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Laser instabilities in homogeneously broadened dense media

Michael Fromager,* Marc Brunel, and Franc¸ois Sanchez†

Groupe d’Optique et d’Optronique, CORIA, UMR 6614, Universite´ de Rouen, Place Emile Blondel,
76821 Mont-Saint-Aignan Cedex, France

~Received 22 December 1999; published 10 April 2000!

We investigate the laser equations in the mean-field limit for a homogeneously broadened two-level system,
taking into account the local-field correction arising from dipole-dipole interactions. Our analysis concentrates
on the dynamical properties of the laser versus the pumping parameter. The effect of detuning between atomic
and cavity frequencies is also studied. We first show that the local-field correction reduces the range of the
chaotic regime when the frequency detuning is set for minimum instability threshold operation. For a fixed
local-field correction, we demonstrate that the symmetry of the dynamical scenario versus the frequency
detuning is broken. In addition, we point out generalized bistability between the chaotic regime and the off
state of the laser. This bistability results from the smallness of the basins of attraction of the off state.

PACS number~s!: 42.55.2f, 42.60.Mi, 42.65.Sf, 42.65.Pc
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I. INTRODUCTION

The interest in laser instabilities has been growing dur
the two past decades. This field of investigation was initia
opened by Haken, who established the fundamental ana
between single-mode homogeneously broadened laser e
tions and Lorenz equations@1#, thus demonstrating that de
terministic chaos was possible in laser systems. These e
tions predict chaos in the bad-cavity and high-intens
domain through a Hopf bifurcation. Much attention has be
given to the influence of the microscopic parameters
decay times on the instability threshold@2–6# and more gen-
erally on the dynamical properties of the solutions@2–8#.
The nature of the bifurcation~subcritical or supercritical! has
been investigated in@3,5#. The effect of detuning betwee
the atomic and cavity frequencies on the dynamics has
been investigated@2#. The main result is that the introductio
of detuning destroys much of the complicated behavior
the real Lorenz-Haken equations and has a stabilizing eff
However, the frequency detuning increases the value of
instability threshold@2,6#. The latter can be significantly
lowered by taking into account some inhomogeneous bro
ening process@9#. More recently, we have demonstrated th
the local-field correction~LFC! substantially reduces the in
stability threshold in a homogeneously broadened sin
mode laser@10#. The LFC resulting from dipole-dipole inter
actions has been considered previously in connection w
intrinsic optical bistable media@11–17#. The influence of the
LFC on laser instabilities in inhomogeneously broaden
media had also been reported@18#. Again, the LFC reduces
the instability threshold. The aim of this paper is to inves
gate the effects of dipole-dipole interactions on the dyna
cal properties of a detuned single-mode homogeneo
broadened laser.

It has been shown that the LFC leads to a direct coup
between the population inversion and the macroscopic po
ization@13,15# and can be viewed as a renormalization of t
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frequency detuning. One can therefore expect that the rol
the LFC will be equivalent to an additional frequency detu
ing. In fact, we will demonstrate that this is true in the s
tionary regime but it is no longer valid in the time-depende
regime achieved when the steady state is unstable. Our p
is organized as follows. In Sec. II we give the modifie
Maxwell-Bloch equations and transform them into a mo
convenient form for both numerical integration and repres
tation of the different attractors. We also emphasize the s
metry properties of the equations versus the frequency de
ing. Note that, in the absence of LFC, the solutions of
detuned laser equations do not depend on the sign of
detuning@2,19#. Section III is devoted to the stationary stat
of the laser equations. It appears that the LFC leads to
existence of two lasing steady-state solutions@10#. This is
connected to intrinsic optical bistable properties exhibited
dense media in single-pass processes@11,12#. In Sec. IV, we
perform a linear stability analysis of the steady-state so
tions. In particular, we demonstrate that the off state
comes stable again above the lasing threshold of the u
lasing solution, which is always unstable. The first lasi
solution is stable from the threshold to a critical value of t
pumping parameter for which the system loses its stab
through a Hopf bifurcation@10,20,21#. In Sec. V, we numeri-
cally solve the nonlinear coupled differential equations. W
focus our interest on pointing out features induced by
local-field correction. We first show that the LFC reduces
chaotic domain when the detuning is set to achieve a m
mum instability threshold operation. The effect of the detu
ing appears to be very different from what it is in the las
equations in the absence of LFC. In particular, generali
bistability can be obtained between either a chaotic or a
riodic regime and the off state.

