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The polarization eigenmodes of vertical-cavity surface-emitting [a@&ESELS are investigated theoreti-
cally. The study is based on a first-principles theory and includes a microscopic model for the optically active
guantum well and a vectorial solution of the VCSEL cavity mode problem. The theory is evaluated for an
anisotropically strained GaAs quantum well structure, interacting with two orthogonally polarized VCSEL
eigenmodes. The dependence of the calculated input-output characteristics and polarization stability criteria on
microscopic input parameters such as the value of the strain are discussed for various levels of sophistication
of the microscopic many-body effects used in the analysis. The results of the stability analysis are consistent
with recent experimental observations of polarization switching, suggesting that anisotropic strain of the active
guantum well may be a dominant factor in those observations.

PACS numbds): 42.55.Px, 42.55.Sa

[. INTRODUCTION presence of residual anisotropies in the structure, which may
result from unintentional residual strain left after the growth
Due to their rapidly increasing importance in commercialprocess. As a matter of fact, it is possible by applying, for
applications, vertical-cavity surface-emitting lasef¢C-  example, additional strai(via the “hot-spot technique21]
SEL9 are currently the subject of numerous experimentaPr “local burning” [22]) to manipulate the dominant bire-
and theoretical investigationdor a recent comprehensive fringence anisotropy at wilii.e., to cancel or magnify itand
review of VCSEL properties see, e.g., REf]). Cylindri- therefore to.control the output poIanzauon state of light. In
cally symmetric VCSELS offer beam shapes that make thenf€S€ experiments the anisotropy due to dichroism was found
clearly advantageous in comparison to conventional edgEP be much smaller than that due to birefringence. A simpli-

emitting lasers, but, on the other hand, they exhibit polarizaf'eqI coup_led-mode mo_delz bas_ed on a comblnat_lon of linear
tion instabilities in the input-output characteristigz—6], anisotropies and polarization eigenmode properties, was pro-

which is a limiting factor in polarization-sensitive applica- posed to obtain phenomenological explanations of observed

tions, such as optical interconnects, optical communicationphenomen@?’]'
’ P » 0P ' However, from a theoretical point of view, semiconductor

optical signal processing, and magneto-opfuc Memaories. Efl' sers are nonlinear systems, where nonlinear gain dispersion
forts have been made to control the polarization by use oL, satyration plays a significant role in the mode selection
anisotropic cavity geometry7,8], amorphoug9] or metall  1qcesses. The first, simplified, VCSEL model that accounts
dielectric[10] gratings on the top mirror, trench etchifil],  for these effects in a phenomenological way was proposed
cavity tilting [12], fractional-layer superlatticg4.3], aniso- by San Miguel, Feng, and Molond$FM) [24]. Underlying
tropic oxide aperturgl4], external uniaxial strain applied to hat theory is the assumption that the dynamics of optically
the structurg 15], and optically active quantum wells grown anjsotropic VCSELs can be described by rate equations,
on misoriented substrat¢s6]. Also, quantum wirg17] and  \yhere the cavity can be assumed to be uniform in the trans-
quantum dof 18] VCSELs have been demonstrated to ex-yerse direction and the optical response of the material can
hibit relatively good polarization selectivity. Most of these e modeled by the interaction of two coupled two-level sys-
approaches, however, require usually some additional reqems. Because of its simplicity, this model allows for the
growth or implantation, which may make the commercial pregiction of the basic dynamical behavior of the system as a
production of these structures more difficult. ~ function of the phenomenological input parameters. In this
It has been demonstrated experimentally that practicalyay a number of issues have been addressed, including po-
VCSELs emit linearly polarized light with preference of the |grization instabilities and polarization state selection
polarization direction along th€110] or [110] crystallo-  [24,25, the influence of magnetic field on polarization dy-
graphic axe$2,3,19,20. Depending on the operating condi- namics[26], the role of the various type of optical anisotro-
tions, like pumping current and temperature, bistability be-pies on polarization selectiof27], noise-induced polariza-
tween two linearly polarized states of the same fundamentalon hopping and the role of carrier dynamics in this process
Gaussian-like transverse mode has been demonsi& 2. [28], and the influence of quantum noise on polarization
The preference for a particular polarization indicates thefluctuation[29]. The predictive potential of this approach has
been recently confirmed in the context of polarization
switching[30,31,8. Also, polarization dynamics of VCSELs
*Present address: Agilent Technologies, 350 W. Trimble Rd., MIncluding the onset and the polarization of higher-order
90UB, San Jose, CA 95131. modes has been studigg2—34.
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Despite the success in predicting polarization selectiororigin of optical anisotropies. A potential source of the opti-
and switching phenomena, the above mentioned models dical anisotropy of VCSELSs is unintentional anisotropic strain.
not account for three important aspects of VCSEL structured-or simplicity, we assume that the dominant anisotropic ef-
The first aspect is that in a semiconductor laser, as alread{cts are created by the active layer, which consists of a
recognized in Ref[24], the optical transitions take place spacer and a quantum wé@W). Then we apply the theory
between electrons in conduction and holes in valence band8f uniaxially strained QW$52-56, which has been gener-
with Coulomb interactions modifying the strength of these@lized to include many-body effec57,58 and evaluated
transitions[35] (a generalization of the SFM model to the for the case of ultrashort pulse propagation in R&8]. In
case of a microscopically calculated linewidth enhancemerffiS Paper we derive the analytical expression for the steady-
factor, within the free-carrier approximation, has been preState susceptibility tensor of anisotropic QWs that is valid for
sented in Ref[36]). Under many realistic conditions, non- Nigh-quality VCSEL structures. In order to analyze the sta-
equilibrium many-body effects can be observed in the emisPility properties of VCSEL polarization eigenmodes one
sion characteristics[37,38, especially under ultrashort N€eds to know the steady-state response function of a quan-
excitation conditions. Thus a microscopic description of VC-tum well. The direct time integration of evolution equations,
SELs is necessary in order to fully understand its compli-2S it is @ common practice in existing microscopic models of
cated spatiospectral dynamitsee Refs[39,40 and refer- YCSELS [37,38,40, would lead only to stable solutions,
ences therejn The microscopic description is also required 1€aving the unstable solutions out of the analysis.
to formulate a self-consistent approach to temperature effects Within the SFM model one can understand switching
[41] and to understand their role in spatiotemporal patterdlom one polarization eigenstate to another by studying its
formation [42]. In addition to Coulomb interactions, semi- Stability properties: If one eigenstate becomes unstable then,
conductor quantum wells contain specific band-structure ef@S & result of internal fluctuations, the laser output switches
fects. In a GaAs quantum well, for example, band-mixingt® another stat¢24,25,27. The physical mechanism pro-
effects yield momentum-dependent optical selection rules?S€d to explain polarization switching in systems with
This effect cannot be incorporated into a two-level model.dominant birefringencg6,30] is that(in addition to residual
These two additional coupling mechanisms modify the prop/inéar anisotropigsnonlinear anisotropies arise as a result of
erties of polarization eigenmodes, and therefore, can modiffh effective frequency shift of the nonlasing mode. At some
significantly the results of the recently proposed method folPUmping level the frequency of the nonlasing mode overlaps
an estimation of spin-flip relaxation rates in VCSEKg].  With that of the lasing mode, which then enables switching.
The model developed in this paper allows us to study thé‘Nother mechanism of polarization switching was demon-
properties and stability of polarization eigenmodes of vVc-Strated in terms of heating of the device and the resulting
SELs with microscopic effects of band-mixing and CoulombShifts in the relative tuning of the cavity resonance with re-
interactions between the electron and the hole plasma takeéiPect to the semiconductor gain spectrlt8,2q. It is be-
into account in a self-consistent way. yond the scope of this paper to answer the question of which

The second aspect that needs to be considered in a sy&f theseé mechanisms is dominant in practical VCSEL struc-
tematic way is of purely electromagnetic nature and concern&!res- We would like to emphasis that the theory presented in
the role played by the distributed Bragg reflect@®Rs in  his paper lays the foundation for future investigations in-
mode formation and selection phenomena, especially i_f:ludlng self-c0n_3|stent incorporation of thermal effe[ats_]
higher-order modes of index-guidédr oxide cavities are INto the analysis and for a study of the role of nonlinear
considered. One should point out that for index-guided ~anisotropies and heating on polarization switching simulta-
oxide) cavities one cannot use the scalarld® mode ap- N€oUSly. _ , _ ,
proximation, as it is common practice for gain-guided cavi- | hiS paper is organized as follows. Section Il contains the
ties, since only full vectorial hybrid modes satisfy all the details of the VCSEL structure considered in this paper and
necessary boundary conditions in the transverse direction ifi¢ Model equations used for analysis. Section Il contains
each cavity layer. Therefore only the solutions of the vector{N€ results of strain-induced steady-state refractive index and
Maxwell equations characterize properly the three-92in anisotropies in QWs. The input-outdlfO) character-
dimensional (3D) vectorial pattern, eigenfrequencies, and'SticS of VCSELs operating in the linearly polarized mode
modal lossesincluding diffraction and scattering lossSuch ~ '€9ime and their stability properties are discussed in Secs. IV
vectorial solutions have been obtained recently by means gind V, respectively. The physical mechanism leading to po-
plane-wave expansiorig4], general mode expansiof4s], Ianz.atlon switching is dlscussgd in Sec. VI. Section VII sum-
vectorial weighted index[46], hybrid mode expansion Marizes the paper.In Appendices A and B we present details
[47,48, finite-element method49], and finite difference of the derlvatlo_ns of the optical and electronic parts of our
time domain[50] techniques. In this paper we incorporate M0del, respectively.
the vectorial nature of cold-cavity eigenmodes of realistic
VCSEL structures[47,48 into the polarization-sensitive
many-body microscopic description of a running lagde
preliminary model including only the free-carrier description =~ As mentioned in the Introduction, in order to study the
of a semiconductor quantum well has been presented in Repolarization properties of anisotropic VCSELs one should
[51)). develop a model that takes into account the dynamics of

The third aspect that will be discussed in this paper is therectorial eigenmodes of realistic structures coupled to the

