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We consider the case when decoherence is due to the fluctuations of some classical variable or parameter of
a system and not to its entanglement with the environment. Under few and quite general assumptions, we
derive a model-independent formalism for this nondissipative decoherence, and we apply it to explain the
decoherence observed in some recent experiments in cavity QED and on trapped ions.

PACS numbe(s): 42.50.Ar, 32.80-t, 03.65—w

I. INTRODUCTION problematic whenever the environmental degrees of freedom
responsible for decoherence are not easily recognizable.
Decoherence is the rapid transformation of a pure linear Decoherence is not always necessarily due to entangle-
superposition state into the corresponding statistical mixtur&ent with an environment, but it may be due, as well, to the
fluctuations of some classical parameter or internal variable
_ — 1.2 2 . of the system. This kind of decoherence is present even in
|)= | 1) + Blep2)= pmi= || 1)(¢1| +| B] |¢2><¢2|,1 isolatedysystems, where environment—indchd decoherence
can be neglected. In these cases the system energy is con-
§erved, and one has a different form of decoherence, which
we shall call “nondissipative decoherence.” In such cases,
s : S very single experimental run is characterized by the usual
honunitary _evolut|0n._ The most common approach IS via SOImitary evolution generated by the system Hamiltonian.
called environment-induced decoheren2], which i 5\ever, definite statistical predictions are obtained only by
based on the consideration that it is extremely difficult torepeating the experiment many times, and this is when deco-
isolate a system perfectly from uncontrollable degrees oference takes place, because each run corresponds to a dif-
freedom(the “environment’). The nonunitary evolution of ferent random value or stochastic realization of the fluctuat-
the system of interest is obtained by considering the interagng classical variable. The experimental results correspond
tion with these uncontrolled degrees of freedom and tracingherefore to an average over these fluctuations and they will
over them. In this approach, decoherence is caused by thiescribe in general an effective nonunitary evolution.
entanglement of the two states of the superposition with two In this paper we shall present a quite general theory of
approximately orthogonal states of the environn&s) and  nondissipative decoherence for isolated systems which can

this process does not preserve the purity of the state, that i
TrpZ,:.,<1, and therefore it has to be described in terms of

|E>), be applied for two different kinds of fluctuating variables or
parameters: the case of a random evolution time and the case
a + Q|E) = of a fluctuating Rabi frequency yielding a fluctuation of the
(algs)* AlYzD) ®|Eo)=] 1) Hamiltonian. In both cases one has random phasés!'”
=a|)®|E1) + Blin) ®|E,). (2 in the energy eigenstates basis that, once averaged over many

experimental runs, lead to the decay of off-diagonal matrix
Tracing over the environment and usig;|E,)=0, one elements of the density operator, while leaving the diagonal

gets ones unchanged.
The outline of the paper is as follows. In Sec. Il we shall
Trern| W) o Y1} = Pmix. (3y  derive the theory under general assumptions, following

closely the original derivation presented[®4]. In Sec. llI

we shall apply this theory in order to describe the decoher-
ence effects observed in two cavity QED experiments, one
describing Rabi oscillations associated with the resonant in-

ronment acquires “information” on the system state angteraction between a Rydberg atom and a microwave cavity

therefore decoherence is described as an irreversible flow 690(_1e[5], an_d the s_econd_ one a Ramsey interferometry EX-
information from the system into the environmét. In this periment using a dispersive interaction between the cavity

approach, the system energy is usually not conserved and tjade and the atorf6]. In Sec. IV we shall apply our ap-

interaction with the environment also accounts for the irrePr0ach to a Rabi oscillation experiment for trapped ibris

versible thermalization of the system of interest. However,and Sec. Vis for concluding remarks.

this approach is inevitablgnodel dependenbecause one has
to assume a model Hamiltonian for the environment and the
interaction between system and environment. This modeliza- The formalism describing nondissipative decoherence of
tion, and therefore any quantitative prediction, becomessolated systems was derived[8y4] by considering the case

wherep,ix is defined in Eq(1). The environment behaves as
a measurement apparatus because the stiedehave as
“pointer states” associated withy;); in this way, the envi-

