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Laser instabilities in homogeneously broadened dense media
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We investigate the laser equations in the mean-field limit for a homogeneously broadened two-level system,
taking into account the local-field correction arising from dipole-dipole interactions. Our analysis concentrates
on the dynamical properties of the laser versus the pumping parameter. The effect of detuning between atomic
and cavity frequencies is also studied. We first show that the local-field correction reduces the range of the
chaotic regime when the frequency detuning is set for minimum instability threshold operation. For a fixed
local-field correction, we demonstrate that the symmetry of the dynamical scenario versus the frequency
detuning is broken. In addition, we point out generalized bistability between the chaotic regime and the off
state of the laser. This bistability results from the smallness of the basins of attraction of the off state.

PACS numbgs): 42.55-f, 42.60.Mi, 42.65.Sf, 42.65.Pc

[. INTRODUCTION frequency detuning. One can therefore expect that the role of
the LFC will be equivalent to an additional frequency detun-

The interest in laser instabilities has been growing duringng. In fact, we will demonstrate that this is true in the sta-
the two past decades. This field of investigation was initiallytionary regime but it is no longer valid in the time-dependent
opened by Haken, who established the fundamental analoggime achieved when the steady state is unstable. Our paper
between single-mode homogeneously broadened laser equg-organized as follows. In Sec. Il we give the modified
tions and Lorenz equatiodd], thus demonstrating that de- Maxwell-Bloch equations and transform them into a more
terministic chaos was possible in laser systems. These equéonvenient form for both numerical integration and represen-
tions predict chaos in the bad-cavity and high-intensitytation of the different attractors. We also emphasize the sym-
domain through a Hopf bifurcation. Much attention has beernetry properties of the equations versus the frequency detun-
given to the influence of the microscopic parameters and"d. Note that, in the absence of LFC, the solutions of the
decay times on the instability threshd-6] and more gen- detuned laser equations do not depend on the sign of the
era”y on the dynamica' properties of the So|ut|q|$_8] detunlng[2,19]. Se(.:tlon Il is deVOted to the Stat|0nary states
The nature of the bifurcatiofsubcritical or supercriticahas ~ Of the laser equations. It appears that the LFC leads to the
been investigated ifi3,5]. The effect of detuning between €Xistence of two lasing steady-state soluti¢h]. This is
the atomic and Cavity frequencies on the dynamics has a|s@)nnected to intrinsic Optical bistable properties exhibited by
been investigatef?]. The main result is that the introduction dense media in single-pass proceddds12. In Sec. IV, we
of detuning destroys much of the complicated behavior offerform a linear stability analysis of the steady-state solu-
the real Lorenz-Haken equations and has a stabilizing effections. In particular, we demonstrate that the off state be-
However, the frequency detuning increases the value of theomes stable again above the lasing threshold of the upper
instability threshold[2,6]. The latter can be significantly lasing solution, which is always unstable. The first lasing
|0wered by tak|ng into account some inhomogeneous broacﬁoluu(?n is stable from the threshold to a critical Value of the
ening proces$9]. More recently, we have demonstrated thatPumping parameter for which the system loses its stability
the local-field correctiofLFC) substantially reduces the in- through a Hopf bifurcatiof10,20,21. In Sec. V, we numeri-
stability threshold in a homogeneously broadened Sing|ecally solve the nonlinear coupled differential equations. We
mode lasef10]. The LFC resulting from dipole-dipole inter- focus our interest on pointing out features induced by the
actions has been Considered previous'y in Connection W|t||'pca|'f|e|d correction. We first show that the LFC reduces the
intrinsic optical bistable medigl1-17. The influence of the ~chaotic domain when the detuning is set to achieve a mini-
LFC on laser instabilities in inhomogeneously broadenednum |nStab|I|ty thresh0|d Opel’atlon. The effect Of the detun'
media had also been reportEtB]. Again, the LFC reduces Ing appears to be very different from what it is in the laser
the instability threshold. The aim of this paper is to investi-€quations in the absence of LFC. In particular, generalized
gate the effects of dipole-dipole interactions on the dynamibistability can be obtained between either a chaotic or a pe-
cal properties of a detuned single-mode homogeneousiyjodic regime and the off state.
broadened laser.