Il. MODEL EQUATIONS OF ANISOTROPIC VCSELS
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dynamics of electrons and holes in QW bands. In this section s=1/2 s=-1/2
we present a set of simplified equations describing the time

evolution of the electromagnetic fields and carrier densities

in anisotropic VCSELSs. In the most general case one should 'y(e)spin_ﬂip

consider a multitransverse-mode field dynamics coupled to -
spatiospectral evolution of carrier densities, which describes
a polarization-dependent mode selection processes due to the
spatial(modal gain overlapand spectralmodal gain supres-
sion) hole burning. For the case of anisotropic quantum wells
such equations are derived in Appendices A and B for fields

and carrier densities, respectively. However, in this paper we (h)
focus on a simplified case of a small-diameter VCSEL oper- . Y spin-flip / = .3
ating close to the lasing threshold, which allows us to limit j =312 j=-3

ud, + v u2 + vy,

the analysis to the case of two fundamental, orthogonally - -

polarized modes. Thus one can neglect the effects of spatial k, k, k, k,

hole burning and the appropriate equations are presented in

Sec. IIB. FIG. 1. Schematic of the in-plane band structure of a quantum

well [k, andk, indicate k,,0) and (0Ok,) directions in reciprocal
space, respectivelyShown are two conduction bands {/2) and
two valence bands#3/2). Q. denotesue. -E, see Eqs(B5) and
We begin our study by considering a cylindrical air-post(B7), and both spin subsystems are coupled via spin-flip relaxation
index-guided cos-typa cavity grown on a GaAs substrate rates of electrong{% ;, and of holesy(), (.. The transforma-
and designed to be at resonanceagt=0.851 um. The tion elementsu andv are defined in the text.
room-temperature material parameters are taken from Ref, . ) . .
[60]. The central, optically active part of the cavity consistsWherep‘%’y is the field amplitude ok/y polarized fundamen-
of a \-thick spacer layer of AloGa, o5As barrier material tal hybrid HE;; mode, we=2mwo/(1+4xe), wo, and
with refractive indexng=3.658 and al qw=10A-thick XEE“ denote the cold-cavity frequency and modal loss of the
GaAs quantum well. We neglect the small change of the4E,; mode, respectivelyyg is a background susceptibility
average refractive index due to the presence of the thin QW the quantum well material, anﬂgw, (i,j=x,y) are the
layer. The front mirror consists of a distributed Bragg reflec-glements of the susceptibility tensor describing optical gain
tor (DBR) with Ng=26 pairs of Ab3Ga 7AS/AlAs layers  and electronic contributions to the refractive index of aniso-
with n =npas=2.99 (low) and ny=na GasAs=3.47  tropically strained quantum wells.
(high) refractive indices. The rear DBR consists Ng= 34 The polarization-dependent optical gain in semiconduc-
pairs of layers. Note thdtilz>Ng, which prevents the leak- tors is determined by lasing transitions between conduction
age of light into the substrate. The cavity radius is assumednd valence bands. The band structure near the band gap can
to beR=2 um, which leads to the modified resonant wave-be calculated using thk-p Luttinger-Kohn theory{57,61.
length (due to cavity-induced blue shift, see Re48]) for ~ The conduction and the valence bands can be classified ac-
the fundamentatE eigenmodg\:Ellwo,gA,g um and the  cording to the value of the effective total angular momentum
J. Spin 1/2 electrons occupy the conduction bands with total
angular momentund=1/2 (here the orbital angular momen-
) o ) . tum is zerg, whereas holes can occupy three different va-
B. Model equations for optical fields and carrier densities lence bands: heavy-holéh) and light-hole(lh) band, both
The optical characterization of the VCSEL structure de-with angular momentund=3/2, and the split-off band with
scribed in Sec. Il A involves finding a complete set of vec-angular momentund=1/2. Because the split-off band has a
torial eigenmodes directly from Maxwell equations. The much lower energy than the hh and Ih bands, it can be dis-
theory of cold-cavity vectorial eigenmodes of index-guidedregarded in the analysis. The hh and |h band are degenerate
VCSELs has been presented in R¢#7,48. In this section at zero momentum in bulk semiconductors. However, in
we present results of the application of this theory to thequantum wells the 3D translation symmetry is broken, which
running laser. Within the two-mode approximation, the evo-leads to a splitting between hh and Ih bands: the hh band
lution equations for the field amplitudes inside the quantum-associated with) = = 3/2 (wherej is thez component of the
well layer are given bysee Appendix A for details of the angular momentujrhas a higher energy at zero momentum.
derivation The schematics of the quantum well band structure and op-
tical transitions connecting the conduction and valence bands

A. The cavity structure

photon Iife-timer;'fgtlwl.% ps.

dA,

Hx_ HE 1y, COXX A Xy considered in this paper is shown in Fig. 1. We assume that
dt welxg At (Xowix™ XouAy) ] @ the quantum well is thin enough so that only the lowest

subband of each band has to be taken into account. The

dA optical transitions at the zone center are associated with cir-
9y _ HEL A (= VX A 4 WY 2 cularly polarized electric field components and are indicated
dt el Xg y XA xowAyl - (2) by Q. . The change of the valence band curvature is due to
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band'miXing effects described by the Luttinger Hamlltonlan(3)_(4) is |Z resolved, but this index has been Suppressed for
Additionally, the coupling between both spin subsystems dugjmplicity. More details on how one can introduce phenom-
to spin-flip relaxation interactions has been indicated byenologically these terms to the original set of E(32) for
horizontal lines. In this paper we incorporate phenomenothe case of a two-band single-mode laser model can be
logically the spin-flip relaxation processes to the semiconfound, e.g., in Ref[57).
ductor Bloch equations within the relaxation rate approxima- The stimulated emission term is given by
tion.

The optical response of quantum well is determined by
the time evolution equations for in-plane momentum re-( d~, ) |ulTr

S

solved distribution functions describing electrofsuper- dt =372, 3/2(K) T2h Im| [1+G% 1 Fer2; = K)]
scripte) in the conductionsubscripts+1/2) and holegsu-

perscript h) in the heavy-hole(subscripts +3/2 and a }11/2(—12) L.
“tilde” over f) bands, which are given bigee Appendix B X — — [xSw(K)|A?
for details of the derivation 1=Ge1p Frapi=K)

d —XxSw (AL A, — xow (K AA]

e _ ege e e e
dt f 12,127 — yrf +1/2,+1/2" 78(f +1/2,* 1/2_f S1/271/2)

+ xS (KA, @)

d
e e e e
—ve(fF i1 v1p=Ni1p) + at fiip 12

P

d and a similar relation fof £,,, .,,, wherep is the magni-

gt f?_kl,z'ﬂ,z) (3)  tude of the macroscopic Cartesian dipole matrix element and
s I'r is the modal field overlap factor. The free-carrigh) (and

the local field GG) correction factors are calculated within the

+

d - - - - . .
0-1) Pad t
dt f 23/2,:3/2: - Ygf r;3/2,:3/2_ ?’g(f r;3/2,:3/2_ fgs/z:s/z) (0-1) Padeapproximation as
~ d~ N 1-f i + (E) _’f Ijr + (IZ)
—yp(f 13/2:3/2_ na)+ at f ll3/2,+3/2) FepK)= 7 w1212 232232 , (8
; ’ et En(K) S adK)—fiog
+ m?is/z,ts/z) : (4)
S

The meaning of the various terms in E¢8)—(4) is as fol- glfz(ﬂ/z:k>=2 V(q)[u(kju(k+q)
lows: yg (a=elh) is the recombination rate describing q
nonradiative processess is the spin-flip relaxation rate, +o*(Ku(k+q)1Fylk+q), (9

vg=hIT, is the carrier-carrier scattering rate and describes

relaxation of actual carrier distributions towards correspond-

ing Fermi distribution$? ;,, which are normalized such that Gy FopiK) = E V(Q)[u(K)u(k+q)
q

2 Tip 2= 2 000, (6) +o(R)o* (R+ )17y K+ ),

;Qres%ltne]P[I(?%;iﬁ?nél\év:;?nhgta}zejdgaoé‘;g]oum heating of “@yhere the electron energies are parabodif=72k%/2m,

+Eg, with Eg being the effective band gap, and the band-
( d . ) in%in FA1—1 % i) gap renormalizatiof®. .. (k) is given by
P

dat flin v , (6
12D Fl@
k

S yK)= E V(q)[f ?:1/2,:1/2('2‘F q)+f r;3/2,:3/2( —k+0a)

wherej is a pumping currenty £, is the pumping effi- a

ciency, normalized such that the amount of electrons and Xu(Ku(—k+q)+v(Kv*(—k+q)|?]. (10
holes entering the active region per unit time is the sdnfte,

is a Fermi distribution representing the pumped carriers. .

Throughout this paper we used distributidh® correspond- The Coulomb potentiaV(q) is taken to be the statically
ing to the pumping carrier densityx110'¥cn? (a detailed screened Coulomb potential in two dimensidig]. The
discussion of how the pumping density influences lasingsusceptibility tensor eIemenI\%W(wo) describing the non-
characteristics can be found in RE38]). Each term in Egs. linear response of the strained quantum well are
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Xow="5~ 2 XQW( )1—91/2(]:1/2§|Z)
A Fopk) 1
+ k = 11
Xoul )1_9—1/2(7:—1/2ik) (0
where
xow (k)= u(k)—( —XQW<k> (12)
Xy+ . ¥ U(IZ) -~ U*(IZ)
nyW<k>=n{u<k)—WHu<k>+ % = x5 (K),
x O I (S
X’é\ﬁ(k)=—l{U(k)+%HU(k)—% = xS (K,
v (k) |?
xS (k)= u<k>+ﬁ = xSw (K).

PHYSICAL REVIEW /&1 053809

c(K) = — (11212mg) \/3[ y2(Kz— K2) — 2i 3Kk, ]
+ (V312 AE,.

The Luttinger parameters asg, v,, ys, and the strain con-
tributions AEg=bg(ey+ €eyy), AEs=bg(ey—eyy), with v
=8S,,/(S11+S;), contain the elastic complianceéy; and
S;,, the shear deformation potentla), and the strain tensor
elementse,, and e,,. The hydrostatic stress component,
which renormalizes the band-gap energy by the amount
5Ehydr: bhydr(exx+ eyyt €2,  €27= Vs(xxT eyy) ’(16)

as well as the quantum confinement energy, has been put into
the definition ofEé and, therefore, does not occur explicitly.
The hh-lh splitting is denoted by\,,_,. The numerical
values for the material parameters amg=0.061ng, v,
:685 Y2= 2. 1, ’}/3:2.9, Ahh*|h:30 meV, bS: —-1.7

eV, bpyg=-8.23 eV, S,;=117x10 3 kbar!, S,

= 0.37X10°¢ kbar !, e,=0. Throughout this paper
we use the strain tensor elemexnt as a parameter that de-
termines the gain and refractive index anisotropy of quantum

The details of the band structure of the quantum well arevell.

taken into account via the momentunﬁ) (dependent coef-

ficients

Hin(K) = Epn(K)

VIH(K) — Enn(K) 12+ [o(K) 2

u(k)= ,

) (13

—c(k)

v(k)= : ) — ,
VIHn(K)— En(K) 12+ |c() 2

where the heavy{E,,(k)] and the light-hole[E(K)]
eigenenergies are given by

.01 - -
Ehh(k):§ {Hnn(k) +Hp(k)

~V[Hp(K) —Hin(K) 12 +4lc(k)[3, (14

.1 - ~
E|h(k):§ {Hnn(K) +Hjp(k)

+ V[ Han(K) — Hin(K) 12+ 4] c(K)[3}.

Finally, the heavy-hold Hy,,(k)], light-hole [H,,(k)], and

coupling[c(IZ)] matrix elements, which enter the Luttinger

Hamiltonian, are given by

Hhh<|2>=<h2/2mo>m+y2><k§+k§>—<1/2>AEg<1—2?),)
15

Hin(K) = (7:%/2mo) (71— ¥2) (K2 +KZ) + Apn_in
+ (1/2)AE;(1— 2vs),

Ill. EFFECTS OF UNIAXIAL STRAIN ON INDEX AND
GAIN ANISOTROPY

In recent years strain effects in semiconductors have been
intensively explored in order to improve the quantum well
laser characteristicg1,67. It is known that, for example,
biaxial compressive strain reduces the hole effective mass,
thus reducing the density of states dfat a certain range of
carrier densitiesincreasing the gain. However, as a function
of carrier density, the gain of the strained quantum well satu-
rates sooner and at lower values than for an unstrained QW
(see, e.g., Fig. 10.28b in Rg61]).