II. GENERAL FORMALISM
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of a system with random evolution time. The evolution timeexpressions for the evolution operator for the averaged den-
may be random because of the finite time needed to prepasity matrix V(t) and for the probability density
the initial state of the system or because of the randomned3(t,t’,7;,7,) [3,4]:

of the detection time, as well as for many other reasons. For

example, in cavity QED experiments, the evolution time is V(t)=(1+iL ) 7, 9
the interaction time, which is determined by the time of flight .
of the atoms within the cavity. This time can be random due , e t/n (t/) 7))t
to atomic velocity dispersion of classical or quantum origin. P(t,t,71,72) = T L (t/7y) (10
In these cases, the experimental observations are not de-
scribed by the usual density matrix of the whole systi), Notice that the ordinary quantum evolution is recovered
but by its time averaged counterpfB4, when 7= 7,=7—0; in this limit P(t,t’, 7y, 7)— d(t—t")

so thatp(t) = p(t) andV(t)=exp{—iLt} is the usual unitary
e ‘”d Bt Yot 4 evolution. Moreover, it can be seen that E@). implies that
p(t)= . tUP(t,t")p(t"), 4) p(t) satisfies a finite difference equatiéd). The semigroup
condition leads to the form of the probability distribution
where p(t') =exp{—iLt'}p(0) is the usual unitarily evolved P(t.t’,71,72) we use to perform the average on the fluctu-
density operator from the initial state ahd--=[H,...]/4.  ating evolution times. However, notice that this probability
Thereforet’ denotes the random evolution time, whiless a  distribution depends on both the two scaling timgsand 7,

parameter describing the usual “clock” time. Using E4), ~ ©Only apparently. In fact, if we change variable in the time
one can write integral,t”"=(7,/7)t’, it is possible to rewrite the integral

expression foN(t) in the following way:

(1) =V(1)p(0), (5) i}

where V(t)=(1+iL 1) Y= fo dt"P(t,t", 7p)e L/t
11
V(t)ZI dt'P(t,t")e Lt (6)  where
0

) ) e—t"/TZ (tn/ Tz)(t/Tz)_l
is the evolution operator for the averaged state of the system. P(t,t",70)= (12)
Following Refs[3,4], we determine the functioR(t,t’) by 2 I'(t/7y)

imposing the following plausible conditiong) p(t) must be : . .
a density operator, i.e., it must be self-adjoint, positive defi-ThIS probability density depends only ap. However, Eq.

nite, and with unit trace. This leads to the condition that(ll) contains an effectiye rescalqd time evolution .g.ener_ator
P(t,t’) must be non-negative and normalized, i.e., a prob—L?ff:.L(Tl/TZ)' The physical meaning of the probability dis-
ability density int’, so that Eq(4) is a completely positive tr]ltiﬁt'ot\r;vc’f qu.'(12i', of the re;caleg ev:)lutcqu? operatqr(,j ant(:]
mapping. (i) V(t) satisfies the semigroup proper¥/(t; ot the two scaling imes can be understood ITwe consider e
+1,)=V(t)V(t,), with t;,t,=0. following simple example. Let us consider a system with

The semigroup condition is satisfied by an exponentiaf—'am"tonianH(t):f(t)HO’ where
dependence of

vt = vy Y7 @ f(t)=nzo 0(t—n7y) O(N7o+ 7 1) (13)

where 7, naturally appears as a scaling time. A solution sat{6(t) is the Heaviside step functignthat is, a system with
isfying all the conditions we have imposed can be found byHamiltonianH, which is periodically applied for a time, ,
separatingV, into its Hermitian and anti-Hermitian parts With time period, (m,=7;), and which is “turned off”
V;=A+iB and by considering the Gamma function integral Otherwise. The unitary evolution operator for this system is

identity [8] U(t)=e F® wherelLy=[H,,...] and
(V) Ym2=(A+iB) Y72 F(t)= t+n(r— 1), nrsStsnr+7g 14
(n+l)Tl, n7'2+ Tlgts(n‘Fl)Tz,

1 o .
- - t/Tp—1a—NAL—iAB
I'(t/r) fo A € e ' ® which can, however, be well approximated by the “res-

caled” evolution operatotd o4(t)=e -o{(/%) |n fact, the
Now the right hand side of E@8) can be identified with the maximum relative error in replacing(t) with t(7/7y) is
right hand side of Eq(6) if we impose the following condi- (7,— 71)/t and becomes negligible at large timegee Fig.
tions:\=t'/7,, wherer, is another scaling time, generally 1). This fact suggests interpretation of the time average of
different fromr,; B=L 7, in order to make the exponential Eg. (11) as an average over unitary evolutions generated by
terms identical; and\=1 in order to get a normalized prob- L, taking place randomly in time, with mean time widih,
ability distributionP(t,t"). This choice yields the following and separated by a mean time interwal This interpretation
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8 consider the standard situation of an isolated system with
,,,,, ' HamiltonianH, continuously evolving in time, and we shall
g always assume;=7,=r.

