each term in Eqs.
05380
.
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~3!–~4! is kW resolved, but this index has been suppressed
simplicity. More details on how one can introduce pheno
enologically these terms to the original set of Eqs.~B2! for
the case of a two-band single-mode laser model can
found, e.g., in Ref.@57#.

The stimulated emission term is given by

S d

dt
f̃ 63/2 ,63/2

h ~kW ! D
s

5
umu2GR

2\
ImS @11G 61/2* ~F61/2;2kW !#

3
F61/2~2kW !

12G61/2~F61/2;2kW !
@xQW

xx6~kW !uAxu2

2xQW
xy6~kW !Ax* Ay2xQW

yx6~kW !AxAy*

1xQW
yy6~kW !uAyu2# D , ~7!

and a similar relation forf 61/2 ,61/2
e , wherem is the magni-

tude of the macroscopic Cartesian dipole matrix element
GR is the modal field overlap factor. The free-carrier (F) and
the local field (G) correction factors are calculated within th
~0-1! Padéapproximation as

F61/2~kW !5
12 f 61/2 ,61/2

e ~kW !2 f̃ 63/2 ,63/2
h ~kW !

2
i\

T2
1«k

s1Ehh~kW !2S61/2~kW !2\v0

, ~8!

G1/2~F1/2;kW !5(
qW

V~qW !@u~kW !u~kW1qW !

1v* ~kW !v~kW1qW !#F1/2~kW1qW !, ~9!

G21/2~F21/2;kW !5(
qW

V~qW !@u~kW !u~kW1qW !

1v~kW !v* ~kW1qW !#F21/2~kW1qW !,

where the electron energies are parabolic,«k
s5\2k2/2me

1Eg8 , with Eg8 being the effective band gap, and the ban

gap renormalizationS61/2(kW ) is given by

S61/2~kW !5(
qW

V~qW !@ f 61/2 ,61/2
e ~kW1qW !1 f̃ 63/2 ,63/2

h ~2kW1qW !

3uu~kW !u~2kW1qW !1v~kW !v* ~2kW1qW !u2#. ~10!

The Coulomb potentialV(qW ) is taken to be the statically
screened Coulomb potential in two dimensions@57#. The
susceptibility tensor elementsxQW

6 (v0) describing the non-
linear response of the strained quantum well are
9-4
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x̂QW5
umu2

2 (
kW

F x̂QW
1 ~kW !

F1/2~kW !

12G1/2~F1/2;kW !

1x̂QW
2 ~kW !

F21/2~kW !

12G21/2~F21/2;kW !
G , ~11!

where

xQW
xx1~kW !5Uu~kW !2

v~kW !

A3
U2

5xQW
xx2~kW !, ~12!

xQW
xy1~kW !5 i Fu~kW !2

v~kW !

A3
GFu~kW !1

v* ~kW !

A3
G5xQW

yx2~kW !,

xQW
yx1~kW !52 i Fu~kW !1

v~kW !

A3
GFu~kW !2

v* ~kW !

A3
G5xQW

xy2~kW !,

xQW
yy1~kW !5Uu~kW !1

v~kW !

A3
U2

5xQW
yy2~kW !.

The details of the band structure of the quantum well
taken into account via the momentum- (kW ) dependent coef-
ficients

u~kW !5
Hlh~kW !2Ehh~kW !

A@Hlh~kW !2Ehh~kW !#21uc~kW !u2
,

~13!

v~kW !5
2c~kW !

A@Hlh~kW !2Ehh~kW !#21uc~kW !u2
,

where the heavy-@Ehh(kW )# and the light-hole@Elh(kW )#
eigenenergies are given by

Ehh~kW !5
1

2
$Hhh~kW !1Hlh~kW !

2A@Hhh~kW !2Hlh~kW !#214uc~kW !u2%, ~14!

Elh~kW !5
1

2
$Hhh~kW !1Hlh~kW !

1A@Hhh~kW !2Hlh~kW !#214uc~kW !u2%.

Finally, the heavy-hole@Hhh(kW )#, light-hole @Hlh(kW )#, and
coupling @c(kW )# matrix elements, which enter the Luttinge
Hamiltonian, are given by

Hhh~kW !5~\2/2m0!~g11g2!~kx
21ky

2!2~1/2!DEs8~122gs!,
~15!

Hlh~kW !5~\2/2m0!~g12g2!~kx
21ky

2!1Dhh2 lh

1~1/2!DEs8~122gs!,
05380
e

c~kW !52~\2/2m0!A3@g2~kx
22ky

2!22ig3kxky#

1~A3/2!DEs .

The Luttinger parameters areg1 , g2 , g3, and the strain con-
tributions DEs85bs(exx1eyy), DEs5bs(exx2eyy), with gs

5S12/(S111S12), contain the elastic compliancesS11 and
S12, the shear deformation potentialbs , and the strain tenso
elementsexx and eyy . The hydrostatic stress componen
which renormalizes the band-gap energy by the amount

dEhydr5bhydr~exx1eyy1ezz!, ezz5gs~exx1eyy!,
~16!

as well as the quantum confinement energy, has been put
the definition ofEg8 and, therefore, does not occur explicitl
The hh-lh splitting is denoted byDhh2 lh . The numerical
values for the material parameters areme50.067m0 , g1
56.85, g252.1, g352.9, Dhh2 lh530 meV, bs521.7
eV, bhydr528.23 eV, S1151.1731023 kbar21, S12
520.3731023 kbar21, eyy50. Throughout this pape
we use the strain tensor elementexx as a parameter that de
termines the gain and refractive index anisotropy of quant
well.

III. EFFECTS OF UNIAXIAL STRAIN ON INDEX AND
GAIN ANISOTROPY

In recent years strain effects in semiconductors have b
intensively explored in order to improve the quantum w
laser characteristics@61,62#. It is known that, for example,
biaxial compressive strain reduces the hole effective m
thus reducing the density of states and~for a certain range of
carrier densities! increasing the gain. However, as a functio
of carrier density, the gain of the strained quantum well sa
rates sooner and at lower values than for an unstrained
~see, e.g., Fig. 10.28b in Ref.@61#!.

As already mentioned in the Introduction, in this paper
are mainly interested in the effect of unintentional uniax
strain on VCSEL characteristics. To simplify the calcul
tions, we assume that the strain is uniform in the plane of
quantum well. In general, unintentional strain will be diffe
ent in different devices, with specific transverse and long
dinal spatial dependencies that are determined by the de
of the fabrication process. To model the principle effects
strain in a generic device-independent way, we use a v
simple spatial strain distribution model, namely, transvers
homogeneous strain located only in the active quantum w

We begin by showing in Fig. 2~a! the anisotropic trans-
form matrix elementsu and v ~left-hand side axis! that de-
termine the mixing between left and right polarized lig
components for optical transitions within each spin su
system, evaluated for a uniaxial compressive strain in thx
direction, exx520.05%. For comparison, the anisotrop
~isotropic! distribution functions for holes~electrons! ob-
tained for a total carrier densityN'1.3631012 cm22 is also
shown. Note that lasing action usually takes place close
the bottom of the bands, where the anisotropy is largest.

In Fig. 2~b! we show the polarization-resolved anisotrop
9-5
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steady-state gain spectra for densityN51.331012 cm22

and strainexx520.05%. We solved Eqs.~A10!–~A11! in
order to obtain the values of the effective refractive ind
ne f f and dimensionless gainax/yLQW @see the discussion fol
lowing Eq. ~A11!# as a function of the susceptibility tenso
elementsxQW

x/y,x/y @see Eq.~11!#. One can clearly see the ga
difference~dichroism! for x- andy-polarized light around the
gain maximum. For comparison, we show also the gain
isotropy as calculated by using the free-carrier model, i.e.
neglecting the Coulomb enhancement effects,G61/250.
However, in order to allow for a fair comparison, we kept t
renormalized band gap, Eq.~10!, evaluated at the bottom o
the bands,S61/2(kW50), which introduces the frequency red
shift to the spectrum. The overall free-carrier spectrum
then redshifted in comparison to the many-body spectr
since S61/2(0)<S61/2(kW ),0. The Coulomb interaction
modifies the shape and value of the gain curve in a sim
way to what was reported for isotropic QWs@57#.

For an understanding of the polarization selection a
switching in VCSELs it is crucial to know the strain induce
dichroism and birefringence of the QW. Figure 3 sho
these quantities, evaluated at the laser frequencyv0, as a
function of uniaxial strainexx and carrier densityN. For
comparison, we show results calculated from both ma
body and free-carrier models. As already indicated by F

FIG. 2. ~a! Left-hand axis: anisotropic elements of the transf

mation matrixU(kW ), see Eq.~B9!, as a function of kinetic energie
of electrons and holes in the corresponding bands. Right-hand
Fermi-Dirac distribution functions for electrons and holes for a c
rier density ofN'1.331012 cm212. A compressive strain in thex
directionexx520.05% is assumed and results are shown for (kx,0)
~solid line! and (0,ky) ~dots!. ~b! Dimensionless gain calculated fo
a strained QW (exx520.05%) and carrier densityN51.3
31012 cm212 using the many-body~w. C.! and free-carrier~w/o
C.! models, respectively.
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2~b!, the compressive strain~negativeexx) leads to larger
gain for x-polarized light,uaxu.uayu @Fig. 3~a!#. For tensile
strain~positiveexx) the opposite behavior occurs. Of cours
the gain dichroism increases with increasing strain. Also
one increases the carrier density, the gain dichroism is fo
to increase as well. Note that for the configuration presen
here~fixed laser frequency!, the free-carrier model underes
timates the value of the gain difference.