As already mentioned in the Introduction, in this paper we
are mainly interested in the effect of unintentional uniaxial
strain on VCSEL characteristics. To simplify the calcula-
tions, we assume that the strain is uniform in the plane of the
quantum well. In general, unintentional strain will be differ-
ent in different devices, with specific transverse and longitu-
dinal spatial dependencies that are determined by the details
of the fabrication process. To model the principle effects of
strain in a generic device-independent way, we use a very
simple spatial strain distribution model, namely, transversely
homogeneous strain located only in the active quantum well.

We begin by showing in Fig.(3) the anisotropic trans-
form matrix elementsl andv (left-hand side axisthat de-
termine the mixing between left and right polarized light
components for optical transitions within each spin sub-
system, evaluated for a uniaxial compressive strain inxthe
direction, e,,= —0.05%. For comparison, the anisotropic
(isotropig distribution functions for holegelectron$ ob-
tained for a total carrier density~1.36x 102 cm™? is also
shown. Note that lasing action usually takes place close to
the bottom of the bands, where the anisotropy is largest.

In Fig. 2(b) we show the polarization-resolved anisotropic
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F
FIG. 2. (a) Left-hand axis: anisotropic elements of the transfor- >i>,<
- »
mation matrix4/(k), see Eq(B9), as a function of kinetic energies R
of electrons and holes in the corresponding bands. Right-hand axis: 'g‘
Fermi-Dirac distribution functions for electrons and holes for a car- S
Fad
o
£
=
]
&

.2!-.._.

rier density ofN~1.3x10'2 cm™*2 A compressive strain in the 3
directione,,= — 0.05% is assumed and results are shown kQy0)
(solid ling) and (Ok,) (dots. (b) Dimensionless gain calculated for
a strained QW ¢&,,=—0.05%) and carrier densityN=1.3
X 10* cm*? using the many-bodyw. C) and free-carrie(w/o 01 005 00 005 0.1

C.) models, respectively. ey [%]

4 .

steady-state gain spectra for denshy=1.3x 1082 em™2 FIG. 3. () Gain dichroism,(b) birefringence, andc) relative

and straine,, = —0.05%. We solved Eq¥A10)—(A11) in ratio between dichroism and birefringence for a strained quantum
XX . "

order to obtain the values of the effective refractive indexwe” for various carrier densities as a function of uniaxial strain,

ner; and dimensionless gamx/yI—QW [see the discussion fol- calculated for the model with Coulomb interactidtises). Circles,

. ! o squares, triangles, and crosses correspond to results obtained from
lowing Eq;(/(fx}),l)] as a function of the susceptibility tensor the free-carrier model for densitieN=1.3, 1.4, 1.5, and 1.6

e!ementstW [_see Eq(11)]. One can clegrly see the gain X 10* cm™?, respectively. The results are shown for the functions
difference(dichroism) for x- andy-polarized light around the o\ ajuated at the lasing frequenay.

gain maximum. For comparison, we show also the gain an-

isotropy as calculated by using the free-carrier model, i.e., b&(b), the compressive straifnegativee,,) leads to larger
neglecting the Coulomb enhancement effeds,.;=0.  gain for x-polarized light,| @, > aty| [Fig. 3@]. For tensile
However_, in order to allow for a fair comparison, we kept thestrain(positiveexx) the opposite behavior occurs. Of course,
renormalized band gap, E(L0), evaluated at the bottom of he gain dichroism increases with increasing strain. Also, as
the bands. .. 1,(k=0), which introduces the frequency red- one increases the carrier density, the gain dichroism is found
shift to the spectrum. The overall free-carrier spectrum iso increase as well. Note that for the configuration presented
then redshifted in comparison to the many-body spectrunmere (fixed laser frequendy the free-carrier model underes-
since Eil/z(O)sEﬂ,z(lZKO. The Coulomb interaction timates the value of the gain difference.
modifies the shape and value of the gain curve in a similar The strain induced birefringence is shown in Figb)3
way to what was reported for isotropic QWs7]. Similar to the gain dichroism, the birefringence increases
For an understanding of the polarization selection andvith increasing strain. However, it decreases with increasing
switching in VCSELs it is crucial to know the strain induced density. We also see that the free-carrier model underesti-
dichroism and birefringence of the QW. Figure 3 showsmates the value of the birefringence for densities aroNnd
these quantities, evaluated at the laser frequangyas a =1.3x10' cm 2 and overestimates it for larger densities
function of uniaxial straine,, and carrier densityN. For  (see, for instance, the result fof=1.6x 10 cm™2). The
comparison, we show results calculated from both manyratio of birefringence to dichroism, one of the parameters
body and free-carrier models. As already indicated by Figthat determines the stability properties of VCSEL eigen-
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modes, is shown in Fig.(8). For the laser parameters con- 0.002 0
sidered in this paperN~1.36x 10" cm 2) the following ---- Fermi pumping, . C. L
approximate numerical relation holds: [Rey— x5y —_ e e C
~—2.5Im xow— xgwl. However, this can change within = ++ Fermi pumping, wio ..,
an order of magnitude, depending on cavity quality, tuning, E 0.001 M,,«*f'f,:'
and/or temperaturénot considered in this papemote also E o
that the free-carrier model usually overestimates the magni- A
tude of the relative ratio between anisotropies.
0.0 L

0.015 0.02 0.025

IV. STEADY-STATE INPUT-OUTPUT CHARACTERISTICS 7j [mA]

OF VCSELS o _ _ _
FIG. 4. Input-output characteristics of an optically isotropic VC-

Within the rate-equation approximation, the polarizationSEL: full model (solid ling), “Fermi-pumping” model with Cou-
eigenmodes and polarization dynamics of light in VCSELslomb enhancement effectdashed ling full model but without the
has been studied in detail in Ref&4,25,27,28for cavities local field effects(dashed-dotted line free-carrier mode(double-
with phenomenologically introduced birefringence and di-dotted ling, and free-carrier model with “Fermi pumping(tiotted
chroism. It has been found that for the two-mode laser modéine).

(modes with the same Gaussian-like transverse patthen

system has four possible eigenstates: two linearly polarized HE 27w

and two circularly(elliptically) polarized states for isotropic Xg V=Imlxowl, 6= 1T dmve Rexowl, (18
(anisotropi¢ cavities [25,27,2§. The stability of these X8
modes depends on the laser parameter values. In general, if .

the principal axes of birefringence and dichroism are aligned",jlnd fory-polarized modesA,=0)
there exists such a parameter range where the linearly polar-

ized modes can be stable. However, if the birefringence and HELL |l 4 1Y
dichroism are misaligned, only the elliptically polarized Xg = IMlxgwl.
states were found to be staljg3,64.

In order to find the polarization eigenmodes described byrhese equations need to be solved simultaneously with the
the set of equation&l)—(2) and(3)—(4), we look for steady- pgplinear set of Eqs(3)—(4) under steady-state conditions

state solutions in the form (f‘“;l,zlil,z:f';3,2:3,2=0). Because we are interested in
: . cavities with small unintentional strain induced anisotropies

At =A%, Ay (t)=AJe "9, (17 in the thin QW region, the resulting overall change of the
cavity birefringence is small. Thus we use the isotropic cold-

where A? and A° are real amplitudesg describes small cavity eigenfrequencyw, and cavity lossyp " in our
modifications of the mode eigenfrequency due to the modsteady-state calculations. In the numerical solutions dis-
pulling effect, ande is the phase difference between the cussed below we use the following values for decay times
electric field vectors in two orthogonal polarizations. Using(unless otherwise notgd T,=100 fs, (y2) '=10 ps
phenomenological models it was found that, for instance, for=(y2) ™, (&) *=1 ns=(y}) "% and (£) =100 fs
linear polarization only one of these amplitudes can be non:(y';)—l_
zero, whereas for circular polarizatigim the case of isotro-
pic cavities only A}=A) and ¢=* /2, where the signs
correspond to polarizations with opposite handednesses. For
anisotropic cavities one finds the same type of solutions, but Let us first consider the input-outpliO) characteristics
with elliptically polarized eigenmode&haracterized by el- of the isotropic VCSEL €,,=0). In Fig. 4 we demonstrate
lipticity and azimuth angleésreplacing circularly polarized how various terms entering Eqé3)—(4) contribute to the
ones[25,27,28. steady-state 10 characteristics. The solid line indicates the
In this paper we will focus only on properties of linearly model with all terms present. The calculated threshold cur-
polarized eigenmodes, as they play a dominant role in reakent in this case i$'""~14.1 uA and the slope efficiency is
istic VCSEL structures. If the principal axes of birefringence k~0.12 W/A. The threshold current for the considered de-
and gain dichroism are aligngds it is the case in this pa- vice is about two orders of magnitude smaller than that mea-
pen, the elliptically polarized modes are involved only tem- sured for a real device, because \i¢ consider a high-
porarily in the switching process between a mode that loseguality, small-area cavity(ii) neglect optical loss due to
its stability to its orthogonally polarized mod@1]. The free-carrier absorption in the mirrors, afiiil) neglect current
steady-state solutions for linearly polarized modes can béeakage in the cavity layers. Phenomenologically, these ef-
obtained by substituting Eq17) into Egs.(1)—(2). Separat- fects can be included in the pumping efficiency factofin
ing these equations into real and imaginary parts, one obtairthis paperpy=1). On the other hand, the calculated slope
the nonlinear condition for mode amplitudes and frequencyefficiency is about two times smaller than typical data pre-
shifts for x-polarized modesA,=0) sented in the literaturf20]. This is because in practical de-

2T wg

= yy

A. Influence of Coulomb effects on laser characteristics
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vices one uses rear mirrors with_twice as many Iaygrs as the — 0.01% xstrain, x-pol,, w. C.
front mirrors, which keeps the light from propagating into 0.002 |77 “0:01% xestrain, y-pol, . C.
. + =+ .0.01% x-strain, x-pol., w/o C.
the substrate. . o . E .-+ .001% x-strain, y-pol, wlo C.
We can study the role of Pauli blocking in the pumping =
e
3
-9

process, by making an unphysical assumption that electrons
and holes are pumped directly into Fermi-Dirac distributions;
that is, we replace the pumping teii®) by

ioa a 0.0

d ;o _Imiip  Nip 20 0.01 0.02 0.03
dt *il2,£1/2 e 5 . .