When =0, V(t) =exp{—iLt} is the usual unitary evolu-
tion. For finite 7, on the contrary, the evolution equati¢®)
describes a decay of the off-diagonal matrix elements in the

3 10 15 30 energy representation, whereas the diagonal matrix elements
t (arb.units) remain constant, i.e., the energy is still a constant of motion.
In fact, in the energy eigenbasis, E@S) and (9) yield

[T N -

FIG. 1. The functior(t) defined in Eq(14) (full line) is plot-
ted as a function of timéexpressed in arbitrary unjtand com-

1
pared with its “linear approximation,” the rescaled tinte; /7, Pam()= ——————7=pn.m(0)
(dashed ling The relative error between them is given by, ( ' (Itiwgmr) 20"
—7,)/t and is negligible at large timds e ivnmt
=
(l+wnz,m721)t/27-2

is confirmed by the fact that wham=k,, for integerk, the
probability distributionP(t,t”,7,) of Eq. (12) is a known =e nnleMamtp  (0), a7
statistical distribution giving the probability density that the

waiting time fork independent events s when, is the  wherew, ,=(E,—E))/A and

mean time interval between two events. A particularly clear

example of the random process in time implied by the above 1 s 5

equations is provided by the micromagét in which a mi- 7n,m:2_7.2|n(1+wn,m71)’ (18
crowave cavity is crossed by a beam of resonant atoms with

mean injection ratdR=1/7,, and a mean interaction time 1

within the cavity corresponding te;. In the micromaser Vpm=—arctafw, m71). (19
theory, the nonunitary operatdf describing the effective T2 ’

dynamics of the microwave mode during each atomic cross- . .
ing replaces the evolution operater'™ [3]. Another ex- This means that, in general, the effect of the average over the

ample of interrupted evolution is provided by the experimen-fluctuating evolution time yields an exponential decay and a

tal scheme proposed [10] for the quantum nondemolition fréquency shiftw, m— vy, , of every term oscillating in time

(QND) measuremerftL1] of the photon number in a high- with frequencywn,m.. Notice that the formalism presgnted

cavity. In this proposal, the photon number is determined by'ereé holds true also if the parametegsand 7, are a function

measuring the phase shift induced on a train of Rydberé’f the_clock timet. _To make th!s_ generahzaﬂon implies re-

atoms sent through the microwave cavity with mean ratdouncing the semigroup condition, which, however, means

1/r,, and interacting dispersively with the cavity mode. having now the possibility to also describe nonexponential

These two examples show that the two scaling timeand ~ d€cay of quantum coherence.

7, have to be considered not as new universal constants, but 1€ Phase diffusion aspects of the present approach can

as two characteristic times of the system under study.  2/S0 be seen if the evolution equation of the averaged density
However, in most cases, one does not have an interruptég@trix p(t) is considered. In fact, by differentiating E€5)

evolution as in micromaserlike situations, but a standardWith respect to time and using E@), one gets the following

continuous evolution generated by a Hamiltontanin this ~ Master equation fop(t) (we consider the casg = 7,=7):

case the “scaled” effective evolution operator has to coin-

cide with the usual onel,, and this is possible only it H(t)=— 1'”(1+iLT)F(t)' (20)

= 7,= 7. In this caseris simply the parameter characterizing T '

the strength of the fluctuations of the random evolution time.