II. LASER EQUATIONS

The local-field correction is needed when dipole-dipo
interactions become non-negligible, typically in a dense m
dium. It has been demonstrated that dipole-dipole inter
tions lead to a renormalization of the detuning in the Blo
equations@12,15#. This renormalization is dependent on th
population inversion. According to this approach, the mo
©2000 The American Physical Society04-1
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fied Maxwell-Bloch equations can be written@10,13,15#

]d

]t
52g@d2r 1 1

2 ~ep* 1e* p!#,

]p

]t
52@12 i ~d2bd!#p1ed, ~1!

]e

]t
52s~e2p!,

where

e5
2m

\Ag ig'

E,

d5
vN0m2

\e0g'g l
D,

p5 i
2vN0m2

\e0g lAg ig'

P.

D is the population inversion,P andE are the complex am
plitudes of the macroscopic polarization and the elec
field, respectively. m is the dipole moment. g i , g' , and
g l are the relaxation constants of the inversion, the polar
tion, and the optical intensity, respectively.N0 is the den-
sity of dipoles. v is the electric field frequency.d5(v
2v0)/g' is the normalized frequency detuning referenc
to the atomic line-center frequencyv0 . r represents the
pumping parameter. The timet is normalized to the coher
ence lifetime (t5g't). The other parameters ares
5g l /(2g') and g5g i /g' . The parameterb is related to
dipole-dipole interactions@13#. It is real and positive.
Throughout this paper we takes53 andg51 for the nu-
merical calculations in order to compare with previous
published results related to the laser equations in the abs
of local-field correction@2,3,10#. These values allow one t
achieve unstable steady states and physically correspon
the so-called bad-cavity configuration where the photon l
time is lower than both the dipole lifetime and the inversi
lifetime.

For the investigation of the steady-state solutions and
numerical integration we write Eq.~1! in a more convenien
form. Let us first consider the transformation into real a
imaginary parts:

e5x11 ix2 , p5x31 ix4 , d5x5 . ~2!

We now define new dynamical variables:

I 5x1
21x2

2, P5x3
21x4

2, C5x1x31x2x4 ,
~3!

D5x1x42x2x3 , X5x5 .

I represents the laser intensity,P the square of the amplitud
of the macroscopic polarization, andX the population inver-
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sion. The remaining variablesC and D have no physical
meaning, they just naturally appear in the dynamical eq
tions with I, P, andX.

System~1! becomes

İ 522s~ I 2C!, Ṗ522~P2CX!,

Ċ52~11s!C1sP1IX2D~d2bX!, ~4!

Ḋ52~11s!D1C~d2bX!, Ẋ52g~X2r 1C!,

where the overdot stands for the time derivative. The ph
space spanned by~I, P, C, D, X! is quite well adapted to
representation of the different attractors~limit cycles or
strange attractors!.

Let us now consider some symmetry properties of sys
~4!. Whenb50, it can easily be shown that ifd is replaced
by 2d, then system~4! is unchanged provided thatD is
replaced by2D. This means that the dynamics can be stu
ied only for d>0 @2,19#. Therefore, this symmetry restrict
the range of investigation. The problem is different whenb
Þ0 because this symmetry is not valid. As a consequen
we have to investigate system~4! for both positive and nega
tive values ofd. The dynamics is expected to be different f
positive or negative frequency detunings.