P 1 Ek N=ip

=
o
@®

This leads to a reduction of the threshold current by approxi-
mately 7% {""~13.1 uA) and increase of the slope effi-
ciency tok~0.131 W/A (dashed curve in Fig.)4 The re-
duction of the threshold current is intuitively obvious, as
Pauli blocking leads to heating of carriers in the baf28,

=
W
-3

— -0.01% x-strain, x-pol., w. C.
----- -0.01% x-strain, y-pol., w. C.
+ =+ 40.01% x-strain, x-pol., w/o C.
coo+ 0,01% x-strain, y-pol., w/o C,

=
W
R

10" x Density [1/cm2]
(73]

which then have to equilibrate before they are available for 13

the lasing process. The process of achieving the thermal 0.01 n joﬁ’;A] 0.03

equilibrium is described phenomenologically in E¢B—(4)

by the carrier-carrier scattering raj¢ . Since this is by far FIG. 5. (a) Input-output characteristics aitl) carrier density vs
the largest rate in the equations, the modifications of the I@umping current for an anisotropic VCSEL with uniaxially strained
due to “non-Fermi-like” pumping are rather small. QW, e,,= —0.01%. Results are obtained from the many-body cal-

The next effect that we consider in Fig. 4 is the influenceculation for x-polarized(solid line) and y-polarized (dashed ling

of the local field effectgthe termgillz(f+ll2; _R) in the eigenmodes an_d from the .free-carrier ' moqel foipolarized
stimulated emission terr)]. By pufting this term to zero, (dashed-dotted lineandy-polarized(dotted ling eigenmodes.

we obtain the same threshold current as for the full mode . . -
(see Fig. 4, dashed-dotted linbut the slope efficiency is the End the free-carrier modehith band-gap renormalization

S : .~ both using the pumping term that takes into account the Pauli
same (within the numerical accuragyas for the “Fermi 9 pumping

A blocking.
pumping™ model. I . . . As for the model with Coulomb interactions, despite the
The next modification we consider is the free-carrier

del (i lected all Coulomb effect b dapplied strain, the 1O characteristics for both polarizations do
model (i.e., we negiected all Loulomb €TIECts EXCEpt banty, ot gpqyy any visible differences. Singeolarized light ex-
gap renormalization, similarly as in Fig).2The result is

A . eriences more gain in this configuration, the threshold cur-
shown in Fig. 4 as the double-dotted line. Because the fre<—$ g 9

. oS ller than th bod o Coulomb ent is about 0.2% smaller than for tlyepolarization. The
carrier gain Is smajler than the many-bo y gaio Coulom slope efficiencies differ by about 0.05% between the two
enhancemet one has to pump harder in order to compen-

sate for the cavity loss, and therefore the threshold current i olarizations, and so the solid and dashed curves practically
increased G ~14.9 wA (that is by about 5.7% in com- verlap in the plot. The results of neglecting the Coulomb

: e . effects essentially are the same as described in Sec. IVA.
parison to the full model Also, the slope efﬂmenpy """ For the free-carrier model one cannot distinguish between 10
creased tac~0.13 W/A because of lack of local field ef- for both polarizationgdotted and dash-dotted lines are on
fects. . . o . the top of each other

Th‘? last model is the free-car_ner model with “Fermi In Fig. 5b) we show how the carrier densities change
pumping (F'gt'hf" doty, where, again, the thres'hpld current with the pumping current. Due to the effect of spectral hole
decreases 1g™'~13.8 uA and the slope e_ff|C|e“ncy n- burning, one does not observe clamping of the carrier density
creases to k~0.14 W/A.  The free—carrier “Fermi- to the threshold value and so the density increases with in-
creasing current. Since the gain for tkolarized mode is

pumping” model is the closest to the phenomenological
larger than that foy polarization, a smaller carrier density is

SFM model[24] that assumes the instant thermal equilibra-
tion of carriers in the band&y considering only the Fermi sufficient to generate the same amounkgiolarized output

d_|s_tr|b_ut|ons, which allows one to con5|der_ tota_l Cf.i”'e.d den'power. This yields the difference between operating densities
sities instead of momentum-resolved carrier distributions

for both polarization eigenstates. As for the free-carrier
model, one has to provide a larger amount of carriers to
satisfy the gain-equal-loss condition, as it can be seen in
Fig. 5(b).

In this section we focus on the influence of moderate As mentioned above, in our model gain saturation and the
compressive strairg(,= —0.01%) on the IO characteristics. resulting spectral hole burning are responsible for changes of
In Fig. 5@ we compare the results for- and y-polarized  carrier densities as a function of pumping current. In Fig.
eigenmodes. The calculations were done using the full moded(a) we show the differential gain spectra for a laser operat-

B. 10 characteristics of an anisotropic VCSEL
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g 004 Another representation of the spectral hole can be seen in
5 Fig. 6(b), where we show the difference between two distri-
=003 bution functions, namely momentum-resolved actual elec-
g tron and hole distribution functions ¢;, . 1/, and the cor-
:cls 0.02 responding Fermi-Dirac distribution functionsn €,
56 0.01 (denoted ad g mi). The result is calculated for a laser oper-
N ating in they-polarized eigenmode at a pumping currént
= 00 “0.01% x-strain =2j!"" The spectral hole has its maximum at the lasing
-10 0 10 20 30 frequencyfi wg— Eg—Et“r~6.5 meV, and is of the order of
E-E,- wthr [meV] 0.1% of the value of the corresponding Fermi distribution
(see inset The spectral hole is slightly more pronounced in
00 001%xstra1nj 25 the k, direction for the electric field polarized in thedirec-
_ 7 tion because of the heavy-hole light-hole coupling in the
5\: (b) system. This can be seen by expanding the stimulated emis-
‘2-0.05 sion term(7) for the y-polarized mode 4,=0) within the
‘_E 1 free carrier approximation for electron momenta close to the
) - /\\ band edge. To second order in the wave vector, the differ-
~= .01 ; ; fecinn
0 —— electrons ence in th_e vallues of stimulated emission in the two orthogo-
30 0 300y holes nal directions in momentum space is given by
100 50 50 100
©.k,) Eyin [meV] (,, 0) d-~, . d~, R
dt f :3/2,:3/2(k) ) “ldt f :3/2:3/2('() )
FIG. 6. Spectral characteristics of a laser operating in the Slk=(k,0) Sl k=(0k)
y-polarized eigenmode(@) Gain differential spectra for various AE, | 2%y K2
pumping currentgsee text for more detajls3""'=3 . ,,(k=0) ~|Ay|2[1— — }—2 (21)
~15.8 meV is the band-gap renormalization calculated for a Ani | Mol

threshold carrier density dil~1.36x10'? cm™2. The arrow la-

beled w, indicates the position of the lasing modb) Difference  The same expressions are found fo&l/z,ilm' The asym-

betwegn the ac_tue_ll carr_ier_dis;ribution functioha_nd the corre-  metry in the spectral hole resulting from the asymmetry in

sponding Fermi-Dirac distributiorfgerm; for pumping currentj — the stimulated emission term is therefore proportional to the

=2j™". The distributions are shown ink(,0) direction and in light intensity and decreases with increasing hh-lh splitting.

(0k,) direction. Inset: Actual distribution functiorfs Note also that for small strain the terfE¢/A,,, has only a
minute influence on the shape of the spectral Hade ex-

ing in the y-polarized mode. The curve labeled @8 ample, fore,,=—0.01% one find\AEs/A,=0.006). This

=2j"" (j;=1.5'"") shows the difference between the result is consistent with the absorption anisotropy discussed

spectrum calculated for a running laser pumped with the curin [53-56.

rentj, (j1) and the spectrum obtained for a threshold pump-

ing current ", Since the carrier density is larger fgr V. STABILITY OF VCSEL EIGENMODES

>jt"" [see Fig. B)], the overall difference between gain

spectra is positive. However, at the lasing frequency the In order to perform the stability analysis of the linearly

gain-equal-loss condition must hold, so the gain values gpolarized eigenmodes discussed in Sec. IV, we introduce a

this frequency are the same. This results in a hole seen in tfghall, ime-dependent perturbation of the eigenmode ampli-

differential gain spectra. It is interesting to note that everfudes:

though they-polarized mode is lasing, the spectral hole is the

same for both, the active and the inactive mode. This is be- Ac(t)=[A}+a,(t)]e'”, A, (t)=[AJ+ay(t)]e'**¥).,

cause of the isotropic nature of the large carrier-carrier scat- (22

tering rate assumed in our calculations. The last two curves,

IabeIedX(A _0) X(A)’ show the difference between spectra Substituting Eq.(22) into Egs.(1)—(2) and expanding the

calculated for a QW for the carrier density obtained forsusceptibility tensor elementhW around the steady-state

pumping currenj, without light field (A, =0, that with car- values, one obtains the time-evolution equations for the per-

rier distributions taken to be Fermi distributic)nand the turbations,

spectrum of a running laseA(+0, that is with actual car-

rier distribution$ pumped with the same currejy. As ex- i da S 9 _

x . HEy, 0 XO 0 XO io
pected, the maximum difference occurs at the laser fre at e +ixg A A, A A, €7 ay
quency (in the running laser the electron-hole pairs are “® ¢
depleted, whereas in a nonlasing case they are available for X S
transitiong and decreases for frequencies above and below — AS — 3 e'v|a} (23
o A% A%
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aXxy . (?)(XX . - -
Xy 0740 iy, A09%0 o dichroism only
Tl xo + Ay IA € AX IA e ay 0.025 -+ E, @threshold
y y -+ E,@threshold
= (a)
XX X
Ixo . IxXo’ E
_ 0 e lo__ AO * — 0.02
“oAy Yony | 5
E, always unstable ; E, always unstable
0.015 | Ex always stable  :E, always stable
yX yy O S e
dday | 0dXe 00 | i
— X0 A, Ay e’le 'fa —_
we dt dA, dA 0.025 —_—r birefringence only
: .+ E. @threshold
yX yy —_ .. Ey @threshold
+| A0 0 _—ip 07X0 a* + + iXHEl].I! < (b)
x : Y : x .E. 0.02 E, unstable {E, unstable -
yy yX J
_ ny_ Aoaﬂ o1 p0 % a e
0 Y 9 Ay X 9 Ay y 0.015 E, always stable /'Ex_quzﬁxs_ stable
yXx yy — E i
4| A0 IXO iy p09Xo a-ieg* 0025 N\ -~ E strained QW
X Jp* Y oa% y <+« E, @threshold
Ay Ay - - E, @threshold ;
g E, unstable E, unstable',"'
- - . ° = 0.02 ,/l
and the corresponding equations &jr anda;‘ . In Egs.(23) = t
wo=2mwol(L+4mys) andxi, {i,j}={x.y} denote the el- P!
ements of the susceptibility tensqig, evaluated for the 0.015 —F._ unstable

eigenmode parametera{ A}, 8, ¢). For simplicity, we do
not perturb the steady-state carrier distribution functions. In
other words, we consider only the class-A laser m¢aé],

not the class-B modgl24,25,27. It has been discussed re- FIG. 7. Stability diagram for a microscopic class-A VCSEL
cently[31] that for small anisotropie&s in the case of un- model with (a) dichroism anisotropy(b) birefringence anisotropy,
intentional straii and short spin-flip relaxation timega few  and (c) the full uniaxial strain-induced anisotropy, obtained for
¢M-1=10 ps. The arrows indicate the regime where a given

-0.01 0.01

0.0
exx [%]

picoseconds the adiabatic elimination of carrier densities (7s _ _ _

(i.e., the class-A modgls usually a good approximation for mode is unstable. Solitlashed curves correspond te-polarized

practical VCSELSs. (y-polarized eigenmodes. Dotteddouble-dottedl curves indicate
The stability of polarization eigenmodes is determined bythe strain-dependent threshold currentXggolarized §/-polarized

the eigenvalues. of the matrix defined by the right-hand &i9enmodes.