The strain induced birefringence is shown in Fig. 3~b!.
Similar to the gain dichroism, the birefringence increas
with increasing strain. However, it decreases with increas
density. We also see that the free-carrier model undere
mates the value of the birefringence for densities aroundN
51.331012 cm22 and overestimates it for larger densitie
~see, for instance, the result forN51.631012 cm22). The
ratio of birefringence to dichroism, one of the paramet
that determines the stability properties of VCSEL eige

-

is:
-

FIG. 3. ~a! Gain dichroism,~b! birefringence, and~c! relative
ratio between dichroism and birefringence for a strained quan
well for various carrier densities as a function of uniaxial stra
calculated for the model with Coulomb interactions~lines!. Circles,
squares, triangles, and crosses correspond to results obtained
the free-carrier model for densitiesN51.3, 1.4, 1.5, and 1.6
31012 cm22, respectively. The results are shown for the functio
evaluated at the lasing frequencyv0.
9-6
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modes, is shown in Fig. 3~c!. For the laser parameters co
sidered in this paper (N'1.3631012 cm22) the following
approximate numerical relation holds: Re@xQW

xx 2xQW
yy #

'22.5 Im@xQW
xx 2xQW

yy #. However, this can change withi
an order of magnitude, depending on cavity quality, tuni
and/or temperature~not considered in this paper!. Note also
that the free-carrier model usually overestimates the ma
tude of the relative ratio between anisotropies.

IV. STEADY-STATE INPUT-OUTPUT CHARACTERISTICS
OF VCSELS

Within the rate-equation approximation, the polarizati
eigenmodes and polarization dynamics of light in VCSE
has been studied in detail in Refs.@24,25,27,28# for cavities
with phenomenologically introduced birefringence and
chroism. It has been found that for the two-mode laser mo
~modes with the same Gaussian-like transverse pattern! the
system has four possible eigenstates: two linearly polar
and two circularly~elliptically! polarized states for isotropi
~anisotropic! cavities @25,27,28#. The stability of these
modes depends on the laser parameter values. In gene
the principal axes of birefringence and dichroism are align
there exists such a parameter range where the linearly p
ized modes can be stable. However, if the birefringence
dichroism are misaligned, only the elliptically polarize
states were found to be stable@63,64#.

In order to find the polarization eigenmodes described
the set of equations~1!–~2! and~3!–~4!, we look for steady-
state solutions in the form

Ax~ t !5Ax
0eidt, Ay~ t !5Ay

0ei (dt1w), ~17!

where Ax
0 and Ay

0 are real amplitudes,d describes smal
modifications of the mode eigenfrequency due to the m
pulling effect, andw is the phase difference between t
electric field vectors in two orthogonal polarizations. Usi
phenomenological models it was found that, for instance,
linear polarization only one of these amplitudes can be n
zero, whereas for circular polarization~in the case of isotro-
pic cavities only! Ax

05Ay
0 and w56p/2, where the signs

correspond to polarizations with opposite handednesses
anisotropic cavities one finds the same type of solutions,
with elliptically polarized eigenmodes~characterized by el-
lipticity and azimuth angles! replacing circularly polarized
ones@25,27,28#.

In this paper we will focus only on properties of linear
polarized eigenmodes, as they play a dominant role in r
istic VCSEL structures. If the principal axes of birefringen
and gain dichroism are aligned~as it is the case in this pa
per!, the elliptically polarized modes are involved only tem
porarily in the switching process between a mode that lo
its stability to its orthogonally polarized mode@31#. The
steady-state solutions for linearly polarized modes can
obtained by substituting Eq.~17! into Eqs.~1!–~2!. Separat-
ing these equations into real and imaginary parts, one obt
the nonlinear condition for mode amplitudes and freque
shifts for x-polarized modes (Ay50)
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xB
HE1195Im@xQW

xx #, d5
2pv0

114pxB
Re@xQW

xx #, ~18!

and fory-polarized modes (Ax50)

xB
HE1195Im@xQW

yy #, d5
2pv0

114pxB
Re@xQW

yy #. ~19!

These equations need to be solved simultaneously with
nonlinear set of Eqs.~3!–~4! under steady-state condition

( ḟ 61/2 ,61/2
e 5 f8 63/2 ,63/2

h 50). Because we are interested
cavities with small unintentional strain induced anisotrop
in the thin QW region, the resulting overall change of t
cavity birefringence is small. Thus we use the isotropic co
cavity eigenfrequencyv0 and cavity lossxB

HE119 in our
steady-state calculations. In the numerical solutions d
cussed below we use the following values for decay tim
~unless otherwise noted!: T25100 fs, (gS

e)21510 ps
5(gS

h)21, (gR
e)2151 ns5(gR

h)21, and (gF
e)215100 fs

5(gF
h)21.

A. Influence of Coulomb effects on laser characteristics

Let us first consider the input-output~IO! characteristics
of the isotropic VCSEL (exx50). In Fig. 4 we demonstrate
how various terms entering Eqs.~3!–~4! contribute to the
steady-state IO characteristics. The solid line indicates
model with all terms present. The calculated threshold c
rent in this case isj thr'14.1 mA and the slope efficiency is
k'0.12 W/A. The threshold current for the considered d
vice is about two orders of magnitude smaller than that m
sured for a real device, because we~i! consider a high-
quality, small-area cavity,~ii ! neglect optical loss due to
free-carrier absorption in the mirrors, and~iii ! neglect current
leakage in the cavity layers. Phenomenologically, these
fects can be included in the pumping efficiency factorh ~in
this paperh51). On the other hand, the calculated slo
efficiency is about two times smaller than typical data p
sented in the literature@20#. This is because in practical de

FIG. 4. Input-output characteristics of an optically isotropic V
SEL: full model ~solid line!, ‘‘Fermi-pumping’’ model with Cou-
lomb enhancement effects~dashed line!, full model but without the
local field effects~dashed-dotted line!, free-carrier model~double-
dotted line!, and free-carrier model with ‘‘Fermi pumping’’~dotted
line!.
9-7



t
to

ng
ro
ns

x
-

as

fo
m

I

c

,
de

ie
d

re

n
nt
-

-

i
nt
-

ca
ra
i
n

at
.

d

auli

he
do

ur-

wo
ally
b

V A.
IO
n

ge
le
sity
in-

is

ties
ier
to
in

the
s of
ig.
at-

ed
al-
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vices one uses rear mirrors with twice as many layers as
front mirrors, which keeps the light from propagating in
the substrate.

We can study the role of Pauli blocking in the pumpi
process, by making an unphysical assumption that elect
and holes are pumped directly into Fermi-Dirac distributio
that is, we replace the pumping term~6! by

S d

dt
f 6 i /2 ,61/2

a D
p

5
j h 6 i /2

a

e

n 6 i /2
a

1/L2(
k

n 6 i /2
a

. ~20!

This leads to a reduction of the threshold current by appro
mately 7% (j thr'13.1 mA) and increase of the slope effi
ciency tok'0.131 W/A ~dashed curve in Fig. 4!. The re-
duction of the threshold current is intuitively obvious,
Pauli blocking leads to heating of carriers in the bands@38#,
which then have to equilibrate before they are available
the lasing process. The process of achieving the ther
equilibrium is described phenomenologically in Eqs.~3!–~4!
by the carrier-carrier scattering rategF

a . Since this is by far
the largest rate in the equations, the modifications of the
due to ‘‘non-Fermi-like’’ pumping are rather small.

The next effect that we consider in Fig. 4 is the influen
of the local field effects@the termG 61/2* (F61/2;2kW ) in the
stimulated emission term~7!#. By putting this term to zero
we obtain the same threshold current as for the full mo
~see Fig. 4, dashed-dotted line!, but the slope efficiency is the
same ~within the numerical accuracy! as for the ‘‘Fermi
pumping’’ model.

The next modification we consider is the free-carr
model ~i.e., we neglected all Coulomb effects except ban
gap renormalization, similarly as in Fig. 2!. The result is
shown in Fig. 4 as the double-dotted line. Because the f
carrier gain is smaller than the many-body gain~no Coulomb
enhancement!, one has to pump harder in order to compe
sate for the cavity loss, and therefore the threshold curre
increased toj thr'14.9 mA ~that is by about 5.7% in com
parison to the full model!. Also, the slope efficiency in-
creased tok'0.13 W/A because of lack of local field ef
fects.

The last model is the free-carrier model with ‘‘Ferm
pumping’’ ~Fig. 4, dots!, where, again, the threshold curre
decreases toj thr'13.8 mA and the slope efficiency in
creases to k'0.14 W/A. The free–carrier ‘‘Fermi-
pumping’’ model is the closest to the phenomenologi
SFM model@24# that assumes the instant thermal equilib
tion of carriers in the bands~by considering only the Ferm
distributions, which allows one to consider total carried de
sities instead of momentum-resolved carrier distributions!.