III. STATIONARY STATES

At steady state, all the derivatives vanish and system~4!
admits three fixed points:~i! the off state

~ Ī o50, P̄o50, C̄o50, D̄o50, X̄o5r ! ~5!

where the bar stands for the steady-state values, and~ii ! two
lasing states,

S Ī 65r 2r th6

P̄65r th6~r 2r th6!

C̄65r 2r th6

D̄65
1

11s
~r 2r th6!~d2br th6!

X̄65r th6

D , ~6!

wherer th6 are the lasing thresholds of the two lasing so
tions,

r th65
1

2b2 $2bd1~11s!2

6A~11s!2@~11s!214b~d2b!#%. ~7!

Let us note that the lowest threshold solution gives the us
solution of a detuned homogeneously broadened laser in
limit whereb→0, whereas the highest threshold solution
verges@10#. Thus, in the absence of dipole-dipole intera
tions, there remains only one lasing solution as expected
4-2
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the following, we will call the lower and higher modes~or
solutions!, the solutions of lowest and highest lasing thres
old, respectively.

It is well known that, whenb50, the lasing threshold is a
symmetric curve versus the frequency detuningd @2#. We
have demonstrated in@10# that forb.0 the curve is globally
shifted and the symmetry versusd is broken. However, the
minimum threshold operation remains unchanged.

IV. LINEAR STABILITY ANALYSIS

A. Stability of the off state

Let us define small perturbations from the off state:
em
s

s

05380
-

dUW 5S dI 5I 2 Ī o

dP5P2 P̄o

dC5C2C̄o

dD5D2D̄o

dX5X2X̄o

D . ~8!

Assuming thatidUW i!1, system~4! can be linearized around
the steady state and written in the form

dUG 5LI o~0!dUW , ~9!

where
LI o~l!5S 22s2l 0 2s 0 0

0 222l 2r 0 0

r s 212s2l 2~d2br ! 0

0 0 d2br 212s2l 0

0 0 2g 0 2g2l

D ~10!
. It
to
lex
d
ws

ed
andLI o(0)5LI o(l50).
The characteristic polynomial of the eigenvalue probl

is defined byP0(l)5det@LI o(l)#. For the off state, the root
of the polynomial can be analytically evaluated:

l052g,

l15212s2
1

&
~a2Ab!1/2,

l25212s1
1

&
~a2Ab!1/2, ~11!

l35212s2
1

&
~a1Ab!1/2,

l45212s1
1

&
~a1Ab!1/2,

where

a5122s1s214rs2~d2br !2,
~12!

b5b4r 424b3r 3d1d414brd~212d212s14rs2s2!

12d2@11s~s2224r !#

12d2@113d21s~s2224r !#1@11s~s2214r !#2.

As to the parameters used,l1 andl2 are two complex con-
jugate eigenvalues with negative real parts.l0 andl3 are
both real negative numbers.l4 is a real eigenvalue and i
negative below the lasing threshold of the lowest mode
becomes positive abover th2 , meaning that the laser starts
oscillate. However, in contrast with the classical comp
Lorenz-Haken equations,l4 again becomes negative beyon
a critical value of the pumping parameter. Figure 1 sho

FIG. 1. Evolution of the highest real eigenvalue of the lineariz
matrix associated with the off state versus the pumping ratio.~a!
b50.5 andd variable.~b! d50 andb variable.
4-3



ng
ip
d

th

off

ion,
fi-

FROMAGER, BRUNEL, AND SANCHEZ PHYSICAL REVIEW A61 053804
examples of the evolution ofl4 versusr for several detun-
ings andb values. These curves clearly show that whenb
Þ0 the off state is unstable within a finite range of pumpi
parameters. This range decreases either when dipole-d
interactions increase or when the frequency detuning
creases. A straightforward calculation shows thatl450 for
r 5r th6 . Therefore the off state becomes stable beyond
te
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i-
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-
int

he

e
a-
-
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lasing threshold of the higher mode. The stability of the
state will be discussed further in Sec. V D.