side (rhs) of Egs.(23). If at least one eigenvalue has a real In Fig. 7 we present the stability diagram obtained for

part larger than zer@for a given strain and pumping currgnt . . e ) .
the mode is unstable. The parameter values for which thtehree ql_|fferent c_ases{l_) no blrefrmgen_ce, _only gain anisot
ropy, (i) no gain anisotropy, only birefringencéiji) full

real part of the unstable eigenvalue vanishes determines the S . g . ST
stability boundary of a given mode. We foutwlithin a very calculatllon |.nclu.d|ng both gan anisotropy apd bwgerngtince.
: ; . The spin-flip time used in the calculations isyd)
good numerical accuragyhat for linearly polarized modes, -1 ) ) )
the set of Eqs(23) separates into two subsets, corresponding™ 10 PS=(7s) "~ The casd(i) where only the gain anisot-
to a perturbation in the direction of the eigenmode and 40Py Put not the birefringence is included is shown in Fig.
perturbation in the orthogonal direction. It has been shown irf (@- We assume that the real parts of the susceptibility ten-
Ref. [24] that the linearly polarized modes are stable withSCr depend on the stragg, as the arithmetical mean Sf the
respect to perturbation in the same direction, but may b&riginal values; that is, we replace the quantity Ry ]
unstable for perturbations in the direction of the orthogonaPy (1/2)R€xgw+ xGwl- In this way the refractive indices
mode. Our numerical solutions confirm these findings. Anfor both polarizations are the same. The imaginary parts
other interesting result obtained from the SFM model is thachange independently, which allows for gain anisotropy. In
if the linearly polarized nonlasing mode is unstable, then thdhis case the mode with larg&smalle) gain is always stable
real part of the eigenvalue contributes to a broadening of itéunstablg. In other words, for compressiv@ensilg strain
peak in the spontaneous emission spectrum, whereas titke E -polarized €,-polarized mode experiences more gain
imaginary part causes a nonlinear redshift of the spontaneousee Fig. 3. Therefore, for any pumping current above the
emission peak30,6,31. The nonlinear redshift of the non- threshold value, this mode is going to lase.
lasing mode was identified as a physical mechanism causing In Fig. 7(b) we study the case where only the birefrin-
polarization switching. For the configuration discussed ingence is present. We proceed in a similar fashion as above,
this paper the details of the polarization switching mechabut, this time, we replace the imaginary part§ ;"] by
nism will be presented in Sec. VI. the arithmetical mean (1/2) I¥Gw+ xGwl- This causes the
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gain to be polarization independent. This time, however, the — T, strained QW

real parts Rex5y¥]1 change independently with strain, al- 0.025 I\ 7777 B G hweshotd

lowing for birefringence. In this case, for compressiten- —_ ;7 @threshold

sile) strainE, (E,) is stable for any strain and any pumping E 00z x unstable [E, unstable. (a)

current. However, for the orthogonal polarization the stabil- — J

ity depends on the value of the pumping current and the =

strain. The arrows indicate the range of currents for which a 0.015 o2 nstable " Exunstable

given polarization is unstable. For instance, we see from Fig.

7(b) that, for any value of the compressive strain the laser -0.002 0.0 0.002

may start lasing in any polarization and the bistable switch- e [%]

ing between two polarization states is possible. However, for

pumping currents above the solid lir, becomes unstable 0.05 E, unstable | E, unstable 7

and the VCSEL would lase only i polarization. This type 1 AWl C.

of behavior has been predicted within the phenomenological 004

SFM description for class-A models in R¢R27]. < (b)
Next, we study in Fig. {€) the stability of a VCSEL with g 0.03

birefringence and dichroism anisotropy resulting from the S5 ;

uniaxial strain[case(iii)]. Here, the stability diagram is es- 0.02 |...Ey unstable #  Eyunstable

sentially a superposition of results displayed in Fige)-¥ e N e L

7(b). For example, for any value of unintentional compres- 0.005 00 0.005

sive strain the gain anisotropy determines mode stability ey [%]

close to threshold. Close to threshold #hpolarized mode is

gain preferred and stable. Thus the laser starts in this polar- FIG. 8. Same as in Fig.(@), but for (y2")~*=3 ps. The re-

ization. However, as one increases the pumping current, thllts were obtained using th@ many-body andb) free-carrier

y-polarized mode becomes stable, which indicates that th&odels.

birefringence anisotropy becomes dominant. Here, polariza-

tion switching may occur. If the pumping current is further sented there allows one to obtain information about the cav-

increased, the-polarized modes become unstable and thdty anisotropies based on the information provided by the

laser switches to thg-polarized mode, in agreement to what details of the measured optical spectra. Physically, the polar-

was observed in experimenf2-6]. Note that for tensile ization fluctuations are driven by the spontaneous emission

strain in thex direction, e,,>0, one observes the same be- noise. Mathematically, the spontaneous emission can be in-

havior but withx andy directions interchanged. corporated into the analysis by adding Langevin noise
In order to study the influence of the spin-flip relaxation sources to the right-hand side of the equations for the pertur-

rate y2" on the stability boundaries, we show in Figagthe ~ bation amplitude$23). The solution of this type of equations

results obtained for¢2")"1=3 ps, a value that was sug- leads to optical spectra of VCSELs and has been previously
gested by recent experimeri&3]. One sees that the overall OPtained for the SFM model by spectral decompositasin
picture presented in Fig.(@ does not change. However, Ref- [65) and via Green functiongsee Ref.[29]) ap-
shorter spin-flip relaxation times stabilize linear polariza-Proaches. Note that in the latter approach one explicitly uses
tions, as already predicted by the SFM mo]. Thus the the_ e|gen_value$, which detern_1_|ne the stability dlagram o_f
polarization switching occurs at higher values of the pump_anlsotroplc VCSELs. The addition of spontaneous emission

ing current. For instance, for a small compressive strain ofl0€s not modify the polarization stability of eigenmodes. It
e~ —0.001% (which might be a reasonable value for un- &llows, however, for a quantitative estimation of how stable

intentional straih our model predicts switching fronx- the lasing mode is and how much the polarization fluctuates
(gain-preferreyito y-polarized(birefringence-preferredstate around its steady-state value. However, thege problems are
atj~1.5'"" a value that is typical for experimental obser- beyond the scope_of the research presented_ in thls_, paper and
vations [3-5]. For comparison, we show in Fig.(8 the therefore we restrict ourselves only to the discussion of po-
stability diagram as obtained from the free-carrier model. Adarization stability diagrams and neglect the details of the
one sees, the qualitative results do not change, but for aolanzatlon fluctuationgi.e., spontaneous emission ngise

given strain the stability boundaries are shifted towards

higher pumplng CUrrenl}S. ThIS ObS-ervation mlght be of pracy,. PHYSICAL INTERPRETATION OF POLARIZATION

tical relevance, especially since it has been demonstrated SWITCHING

that, using combined experimental measurements and theo-

retical fitting, one can obtain realistic estimations of spin-flip  In this section we discuss the possible mechanism leading

relaxation rates in practical VCSEL devicet3]. to destabilization of the output polarization. As an example,
To conclude this section we note that we neglected in ouwe consider the structure with compressive uniaxial strain

considerations the influence of quantum fluctuations on th&s= —0.0015%, and {/Z’h)‘1=3 ps. We study the condi-

polarization dynamics and mode stability. Such studies havéons under which the gain-preferrecpbolarization becomes

been performed recently for a modified SFM model in Refs.unstable and the laser switches to the birefringence preferred

[29] and [65] (and references therginThe approach pre- (stablg y polarization as the pumping current increases.
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The physical explanation, within the SFM model, in terms 0.02
of pumping-current-induced nonlinear anisotropy and the re- B @
sulting frequency shift was given in Ref81,6]. It has been = 001}, polarization switch
shown that in the case of dominant birefringefiweo orders =<
of magnitude larger than the gain anisotrbpynd large line- E 0.0
width enhancement factor, the switching from the low- - — ReD\l x-pol.
frequency to the high-frequency mofisee Fig. ) in Ref. e The T Redypo
[31]] occurs as the result of decreasing frequency splitting = 0.0015% x-strain %, = 12311;::2}:
between lasing and nonlasing mode. For example, for the 002 e 002 0024
lasing x-polarized(low-frequency mode the modal frequen- 7j [mA]
cies are given by
0y=—wot 6y, wy=—wotwe Ra:)(é}(,\,] +Im[\], -1.399 0.0015% x.strain
~ | Im[x"]
(24) g 4l — i(:l,[;g% ]
whered, is given by S in Eq. (18) and Inf\] represents the -
nonlinear anisotropy contribution. Similarly, for the lasing S i polarization switch
y-polarized(high-frequency mode we have | = j (b)
wy==wot 8y, 0yx=—wytw.Re xgwl+IM\], LA 0.023 0.024
(25 nj [mA]

where s, is given by Eq.(19). For the case considered here FIG. 9. _(a) Com_plex eigenvalues of the stability anal_ysis for
(switching fromx polarization toy polarization the change andy—polanzed_ Iasmg_modes asa function of the pumping current.
of the frequency splitting was caused by the nonlinea@"Y one dominant eigenvalue is shown for each polarizatih.
anisotropies, which are mathematically represented by th avity loss and modal gain for the lasimepolarized modésolid

. . . . ine), modal gain for the nonlasingpolarized modédashed ling
imaginary part of the complex eigenvalugsin Eq. (24). and the differential off-diagonal gaifots for the elliptical mode

However, the switching scenario reported in R&fl] does the vicinity of the switching point as a function of pumping

- - . i
nho.t apply tﬁ the_casg dlscu‘;sed "; this papler. TQ dem?nStrafﬁrrent. The arrow indicates the pumping current for which the
this, we show in Fig. @ how the complex eigenvalues hpolarization switching occurs.

change with increasing current. Strictly speaking, for eac
polarization, there are two complex conjugate eigenvalues
(for low curren}, which become real for the currents indi-
cated by kinks on the R&] curves. For each polarization
only one eigenvalue is shown in Fig(@. At the switching

point (the real part of the eigenvalue shown as a solid line,

In order to find a possible mechanism responsible for the
destabilization of the gain-preferreepolarized mode for the
strain induced anisotropy considered in this paper, we exam-
ine the linear stability equations for perturbation amplitudes

becomes positive, see the point indicated by an ariie (23) in the v@cinity of \=0. As mentioned _before, .wit.hin a
imaginary parts of eigenvalueotted ling is zero. That con- good numerical accuracy this set of equations splits into two

tradicts the mechanism causing destabilizatio pblariza- ~ Separate subsets of equations, one for,4;) and another
tion reported in Ref[31]. The discrepancy is due to the fact one for @, ,aj). For thex-polarized lasing mode, we con-
that in our case the birefringence and the gain anisotropy argider the equations for perturbation amplitudes in the or-
of the same order of magnitude whereas in R8L] they  thogonal direction of polarizatiofthat is, fora, anday), as
differ by two orders of magnitude. Indeed, we performedthe eigenvalue for these amplitudes acquires a positive real
numerical simulations of Eq16) in Ref.[31], but for the set  part and destabilizes the lasing mode.

of parameters corresponding to this paper, and we found An approximate expression for the eigenvaluen the
similar behavior to that shown in Fig(8®. vicinity of the switching point|\|<1, is given by

. HE/
\ (Sl we)+ixg = x§+AIXET oA 2= A ax§ T aAs)|? 6
- HE/ !
Xg = ImLxy—AY(ax§IaA,)]

and the right eigenvector associated with this eigenvalue is

af) (8] we) — RELXE — AQIxET 9A) + AY(Ix§ T 9AY)]
=1 27)

. HE/I
all) Nwe)— xg 1 Im[ gy — A% axyaA,) — AU ax§ T A% )]
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wherea{)) andaf) denote the real and imaginary compo- VIl. SUMMARY
nents of the eigenvector, respectively. In deriving E@6)—
(27) we used the fact that E¢23) does not depend on the
phasep (for the equations considered hgrénerefore we put
¢=0.