B. IO characteristics of an anisotropic VCSEL

In this section we focus on the influence of moder
compressive strain (exx520.01%) on the IO characteristics
In Fig. 5~a! we compare the results forx- and y-polarized
eigenmodes. The calculations were done using the full mo
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and the free-carrier model~with band-gap renormalization!,
both using the pumping term that takes into account the P
blocking.

As for the model with Coulomb interactions, despite t
applied strain, the IO characteristics for both polarizations
not show any visible differences. Sincex-polarized light ex-
periences more gain in this configuration, the threshold c
rent is about 0.2% smaller than for they polarization. The
slope efficiencies differ by about 0.05% between the t
polarizations, and so the solid and dashed curves practic
overlap in the plot. The results of neglecting the Coulom
effects essentially are the same as described in Sec. I
For the free-carrier model one cannot distinguish between
for both polarizations~dotted and dash-dotted lines are o
the top of each other!.

In Fig. 5~b! we show how the carrier densities chan
with the pumping current. Due to the effect of spectral ho
burning, one does not observe clamping of the carrier den
to the threshold value and so the density increases with
creasing current. Since the gain for thex-polarized mode is
larger than that fory polarization, a smaller carrier density
sufficient to generate the same amount ofx-polarized output
power. This yields the difference between operating densi
for both polarization eigenstates. As for the free-carr
model, one has to provide a larger amount of carriers
satisfy the gain-equal-loss condition, as it can be seen
Fig. 5~b!.

As mentioned above, in our model gain saturation and
resulting spectral hole burning are responsible for change
carrier densities as a function of pumping current. In F
6~a! we show the differential gain spectra for a laser oper

FIG. 5. ~a! Input-output characteristics and~b! carrier density vs
pumping current for an anisotropic VCSEL with uniaxially strain
QW, exx520.01%. Results are obtained from the many-body c
culation for x-polarized~solid line! and y-polarized~dashed line!
eigenmodes and from the free-carrier model forx-polarized
~dashed-dotted line! andy-polarized~dotted line! eigenmodes.
9-8
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MICROSCOPIC THEORY OF POLARIZATION . . . PHYSICAL REVIEW A61 053809
ing in the y-polarized mode. The curve labeled asj 2

52 j thr ( j 151.5j thr) shows the difference between th
spectrum calculated for a running laser pumped with the c
rent j 2 ( j 1) and the spectrum obtained for a threshold pum
ing current j thr. Since the carrier density is larger forj
. j thr @see Fig. 5~b!#, the overall difference between ga
spectra is positive. However, at the lasing frequency
gain-equal-loss condition must hold, so the gain values
this frequency are the same. This results in a hole seen in
differential gain spectra. It is interesting to note that ev
though they-polarized mode is lasing, the spectral hole is t
same for both, the active and the inactive mode. This is
cause of the isotropic nature of the large carrier-carrier s
tering rate assumed in our calculations. The last two cur
labeledx (Ay50)

j 2 2x (Ay)
j 2 , show the difference between spect

calculated for a QW for the carrier density obtained
pumping currentj 2 without light field (Ay50, that with car-
rier distributions taken to be Fermi distributions! and the
spectrum of a running laser (AyÞ0, that is with actual car-
rier distributions! pumped with the same currentj 2. As ex-
pected, the maximum difference occurs at the laser
quency ~in the running laser the electron-hole pairs a
depleted, whereas in a nonlasing case they are availabl
transitions! and decreases for frequencies above and be
v0.

FIG. 6. Spectral characteristics of a laser operating in
y-polarized eigenmode.~a! Gain differential spectra for variou

pumping currents~see text for more details!. S thr[S61/2(kW50)
'15.8 meV is the band-gap renormalization calculated fo
threshold carrier density ofN'1.3631012 cm22. The arrow la-
beledv0 indicates the position of the lasing mode.~b! Difference
between the actual carrier distribution functionsf and the corre-
sponding Fermi-Dirac distributionf Fermi for pumping currentj
52 j thr. The distributions are shown in (kx,0) direction and in
(0,ky) direction. Inset: Actual distribution functionsf.
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Another representation of the spectral hole can be see
Fig. 6~b!, where we show the difference between two dist
bution functions, namely momentum-resolved actual el
tron and hole distribution functionsf 6 i /2 ,61/2

a and the cor-
responding Fermi-Dirac distribution functionsn 6 i /2

a

~denoted asf Fermi). The result is calculated for a laser ope
ating in they-polarized eigenmode at a pumping currenj
52 j thr. The spectral hole has its maximum at the lasi
frequency,\v02Eg2S thr'6.5 meV, and is of the order o
0.1% of the value of the corresponding Fermi distributi
~see inset!. The spectral hole is slightly more pronounced
thekx direction for the electric field polarized in they direc-
tion because of the heavy-hole light-hole coupling in t
system. This can be seen by expanding the stimulated e
sion term~7! for the y-polarized mode (Ax50) within the
free carrier approximation for electron momenta close to
band edge. To second order in the wave vector, the dif
ence in the values of stimulated emission in the two ortho
nal directions in momentum space is given by

S d

dt
f̃ 63/2 ,63/2

h ~kW ! D
s
U

kW5(k,0)

2S d

dt
f̃ 63/2 ,63/2

h ~kW ! D
s
U

kW5(0,k)

;uAyu2F12
DEs

Dhl
G 2\g2k2

m0Dhl
. ~21!

The same expressions are found forf 61/2 ,61/2
e . The asym-

metry in the spectral hole resulting from the asymmetry
the stimulated emission term is therefore proportional to
light intensity and decreases with increasing hh-lh splittin
Note also that for small strain the termDEs /Dhl has only a
minute influence on the shape of the spectral hole~for ex-
ample, forexx520.01% one findsDEs /Dhl50.006). This
result is consistent with the absorption anisotropy discus
in @53–56#.

V. STABILITY OF VCSEL EIGENMODES

In order to perform the stability analysis of the linear
polarized eigenmodes discussed in Sec. IV, we introduc
small, time-dependent perturbation of the eigenmode am
tudes:

Ax~ t !5@Ax
01ax~ t !#eidt, Ay~ t !5@Ay

01ay~ t !#ei (dt1w).
~22!

Substituting Eq.~22! into Eqs. ~1!–~2! and expanding the
susceptibility tensor elementsx̂QW around the steady-stat
values, one obtains the time-evolution equations for the p
turbations,

i

ve

dax

dt
5F d

ve
1 ixB

HE1192x0
xx2Ax

0
]x0

xx

]Ax
1Ay

0
]x0

xy

]Ax
eiwGax

2FAx
0
]x0

xx

]Ax*
2Ay

0
]x0

xy

]Ax*
eiwGax* ~23!

e

a
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1Fx0
xy1Ay

0
]x0

xy

]Ay
eiw2Ax

0
]x0

xx

]Ay
Geiway

2FAx
0
]x0

xx

]Ay*
e2 iw2Ay

0
]x0

xy

]Ay*
Gay* ,

i

ve

day

dt
5Fx0

yx1Ax
0
]x0

yx

]Ax
2Ay

0
]x0

yy

]Ax
eiwGe2 iwax

1FAx
0
]x0

yx

]Ax*
e2 iw2Ay

0
]x0

yy

]Ax*
Gax* 1F d

ve
1 ixB

HE119

2x0
yy2Ay

0
]x0

yy

]Ay
eiw1Ax

0
]x0

yx

]Ay
Gay

1FAx
0
]x0

yx

]Ay*
e2 iw2Ay

0
]x0

yy

]Ay*
Ge2 iway* ,

and the corresponding equations forȧx* andȧy* . In Eqs.~23!
ve52pv0 /(114pxB) andx0

i j , $ i , j %5$x,y% denote the el-

ements of the susceptibility tensorx̂QW evaluated for the
eigenmode parameters (Ax

0 ,Ay
0 ,d,w). For simplicity, we do

not perturb the steady-state carrier distribution functions
other words, we consider only the class-A laser model@28#,
not the class-B model@24,25,27#. It has been discussed re
cently @31# that for small anisotropies~as in the case of un
intentional strain! and short spin-flip relaxation times~a few
picoseconds! the adiabatic elimination of carrier densitie
~i.e., the class-A model! is usually a good approximation fo
practical VCSELs.

The stability of polarization eigenmodes is determined
the eigenvaluesl of the matrix defined by the right-han
side ~rhs! of Eqs. ~23!. If at least one eigenvalue has a re
part larger than zero~for a given strain and pumping curren!
the mode is unstable. The parameter values for which
real part of the unstable eigenvalue vanishes determines
stability boundary of a given mode. We found~within a very
good numerical accuracy! that for linearly polarized modes
the set of Eqs.~23! separates into two subsets, correspond
to a perturbation in the direction of the eigenmode an
perturbation in the orthogonal direction. It has been show
Ref. @24# that the linearly polarized modes are stable w
respect to perturbation in the same direction, but may
unstable for perturbations in the direction of the orthogo
mode. Our numerical solutions confirm these findings. A
other interesting result obtained from the SFM model is t
if the linearly polarized nonlasing mode is unstable, then
real part of the eigenvalue contributes to a broadening o
peak in the spontaneous emission spectrum, whereas
imaginary part causes a nonlinear redshift of the spontane
emission peak@30,6,31#. The nonlinear redshift of the non
lasing mode was identified as a physical mechanism cau
polarization switching. For the configuration discussed
this paper the details of the polarization switching mec
nism will be presented in Sec. VI.
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In Fig. 7 we present the stability diagram obtained f
three different cases:~i! no birefringence, only gain anisot
ropy, ~ii ! no gain anisotropy, only birefringence,~iii ! full
calculation including both gain anisotropy and birefringen
The spin-flip time used in the calculations is (gS

e)21

510 ps5(gS
h)21. The case~i! where only the gain anisot

ropy but not the birefringence is included is shown in F
7~a!. We assume that the real parts of the susceptibility t
sor depend on the strainexx as the arithmetical mean of th
original values; that is, we replace the quantity Re@xQW

x/y,x/y#
by (1/2)Re@xQW

xx 1xQW
yy #. In this way the refractive indices

for both polarizations are the same. The imaginary pa
change independently, which allows for gain anisotropy.
this case the mode with larger~smaller! gain is always stable
~unstable!. In other words, for compressive~tensile! strain
theEx-polarized (Ey-polarized! mode experiences more ga
~see Fig. 3!. Therefore, for any pumping current above t
threshold value, this mode is going to lase.