B. Stability of lasing states

Following the same procedure as in the previous sect
the problem can also be formulated in matrix form. We
nally obtain the following reduced linearized matrix@10#:
LI 65S 2s s 0 0

r th62
s

~11s!2 ~d2br th6!2 21
s21

s11
~d2br th6! AĪ 6S 11

b

11s
~d2br th6! D

s

11s
~d2br th6!

1

11s
~d2br th6! 212s 2bAĪ 6

2gAĪ 6 2gAĪ 6
0 2g

D . ~13!
the

n.
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n
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The stability of the lower solution has been investiga
in @10#. The results show that, in the so-called bad-cav
configuration, this solution loses its stability via a Hopf b
furcation for a critical value of the pumping parameterr c
~instability threshold!. For the parameters used, the instab
ity threshold is such thatr th1.r c.r th2 . The main result
obtained in Ref.@10# is that the minimum instability thresh
old is reduced when dipole-dipole interactions are taken
account and it does not occur ford50. In addition, the con-
dition required for the instability to occur is

g,
2~211s!

12s1A4b~d2b!1~11s!2
, ~14!

which is less restrictive than the condition required in t
absence of dipole-dipole interactions, i.e.,s.11g @2,3#.

Figure 2 represents the evolution ofr c versus the detuning
for increasing values ofb. Figure 3 gives the evolution of th
detuning (dmin) that allows one to achieve a minimum inst
bility threshold as a function ofb. These values will be use

FIG. 2. Evolution of the instability thresholdr c versusd.
d
y

-

o

ful in the next section to investigate the dynamics at
minimum instability threshold.

Let us now consider the stability of the higher solutio
The characteristic polynomial of the eigenvalue problem c
be put in the form

P1~l!5det~LI 12lII !5~l2l1!~l2l2!~l2l3!~l2l3* !,
~15!

where II is the identity matrix and thel i ’s are the roots of
P1(l). For the parameters used~s53, g51, 24<d<4,
b.0, and r>r th1!, P1(l) has two complex conjugate e
genvalues (l3 ,l3* ) with a negative real part and one re
negative eigenvalue (l2). The last eigenvalue (l1) is real
and positive forr>r th1 , meaning that the higher solutio
loses its stability directly at its lasing threshold. Because
the same time the off state again becomes stable for
>r th1 and the lower solution is also unstable, the result
that the laser returns to the off state above the lasing thr
old of the higher solution.

FIG. 3. Evolution of the detuningdmin allowing the minimum of
r c versusb.
4-4
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LASER INSTABILITIES IN HOMOGENEOUSLY . . . PHYSICAL REVIEW A61 053804
The results of our linear stability analysis are summariz
in Fig. 4, which gives the stability of the three solutio
versus the pumping parameterr. This representation show
that, for the parameters used, no bistability can be achie
in the stationary regime because there is no coexistenc
two stable steady-state solutions.

FIG. 5. Bifurcation diagrams versusr. ~a! b50.25 andd5
20.652.~b! b50 andd50.

FIG. 4. Schematic representation of the stability of the th
solutions as a function of the pumping parameter. The solid li
correspond to stable steady states and the dotted lines to uns
steady states.
05380
d
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V. NUMERICAL SOLUTIONS

The results obtained in the stationary regime demonst
that dipole-dipole interactions are equivalent to an inversi
dependent renormalization of the frequency detuning. In
time-dependent regime, this renormalization is also time
pendent, leading to additional nonlinear couplings in t
Lorenz-Haken equations. The aim of this section is to id
tify the differences induced by the local-field correction
the dynamical behavior of a single-mode homogeneou
broadened laser. System~4! is numerically solved using a
Runge-Kutta method with an adaptative integration step.