This meaning of the parameteiin the case of equal scaling expanding the logarithm at second ordelLin, one obtains

times is confirmed by the expressions for the mean and the

variance of the probability distribution of E¢LO), ) [ _ T _
r\ — Tl
(t')= T_Zt’ (19 which is the well-known phase-destroying master equation
[12]. Hence Eg.(20) appears as a generalized phase-
72 destroying master equation taking into account higher order
0'2(t')=<t’2)—<t'>2=—lt. (16)  terms in 7. Notice, however, that the present approach is
T2 different from the usual master equation approach in the

sense that it is model independent and no perturbative and
When 7= 7,, the mean evolution time coincides with the specific statistical assumptions are made. The solution of Eq.
“clock” time t, while the variance of the evolution time (21) gives an expression fgs, (t) similar to that of Eq.
becomesr?(t’)=tr. In the rest of the paper we shall always (17), but with [12]
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2
[ 0.8
Ynm=— (22 P
0.4
Vam™— @Wnm> (23 02

which are nonetheless obtained also as a first order expan-

sion in ;= 1,= 7 of Egs.(18) and (19). In the case where

7ot one would obtain from Eq(17) a Gaussian decay. The

opposite limit w, ,7>1 has been discussed in detail in  FIG. 2. The Rabi oscillations of the transition probabilRy(t)

Ref.[3]. as a function of time, according to the fitting function of EB6).
Finally, a comment concerning the form of the evolution

operator for the averaged density matvgt) of Eq.(9). At  cavity because the cavity relaxation time is larg220 useq

first sight it seems that(t) is in general a multivalued func- and also because in this case one would have an asymptotic

tion of the Liouvillian L, and thatV(t) is uniquely defined limit Pg’ép‘(oo)=1. Therefore decoherence in this case has cer-

only whent/ r,=k,k integer. However, this form fov(t) is  tainly a nondissipative origin, and dark counts of the atomic

a consequence of the time average dvért’,r,,7,) of Eq.  detectors, dephasing collisions with background gas, or stray

(10), which is a properly defined, non-negative probability magnetic fields within the cavity have been suggested as

distribution only if the algebraic definition of the power-law possible sources of the damped oscillatifhid 4.

function (t'/7,)("2~ ! is assumed. This means that in Eq.  The damped behavior of E¢R6) can be easily obtained if

(9) one has to take the first determination of the power-lawone applies the formalism described above. In fact, from the

20 40 60 80
t (usec)

function and in this way/(t) is unequivocally defined. linearity of Eq.(4), one has that the time-averaging proce-
dure is also valid for mean values and matrix elements of
lll. APPLICATION TO CAVITY QED EXPERIMENTS each subsystem. Therefore one has

A first experimental situation in which the above formal-
ism can be applied is the Rabi oscillation experiment of Ref.
[5], in which the resonant interaction between a quantized
mode in a high® microwave cavity(with annihilation op- Using Egs.(5), (9), (10), and(25), Eq. (27) can be rewritten
eratora) and two circular Rydberg stat¢g) and|g)) of aRb  in the same form as Eq26):
atom has been studied. This interaction is well described by .
the usual Jaynes-Cumminfs3] model, which in the inter- Peg(t)=3[1—e " cogwt)], (28)
action picture reads

Peg()= f:dt'P(t,t')Peg(t'). (27)

where, using Eq9.18) and(19),
H=%Qg(|e)(gla+|g)(ela"), (24 L
_ 2 2
where() is the Rabi frequency. Y= 5, In(1+408), (29
The Rabi oscillations describing the exchange of excita-
tions between atom and cavity mode are studied by injecting
the velocity-selected Rydberg atom, prepared in the excited v=_arctan2Qg7). (30
state|e), into the highQ cavity and measuring the popula-
tion of the lower atomic level), P((t), as a function of the  |f the characteristic timer is sufficiently small, i.e. Q372
interaction timet, which is varied by changing the Rydberg <1 there is no phase shift=2Qg, and
atom velocity. Different initial states of the cavity mode
were considered if5]. We shall restrict ourselves to only the y=2Q27 (3D
case of vacuum-state-induced Rabi oscillations, where the
decoherence effect is particularly evident. The Hamiltoniar{see also Eqs22) and (23)]. The fact that in Ref[5] the
evolution according to Eq(24) predicts in this case Rabi Rabi oscillation frequency essentially coincides with the

oscillations of the form theoretically expected one suggests that the tirakaracter-
izing the fluctuations of the interaction time is sufficiently
Peg(t)=3[1—cog2QRt)]. (25  small so that it is reasonable to use E2fl). Using the above