In the complex plane, the direction of the eigenve¢g

In summary, we have derived a microscopic model for
VCSELs that is based on a rigorous solution of Maxwell's
equations coupled to generalized semiconductor Bloch equa-
tions. This allows for a realistic modeling of optically aniso-
tropic lasers. The optical part of the model includes a de-

the lasi de | ing t F h oal cal Yailed characterization of VCSEL structuréthicknesses,
€ 1asing mode Is going o grow. rrom the humerical CaiCUy, 4 sjzes, and refractive indices of cavity layeasd is

Ia_t|0ns Wf fozunq that at the switching point the phase of theoased on a self-consistent solution of the cold-cavity 3D vec-
eigenvector(27) is torial eigenmodes. The vectorial eigenmodes are then

coupled to the electronic part of the model, which is based

py=Arg[ay]~—0.1, (28)  on a microscopic theory for the optical response of semicon-
ductor quantum wells describing potentially anisotropic va-

and changes from about0.09r to — 0.1 for the range of ~ '€nce bands, and the dynamics of charge carriers and of the
pumping currents shown in Fig.(9. The time-evolution interband polarizations including Coulomb interaction. The

equation(23) for the magnitude of the perturbation ampli- theory is evaluated in a simplified version containing ap-
tudea, (27) can be written in the form proximations such as the adiabatic elimination of polariza-

tions and the relaxation-rate approximation. We discussed in

detail the steady-state vector-polarization eigenmodes of

VCSELs and their linear stability properties within the two-

mode, four-band, class-A model approximations. We inves-
(290  tigated the role of Coulomb terms in the steady-state 10
characteristics.

Our investigation of the influence of anisotropic strain of
the optically active quantum well is based on the hypothesis
that this is the dominant source of experimentally observed
_ VX A n K . VCSEL characteristics. However, this theory can also be ap-
where ¢, =1/2 Ard (dxo/dAy)] and the phase, is given  jieq to recently designed uniaxially strained VCSHLS).
by the phase of the eigenvect@?). e For small uniaxial strairfless than 0.01%) the input-output

The steady-state condition for E@®9), x5 *'=x"°, re-  characteristics of linearly polarized eigenmodes are not sig-
sembles the steady-state gain-equal-loss condition for linaificantly modified. However, the stability properties of these
early polarized modes. However, in the present cg8€  modes depend strongly on the sign and the value of the an-
corresponds rather to differential off-diagonal ga&super- isotropy. We found that the relative ratio of birefringence to
script “DG”) of the medium driven by the small perturba- anisotropy depends on the carrier density, and therefore on
tions in the direction given by the eigenvect@7). Note, factors like cavity quality and tuning. The stability analysis
that xP€ contains contributions from both diagonal and off- predicts that, if a small anisotropic strain is present, the laser
diagonal elements of the susceptibility tengefy. A super- ~ Will start operating in the polarization, which is gain pre-
position of the lasing mode amplitude with the phase-shiftederred. However, if one increases the pumping current, the
small perturbation leads to a very elongated elliptically po-orthogonal polarization becomes stable. As a result of inter-
larized state. If the differential off-diagonal gain seen by thenal fluctuations, polarization switching and/or self-
perturbation is smalleflargep than the cavity loss, the laser oscillations may occur. For even higher pumping currents,
stays in(switches from the original linear polarization state the initial polarization becomes unstable and laser switches
(to the orthogonal stateln other words, the transition from to the birefringence-preferred eigenstate. It should be pointed
one polarization to another is accompanied by the creation dgiut that the scenario presented here has also been predicted
the elliptically polarized state, and the lasing mode becomeBY the phenomenological SFM model for various configura-
unstable if the gain seen by the perturbation amplitude i¢§ions of model paramete®4,25,27,31 The advantage of
larger than the cavity loss, so such a state can be supportége model presented here is that it provides a first-principles
by the cavity as a lasing mode. To support this conjecturegalculation of intentiona[15] or unintentional anisotropies
we show in Fig. %) the differential off-diagonal gain that can occur in practical devices. Further developments of
Im[ x°€] (dotted lin@ as a function of a pumping current. our theory are possible by considering the details of aniso-
One sees that Iy°C] crosses the value of the cavity loss tropic carrier-carrier and carrier-phonon scattering, as well as

(Shown as a solid ||®at the Switching current, and becomes taklng into account tem.p_erature effects and higher-order
transverse mode competition effects through spatial-spectral

hole burning.

dlay| HE!
d_ty =(xg "—x"%)lay,

axy

IA

DG vy 0 IX0 0
x"o=Imf x A —— | — Ay CoOS @\ — @),

X oA,

*
y

larger thanXSE11 for larger currents. For comparison, the
gain corresponding to the nonlasiggolarization is shown
as a dashed line. Note also that the presented mechanism is
consistent with the explanation of the role played by ellipti-
cal polarization in the polarization switching process de- We would like to thank Thomas Reler of the Arizona
scribed in Sec. Il C of Ref[31]. Center for Mathematical Sciences, University of Arizona;

ACKNOWLEDGMENTS

053809-13



D. BURAK, J. V. MOLONEY, AND R. BINDER

PHYSICAL REVIEW A61 053809

Michael Wraback of the Army Research Laboratories; andvhere u=(n,l) is a mode index of the cold-cavity hybrid

Ewan Wright of the Optical Sciences Center, University of
Arizona, for helpful discussions. Financial support for this

mode determined by azimuthaland radiall mode orders
(see Ref[47)), »,, is the mode frequency, and c.c. indicates

work has been provided by the Joint Services Optics Proeomplex conjugate. Thus, the Maxwell equations for the

gram (JSOB, the Army Research OfficéARO), COEDIP
(University of Arizong, and the Air Force Office of Scien-
tific Research AFOSR).

APPENDIX A: THE OPTICAL MODEL OF VCSELS

In this Appendix we derive directly from Maxwell’'s equa-

eigenmodeu can be written as

ﬁxﬁxé“&ﬂ—wj (1+4mxHEO(r)=0. (A5)
H c2 X8)Eu :

Note that the solution of EqA5) describes the 3D electric

tions the rate equation for the slowly varying amplitudes offield with (in general three nonvanishing vector components

vectorial eigenmodes of index-guided VCSHUY,48. The
Maxwell's equationgin Gaussian unijsinside the quantum-
well layer can be written in the form

I 1 #°D
VXVXE=———,

(A1)
c? &4t

whereE denotes the vector of an electric fietdis the speed

at the location of the quantum well. In order to calculate the
electric field outside the QW region one can use the vectorial
transform matrix method described in Rp£7]. Within that

formulation the amplitudes of the forward§) and back-
ward (,&3) propagating fields at the front plane are related to

the amplitudes of forwardAy.,) and backward &, ;)
propagating fields at the rear plane via the vectorial trans-

of light in vacuum, and the relationship between the dis-

placemenD and electric fielcdE vectors is given by

with ISB and ISQW being the background and active quantum
well polarization vectors, respectively. The material polar-
ization vectorsl5B and I5QW are related to the electric field
via the material susceptibility tensogg and xow, respec-
tively.

PoW() = ﬁw;QW(t—r).EH(T)dr, (A3)

where the superscript-" indicates the negative-frequency

Ay
Ay

M7+
M++

An+1 M

M +— (AG)

form matrix

where the elements of matrick™ = are described in detail
in Ref.[47], N is the number of interfaces in the structure in

the longitudinal direction, and;" is a vector with elements
being the amplitudes of modes that are used for field decom-
position. The lasing condition is that only the outgoing am-
plitudes from the VCSEL are nonzero, which transforms Eq.
(A6) to the form

N+
AN+1

M~"A;=0, A}, ,=M""A;. (A7)

contribution. We will assume that the time response of backBy evaluating the total vectorial matrikl at appropriate

ground susceptibility tensogg is infinitely fast and any
memory effects can be neglected, therefétg’(t)=ys
CEC) ).

1. Cold-cavity vectorial eigenmodes

In this section we extend the theory of cold-cavity vecto-
rial eigenmodes of VCSEL7,48 to make it applicable for

planes, one can express the amplitudgls,; and A, in
terms of amplitudes in the active layédenoted by layer
number ,). Denoting the elements of the vectorial transform
matrix between the front plane and the active Iayer\/qff ,

one finds from the first condition of EGA7)

Al‘Azl\Al‘A‘/Kg, A&zMC\_(M&_)‘lﬁ\C\. (A8)

the analysis of running lasers. We choose the dominant time

dependence to be™ !, so the forward/backward¥ sign in
front of the longitudinal propagation constamropagating
fields in Ref.[47] correspond to backward/forward-( sign
at the longitudinal propagation constapropagating fields
in this paper. In the calculation of cold-cavity vectorial

There is only one independent, undetermined component of

the vectorA, or, in other words, mode amplitude, which
characterizes a given cold-cavity eigenmode. In this paper,
we identify the forward propagating amplitude coefficient in
the active layer to be th@ndetermined, as for ngwnode

eigenmodes one neglects the influence of the QW, that iamplitude. All other amplitudes can then be found from Eq.

Pow=0. For isotropic cavities the susceptibility tensgs

(A8) and from transform matrices for other layers.

can be characterized by one scalar number, which in general The hybrid modes of semiconductor layers in VCSELs
can be complex. One can factor the electric field vector intdhat are characterized by different azimuthal mode numbers

time and space depending parts, that is

1 .
= e Lo s
E.(r,t)= 5 E,(r)e loul+c.c., (A4)

are orthogonal to each othg6]. Thus the spatial profile of
the electric field of any VCSEL eigenmod&?(r) in any
layer (and, in particular, in the active onés given as a
superposition over only the radial mode numbers. The spatial
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profiles used for a superposition are given by the transversgnl’| - whereL.,, is the cavity length. In the single las-
profiles of optical fibers hybrigbound and radiationmodes  ing mode case, the steady state can be achieved when the

Er. [47] modal lossy""L.,, is compensated by a modal gaiftL o
from a quantum well, i.e., Whem”'"LcaU= a’Low.
ER(N=2 (B +Ef,
“ 2. Field amplitudes in running VCSELs
A a0 e o o ot
guantum well polarization vectolﬁQW. Transforming Eq.

wherey"* is the longitudinal propagation constant of a given a3) into the frequency space, one obtains
fiber mode,a,,;=1 and the remaining amplitude coefficients

are determined by Eq(A8). The spatial dependence of lsgg_\/\)/(F,w)ZS(QM/(w)'E(_)(F,w)
e" (r) is specified explicitly in Tables | and Il of Reff47].