It has been shown that the LFC leads to a direct coupling
between the population inversion and the macroscopic polar-
ization[13,15 and can be viewed as a renormalization of the The local-field correction is needed when dipole-dipole

interactions become non-negligible, typically in a dense me-

dium. It has been demonstrated that dipole-dipole interac-

*Present address: CIRIL-ISMRA, 6 Blvd. Maiel Juin, tions lead to a renormalization of the detuning in the Bloch
14050 Caen Cedex 4, France. equationg 12,15. This renormalization is dependent on the
"Electronic address: sanchez@coria.fr population inversion. According to this approach, the modi-

Il. LASER EQUATIONS
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fied Maxwell-Bloch equations can be writt¢h0,13,15 sion. The remaining variable€ and D have no physical
meaning, they just naturally appear in the dynamical equa-
ad . tions with I, P, andX.
E__V[d_“L?(ep +e'p)], System(1) becomes
ap _ I=—20(1-C), P=-2(P—CX),
Ez—[1—|(5—bd)]p+ed, (1)
C=—(1+0)C+oP+IX—D(5-bX), (4)
Je
P S O D=—(1+0)D+C(5-bX), X=—y(X—r+C),
where where the overdot stands for the time derivative. The phase
space spanned bff, P, C, D, X is quite well adapted to
21 representation of the different attractoflémit cycles or
e= \/—5, strange attractoys
ANYIYL Let us now consider some symmetry properties of system
) (4). Whenb=0, it can easily be shown that &is replaced
_ @Nou D by —&, then system(4) is unchanged provided thd is
hegy,vi replaced by—D. This means that the dynamics can be stud-
ied only for =0 [2,19]. Therefore, this symmetry restricts
~ 20Ngu? the range of investigation. The problem is different witen
p=i————P. #0 because this symmetry is not valid. As a consequence,
hieoyiNYIYL

we have to investigate systef) for both positive and nega-
tive values ofé. The dynamics is expected to be different for

D is the population inversior? and £ are the complex am- éaositive or negative frequency detunings.

plitudes of the macroscopic polarization and the electri
field, respectively. u is the dipole moment. v, v, , and
v, are the relaxation constants of the inversion, the polariza- lll. STATIONARY STATES

sity of dipoles. w is the electric field frequency. 6= (w admits three fixed pointi) the off state
—wg)/y, is the normalized frequency detuning referenced

to the atomic line-center frequenay,. r represents the 120 P.=0 C.=0. D.=0 X.=r 5
pumping parameter. The timeis normalized to the coher- (160, Po=0, Co=0, Do=0, Xo=1) ©
ence lifetime ¢=v,t). The other parameters are \yhere the bar stands for the steady-state values(iBrio
=y /(2vy,) and y=1v,/y, . The parameteb is related to lasing states
dipole-dipole interactions[13]. It is real and positive. '
Throughout this paper we take=3 andy=1 for the nu-

. . . . . lo=T—Tya

merical calculations in order to compare with previously o
published results related to the laser equations in the absence =T (F—Tps)
of local-field correction2,3,10. These values allow one to —
achieve unstable steady states and physically correspond to == T , (6)
the so-called bad-cavity configuration where the photon life- — 1
time is lower than both the dipole lifetime and the inversion Du=17,(r—Tins)(6—bry.)
lifetime. _

For the investigation of the steady-state solutions and for =T

numerical integration we write Eq1) in a more convenient
form. Let us first consider the transformation into real andwherery,. are the lasing thresholds of the two lasing solu-
imaginary parts: tions,

e=X,+iX,, =X3+iX,, d=Xz. 2 1
LT Xa, PEXSTG ° @ (e =5p2 {208+ (140)?

We now define new dynamical variables:

“\J(1+0)[(1+ o)+ 4b(5—b)]}. (7)
I=x2+x3, P=x5+x3, C=X;Xg+XpXy,
(3 Let us note that the lowest threshold solution gives the usual
D=X1X4—XoX3, X=Xs. solution of a detuned homogeneously broadened laser in the
limit where b— 0, whereas the highest threshold solution di-
| represents the laser intensiBthe square of the amplitude verges[10]. Thus, in the absence of dipole-dipole interac-
of the macroscopic polarization, aidthe population inver- tions, there remains only one lasing solution as expected. In
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the following, we will call the lower and higher modésr Sl=1—1.
solutiong, the solutions of lowest and highest lasing thresh- o
old, respectively. ) oP= P=P,
It is well known that, wherb= 0, the lasing threshold is a oU=| 6C=C—-C, (8)
symmetric curve versus the frequency detunih§2]. We sD=D-D,
have demonstrated [10] that forb>0 the curve is globally =
shifted and the symmetry versusis broken. However, the OX=X=X,

minimum threshold operation remains unchanged. Assuming thaf| sU| <1, system(4) can be linearized around