) ) o values fory and(Q g, one can derive an estimate fgrso as
Experlmentally, _mstead, damped oscillations are observed,, get 7=0.5usec. This estimate is consistent with the as-
which are well fitted by sumptionQ37<1 we have made, but, more importantly, it
turns out to be comparable to the experimental value of the
uncertainty in the interaction time. In fact, the fluctuations of

where the decay time fitting the experimental datayis the interaction time are mainly due tp the experimental un-
—40usec [14] and the corresponding Rabi frequency is certainty of the atomic velocity, that |s,é>‘t/t=5v/v=1(Vi
Qr/27=25kHz (see Fig. 2 This decay of quantum coher- (see Ref.[5]), and taking an average interaction tinte
ence cannot be associated with photon leakage out of the50usec, one gets= ét=t dv/v=0.5usec, which is just

PeF(t)=3[1—e " cosg 2Qg)], (26
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the estimate we have derived from the experimental valuesihen the atom crosses the cavifywith an interaction time
This simple argument supports the interpretation that the des,, and the dispersive interaction yields
coherence observed [®] is essentially due to the random-

ness of the interaction time. In fact, in our opinion, the other c e entint A 03

effects proposed as possible sources of decoherence, such|&(fs§=2 TW ex;{ I Etint‘H 7(”4' Dtine| l€)
dark counts of the atomic detectors, dephasing collisions

with background gas, or stray magnetic fields within the cav- %

ity, would give an overall, time-independent, contrast reduc- +ex;<5tim—i 7ntim) lg)|. (34
tion of the Rabi oscillations, different from the observed ex-

ponential decay.

Results similar to that of Ref5] have been very recently
obtained by Varcoeet al. in a Rabi oscillation experiment
involving again a high® microwave cavity mode resonantly
interacting with Rydberg aton{45]. In this case, three dif- 02
ferent initial Fock stategn) of the cavity moden=0,1,2, ly)=2, ¢, ex;{ —iwnT+i —Rtint)|n>
have been studied, and preliminary results show a good n 26
guantitative agreement of the experimental data with our the-

Finally, the atom is subjected to the secom@ pulse in the
second Ramsey zorfe, and the joint state of the Rydberg
atom and the cavity mode becomes

2
oretical approach based on the dispersion of the interaction X COS(%(nJF%)t, _ éT> lg)
times. 6 o2
Another cavity QED experiment in which the observed 02 A
decay of quantum coherence can be, at least partially, ex- +i sin(—R(nJr%)t-m— —T) le)|, (35)
plained with our formalism in terms of a random interaction 6 "2

time, is the Ramsey interferometry experiment of Brune ] ] ] .
etal. [6]. In this experiment, a QND measurement of theWhereT is the time of flight fromR, to R,. The experimen-
mean photon number of a microwave cavity mode is oblally interesting quantity is the probability of finding at the
tained by measuring, in a Ramsey interferometry scheme, tH&om the end in they state, Pe(n,T), whose theoretical
dispersive light shifts produced on circular Rydberg states b§XPression according to E(B5) is

a nonresonant microwave field. The experimental scheme in

this case is similar to that of the Rabi oscillation experiment, PN T):cos’-(I(A— 6 )) (36)
with two main differencesfi) two low-Q microwave cavities e 2 e

R; andR,, which can be fed by a classical sourSeavith

frequencywg, are added just before and after the cavity ofwhere the photon-number-dependent frequency shifis
interestC; (i) the cavity mode is highly detuned from the given by

atomic transition §=w—w¢g>{)g), S0 as to work in the 5
dispersive regime. In the interaction picture with respect to Og

an?m(zn“—l). (37)

H _ﬁwR
0= Lle)(el-laXal] In Egs. (36) and (37) we have used the fact that, /T is

_ . _equal to the ratio between the waist of the cavity macknd
(we use the classical field as reference for the atomighe distance between the two Ramsey cavitiéR;,R,).
phasep the Hamiltonian has the following dispersive form The actual experiment of Ref6] was performed in the bad
[10]: cavity limity T,<t;y in which the cavityC relaxation time
T,e is smaller than the atom-cavity interaction time. In this

hA . .
H=—[|e)e|—|g)(all+%x(t)(|g)(e|+|e)(g]) +hwa’a  Case, the cavity photon number randomly changes dufing
2 and in the corresponding expressi@v) for the frequency

0t shift €,, the photon numben has to replaced by the mean
+4 R (|lg)(gla’a—|e)(elaa’), (32)  valuen. The Ramsey fringes are observed by sweeping the
6 frequency of the classical soureg; around resonance, that

is, studyingP.4(n,T) as a function of the detuning. The
experimentally observed Ramsey fringes show a reduced