A. A first comparison

Figure 5 gives the bifurcation diagrams versus the pum
ing ratio at the minimum instability threshold forb50.25
andb50, for comparison. In both cases, the system falls i
the chaotic regime directly at the instability threshold a
undergoes an inverse period-doubling cascade for h
pumping rates. In each case, there are periodic windo
Globally, the main difference is a reduction of the chao

FIG. 6. Chaotic attractor forr 540. ~a! b50.25 and d5
20.652.~b! b50 andd50.

e
s
ble
4-5
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FROMAGER, BRUNEL, AND SANCHEZ PHYSICAL REVIEW A61 053804
range when dipole-dipole interactions are taken into acco
Further comparison can be made with the help of the cha
attractors and the first-return maps. Figure 6 represents
chaotic attractors in the phase space~I, P, X! at a value of the
detuning allowing minimum instability threshold operatio
for b50.25@Fig. 6~a!# and forb50 @Fig. 6~b!#; the pumping
ratio is r 540. Figure 7 gives the first-return maps just abo
the Hopf bifurcation (r 522); the other parameters are u
changed. Here again, there is no clear differences betw
the solutions with and without dipole-dipole interaction
When bÞ0, the strange attractor together with the fir
return map are very similar to those of the solution of t
Lorenz-Haken equations without the LFC@19#.

In the following, we investigate two cases successive
We first globally compare the dynamics at the minimum
stability threshold for severalb values and then investigat
the influence of the frequency detunings for a fixed value
b. Owing to the renormalization of the detuning, one c
reasonably expect that the dynamics at the minimum in
bility threshold will not be globally changed, while detunin
effects will induce noticeable differences with respect to
solution of the complex Lorenz-Haken equations.

FIG. 7. First-return maps forr 522. ~a! b50.25 and d5
20.652.~b! b50 andd50.
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B. Dynamics at the minimum instability threshold

We use here the results of Fig. 3 in order to compute
bifurcation diagrams at the minimum instability threshold f
b ranging from 0 to 0.4. Figure 8 schematically represe
the bifurcation diagrams when the pumping parameter

FIG. 9. Bifurcation diagram versusd for b50.5. Same conven-
tions as in Fig. 8.

FIG. 8. Bifurcation diagram at the minimum instability thres
old for increasing values ofb. Dashed-dotted lines correspond
stable steady states, dotted lines to chaotic regimes, small b
with solid lines to periodic windows within the chaotic regime, a
solid lines to periodic solutions. In the latter case, one line co
sponds to aC1 periodic orbit, two lines to aC2, and so on.
4-6
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LASER INSTABILITIES IN HOMOGENEOUSLY . . . PHYSICAL REVIEW A61 053804
adiabatically increased. There are no qualitative change
the dynamics. Indeed, for any value ofb, the laser is stable
for r th2,r ,r c ; at r 5r c , the system falls directly into a
chaotic regime through a Hopf bifurcation. Finally, beyond
second critical value ofr, the system follows an invers
Feigenbaum sequence. The effect of the local-field correc
on the dynamics, at the minimum instability threshold, is
global reduction of the chaotic domain.

C. Influence of the detuning

Figure 9 shows the influence of the frequency detuning
the dynamical behavior of the laser in the case whereb
50.5. In this case, the minimum instability threshold
achieved fordmin521.2392. In the following, we will take
this value as the reference. In contrast to the class
Lorenz-Haken model@2#, the symmetry versus the detunin
is broken. Indeed, the evolution is different depending on
sign of the detuning referenced todmin . The chaotic domains
increase when the detuning is shifted to the left ofdmin
~negative values!. On the other hand, whend is tuned toward
positive values starting fromdmin , the evolution is similar to
that obtained in the absence of dipole-dipole interactions@2#.
Indeed, in the latter case, the detuning tends to stabilize
chaotic regime onto periodic orbits of low order. Finally, f
from dmin the system stabilizes on a limit cycle of period
for any pumping rate above the instability threshold. Whed
is tuned toward negative values starting fromdmin , the cha-
otic domain increases and there is the emergence of a pe
doubling cascade before the chaotic regime. At the sa
time, large periodic windows appear within the chaotic d
main. This is the opposite result to the one obtained in

FIG. 10. Bifurcation diagram for increasing and decreas
pumping rates in the case of large frequency detunings.b50.5 and
d522.8392.
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absence of local-field correction, where the emergence
period-doubling cascade is accompanied by a reduction
the range of pumping rates for which the system is cha
@2#. In addition, no periodic windows within this range hav
been reported. Our results essentially demonstrate that,
the dynamical point of view, the local-field correction is n
a simple renormalization of the frequency detuning.