the steady state and written in the form
IV. LINEAR STABILITY ANALYSIS

A. Stability of the off state 8U=L,(0)6U, 9
Let us define small perturbations from the off state: where
—20—\ 0 20 0 0
0 —2—X\ 2r 0 0
Lo(N)= o —1-0—-N —(6—hr) 0 (10)
0 0 5—br —1-0—\ 0
0 0 -y 0 —vy—A\

andL,(0)=L,(A=0). negative below the lasing threshold of the lowest mode. It
The characteristic polynomial of the eigenvalue problembecomes positive abovg, , meaning that the laser starts to

is defined byPy(\)=defL,(\)]. For the off state, the roots oscillate. However, in contrast with the classical complex

of the polynomial can be analytically evaluated: Lorenz-Haken equations,, again becomes negative beyond

a critical value of the pumping parameter. Figure 1 shows
)\0: -7

1
M=—1-0=—(a= B

)\22—1—0'4-%(6(—\/,5)1/2, (11)

1
Ng=—1-0——(a+ VB2,

1
N=—1-ot—(at VB2,

where

a=1-20+c?+4roc—(5—br)?

12
B=Db%*—4b3%35+ 5*+4bro(—1— 5%+ 20'+4r0—0'£)

+28[1+o(o—2—4r)]

+281+38%+0(0—2—4r)]+[1+a(o—2+4r)]2. ° % 0 ) 60 80 100
As to the parameters usexl; and\, are two complex con- FIG. 1. Evolution of the highest real eigenvalue of the linearized

jugate eigenvalues with negative real partsy andAz are  matrix associated with the off state versus the pumping réio.
both real negative numbersi, is a real eigenvalue and is b=0.5 andé variable.(b) =0 andb variable.
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examples of the evolution of, versusr for several detun- lasing threshold of the higher mode. The stability of the off
ings andb values. These curves clearly show that wien State will be discussed further in Sec. VD.

#0 the off state is unstable within a finite range of pumping
parameters. This range decreases either when dipole-dipole
interactions increase or when the frequency detuning de- Following the same procedure as in the previous section,
creases. A straightforward calculation shows that0 for  the problem can also be formulated in matrix form. We fi-
r=ry=-. Therefore the off state becomes stable beyond theally obtain the following reduced linearized matfix0]:

B. Stability of lasing states

-0 o 0 0
T (5-bry.)? -1 15 Jol1e -2 (sob
rtht_m( —bry.) m( —bry-.) + m( —bry.)
L.= o 1 (13)
u— - + e - + _l_ — +
1+U(5 brin-) 1+U(5 brin:) o bVl

I I 0 —Y

The stability of the lower solution has been investigatedful in the next section to investigate the dynamics at the
in [10]. The results show that, in the so-called bad-cavityminimum instability threshold.
configuration, this solution loses its stability via a Hopf bi-  Let us now consider the stability of the higher solution.
furcation for a critical value of the pumping parametgr  The characteristic polynomial of the eigenvalue problem can
(instability thresholdl For the parameters used, the instabil-be put in the form
ity threshold is such thaty,,>r.>ry,_. The main result
obtained in Ref[10] is that the minimum instability thresh- P4 (N\)=def(L, —XI)=(A=X1)(A=X2)(A=N3)(A—\3),
old is reduced when dipole-dipole interactions are taken into (19
account and it does not occur fér=0. In addition, the con-

dition required for the instability to occur is wherel is the identity matrix and tha;’s are the roots of

P.(N). For the parameters usdd=3, y=1, —4<<4,

2(—1+0) b>0, andr=ry,), 7?.+()\) has two complex conjugate ei-
< > (14 genvalues X3,\3) with a negative real part and one real
1-0+\4b(5-b)+(1+0) negative eigenvalue\i). The last eigenvalue)() is real

and positive forr=ry,,, meaning that the higher solution
loses its stability directly at its lasing threshold. Because at
the same time the off state again becomes stabler for
=r44 and the lower solution is also unstable, the result is
that the laser returns to the off state above the lasing thresh-
old of the higher solution.

which is less restrictive than the condition required in the
absence of dipole-dipole interactions, i.e> 1+ vy [2,3].
Figure 2 represents the evolutionrgfversus the detuning
for increasing values df. Figure 3 gives the evolution of the
detuning 6, that allows one to achieve a minimum insta-
bility threshold as a function df. These values will be use-
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FIG. 3. Evolution of the detuning,,, allowing the minimum of
FIG. 2. Evolution of the instability threshold. versusé. r. versush.
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FIG. 4. Schematic representation of the stability of the three
solutions as a function of the pumping parameter. The solid lines
correspond to stable steady states and the dotted lines to unstable
steady states.