For index-guided VCSELs the transverse profile of eigen-
mode (,l) resembles very well the corresponding profile of
the (n,l) hybrid mode of optical fiber. This means that one
can identify the radial mode ordéiby determining the larg-
est amplitude coefficient, that ida,|<|a,| for « +---
=1,2,... x#|. For air-post index-guided cavities consid-

ered in this paper one cdwithin very good accuragylimit

the expansion to only a small numkef"?* of bound modes where the Taylor expansion of the frequency dependent sus-
(as a matter of fact, for cavities considered here the dominareptibility tensor)}QW(w) has been performed around a ref-
amplitude coefficient is four orders of magnitude larger tharerence frequency, that will be specified later. Neglecting
the remaining ones; therefore we u$€"®*=10 bound all the terms involving derivatives with respect to frequency

IXow
[ 20)

)A(vi(wo)‘i“(w_wo)

ﬂ)*a)o

ECNr, ), (A12)

modes. and Fourier transforming back into time one obtains
Each VCSEL eigenmode.=(n,l) is characterized by
two parameters: the eigenfrequeney, and the imaginary IS(Q_V?,(FJ):;(QW(%)'é(_)(ﬁt)- (A13)

part of the complex susceptibilityggzxg' + ixg", describ-

ing the modal cavity loss. These parameters have to be founghs approximation is valid if one considers the properties of
from the condition of nonzero amplitude solutions in EQ. steady-state laser eigenmodes, where the dominant time de-
(A7), defM ™~ (kz)]1=0, with ki being the complex wave pendence is determined by the laser frequengy

number of the eigenmodg in the active layer. They are ~ Next, we perform the decomposition of the electric field
related to the set of transversg'() and longitudinal ™) into the cold-cavity eigenmodes with slowly varying ampli-

propagation constants via the relation tudes
Ka'=(B™) 2+ (¥™)?, (A10) 1 o
E(r,t)== e '@t Ef)(r,t)e"("’f‘“O)Urc.c.,
for eachk=1,2, ... N™*in the eigenmode expansion, and 2 u
to the complex background susceptibiljgg via (A14)
(KEY2=1+4mxk, (A11)  Where the superscrigs) has a similar meaning as in Eq.

(A4); however, we now allow for a slow time dependence of

where kﬁz(Zw/A’Fg)nAwLikK”, ynK:(ZW”\g)nefnynK"’ the fields. According to Eq(A13), one can write the QW

_ g " . _ _ polarization in a similar way:
with y" andks denoting the imaginary part oj"* and

ki, respectively\g=w, /c being the resonant wavelength o 1. .
of modeu, andng¢s being the effective refractive index with Pow(r,t)= > P(QSQ,\,(r e @l c.c. (A15)
respect to the longitudinal propagation direction. Similarly as
in Ref.[48], we consider only high-quality cavities, and so o ) , )
the modes of lossless optical fibers are used as a basis upuPstituting Eqs(A15) and(A14) into Maxwell's equations
derlying our numerical solutions. This leads to the real val-\A1); neglecting first and second time derivatives of the po-
ues of transverse propagation constgsité. Numerical so- larization and secon_d time denv_atlve_s of the _electnc field
lution of the condition d¢M ~ ~ (ki) ]=0 leads to the values (slowly varying amplitude approximationneglecting terms

u ' ) i with fast harmonic time variatiofrotating wave approxima-
of Ag andkjy , which, togsther with Eq(AL0) and(A1l)  ion) using the cavity eigenmode equatiohb) and neglect-
are used to calculae, , yg andy”, the parameters that are ing the dispersion of the background susceptibility, one ob-
used in the mode expansion procedure. Another importartains the time evolution equation for the electric field vector
parameter is the effective dimensionless cavity lossn the quantum well layer
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. 2 W), - Equation(A18) is the central equation of the optical part
> e i(ou oot —27mw,xg E;7(1,t) of the model. It describes mode coupling via spatial hole
g burning, since the susceptibility ten§p<5w can be a nonuni-

d =(5), = form function in the transverse direction due to existing
+“’u(1+47TXB)E B (D) fields as well as can be anisotropic because of some inten-
tional or unintentional strain in the lattice structure. Thus the
:2i77w§|383A,(F,t), (A16)  overlap integral on the rhs of EGA18) depends explicitly

on (i) the overlap of the gain profile with the modal electric
In order to find the time evolution equation for each modefield profile, and(ii) the change of the electric field direction
separately, one should consider a total field that is a supeand amplitude and the resulting change of overlap with mag-
position of forward and backward running fields. However, netic fields of other modes.
since these two fields are orthogonal to each other and since
they are related via EqA8), it is sufficient to consider only 3. Two-mode laser model

backward propagating modes in the expansia8) o o
In order to study polarization switching phenomena close

Nmax to threshold, we evaluate Eq§A18) for the case of two
I?E]‘T‘)(F)=A§|(t)z a;Ké,F]K(F)e‘VHKZ, (A17)  (mutually orthogonal transverseHE; -like modes. The
k=1 model will be applicable to small-area cavities, or, equiva-

. o L lently, to larger cavities where fundamental-mode lasing has
where the amplitudé,, (1) is slowly changing in time. AS  paen achieved, for instance, by modifying the cavity struc-
mentioned earlier, the resonance conditiéi) for the cav- e (oxidization, introduction of antiguiding sections, etc.
ity eigenmode allows us to determine uniquely the ampliye choose the reference frequenayto be the frequency of
tudes of the electric field in all other layers in the cavity. In e two degenerate hybrid modes;= wye. . Numerical so-

11

the following we assume that it is sufficient to expand thelutions for cold-cavity eigenmodes show that the dominant

electric field only in terms of eigenmodes with different azi- dial mod litud fiicieat" in th ofA9
muthal number and different polarizations, but with the samdacial mode amplitude coe icieaf, in the expansionA9)

radial mode number. This assumption is justified by the ob!S Several orders of magnitude larger than the remaining co-
servation that neighboring higher-order azimuthal modes argfficientsa,, . Itis therefore a very good approximation to
spectrally closer to the fundamental mode and have small&ensider only the fundamental radidl,1) mode in the ana-
modal losses than the higher-order radial modes, and therdtical considerations that follow. .

fore are gain preferred. Applying the orthogonality condition  The Cartesian components of ti€E;, modal electric

for hybrid modes of optical fibef66], using Eq.(A13), and  fields are given by

averaging over the thickness of the quantum vetich is _ . B .
about three orders of magnitude smaller than a typical wave- € =€ cosp—e;sing, ej=ersingte, cos<p,A19
length and carrier diffusion lengthone obtains a set of evo- (A19)
lution equations describing the modal dynamics of light in-where ,=1,2 is the mode number, and the spatial variation
side the VCSEL: of modal fieldsinside the core of the lasefwe neglect the
field outside is given by(see Table | in Ref[47])

. " IA (1)
e !en e —2mwixE A, (D) +w,(1+4mxg)— - y
eV= —(70; B+ B Ji(ﬂr))cowf—fl(r)cow,
Nmax
_ (A20)
X 2, (Nag)?
(1) ko ’ Yy m . .

Nmax ymax €,/ =~ 7 Jl(,Br)+Bk—OT J1(Br) |sing=—f,(r)sine.

=2imwdY, > X A (Daya, . . .

n’ k=1 «=1 In Eqg. (A20) J; denotes the first-order Bessel functiom (

. . R R . =1 is the azimuthal mode ordek, is the wave number in
xe*'(“’v""o)tf f {Ixow e, (r,@)Ih,(r,¢)}-zd A. the frge spaced is the relgtive amplitude of th‘éMZ;o TE,
A contributions to the hybrid modeiven by Eq.(7a) in Ref.
(A18)  [47]], and g is the transverse propagation constant entering
Egs. (A10)—(A11). As for the fundamental mode, one can
This ho_Ids for each hybrid ei_genmoqleta_ken into the field assume(within very good numerical accuracyhat f(r)
(ixpa,ns,mn, and the abbreviated note_ltmﬁ:(n,l) andl_z =f,(r)=f(r). Thus, one can find from Eq(A19) e
=(n"1") hgs begn used. In E(A18), Ais the cross section - —g,—f(r),e{M]. Another cold-cavity solution of Maxwell
of the device,N;, =/ s[e.(r,¢)h,(r,¢)]-zdA defines the equations in the QW layer can be obtained from ER0)
normalization factor of the mode,,(r,¢) describes the spa- upon the substitution cas—sine, sing——cose, which
tial variation of the magnetic field in the QW layer, ands  leads to the orthogonally polarized modes(®
the unit vector perpendicular to the surface of the QW. =[f(r),0,e§2)]. Note that rigorous modal solutions for VC-
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SEL eigenmodes are not described by Gaussian functions, as 1. Semiconductor Bloch equations for a six-band model
it is usually assumed, but by superpositions of Bessel func- the semiconductor Bloch equatioSBES describing
tions. Similarly, for magnetic fields, one obtairfg=
[—g(r),0hV], and h®=[0g(r),h{?], where J;(Br)
+Ba(n/r)J,(Br)=g(r)=(n/r)J,(Br)+BnaJ;(Br). In
the following we will neglect the components of the elec-
tric and magnetic fieldse!” andh{*), as they are usually

the time-dependent optical polarization functidhﬁ(ﬁ) as

fss (k) and f;;.(k), respectively. The vectdk is the two-

optical transitions in a QW are the equations of motion for
well as the electron and hole distribution/coherence functions

dimensional in-plane wave vector, the electron quantum

two orders of magnitude smaller than the dominant componumberss, s’ denote the spin-degenerate conduction bands

nents in the transverse direction. However, this approximawith s= +1/2, and the hole quantum numbsgrsj’ denote
tion is valid for the fundamental and first few higher-order the two degenerate heavy-holp=(*3/2) and light-hole {

azimuthal modes only, because the magnitude of these com- +1/2) bands. The various terms entering the equations
ponents increases with the square of the transverse propagselow have been introduced and explained in Sec. Il B. The

tion constant?, and B changes fronB™'"%~0 (fundamen-

tal mode to ,8°“‘°”~n ko, for a mode at cutoff(highest
radial order transverse mode confined to the strugtdieus

i e ~ d
X - . > - -
r:lii reduce the 3 susceptibility tensoyqw to 2X2 ma 'ha st(k):Z./ ([ 6ee 5“/8i+ Sss M (—K) TP (K)

The set of fundamental modes considered in our analysis
is therefore given by

coherent contributions to these equations[&@ (scattering
and electrical pumping terms will be added later

(ren)(k)[ass’ 5“ J’fss’(lz)

— 8ss fij1(K) ]+ 85/ S sg(K)

+ 8593 (—K)TPgj (K)} =i (1T Pgj(K),
(B1)

eW=(0,~1(r),0, h¥=(-g(r),00),

e@=(f(r),0,0, h®=(0,—g(r)0),

9 ) ) (A21)
e(mt):A;(t)e(l)-f-A;(t)e(z), d . R . . ~
N N A hoge T (K= 2 Hyj(K) Fjoj (K) = (k) Hjoj (K)
h(tot)=A;(t)h(l)+A;(t)h(2), i

wheree®9 andh(t°Y denote the vectors of the total electric
and magnetic fields entering the microscopic material equa-