. o X contrast, which, moreover, decreases for increasing detun-
and Qg(t) is nonzero only withinC. In the experiment,

. \ ings A (see Fig. 2 of Ref[6]). Therefore one can try to
single circular Rydberg atoms are sent through the appar_atL&plam the reduced contrast, i.e., the loss of quantum coher-

initially prepa_1red indthglcs_tat_ke». Let us assur;e that ﬂ_ﬁl MI* ence, in terms of a fluctuating evolution time, which in this
crowave caylty mode IR 1S In a generic stat&,cy[n). The case means a random time of flighbriginating again from

atom is subject to a2 pulse inRy, so that the dispersion of the atomic velocities. We average again the

(le)+|g)) quantity Pg4 of Eq. (36) over the probability distribution

; cn|n>|e)H; coln) ——— (33  P(t.t’) derived in Sec. I, replacing with a random time of

whereA = w.4— wg, the Rabi frequency within the classical
cavitiesy(t) is nonzero only when the atom isiRy andR,,

V2 flight T’, and we obtain
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Pog(A)=3{1+F(A—e€,)cof (A" —€,)T]},  (39) 2s Leoit gg@®
Where_, u;ing Eq(17), the fringe visibility functionF(A %820 5 T f N
—€,) is given by ) 2 a
F(A—e)=[1+(A—en)?72] T2, (39 L5 g !
and (A’ — /) is the frequency shift Lo ; 5 a 10 15

1 FIG. 3. The ratio between Rabi frequencfes/Q, experimen-
(A" —e€p)= ;arctarﬁ(A —€,)7]. (40)  tally measured in Ref7] and well fitted by the theoretical predic-
tion of Eq. (43), is plotted as a function of the initial vibrational
The parameter characterizing the strength of the fluctua- "Umbern (squares and compared with the power-law approxima-
tions of the time of flighT can be estimated with arguments tion of Eq.(46), (n+1)™ (triangles.
similar to those considered for the Rabi oscillation experi- o ) ) o
ment. SinceST/T=dv/v=1.5% andT=300usec(see Ref. 6= w,, Hamllton|an(42) pred_|cts Rab| oscillations bgtween
[6]), one hasr=6T=4.5usec. For the interesting range of |1,y and [T.n+1) (In) is a vibrational Fock stajewith a
detuningsA, one has 4 —¢,) 7<1, so that one can neglect frequency(16]
again the frequency shift40) and approximate the fringe

visibility function (39) with a Gaussian function, that is, e 712 .
_ ) Q=0 () (43
Peg(A)=H1+e Lo AT cog (A—e)T]}.  (41) n+1

This Gaussian modulation of the Ramsey fringes with awhere Ll is the generalized Laguerre polynomial. These
width oy =(T7) ¥2=27kHz is consistent with the typical Rabi oscillations have been experimentally verified by pre-
experimental Ramsey fringe sign@ee Fig. 2 of Ref[6]),  paring the initial staté|,n) (with n ranging from 0 to 1§

but it is not able to completely account for the observedand measuring the probabiliti? | (t) as a function of the
modulation and contrast reduction of the fringes. This mean#teraction timet, which is varied by changing the duration
that, contrary to the case of the Rabi oscillation experimentpf the Raman laser pulses. Again, as in the cavity QED ex-
in this case the role of other experimental imperfectionsperiment of [5], the experimental Rabi oscillations are
such as random phases due to stray fields, imperé2t damped and well fitted by7,16]

pulses inR; andR,, and detection errors, is as relevant as

that of the dispersion of atomic velocities and these other P (nt)=3[1+e "'cog2Q.t)], (44)
effects have to be taken into account to get an exhaustive
explanation of the observed decoherence. where the measured oscillation frequencigs are in very
good agreement with the theoretical predicti@38) corre-
IV. RABI OSCILLATION EXPERIMENTS sponding to the measured Lamb-Dicke parameter0.202
IN TRAPPED IONS [7]. As concerns the decay rates, the experimental values