The results of our linear stability analysis are summarized
in Fig. 4, which gives the stability of the three solutions
versus the pumping parameterThis representation shows
that, for the parameters used, no bistability can be achieve«
in the stationary regime because there is no coexistence c
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two stable steady-state solutions.
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FIG. 5. Bifurcation diagrams versus (a) b=0.25 and 5=
—0.652.(b) b=0 ands=0.

200

FIG. 6. Chaotic attractor for=40. (a) b=0.25 and 5=
—0.652.(b) b=0 ands=0.

V. NUMERICAL SOLUTIONS

The results obtained in the stationary regime demonstrate
that dipole-dipole interactions are equivalent to an inversion-
dependent renormalization of the frequency detuning. In the
time-dependent regime, this renormalization is also time de-
pendent, leading to additional nonlinear couplings in the
Lorenz-Haken equations. The aim of this section is to iden-
tify the differences induced by the local-field correction in
the dynamical behavior of a single-mode homogeneously
broadened laser. Systed) is numerically solved using a
Runge-Kutta method with an adaptative integration step.

A. A first comparison

Figure 5 gives the bifurcation diagrams versus the pump-
ing ratio at the minimum instability threshold fdr=0.25
andb=0, for comparison. In both cases, the system falls into
the chaotic regime directly at the instability threshold and
undergoes an inverse period-doubling cascade for high
pumping rates. In each case, there are periodic windows.
Globally, the main difference is a reduction of the chaotic
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250 | stable steady states, dotted lines to chaotic regimes, small boxes
with solid lines to periodic windows within the chaotic regime, and
solid lines to periodic solutions. In the latter case, one line corre-
200 sponds to &C* periodic orbit, two lines to &2, and so on.
by
»= 150 B. Dynamics at the minimum instability threshold
We use here the results of Fig. 3 in order to compute the
100 \\ bifurcation diagrams at the minimum instability threshold for
~— b ranging from 0 to 0.4. Figure 8 schematically represents
ok LT e the bifurcation diagrams when the pumping parameter is
50 100 150 200 250 300

X
n

FIG. 7. First-return maps for=22. (a) b=0.25 and 6=
—0.652.(b) b=0 and§=0.

range when dipole-dipole interactions are taken into account.
Further comparison can be made with the help of the chaotic
attractors and the first-return maps. Figure 6 represents the
chaotic attractors in the phase spéc#, X) at a value of the
detuning allowing minimum instability threshold operation,
for b=0.25[Fig. 6(a)] and forb=0 [Fig. 6(b)]; the pumping
ratio isr =40. Figure 7 gives the first-return maps just above
the Hopf bifurcation =22); the other parameters are un-
changed. Here again, there is no clear differences between
the solutions with and without dipole-dipole interactions.
When b+#0, the strange attractor together with the first-
return map are very similar to those of the solution of the
Lorenz-Haken equations without the LFT9].

In the following, we investigate two cases successively.
We first globally compare the dynamics at the minimum in-
stability threshold for severd values and then investigate
the influence of the frequency detunings for a fixed value of
b. Owing to the renormalization of the detuning, one can
reasonably expect that the dynamics at the minimum insta-
bility threshold will not be globally changed, while detuning
effects will induce noticeable differences with respect to the
solution of the complex Lorenz-Haken equations.
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FIG. 10. Bifurcation diagram for increasing and decreasing
pumping rates in the case of large frequency detunibng<.5 and
6=—2.8392.

adiabatically increased. There are no qualitative changes on
the dynamics. Indeed, for any value lnfthe laser is stable
for ry,_<r<r.; atr=r., the system falls directly into a
chaotic regime through a Hopf bifurcation. Finally, beyond a
second critical value of, the system follows an inverse
Feigenbaum sequence. The effect of the local-field correctioabsence of local-field correction, where the emergence of a
on the dynamics, at the minimum instability threshold, is aperiod-doubling cascade is accompanied by a reduction of

FIG. 11. Chaotic attractor fob=0.5 and5=—2.8392.(a) r
=50 and(b) r=58. The gray circle represents the off state.

global reduction of the chaotic domain. the range of pumping rates for which the system is chaotic
[2]. In addition, no periodic windows within this range have
C. Influence of the detuning been reported. Our results essentially demonstrate that, from

the dynamical point of view, the local-field correction is not

Figure 9 shows the influence of the frequency detuning ory simple renormalization of the frequency detuning.