In Fig. 7~b! we study the case where only the birefri
gence is present. We proceed in a similar fashion as ab
but, this time, we replace the imaginary parts Im@xQW

x/y,x/y# by
the arithmetical mean (1/2)Im@xQW

xx 1xQW
yy #. This causes the

FIG. 7. Stability diagram for a microscopic class-A VCSE
model with ~a! dichroism anisotropy,~b! birefringence anisotropy,
and ~c! the full uniaxial strain-induced anisotropy, obtained f
(gs

e/h)21510 ps. The arrows indicate the regime where a giv
mode is unstable. Solid~dashed! curves correspond tox-polarized
(y-polarized! eigenmodes. Dotted~double-dotted! curves indicate
the strain-dependent threshold current forx-polarized (y-polarized!
eigenmodes.
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MICROSCOPIC THEORY OF POLARIZATION . . . PHYSICAL REVIEW A61 053809
gain to be polarization independent. This time, however,
real parts Re@xQW

x/y,x/y# change independently with strain, a
lowing for birefringence. In this case, for compressive~ten-
sile! strainEy (Ex) is stable for any strain and any pumpin
current. However, for the orthogonal polarization the sta
ity depends on the value of the pumping current and
strain. The arrows indicate the range of currents for whic
given polarization is unstable. For instance, we see from
7~b! that, for any value of the compressive strain the la
may start lasing in any polarization and the bistable swit
ing between two polarization states is possible. However,
pumping currents above the solid line,Ex becomes unstable
and the VCSEL would lase only iny polarization. This type
of behavior has been predicted within the phenomenolog
SFM description for class-A models in Ref.@27#.

Next, we study in Fig. 7~c! the stability of a VCSEL with
birefringence and dichroism anisotropy resulting from t
uniaxial strain@case~iii !#. Here, the stability diagram is es
sentially a superposition of results displayed in Figs. 7~a!–
7~b!. For example, for any value of unintentional compre
sive strain the gain anisotropy determines mode stab
close to threshold. Close to threshold thex-polarized mode is
gain preferred and stable. Thus the laser starts in this po
ization. However, as one increases the pumping current,
y-polarized mode becomes stable, which indicates that
birefringence anisotropy becomes dominant. Here, polar
tion switching may occur. If the pumping current is furth
increased, thex-polarized modes become unstable and
laser switches to they-polarized mode, in agreement to wh
was observed in experiments@2–6#. Note that for tensile
strain in thex direction,exx.0, one observes the same b
havior but withx andy directions interchanged.

In order to study the influence of the spin-flip relaxati
rategS

e/h on the stability boundaries, we show in Fig. 8~a! the
results obtained for (gS

e/h)2153 ps, a value that was sug
gested by recent experiments@43#. One sees that the overa
picture presented in Fig. 7~c! does not change. Howeve
shorter spin-flip relaxation times stabilize linear polariz
tions, as already predicted by the SFM model@24#. Thus the
polarization switching occurs at higher values of the pum
ing current. For instance, for a small compressive strain
exx'20.001% ~which might be a reasonable value for u
intentional strain! our model predicts switching fromx-
~gain-preferred! to y-polarized~birefringence-preferred! state
at j '1.5j thr, a value that is typical for experimental obse
vations @3–5#. For comparison, we show in Fig. 8~b! the
stability diagram as obtained from the free-carrier model.
one sees, the qualitative results do not change, but fo
given strain the stability boundaries are shifted towa
higher pumping currents. This observation might be of pr
tical relevance, especially since it has been demonstr
that, using combined experimental measurements and t
retical fitting, one can obtain realistic estimations of spin-fl
relaxation rates in practical VCSEL devices@43#.

To conclude this section we note that we neglected in
considerations the influence of quantum fluctuations on
polarization dynamics and mode stability. Such studies h
been performed recently for a modified SFM model in Re
@29# and @65# ~and references therein!. The approach pre
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sented there allows one to obtain information about the c
ity anisotropies based on the information provided by
details of the measured optical spectra. Physically, the po
ization fluctuations are driven by the spontaneous emiss
noise. Mathematically, the spontaneous emission can be
corporated into the analysis by adding Langevin no
sources to the right-hand side of the equations for the per
bation amplitudes~23!. The solution of this type of equation
leads to optical spectra of VCSELs and has been previo
obtained for the SFM model by spectral decomposition~as in
Ref. @65#! and via Green functions~see Ref. @29#! ap-
proaches. Note that in the latter approach one explicitly u
the eigenvaluesl, which determine the stability diagram o
anisotropic VCSELs. The addition of spontaneous emiss
does not modify the polarization stability of eigenmodes
allows, however, for a quantitative estimation of how sta
the lasing mode is and how much the polarization fluctua
around its steady-state value. However, these problems
beyond the scope of the research presented in this pape
therefore we restrict ourselves only to the discussion of
larization stability diagrams and neglect the details of
polarization fluctuations~i.e., spontaneous emission noise!.

VI. PHYSICAL INTERPRETATION OF POLARIZATION
SWITCHING

In this section we discuss the possible mechanism lead
to destabilization of the output polarization. As an examp
we consider the structure with compressive uniaxial str
exx520.0015%, and (gS

e/h)2153 ps. We study the condi
tions under which the gain-preferredx polarization becomes
unstable and the laser switches to the birefringence prefe
~stable! y polarization as the pumping current increases.

FIG. 8. Same as in Fig. 7~c!, but for (gs
e/h)2153 ps. The re-

sults were obtained using the~a! many-body and~b! free-carrier
models.
9-11
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The physical explanation, within the SFM model, in term
of pumping-current-induced nonlinear anisotropy and the
sulting frequency shift was given in Refs.@31,6#. It has been
shown that in the case of dominant birefringence~two orders
of magnitude larger than the gain anisotropy! and large line-
width enhancement factor, the switching from the lo
frequency to the high-frequency mode@see Fig. 2~b! in Ref.
@31## occurs as the result of decreasing frequency splitt
between lasing and nonlasing mode. For example, for
lasingx-polarized~low-frequency! mode the modal frequen
cies are given by

vx52v01dx , vy52v01ve Re@xQW
yy #1Im@l#,

~24!

wheredx is given byd in Eq. ~18! and Im@l# represents the
nonlinear anisotropy contribution. Similarly, for the lasin
y-polarized~high-frequency! mode we have

vy52v01dy , vx52v01ve Re@xQW
xx #1Im@l#,

~25!

wheredy is given by Eq.~19!. For the case considered he
~switching fromx polarization toy polarization! the change
of the frequency splitting was caused by the nonlin
anisotropies, which are mathematically represented by
imaginary part of the complex eigenvaluesl in Eq. ~24!.
However, the switching scenario reported in Ref.@31# does
not apply to the case discussed in this paper. To demons
this, we show in Fig. 9~a! how the complex eigenvalue
change with increasing current. Strictly speaking, for ea
polarization, there are two complex conjugate eigenval
~for low current!, which become real for the currents ind
cated by kinks on the Re@l# curves. For each polarizatio
only one eigenvalue is shown in Fig. 9~a!. At the switching
point ~the real part of the eigenvaluel, shown as a solid line
becomes positive, see the point indicated by an arrow! the
imaginary parts of eigenvalue~dotted line! is zero. That con-
tradicts the mechanism causing destabilization ofx polariza-
tion reported in Ref.@31#. The discrepancy is due to the fa
that in our case the birefringence and the gain anisotropy
of the same order of magnitude whereas in Ref.@31# they
differ by two orders of magnitude. Indeed, we perform
numerical simulations of Eq.~16! in Ref. @31#, but for the set
of parameters corresponding to this paper, and we fo
similar behavior to that shown in Fig. 9~a!.
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In order to find a possible mechanism responsible for
destabilization of the gain-preferredx-polarized mode for the
strain induced anisotropy considered in this paper, we ex
ine the linear stability equations for perturbation amplitud
~23! in the vicinity of l50. As mentioned before, within a
good numerical accuracy this set of equations splits into
separate subsets of equations, one for (ax ,ax* ) and another
one for (ay ,ay* ). For thex-polarized lasing mode, we con
sider the equations for perturbation amplitudes in the
thogonal direction of polarization~that is, foray anday* ), as
the eigenvalue for these amplitudes acquires a positive
part and destabilizes the lasing mode.