D. Generalized bistability

Up to now we have not observed the switch of the la
toward the stable off state abover th1 . For example, in Fig.
9, in the cased522.4392, the laser should have returned
the off state for a pumping ratio of about 50. Numeric
simulations do not point out this expected switch. This fa
suggests the existence of a range of generalized bistab
between unstable steady states and the off state. This b
bility arises as a consequence of the smallness of the ba
of attraction of the off state in the regionr>r th1 . In order to
confirm the bistability we have calculated the bifurcati
diagram for increasing and decreasing pumping rates.
results are given in Fig. 10 forb50.5 andd522.8392, and
clearly exhibit a large bistability domain between a chao
attractor and a fixed point. It is not trivial to determine th
basins of attraction of the off state because the sys
evolves in a five-dimensional space. Nevertheless, we h
verified that, forr>r th1 , if we take as initial conditions a

g

FIG. 11. Chaotic attractor forb50.5 andd522.8392. ~a! r
550 and~b! r 558. The gray circle represents the off state.
4-7
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FROMAGER, BRUNEL, AND SANCHEZ PHYSICAL REVIEW A61 053804
perturbed off state, the laser systematically falls into the
sins of attraction of the chaotic solution as the perturbatio
increased. Further investigation of the bifurcation diagra
for increasing and decreasing pumping rates has shown
the expected switch never occurs ford greater than abou
22.5. No generalized bistability has been observed un
these conditions for pumping ratios up tor 5150. The ab-
sence of the switch implies that the different attractors of
system ~strange attractor or periodic orbits! do not pass
through the basins of attraction of the off state. Therefo
the system cannot be attracted by the stable off state.
can give some physical insight into the influence of the
tuning on the switches. Figures 11~a! and 11~b! show the
attractors forb50.5, d522.8392, andr 550 and 58, re-
spectively. The off state is also represented. The trajector
the phase space approaches the off state each time the
lation inversion is high. For large negative values ofd, the
trajectory passes very close to the off state. The insta
neous frequency detuningd2bX of the modified Maxwell-
Bloch equations then becomes very negative. In some ca
this instantaneous detuning becomes so negative that th
ser can no longer oscillate. A switch to the off state occu
For either moderate negative or positive detunings, the
jectory remains far from the off state. The instantaneous
tuning is never very large and the laser continues to oscill
no switch occurs.

Figure 10 also exhibits a bistability between the station
state and a periodic orbit near the instability thresholdr c . In
addition, the curve shows that the bifurcation is subcriti
ca

D

A

ev
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for the parameters used. These two features have been
served previously in the classical detuned homogeneo
broadened laser equations@3#, i.e., in absence of the LFC.

VI. CONCLUSIONS

The influence of the local-field correction on the dyna
ics of a single-mode homogeneously broadened laser
been investigated. The five-dimensional system of equat
admits three fixed points: the off state and two lasing sta
A linear stability analysis has revealed that the off state
unstable within a finite range of pumping rates, spann
from the lasing threshold of the lower solution (r th2) to the
lasing threshold of the higher solution (r th1). The lower so-
lution is stable betweenr th2 and a critical valuer c , at which
the stability is lost through a Hopf bifurcation. The high
solution is always unstable. Therefore, the LFC tends to
bilize the off state above a particular value of the pump
parameter. The numerical simulations have pointed out
portant differences between the dynamical scenarios w
and without local-field correction. First, we have demo
strated that, at the minimum instability threshold, the LF
reduces the range of chaotic operation. For a given L
parameter, the symmetry versus the frequency detunin
broken. Hence, from the dynamical point of view, the LFC
not a simple renormalization of the frequency detuning.
addition, the LFC induces generalized bistability for lar
negative frequency detunings.
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