the dynamical behavior of the laser in the case where
=0.5. In this case, the minimum instability threshold is
achieved foré,,,=—1.2392. In the following, we will take
this value as the reference. In contrast to the classical Up to now we have not observed the switch of the laser
Lorenz-Haken mod€l2], the symmetry versus the detuning toward the stable off state abovg_. . For example, in Fig.

is broken. Indeed, the evolution is different depending on thé, in the cased= —2.4392, the laser should have returned to
sign of the detuning referenced &,,,. The chaotic domains the off state for a pumping ratio of about 50. Numerical
increase when the detuning is shifted to the left&f,,  Simulations do not point out this expected switch. This fact
(negative values On the other hand, whefiis tuned toward suggests the existence of a range of generalized bistability
positive values starting from,,,, the evolution is similar to  between unstable steady states and the off state. This bista-
that obtained in the absence of dipole-dipole interactj@hs bility arises as a consequence of the smallness of the basins
Indeed, in the latter case, the detuning tends to stabilize thef attraction of the off state in the regioeery,, . In order to
chaotic regime onto periodic orbits of low order. Finally, far confirm the bistability we have calculated the bifurcation
from &, the system stabilizes on a limit cycle of period 1 diagram for increasing and decreasing pumping rates. The
for any pumping rate above the instability threshold. Wien results are given in Fig. 10 fdr=0.5 andé= —2.8392, and

is tuned toward negative values starting fréy,, the cha-  clearly exhibit a large bistability domain between a chaotic
otic domain increases and there is the emergence of a periodttractor and a fixed point. It is not trivial to determine the
doubling cascade before the chaotic regime. At the sambasins of attraction of the off state because the system
time, large periodic windows appear within the chaotic do-evolves in a five-dimensional space. Nevertheless, we have
main. This is the opposite result to the one obtained in theverified that, forr=ry,_, if we take as initial conditions a

D. Generalized bistability
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perturbed off state, the laser systematically falls into the bafor the parameters used. These two features have been ob-
sins of attraction of the chaotic solution as the perturbation iserved previously in the classical detuned homogeneously
increased. Further investigation of the bifurcation diagram$roadened laser equatiof8, i.e., in absence of the LFC.
for increasing and decreasing pumping rates has shown that
the expected switch never occurs férgreater than about
—2.5. No generalized bistability has been observed under VI. CONCLUSIONS
these conditions for pumping ratios up tte-150. The ab-
sence of the switch implies that the different attractors of the The influence of the local-field correction on the dynam-
system (strange attractor or periodic orbitslo not pass ics of a single-mode homogeneously broadened laser has
through the basins of attraction of the off state. Thereforepeen investigated. The five-dimensional system of equations
the system cannot be attracted by the stable off state. Oramits three fixed points: the off state and two lasing states.
can give some physical insight into the influence of the deA linear stability analysis has revealed that the off state is
tuning on the switches. Figures (81 and 11b) show the unstable within a finite range of pumping rates, spanning
attractors forb=0.5, §=—2.8392, andr=50 and 58, re- from the lasing threshold of the lower solution( ) to the
spectively. The off state is also represented. The trajectory ifasing threshold of the higher solutiony(,). The lower so-
the phase space approaches the off state each time the pojution is stable betweeny,_ and a critical value ., at which
lation inversion is high. For large negative valuesédfthe the stability is lost through a Hopf bifurcation. The higher
trajectory passes very close to the off state. The instantasolution is always unstable. Therefore, the LFC tends to sta-
neous frequency detuning— b X of the modified Maxwell-  bilize the off state above a particular value of the pumping
Bloch equations then becomes very negative. In some casgsarameter. The numerical simulations have pointed out im-
this instantaneous detuning becomes so negative that the lpertant differences between the dynamical scenarios with
ser can no longer oscillate. A switch to the off state occursand without local-field correction. First, we have demon-
For either moderate negative or positive detunings, the trastrated that, at the minimum instability threshold, the LFC
jectory remains far from the off state. The instantaneous dereduces the range of chaotic operation. For a given LFC
tuning is never very large and the laser continues to oscillateparameter, the symmetry versus the frequency detuning is
no switch occurs. broken. Hence, from the dynamical point of view, the LFC is
Figure 10 also exhibits a bistability between the stationarynot a simple renormalization of the frequency detuning. In
state and a periodic orbit near the instability thresh@ldin ~ addition, the LFC induces generalized bistability for large
addition, the curve shows that the bifurcation is subcriticalnegative frequency detunings.
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