An approximate expression for the eigenvaluel in the
vicinity of the switching point,ulu!1, is given by

FIG. 9. ~a! Complex eigenvalues of the stability analysis forx-
andy-polarized lasing modes as a function of the pumping curre
Only one dominant eigenvalue is shown for each polarization.~b!
Cavity loss and modal gain for the lasingx-polarized mode~solid
line!, modal gain for the nonlasingy-polarized mode~dashed line!,
and the differential off-diagonal gain~dots! for the elliptical mode
in the vicinity of the switching point as a function of pumpin
current. The arrow indicates the pumping current for which
polarization switching occurs.
l'
u~dx /ve!1 ix

B

HE119 2x0
yy1Ax

0~]x0
yx/]Ay!u22uAx

0~]x0
yx/]Ay* !u2

x
B

HE119 2Im@x0
yy2Ax

0~]x0
yx/]Ay!#

, ~26!

and the right eigenvector associated with this eigenvalue is

S a1y
(r )

a1y
( i ) D 5S ~dx /ve!2Re@x0

yy2Ax
0~]x0

yx/]Ay!1Ax
0~]x0

yx/]Ay* !#

~l/ve!2x
B

HE119 1Im@x0
yy2Ax

0~]x0
yx/]Ay!2Ax

0~]x0
yx/]Ay* !#

D , ~27!
9-12
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where a1y
(r ) and a1y

( i ) denote the real and imaginary comp
nents of the eigenvector, respectively. In deriving Eqs.~26!–
~27! we used the fact that Eq.~23! does not depend on th
phasew ~for the equations considered here!, therefore we put
w50.

In the complex plane, the direction of the eigenvector~27!
defines the direction in which the perturbation destabiliz
the lasing mode is going to grow. From the numerical cal
lations we found that at the switching point the phase of
eigenvector~27! is

wl5Arg@ay#'20.1p, ~28!

and changes from about20.09p to 20.11p for the range of
pumping currents shown in Fig. 9~b!. The time-evolution
equation~23! for the magnitude of the perturbation amp
tudeay ~27! can be written in the form

duayu
dt

5~x
B

HE119 2xDG!uayu,

~29!

xDG5ImFx0
yy2Ax

0
]x0

yx

]Ay
G2Ax

0U]x0
yx

]Ay*
Ucos~wl2wx!,

wherewx51/2 Arg@(]x0
yx/]Ay* )# and the phasewl is given

by the phase of the eigenvector~27!.
The steady-state condition for Eq.~29!, xB

HE1195xDG, re-
sembles the steady-state gain-equal-loss condition for
early polarized modes. However, in the present casexDG

corresponds rather to differential off-diagonal gain~super-
script ‘‘DG’’ ! of the medium driven by the small perturb
tions in the direction given by the eigenvector~27!. Note,
that xDG contains contributions from both diagonal and o
diagonal elements of the susceptibility tensorx̂QW . A super-
position of the lasing mode amplitude with the phase-shif
small perturbation leads to a very elongated elliptically p
larized state. If the differential off-diagonal gain seen by t
perturbation is smaller~larger! than the cavity loss, the lase
stays in~switches from! the original linear polarization stat
~to the orthogonal state!. In other words, the transition from
one polarization to another is accompanied by the creatio
the elliptically polarized state, and the lasing mode becom
unstable if the gain seen by the perturbation amplitude
larger than the cavity loss, so such a state can be suppo
by the cavity as a lasing mode. To support this conjectu
we show in Fig. 9~b! the differential off-diagonal gain
Im@xDG# ~dotted line! as a function of a pumping curren
One sees that Im@xDG# crosses the value of the cavity los
~shown as a solid line! at the switching current, and becom

larger thanx
B

HE119 for larger currents. For comparison, th
gain corresponding to the nonlasingy polarization is shown
as a dashed line. Note also that the presented mechanis
consistent with the explanation of the role played by ellip
cal polarization in the polarization switching process d
scribed in Sec. III C of Ref.@31#.
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VII. SUMMARY

In summary, we have derived a microscopic model
VCSELs that is based on a rigorous solution of Maxwel
equations coupled to generalized semiconductor Bloch eq
tions. This allows for a realistic modeling of optically anis
tropic lasers. The optical part of the model includes a
tailed characterization of VCSEL structures~thicknesses,
radial sizes, and refractive indices of cavity layers! and is
based on a self-consistent solution of the cold-cavity 3D v
torial eigenmodes. The vectorial eigenmodes are t
coupled to the electronic part of the model, which is bas
on a microscopic theory for the optical response of semic
ductor quantum wells describing potentially anisotropic v
lence bands, and the dynamics of charge carriers and o
interband polarizations including Coulomb interaction. T
theory is evaluated in a simplified version containing a
proximations such as the adiabatic elimination of polari
tions and the relaxation-rate approximation. We discusse
detail the steady-state vector-polarization eigenmodes
VCSELs and their linear stability properties within the tw
mode, four-band, class-A model approximations. We inv
tigated the role of Coulomb terms in the steady-state
characteristics.

Our investigation of the influence of anisotropic strain
the optically active quantum well is based on the hypothe
that this is the dominant source of experimentally obser
VCSEL characteristics. However, this theory can also be
plied to recently designed uniaxially strained VCSELs@15#.
For small uniaxial strain~less than 0.01%) the input-outpu
characteristics of linearly polarized eigenmodes are not
nificantly modified. However, the stability properties of the
modes depend strongly on the sign and the value of the
isotropy. We found that the relative ratio of birefringence
anisotropy depends on the carrier density, and therefore
factors like cavity quality and tuning. The stability analys
predicts that, if a small anisotropic strain is present, the la
will start operating in the polarization, which is gain pr
ferred. However, if one increases the pumping current,
orthogonal polarization becomes stable. As a result of in
nal fluctuations, polarization switching and/or se
oscillations may occur. For even higher pumping curren
the initial polarization becomes unstable and laser switc
to the birefringence-preferred eigenstate. It should be poin
out that the scenario presented here has also been pred
by the phenomenological SFM model for various configu
tions of model parameters@24,25,27,31#. The advantage of
the model presented here is that it provides a first-princip
calculation of intentional@15# or unintentional anisotropies
that can occur in practical devices. Further development
our theory are possible by considering the details of an
tropic carrier-carrier and carrier-phonon scattering, as wel
taking into account temperature effects and higher-or
transverse mode competition effects through spatial-spe
hole burning.
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APPENDIX A: THE OPTICAL MODEL OF VCSELS

In this Appendix we derive directly from Maxwell’s equa
tions the rate equation for the slowly varying amplitudes
vectorial eigenmodes of index-guided VCSELs@47,48#. The
Maxwell’s equations~in Gaussian units! inside the quantum-
well layer can be written in the form

¹W 3¹W 3EW 52
1

c2

]2DW

]2t
, ~A1!

whereEW denotes the vector of an electric field,c is the speed
of light in vacuum, and the relationship between the d
placementDW and electric fieldEW vectors is given by

DW 5EW 14pPW B14pPW QW , ~A2!

with PW B andPW QW being the background and active quantu
well polarization vectors, respectively. The material pol
ization vectorsPW B and PW QW are related to the electric fiel
via the material susceptibility tensorsx̂B and x̂QW , respec-
tively.

PW QW
(2)~ t !5E

2`

t

x̂QW~ t2t!•EW (2)~t!dt , ~A3!

where the superscript ‘‘2’’ indicates the negative-frequenc
contribution. We will assume that the time response of ba
ground susceptibility tensorx̂B is infinitely fast and any
memory effects can be neglected, thereforePW B

(2)(t)5x̂B

•EW (2)(t).

1. Cold-cavity vectorial eigenmodes

In this section we extend the theory of cold-cavity vec
rial eigenmodes of VCSELs@47,48# to make it applicable for
the analysis of running lasers. We choose the dominant t
dependence to bee2 ivt, so the forward/backward (7 sign in
front of the longitudinal propagation constant! propagating
fields in Ref.@47# correspond to backward/forward (7 sign
at the longitudinal propagation constant! propagating fields
in this paper. In the calculation of cold-cavity vectori
eigenmodes one neglects the influence of the QW, tha
PW QW50. For isotropic cavities the susceptibility tensorx̂B
can be characterized by one scalar number, which in gen
can be complex. One can factor the electric field vector i
time and space depending parts, that is

EW m~rW,t !5
1

2
EW m

(s)~rW !e2 ivmt1c.c., ~A4!
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wherem5(n,l ) is a mode index of the cold-cavity hybri
mode determined by azimuthaln and radiall mode orders
~see Ref.@47#!, vm is the mode frequency, and c.c. indicat
complex conjugate. Thus, the Maxwell equations for t
eigenmodem can be written as

¹W 3¹W 3EW m
(s)~rW !2

vm
2

c2
~114pxB

m!EW m
(s)~rW !50. ~A5!