. . , o i are fitted in[7] by
Another interesting Rabi oscillation experiment, per-

formed on a different system, that is, a trapped [i@h has _ v =yo(n+1)%7 (45)
recently observed a decoherence effect that cannot be attrib-

uted to dissipation. In the trapped ion experiment of [R&X. where yo=11.9kHz. This power-law scaling has attracted

the interaction between two internal statgs and|l)) of a the interest of a number of authors and it was investigated in

.Bed |0ndatr)1dtthe dcgnter—lgf-massl wbratyoni Ic? ?d:reﬁ'ont Refs.[17,18, even if a clear explanation of this behavior of
Incucea by two driving kaman 1asers 13 studied. In the Intery, o decay rates is still lacking. On the contrary, the scaling

action picture with respect to the free vibrational and internaf . . . A
Hamiltonian, this interaction is described by the following aw (48) can be simply accounted for in the previous formal

Hamiltonian[16]: ism if we consider the smalt limit of Eq. (31), which is
: again suggested by the fact that the experimental and theo-
_ ; —iwt 4 aTaiogty retical predictions for the frequenci€k, agree. In fact, the

H=rQ[T)(l[exil(ae talets) &+¢]}+H('Z§) dependence of the theoretical prediction of E4@) for »
=0.202 is well approximated, within 10%, by the power-law

wherea denotes the annihilation operator for the vibrationsdependence

along thez direction, w, is the corresponding frequency, and

Sis the detuning between the internal transition and the fre- Q,=Q4(n+1)03° (46)

guency difference between the two Raman lasers. The Rabi

frequency( is proportional to the two Raman laser intensi- (see Fig. 3, so that, using Eq31), one has immediately the

ties, and is the Lamb-Dicke parametg,16]. When the power-law dependencen¢ 1)°7 of Eq. (45). The value of

two Raman lasers are tuned to the first blue sideband, i.ethe parameter can be obtained by matching the values cor-
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responding ton=0 and using Eq(31), that is, 7= 70/29(2) that is, the Rabi freqqencyl(t) is a white, non_—Gaussian

=1.5x 10 8 sec, where we have used the experimental valuddue to the non-Gaussian form B{t,A) | stochastic process.

Qol27=94kHz. In fact, the semigroup assumption we have made implies a
However, this value of the parametercannot be ex- Markovian treatment in which the spectrum of the laser in-

plained in terms of some interaction time uncertainty, sucHensity fluctuations is flat in the relevant frequency range.
as the time jitter of the Raman laser pulses, which is experiJ NiS implies, in particular, that we are neglecting the dynam-
mentally found to be much smallgt9]. In this case, instead, €S at _small _t|mes, of the order of the correlation time of the
the observed decoherence can be attributed, as already sigSer intensity fluctuations. _

gested in[16—18, to the fluctuation of the Raman laser in- _ 1he estimated value of gives a reasonable estimate of
tensities, yielding a fluctuating Rabi frequency parametefhe pulse area fluctuations, since it corresponds to a frac-
Q(t) of the Hamiltonian(42). In this case, the evolution is tional error of the pulse arego”(A)/(A)=/7/t of 10% for

driven by a fluctuating Hamiltoniahi (t) =% Q(t)H, where 2 Pulse duration of=1 usec, and which is decreasing for
= _ increasing pulse durations.
H=H/Q in Eq. (42), so that

The present analysis shows many similarities with that of
- Ref. [17], which also tries to explain the decay of the Rabi
p(0)=e"'AU((0), (47)  oscillations in the ion trap experiments Bf] in terms of
laser intensity fluctuations. The authors of Rf7] in fact
-~ - i . . use a phase-destroying master equation coinciding with the
whereL=[H,...]/, and we have defined the positive di- second order expansid@1) of our generalized master equa-
mensionless random variab(t)=[,d£ (&), which is  tion of Eq.(20) [see Eq(16) of Ref.[17] with the identifi-
proportional to the pulse area. It is now easy to understangationsG+« H/#% andI'— 7] and moreover derive the same
that the physical situation is analogous to that characterizefumerical estimate for the pulse area fluctuation strength
by a random interaction time considered in the preceding".. ». Despite these similarities, they do not recover the
sections, withL replaced byL andt’ by A(t). It is therefore  scaling(45) of the decay ratey, only because they do not
straightforward to adapt the formalism developed in Sec. lluse the general expression of the Rabi freque@d®y [and
to this case, in which the fluctuating quantity is the pulsewhich is well approximated by the power lai8)] but its
areaA, yielding again random phases in the energy basid¢.amb-Dicke limit Q,=Qy(n+1)%% which is valid only
representation. In analogy with E@4), one considers an when n»<1. There is, however, another, more fundamental