+ 2 QM) (= K)Pi(—K)

tions that will be derived in the next section. We introduced — Qe (—K)PE,(—k)}

the mode amplitudes according #3,,=A,,. As for the ' s

fundamental modes of the same transverse profiles, the ef- . . . .
fects of mode competition due to spatial hole burning are +]2 {2 (k) f oy (K) = () 2y (K)},

negligible and one can use a susceptibility teri&gn, that is
averaged over the transverse direction. Under this assump-
tion Eqg. (A18) can be rewritten in the form given by Egs.
(1)—(2), where we introduced the amplitudes of ttwtal
electric field A,y =Ay,(1+a;y) [|aj;/=0.992 is the nu-
merical value for the amplitude coefficient of the forward
propagating field obtained from a numerical solution of Egs.
(A7)—(A8) for the cavity under consideratign

(B2)

and a similar equation fofssr(IZ). The Luttinger Hamil-
tonian for the valence bands in the basig}=(3/2,
—1/2,1/2;-3/2) with basis functions defined in Refb2]
reads(see alsd53-56)

Hpn ¢ 0 0
Cc th 0 0

APPENDIX B: ELECTRONIC MODEL OF UNIAXIALLY H= . (B3)
STRAINED QUANTUM WELLS 0 0 Hn c
In this appendix we derive a simplified expression for a 0 0 ¢ Hun
guantum-well susceptibility tenso}QW, including possible  The energy renormalizations are given by
anisotropic strain effects. To simplify the model, we consider
only high-Q cavities so that the amount of carriers necessar > = >, 2
y ot y S0 (K== 3 V(@) aw (K+0) ®4)

to provide lasing is not too large. This allows us to neglect
the light-hole contribution to the gain, since the heavy-hole
light-hole splitting is larger than, or of the order of, the (with a=s or j) and the renormalized dipole energy is
gain bandwidth. Our model incorporates the uniaxial strain

effects on the QW gain and refractive index according to Q(ren)(k) Qs,(k)+2 V(q)PSJ(k+q) 0=,

q

= /s E.
Refs.[52—56, with many-body generalizations according to siT Hsi
Refs.[57-59.
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The dipole energy i€) (k) and the electric field vector is ~ These transformations can be simplified if one neglects
given by Eq.(A14). The dipole matrix eIementﬁsj contain  fransitions between the light hole and the conduction bands,

the information of optical selection rules. Using the transfor-"-€-

mation between circulare(.) and Cartesiane,,) unit vec-

Py 1p=0=P_ :
tors 1/2,-1/2 1/2,1/2

6= :i (Exié,), (B6) f_1i2,— 1= - 112,30 Fa2 ~12=0, (B11)

V2

one can write the dipole matrix elemef&’] as

fi 12— i —32— fogp 12— 0.

This yields the polarizations in both spin subsystems as
M1p2,3127= \/§M—1/2,1/2= T ME, - _
) ) ) (B7) Pi2,32=UP12 320 Pu2,-32=0P12 3,
M—1/2,-312= \/§M1/2,— 12~ — Me_ . (B12)

P_ =0*P_ 1o —3i0, P19 —ap=UP_1jp0 _ap0.
The total polarization density is given by V2,102 V2.~ V2~ V2. -3

5 The inverse transformation reads
Pow=— 2 n5iPsi(K), (B8) 5

ST S R P1s2,32= UP1j2 32t v* Pyja 110,
(B13)

see Eq(A15), where the spatial dependenceﬁzjw follows P_12.-32=0P_1/5 107 UP_1/5 _3p5.

the spatial dependence ;,-(lZ) andL? denotes the quantum . _ . _
well surface. Similar relationships hold for the dipole energ@s 1,532
Before we proceed further, we note that for cavities withand €} . 12 =3/2- As far as notation used here is concerned,
small losses and for large enough hh-lh splitting, only the htone should be aware that even within the spherical approxi-
gain contributes to the cavity dynamics. Therefore we camation used here the dipole moments are given in the basis
simplify the set of Eqs(B1)—(B2) and consideonly popu-  where the Luttinger Hamiltonian is nondiagonal, and only in
lations of heavy holes and polarizations between conductiothis basis the indices=+1/2,+3/2 can be understood as
and heavy-hole bands corresponding to both subsystemsffective magnetic quantum numbers corresponding to the
However, one is allowed to do this only in the basis wheretotal angular momentum quantum number 3/2 of electrons in
hh and |h bands are well definéde., there is no crossing the valence band. In the diagonalized basis the wave func-
between bands that is in the basis where the Luttinger tions describing hh and |h bands are superpositions with

Hamiltonian(B3) is diagonal[58]. weighting factors determined by relatio(®&10). In this basis
The elements of the unitary transformation mattik we use the subscript 3/2 to indicate that only hh contribu-

E{u}ij , 1L,j=1,...,4, that diagonalizes the Luttinger tion are considered.

Hamiltonian are given byi;1=(H;,—Enp)/Npn, U= (Ej,

—Hpp)/Njp, Up=C*/Nip, Up=—C/Npp, and Ug=uy, 2. Adiabatic elimination of microscopic polarizations

U33= Uy, Ugs=U3;, Ugs=UJ,, With other elements being 0.
Denotingu=u4; andv =u,; and using the unitarity property
of U one can write

Consistently with the rotating wave approximation per-
formed on the electric field amplitude in Appendix A, we
eliminate the fast oscillating terms in Eq®81); that is, we

Uy, O u —o* consider only the terms v_vitta‘“"Ot time dependence. Since
U= U= we are mainly interested in the steady-state characteristics of
0 Uy veiv u-Je the lasers, we can adiabatically eliminate the time derivative
(B9) of the slowly varying polarization amplitude in EGB1).
u o* Transforming the resulting equation into the basis where the
U-1=| =y U ) . Luttinger Hamiltonian is diagonal, one obtains
~ - i . -
The expressions defining the dependenca, af, Ey,, Ejp, P112,34K)| = T, et Ehh(k)_zm(k)_ﬁwo)
Hnn, Hip, andc on the in-plane momentutk are given by L I .
Egs.(13)—(15). The transformations to the basis whéteis =(1—1f5p k) — fg/2,3/2(k)){91/2,3/2(k)
diagonal(denoted by ) are given by

U tu=F, utu=t, P=uP, Q=uld, (810 +% Vi@)udou(k+a)

and Haiz, 3= Enn(K) =H_a2 31, Huz, 1= Ein(K) +0* (K)v(k+0))P 12, 3:AK+0)
=H_12 -1/2-

(B14)
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and with eﬁf,‘“) andP,;, being thex/y components of the electric
field of hybrid modes/A21) and macroscopic polarization,

) respectively. The relationshiB18) applied to both the elec-
tric field and the total polarization densit®8) allows us to
identify the elements of the susceptibility tené@cgw(wo)

:(1_]“‘:;1/2’_1/2“2) _?[3/2’_3/2“2))[ﬁ_m’_slz(ﬁ) [see Eq(A13)] given by Eq.(11).

Note that the spatial dependence of the susceptibility ten-
) o A o sor )A(QW is determined by the spatial profile of functions
+ 2, V(q)(u(k)u(k+q) +v(K)o* (k+q)) Fe1p and G. 1 Fx10;K), and therefore by the spatial de-
q pendence of carrier distribution functions. This problem will
be addressed in Appendix B 3. Note also that if the hh-lh

. splitting A,,;— o, thenu—1 andv—0, and one obtains the

model without band-mixing effects.

- . i . R
P_1 —3aK)| — T, +eg+tEpp(K) =2 _19(k) —fiwg

XP_ 1o —a(K+Q)

where the band-gap renormalizati®n ;,(k) is given by Eq. 3. Calculation of stimulated emission

(10). One can see that due to coupling of differ&nstates within the Pade approximation
via the Coulomb interaction, the solution of E§.14) cannot
be written down in an explicit form. One way to solve this
problem is by using the Padgproximation, similarly to the
one presented in Ref57] for the case of a two-band model.
In zeroth order in the Coulomb potential one obtains th
well-known free-carrier steady-state solution for the micro-
scopic polarization

In order to calculate the stimulated emission contribution
to the equations describing the carrier dynamics inside the
QW, we eliminate the light-hole contribution to the modal
egain in a similar fashion as it has been done for the micro-
scopic polarizations. We transform Eq82) into the basis
where the Luttinger Hamiltonian is diagonal and impose the
condition given by Eq(B11) for the microscopic polariza-
tions and density distributions. We use the solution given by

POy g K =Fuy(K iy wg0(k),  (B15  Eq.(B16) for the polarizations between heavy-hole and con-

duction bands. After straightforward but lengthy calculations

where]—‘il,z(IZ) is a free-carrier factor given by E¢g8). A one obtains the following expressions for the heavy-hole
suitable 0—1 Padapproximation for the microscopic polar- gain contributions:

ization P 1, . o(K) is

d-, 3
. dat g cap(kir)
FeqAK) ~ .
— Q1 23(K),
1-Goqp Frap:K) |M|2

(816) :ﬁ Im

S

S (Pad N
PEE9% au(k)=

[14+G% o Ferpp ;—K)]

whereG.. /o( F- l,2;I2) is a local-field correction factor given

by Eq.(9). In deriving (B16) we used the approximation « FruA —K) Xx= | 4(tot)|2
- [xowlex””|
1_gtl/2(}—t1/21 - k)
Gurd Fr1de12 232 K) =~ Qw172 +32(K) G /2 F e 1/2(;L|°>(i.ﬂ + xS (6409 e{0Y + Bty el Y (effoV)*
Note, that the steady-state solution given by Hg[L6) + XYQﬁ|e§t°t)|2] , (B19)
provides an explicit relationship between microscopic polar-

ization and dipole energf . 1/, . 3,, Which is related to the

electric field vectorE by Eqg. (B5). Also, since the basis
vectors of the circular and Cartesian coordinate system trans-
form according to Eq(B6), the components of electric fields
and macroscopic polarizations in these two coordinate sys-
tems are related by

d e . Th .
af S e1dKr) | = afi3/2,i3/2(k!r) ,
S

S

wheree{? ande{°” are thex andy components of the total

A 1 ) ) electric fielde™Y defined by Eq(A21), but including both
E.(rt)y=— [Fel®(rt)+iel®(r )], forward and backward propagating fields. Note that the car-
V2 rier distributions resulting from EqB19) are explicitly re-

(B19) lated to radially dependent electric fields, and therefore they
1 should be considered as Wigner functions. However, as men-
P.(rt)y=—[F pX(F,t)_}_ipy(F,t)]’ tioned in Appendix A3, we neglect spatial hole burning ef-
NA fects by spatially averaging E¢B19) over the cavity cross
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section. Thus, performing the integration oJetA, normal- 2 (R

izing over the surface of the QW and introducing spatially I'r=— f rfi(r)fy(r)dr, (B20)
averaged carrier distributions, one obtains the time evolution R* Jo

equations(7). For simplicity of notation, we use the same

symbolf as in Eq.(B19) to denote the averaged carrier dis-

tributions. The modal field overlap factor is given by wheref,(r) andfy(r) are defined in Eq(A20).
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