Note that the solution of Eq.~A5! describes the 3D electric
field with ~in general! three nonvanishing vector componen
at the location of the quantum well. In order to calculate t
electric field outside the QW region one can use the vecto
transform matrix method described in Ref.@47#. Within that
formulation the amplitudes of the forward (AW 0

2) and back-

ward (AW 0
1) propagating fields at the front plane are related

the amplitudes of forward (AW N11
2 ) and backward (AW N11

1 )
propagating fields at the rear plane via the vectorial tra
form matrix

S AW N11
2

AW N11
1 D 5S M 22 M 21

M 12 M 11D S AW 0
2

AW 0
1D , ~A6!

where the elements of matricesM 66 are described in detai
in Ref. @47#, N is the number of interfaces in the structure
the longitudinal direction, andAW l

6 is a vector with elements
being the amplitudes of modes that are used for field dec
position. The lasing condition is that only the outgoing a
plitudes from the VCSEL are nonzero, which transforms E
~A6! to the form

M 22AW 0
250, AW N11

1 5M 12AW 0
2 . ~A7!

By evaluating the total vectorial matrixM at appropriate
planes, one can express the amplitudesAW N11

1 and AW 0
2 in

terms of amplitudes in the active layer~denoted by layer
numberl A). Denoting the elements of the vectorial transfor
matrix between the front plane and the active layer byMl A

66 ,

one finds from the first condition of Eq.~A7!

AW l A
25Ml A

22AW 0
2 , AW l A

15Ml A
12~Ml A

22!21AW l A
2 . ~A8!

There is only one independent, undetermined componen
the vectorAW , or, in other words, mode amplitude, whic
characterizes a given cold-cavity eigenmode. In this pa
we identify the forward propagating amplitude coefficient
the active layer to be the~undetermined, as for now! mode
amplitude. All other amplitudes can then be found from E
~A8! and from transform matrices for other layers.

The hybrid modes of semiconductor layers in VCSE
that are characterized by different azimuthal mode numb
are orthogonal to each other@66#. Thus the spatial profile of
the electric field of any VCSEL eigenmodeEW nl

(s)(rW) in any
layer ~and, in particular, in the active one! is given as a
superposition over only the radial mode numbers. The spa
9-14
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profiles used for a superposition are given by the transv
profiles of optical fibers hybrid~bound and radiation! modes
EW nk

F6 @47#

EW nl
(s)~rW !5(

k
~EW nk

F11EW nk
F2!

5Anl
2(

k
~ank

1 eignkz2ank
2 e2 ignkz!eWnk

F ~rW !, ~A9!

wheregnk is the longitudinal propagation constant of a giv
fiber mode,anl

251 and the remaining amplitude coefficien
are determined by Eq.~A8!. The spatial dependence o
eWnk

F (rW) is specified explicitly in Tables I and II of Ref.@47#.
For index-guided VCSELs the transverse profile of eig
mode (n,l ) resembles very well the corresponding profile
the (n,l ) hybrid mode of optical fiber. This means that o
can identify the radial mode orderl by determining the larg-
est amplitude coefficient, that isuank

2 u!uanl
2u for k

51,2, . . . ,kÞ l . For air-post index-guided cavities consi
ered in this paper one can~within very good accuracy! limit
the expansion to only a small numberNmax of bound modes
~as a matter of fact, for cavities considered here the domin
amplitude coefficient is four orders of magnitude larger th
the remaining ones; therefore we useNmax510 bound
modes!.

Each VCSEL eigenmodem5(n,l ) is characterized by
two parameters: the eigenfrequencyvm and the imaginary

part of the complex susceptibility,xB
m5xB

m81 ixB
m9 , describ-

ing the modal cavity loss. These parameters have to be fo
from the condition of nonzero amplitude solutions in E
~A7!, det@M 22(kA

m)#50, with kA
m being the complex wave

number of the eigenmodem in the active layer. They are
related to the set of transverse (bnk) and longitudinal (gnk)
propagation constants via the relation

kA
nl5A~bnk!21~gnk!2, ~A10!

for eachk51,2, . . . ,Nmax in the eigenmode expansion, an
to the complex background susceptibilityxB

m via

~kA
m!25114pxB

m , ~A11!

where kA
m5(2p/lR

m)nA1 ikA
m9 , gnk5(2p/lR

m)ne f f1 ignk9,

with gnk9 and kA
m9 denoting the imaginary part ofgnk and

kA
m , respectively,lR

m5vm /c being the resonant waveleng
of modem, andne f f being the effective refractive index wit
respect to the longitudinal propagation direction. Similarly
in Ref. @48#, we consider only high-quality cavities, and s
the modes of lossless optical fibers are used as a basis
derlying our numerical solutions. This leads to the real v
ues of transverse propagation constantsbnk. Numerical so-
lution of the condition det@M 22(kA

m)#50 leads to the values

of lR
m and kA

m9 , which, together with Eqs.~A10! and ~A11!

are used to calculatevm , xB
m9 andgm, the parameters that ar

used in the mode expansion procedure. Another impor
parameter is the effective dimensionless cavity lo
05380
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gnl9Lcav , whereLcav is the cavity length. In the single las
ing mode case, the steady state can be achieved when
modal lossgnl9Lcav is compensated by a modal gainamLQW

from a quantum well, i.e., whengnl9Lcav5amLQW .

2. Field amplitudes in running VCSELs

In order to analyze the field evolution in the running las
let us consider first the time evolution of the microscop
quantum well polarization vectorPW QW . Transforming Eq.
~A3! into the frequency space, one obtains

PW QW
(2)~rW,v!5x̂QW~v!•EW (2)~rW,v!

'F x̂QW~v0!1~v2v0!
]x̂QW

]v
U

v5v0

1•••G •EW (2)~rW,v!, ~A12!

where the Taylor expansion of the frequency dependent
ceptibility tensorx̂QW(v) has been performed around a re
erence frequencyv0 that will be specified later. Neglecting
all the terms involving derivatives with respect to frequen
and Fourier transforming back into time one obtains

PW QW
(2)~rW,t !5x̂QW~v0!•EW (2)~rW,t !. ~A13!

This approximation is valid if one considers the properties
steady-state laser eigenmodes, where the dominant time
pendence is determined by the laser frequencyv0.

Next, we perform the decomposition of the electric fie
into the cold-cavity eigenmodes with slowly varying amp
tudes

EW ~rW,t !5
1

2
e2 iv0t(

m
EW m

(s)~rW,t !e2 i (vm2v0)t1c.c.,

~A14!

where the superscript~s! has a similar meaning as in Eq
~A4!; however, we now allow for a slow time dependence
the fields. According to Eq.~A13!, one can write the QW
polarization in a similar way:

PW QW~rW,t !5
1

2
PW QW

(s) ~rW,t !e2 iv0t1c.c. ~A15!

Substituting Eqs.~A15! and~A14! into Maxwell’s equations
~A1!, neglecting first and second time derivatives of the p
larization and second time derivatives of the electric fie
~slowly varying amplitude approximation!, neglecting terms
with fast harmonic time variation~rotating wave approxima-
tion!, using the cavity eigenmode equation~A5! and neglect-
ing the dispersion of the background susceptibility, one
tains the time evolution equation for the electric field vec
in the quantum well layer
9-15
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(
m

e2 i (vm2v0)tF22pvm
2 xB

m9EW m
(s)~rW,t !

1vm~114pxB!
]

]t
EW m

(s)~rW,t !G
52ipv0

2PW QW
(s) ~rW,t !. ~A16!

In order to find the time evolution equation for each mo
separately, one should consider a total field that is a su
position of forward and backward running fields. Howev
since these two fields are orthogonal to each other and s
they are related via Eq.~A8!, it is sufficient to consider only
backward propagating modes in the expansion~A9!

EW nl
(s)~rW !5Anl

2~ t ! (
k51

Nmax

ank
2 eWnk

F ~rW !eignkz, ~A17!

where the amplitudeAm
2(t) is slowly changing in time. As

mentioned earlier, the resonance condition~A7! for the cav-
ity eigenmode allows us to determine uniquely the am
tudes of the electric field in all other layers in the cavity.
the following we assume that it is sufficient to expand t
electric field only in terms of eigenmodes with different a
muthal number and different polarizations, but with the sa
radial mode number. This assumption is justified by the
servation that neighboring higher-order azimuthal modes
spectrally closer to the fundamental mode and have sm
modal losses than the higher-order radial modes, and th
fore are gain preferred. Applying the orthogonality conditi
for hybrid modes of optical fibers@66#, using Eq.~A13!, and
averaging over the thickness of the quantum well~which is
about three orders of magnitude smaller than a typical wa
length and carrier diffusion length!, one obtains a set of evo
lution equations describing the modal dynamics of light
side the VCSEL:

e2 i (vm2v0)tF22pvm
2 xB

m9Am
2~ t !1vm~114pxB!

]Am
2~ t !

]t G
3 (

k51

Nmax

~Nnkank
2 !2

52ipv0
2(

n8
(

k851

Nmax

(
k51

Nmax

An
2~ t !ank

2 an8k8
2

3e2 i (vn2v0)tE E
A
$@ x̂QW•eW n~r ,w!#hW m~r ,w!%• ẑdA.

~A18!

This holds for each hybrid eigenmodem taken into the field
expansion, and the abbreviated notationm5(n,l ) and n
5(n8,l 8) has been used. In Eq.~A18!, A is the cross section
of the device,Nm

2 5*A@eWm(r ,w)hW m(r ,w)#• ẑdA defines the

normalization factor of the mode,hW m(r ,w) describes the spa
tial variation of the magnetic field in the QW layer, andẑ is
the unit vector perpendicular to the surface of the QW.
05380
r-
,
ce

-

e
-
re
er
re-

e-

-

Equation~A18! is the central equation of the optical pa
of the model. It describes mode coupling via spatial h
burning, since the susceptibility tensorx̂QW can be a nonuni-
form function in the transverse direction due to existi
fields as well as can be anisotropic because of some in
tional or unintentional strain in the lattice structure. Thus t
overlap integral on the rhs of Eq.~A18! depends explicitly
on ~i! the overlap of the gain profile with the modal electr
field profile, and~ii ! the change of the electric field directio
and amplitude and the resulting change of overlap with m
netic fields of other modes.

3. Two-mode laser model

In order to study polarization switching phenomena clo
to threshold, we evaluate Eqs.~A18! for the case of two
~mutually orthogonal! transverseHE11-like modes. The
model will be applicable to small-area cavities, or, equiv
lently, to larger cavities where fundamental-mode lasing
been achieved, for instance, by modifying the cavity str
ture ~oxidization, introduction of antiguiding sections, etc!.
We choose the reference frequencyv0 to be the frequency of
the two degenerate hybrid modes:v05vHE11

. Numerical so-
lutions for cold-cavity eigenmodes show that the domin
radial mode amplitude coefficientanl

6 in the expansion~A9!
is several orders of magnitude larger than the remaining
efficientsank

6 . It is therefore a very good approximation t
consider only the fundamental radial~1,1! mode in the ana-
lytical considerations that follow.

The Cartesian components of theHE11 modal electric
fields are given by

ex
m5er

m cosw2ew
m sinw, ey

m5er
m sinw1ew

m cosw,
~A19!

wherem51,2 is the mode number, and the spatial variat
of modal fieldsinside the core of the laser~we neglect the
field outside! is given by~see Table I in Ref.@47#!

er
(1)52S k0

g

n

r
J1~br !1B

g

k0
J18~br ! D cosw[2 f 1~r !cosw,

~A20!

ew
(1)52S k0

g
J18~br !1B

g

k0

m

r
J1~br ! D sinw[2 f 2~r !sinw.

In Eq. ~A20! J1 denotes the first-order Bessel function (n
51 is the azimuthal mode order!, k0 is the wave number in
the free space,B is the relative amplitude of theTMz to TEz
contributions to the hybrid mode@given by Eq.~7a! in Ref.
@47##, andb is the transverse propagation constant enter
Eqs. ~A10!–~A11!. As for the fundamental mode, one ca
assume~within very good numerical accuracy! that f 1(r )
5 f 2(r )5 f (r ). Thus, one can find from Eq.~A19! eW (1)

5@0,2 f (r ),ez
(1)#. Another cold-cavity solution of Maxwell

equations in the QW layer can be obtained from Eq.~A20!
upon the substitution cosw→sinw, sinw→2cosw, which
leads to the orthogonally polarized modeeW (2)

5@ f (r ),0,ez
(2)#. Note that rigorous modal solutions for VC
9-16
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SEL eigenmodes are not described by Gaussian function
it is usually assumed, but by superpositions of Bessel fu
tions. Similarly, for magnetic fields, one obtainshW (1)5

@2g(r ),0,hz
(1)#, and hW (2)5@0,g(r ),hz

(2)#, where J18(br )
1BnA

2(n/r )J1(br )5g(r )5(n/r )J1(br )1BnA
2J18(br ). In

the following we will neglect thez components of the elec
tric and magnetic fields,ez

(m) and hz
(m) , as they are usually

two orders of magnitude smaller than the dominant com
nents in the transverse direction. However, this approxim
tion is valid for the fundamental and first few higher-ord
azimuthal modes only, because the magnitude of these c
ponents increases with the square of the transverse prop
tion constant,b2, andb changes fromb f und'0 ~fundamen-
tal mode! to bcuto f f'nAk0 for a mode at cutoff~highest
radial order transverse mode confined to the structure!. Thus
we reduce the 333 susceptibility tensorx̂QW to 232 ma-
trix.

The set of fundamental modes considered in our anal
is therefore given by

eW (1)5„0,2 f ~r !,0…, hW (1)5„2g~r !,0,0…,

eW (2)5„f ~r !,0,0…, hW (2)5„0,2g~r !,0…,
~A21!

eW (tot)5Ay
2~ t !eW (1)1Ax

2~ t !eW (2),

hW (tot)5Ay
2~ t !hW (1)1Ax

2~ t !hW (2),

whereeW (tot) andhW (tot) denote the vectors of the total electr
and magnetic fields entering the microscopic material eq
tions that will be derived in the next section. We introduc
the mode amplitudes according toAy/x

2 5A1/2
2 . As for the

fundamental modes of the same transverse profiles, the
fects of mode competition due to spatial hole burning
negligible and one can use a susceptibility tensorx̂QW that is
averaged over the transverse direction. Under this assu
tion Eq. ~A18! can be rewritten in the form given by Eq
~1!–~2!, where we introduced the amplitudes of thetotal
electric field Ax/y5Ax/y

2 (11a11
1 ) @ ua11

1 u'0.992 is the nu-
merical value for the amplitude coefficient of the forwa
propagating field obtained from a numerical solution of E
~A7!–~A8! for the cavity under consideration#.

APPENDIX B: ELECTRONIC MODEL OF UNIAXIALLY
STRAINED QUANTUM WELLS

In this appendix we derive a simplified expression fo
quantum-well susceptibility tensorx̂QW , including possible
anisotropic strain effects. To simplify the model, we consid
only high-Q cavities so that the amount of carriers necess
to provide lasing is not too large. This allows us to negl
the light-hole contribution to the gain, since the heavy-h
light-hole splitting is larger than, or of the order of, th
gain bandwidth. Our model incorporates the uniaxial str
effects on the QW gain and refractive index according
Refs.@52–56#, with many-body generalizations according
Refs.@57–59#.
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1. Semiconductor Bloch equations for a six-band model

The semiconductor Bloch equations~SBEs! describing
optical transitions in a QW are the equations of motion
the time-dependent optical polarization functionsPs j(kW ) as
well as the electron and hole distribution/coherence functi
f ss8(k

W ) and f j j 8(k
W ), respectively. The vectorkW is the two-

dimensional in-plane wave vector, the electron quant
numberss, s8 denote the spin-degenerate conduction ba
with s561/2, and the hole quantum numbersj , j 8 denote
the two degenerate heavy-hole (j 563/2) and light-hole (j
561/2) bands. The various terms entering the equati
below have been introduced and explained in Sec. II B. T
coherent contributions to these equations are@59# ~scattering
and electrical pumping terms will be added later!

i\
d

dt
Ps j~kW !5(

s8 j 8
$@dss8d j j 8«k

s1dss8Hj j 8~2kW !#Ps8 j 8~kW !

2Vs8 j 8
(ren)

~kW !@dss8d j j 82d j j 8 f ss8~kW !

2dss8 f j j 8~kW !#1@d j j 8Sss8~kW !

1dss8S j j 8~2kW !#Ps8 j 8~kW !%2 i ~1/T2!Ps j~kW !,

~B1!

i\
d

dt
f j j 8~kW !5(

j 9
Hj j 9~kW ! f j 9 j 8~kW !2 f j j 9~kW !Hj 9 j 8~kW !

1(
s

$~V (ren)!s j8
* ~2kW !Ps j~2kW !

2Vs j
(ren)~2kW !Ps j8

* ~2kW !%

1(
j 9

$S j j 9~kW ! f j 9 j 8~kW !2 f j j 9~kW !S j 9 j 8~kW !%,

~B2!

and a similar equation forf ss8(k
W ). The Luttinger Hamil-

tonian for the valence bands in the basis$ j %5(3/2,
21/2,1/2,23/2) with basis functions defined in Ref.@52#
reads~see also@53–56#!

H5S Hhh c* 0 0

c Hlh 0 0

0 0 Hlh c*

0 0 c Hhh

D . ~B3!

The energy renormalizations are given by

Saa8~kW !52(
qW

V~qW ! f aa8~kW1qW ! ~B4!

~with a5s or j ) and the renormalized dipole energy is

Vs j
(ren)~kW !5Vs j~kW !1(

qW
V~qW !Ps j~kW1qW !, Vs j5mW s j•EW .

~B5!
9-17
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The dipole energy isVs j(kW ) and the electric field vector is
given by Eq.~A14!. The dipole matrix elementsmW s j contain
the information of optical selection rules. Using the transf
mation between circular (eW 6) and Cartesian (eW x/y) unit vec-
tors

eW 657
1

A2
~eW x6 ieW y!, ~B6!

one can write the dipole matrix elements@67# as

mW 1/2,3/25A3mW 21/2,1/252meW 1,
~B7!

mW 21/2,23/25A3mW 1/2,21/252meW 2 .

The total polarization density is given by

PW QW5
2

L2 (
kW ,s, j

mW s j* Ps j~kW !, ~B8!

see Eq.~A15!, where the spatial dependence ofPW QW follows
the spatial dependence ofPs j(kW ) andL2 denotes the quantum
well surface.

Before we proceed further, we note that for cavities w
small losses and for large enough hh-lh splitting, only the
gain contributes to the cavity dynamics. Therefore we c
simplify the set of Eqs.~B1!–~B2! and consideronly popu-
lations of heavy holes and polarizations between conduc
and heavy-hole bands corresponding to both subsyste
However, one is allowed to do this only in the basis whe
hh and lh bands are well defined~i.e., there is no crossing
between bands!, that is in the basis where the Luttinge
Hamiltonian~B3! is diagonal@58#.

The elements of the unitary transformation matrixU
[$u% i j , i , j 51, . . . ,4, that diagonalizes the Luttinge
Hamiltonian are given byu115(Hlh2Ehh)/Nhh , u225(Elh
2Hhh)/Nlh , u125c* /Nlh , u2152c/Nhh , and u445u11,
u335u22, u345u21* , u435u12* , with other elements being 0
Denotingu5u11 andv5u21 and using the unitarity propert
of U one can write

U5S U1/2 0

0 U21/2D , U1/25S u 2v*

v u D ,

~B9!

U21/25S u v*

2v u D .

The expressions defining the dependence ofu, v, Ehh , Elh ,
Hhh , Hlh , andc on the in-plane momentumkW are given by
Eqs.~13!–~15!. The transformations to the basis whereH is
diagonal~denoted bỹ ) are given by

U 21HU5H̃, U 21 f̂ hU5 f̃̂ h, P5UP̃, V5UṼ, ~B10!

and H̃3/2 , 3/25Ehh(kW )5H̃23/2 ,23/2, H̃1/2 , 1/25Elh(kW )
5H̃21/2 ,21/2.
05380
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These transformations can be simplified if one negle
transitions between the light hole and the conduction ban
i.e.,

P̃1/2 ,21/2505 P̃21/2 , 1/2,

f̃ 21/2 ,21/25 f̃ 21/2 , 3/25 f̃ 3/2 ,21/250, ~B11!

f̃ 1/2 , 1/25 f̃ 1/2 ,23/25 f̃ 23/2 , 1/250.

This yields the polarizations in both spin subsystems as

P1/2 , 3/25uP̃1/2 , 3/2, P1/2 ,23/25v P̃1/2 , 3/2,
~B12!

P21/2 , 1/25v* P̃21/2 ,23/2, P21/2 ,23/25uP̃21/2 ,23/2.

The inverse transformation reads

P̃1/2 , 3/25uP1/2 , 3/21v* P1/2 ,21/2,
~B13!

P̃21/2 ,23/25vP21/2 , 1/21uP21/2 ,23/2.

Similar relationships hold for the dipole energiesV61/263/2

and Ṽ61/2 ,63/2. As far as notation used here is concerne
one should be aware that even within the spherical appr
mation used here the dipole moments are given in the b
where the Luttinger Hamiltonian is nondiagonal, and only
this basis the indicesi 561/2,63/2 can be understood a
effective magnetic quantum numbers corresponding to
total angular momentum quantum number 3/2 of electron
the valence band. In the diagonalized basis the wave fu
tions describing hh and lh bands are superpositions w
weighting factors determined by relations~B10!. In this basis
we use the subscript63/2 to indicate that only hh contribu
tion are considered.

2. Adiabatic elimination of microscopic polarizations

Consistently with the rotating wave approximation pe
formed on the electric field amplitude in Appendix A, w
eliminate the fast oscillating terms in Eqs.~B1!; that is, we
consider only the terms withe2 iv0t time dependence. Sinc
we are mainly interested in the steady-state characteristic
the lasers, we can adiabatically eliminate the time deriva
of the slowly varying polarization amplitude in Eq.~B1!.
Transforming the resulting equation into the basis where
Luttinger Hamiltonian is diagonal, one obtains

P̃1/2 , 3/2~kW !S 2
i\

T2
1«k

s1Ehh~kW !2S1/2~kW !2\v0D
5„12 f 1/2 , 1/2

e ~kW !2 f̃ 3/2 , 3/2
h ~kW !…F Ṽ1/2 , 3/2~kW !

1(
qW

V~qW !„u~kW !u~kW1qW !

1v* ~kW !v~kW1qW !…P̃1/2 , 3/2~kW1qW !G ~B14!
9-18
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and

P̃21/2 ,23/2~kW !S 2
i\

T2
1«k

s1Ehh~kW !2S21/2~kW !2\v0D
5„12 f 21/2 ,21/2

e ~kW !2 f̃ 23/2 ,23/2
h ~kW !…F Ṽ21/2 ,23/2~kW !

1(
qW

V~qW !„u~kW !u~kW1qW !1v~kW !v* ~kW1qW !…

3 P̃21/2 ,23/2~kW1qW !G ,

where the band-gap renormalizationS61/2(kW ) is given by Eq.
~10!. One can see that due to coupling of differentkW states
via the Coulomb interaction, the solution of Eq.~B14! cannot
be written down in an explicit form. One way to solve th
problem is by using the Pade´ approximation, similarly to the
one presented in Ref.@57# for the case of a two-band mode
In zeroth order in the Coulomb potential one obtains
well-known free-carrier steady-state solution for the mic
scopic polarization

P̃ 61/2 ,63/2
(0) ~kW !5F61/2~kW !Ṽ61/2 ,63/2~kW !, ~B15!

whereF61/2(kW ) is a free-carrier factor given by Eq.~8!. A
suitable 0–1 Pade´ approximation for the microscopic pola
ization P̃61/2 ,63/2(kW ) is

P̃ 61/2 ,63/2
(Pade) ~kW !5

F61/2~kW !

12G61/2~F61/2;kW !
Ṽ61/2 ,63/2~kW !,

~B16!

whereG61/2(F61/2;kW ) is a local-field correction factor given
by Eq. ~9!. In deriving ~B16! we used the approximation

G61/2~F61/2Ṽ61/2 ,63/2;kW !'Ṽ61/2 ,63/2~kW !G61/2~F61/2;kW !.
~B17!

Note, that the steady-state solution given by Eq.~B16!
provides an explicit relationship between microscopic po
ization and dipole energyV61/2 ,63/2, which is related to the
electric field vectorEW by Eq. ~B5!. Also, since the basis
vectors of the circular and Cartesian coordinate system tr
form according to Eq.~B6!, the components of electric field
and macroscopic polarizations in these two coordinate
tems are related by

E6~rW,t !5
1

A2
@7ex

(tot)~rW,t !1 iey
(tot)~rW,t !#,

~B18!

P6~rW,t !5
1

A2
@7Px~rW,t !1 iPy~rW,t !#,
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with ex/y
(tot) andPx/y being thex/y components of the electric

field of hybrid modes~A21! and macroscopic polarization
respectively. The relationship~B18! applied to both the elec
tric field and the total polarization density~B8! allows us to
identify the elements of the susceptibility tensorx̂QW(v0)
@see Eq.~A13!# given by Eq.~11!.

Note that the spatial dependence of the susceptibility t
sor x̂QW is determined by the spatial profile of function
F61/2 and G61/2(F61/2;kW ), and therefore by the spatial de
pendence of carrier distribution functions. This problem w
be addressed in Appendix B 3. Note also that if the hh
splitting Dhl→`, thenu→1 andv→0, and one obtains the
model without band-mixing effects.

3. Calculation of stimulated emission
within the Padé approximation

In order to calculate the stimulated emission contribut
to the equations describing the carrier dynamics inside
QW, we eliminate the light-hole contribution to the mod
gain in a similar fashion as it has been done for the mic
scopic polarizations. We transform Eqs.~B2! into the basis
where the Luttinger Hamiltonian is diagonal and impose
condition given by Eq.~B11! for the microscopic polariza-
tions and density distributions. We use the solution given
Eq. ~B16! for the polarizations between heavy-hole and co
duction bands. After straightforward but lengthy calculatio
one obtains the following expressions for the heavy-h
gain contributions:

S d

dt
f̃ 63/2 ,63/2

h ~kW ;r ! D
s

5
umu2

2\
ImF @11G 61/2* ~F61/2 ;2kW !#

3
F61/2~2kW !

12G61/2~F61/2;2kW !
@xQW

xx6uex
(tot)u2

1xQW
xy6~ex

(tot)!* ey
(tot)1xQW

yx6ex
(tot)~ey

(tot)!*

1xQW
yy6uey

(tot)u2#G , ~B19!

and

S d

dt
f 61/2 ,61/2

e ~kW ;r ! D
s

5S d

dt
f̃ 63/2 ,63/2

h ~kW ;r ! D
s

,

whereex
(tot) andey

(tot) are thex andy components of the tota

electric fieldeW (tot) defined by Eq.~A21!, but including both
forward and backward propagating fields. Note that the c
rier distributions resulting from Eq.~B19! are explicitly re-
lated to radially dependent electric fields, and therefore t
should be considered as Wigner functions. However, as m
tioned in Appendix A 3, we neglect spatial hole burning e
fects by spatially averaging Eq.~B19! over the cavity cross
9-19
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section. Thus, performing the integration over*dA, normal-
izing over the surface of the QW and introducing spatia
averaged carrier distributions, one obtains the time evolu
equations~7!. For simplicity of notation, we use the sam
symbol f as in Eq.~B19! to denote the averaged carrier di
tributions. The modal field overlap factor is given by
en
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2

R2 E0

R

r f 1~r ! f 2~r !dr, ~B20!

where f 1(r ) and f 2(r ) are defined in Eq.~A20!.
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