[t
p(t)=ex;{ —iL fodgﬂ(g)

averaged density matrix difference between our approach and that of IRET]. They
assume from the beginning that the laser intensity fluctua-
olt)= j dA P(t,A)e " '“2p(0). (48) tions hgve awhltg and Gaussian chqra_cter, while we make no
0 a priori assumption about the statistical properties of the

pulse aredA. We derive these properties, i.e., the probability
Imposing again thap(t) must be a density operator and the distribution (50), only from the semigroup condition, and it
semigroup property, one finds results analogous to B)s. s interesting to note that this condition yields a Gaussian
and (10): probability distribution for the pulse area only as a limiting
~ case. In fact, from Eq50) one can see thd&(t,A) tends to
V() =(1+iLQ7) "7, (49 become a Gaussian with the same mean véltieand the

. 2 . . . . s
A0 (AJQ) )71 same width(Q“7t only in the large time limitt/7>1,

P(t,A)= . 50
(LA) Qr I'(t/r) (50 1 ’{ (A—Qt)2 (
P(t,A)s = exp — 57)
Here, the parametel@ and r are introduced as scaling pa- = V2702t r 20%t 7

rameters, but they have a clear meaning, as can be easily
seen by considering the mean and the variance of the prolhe non-Gaussian character®ft,A) can be traced back to
ability distribution of Eq.(50), the fact thatP(t,A) must be definite and normalized in the
interval 0<A< and not in—o <A<+, Notice that at
(A)=Qt, G = 7, EQ. (50) assumes the exponential for®(t,A)

=e M7 7. Only at large times does the random variable
A become the sum of many independent contributions and
assume the Gaussian form.

Due to the non-Gaussian nature of the random vari&ble

oH(A)=(A%) = (A)?=Q%r, (52)
implying that ) must now be meant as a mean Rabi fre-
guency, and that quantifies the strength & fluctuations. It we find that the more generally valid phase-destroying mas-

is interesting to note that these first two moment$¢f,A) R i ~
are consistent with the assumption that the fluctuating Ragge" equation is given by Eq20) (with L replaced byQL).

frequency(Q(t) can be written as The predictions of Eq(20) significantly depart from its sec-
ond order expansion ib 7, Eqg. (21), corresponding to the
Q(t)=Q+ &), (53 Gaussian limit, as soon asbhecomes comparable with the
typical time scale of the system under study, which, in the
(£(1))=0, (£(1)E1"))=Q%78(t—t"), (54)  present case, is the inverse of the Rabi frequency.
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The present analysis of the Rabi oscillation experiment ofsm is in fact derived starting from few, very general as-
Ref.[7] can be repeated for the very recent experiment wittsumptions:(i) the average density matrix(t) has all the
trapped iong20], in which Rabi oscillations involving the usual properties of a density matrifi) p(t) is a time aver-
vibrational levels and an optical quadrupole transition of aage of the usual density operator. In this respect, this ap-
single “°Ca’ ion have been observed. Damped oscillationsproach seems to provide a very general description of non-
corresponding to initial vibrational numbens=0 andn=1 dissipative decoherence, in which the random properties of
were reported. From the data with=0, Qy/27=21kHz, the fluctuating classical variables are characterized by the
and yo=1kHz, we getr=y,/205=3x10 ®sec, and this two system-dependent time parametefsand 7,. As we
estimate is consistent with attributing the decoherence againave seen in Sec. Il, in the cases where one has a standard,
to the fluctuations of the Rabi frequency caused by lasegontinuous evolution, the two times coincide,= 7,= 7.
intensity fluctuations. Moreover, in this case, the experiment/nder ideal conditions of no fluctuating classical variable or
was performed in the Lamb-Dicke limif<1, and therefore, parameter, one would hawe=0, and the usual unitary evo-
again using Eq(31), we expect, in this case, a linear scaling lution of an isolated system in quantum mechanics would be

with the vibrational numbery,= zgﬁTz Yo(n+1). recovered. However, the generality of the approach suggests
in some way the possibility that the parameteeven though
V. CONCLUDING REMARKS system dependent, might have a lower nonzero limit, which

would be reached just in the case of no fluctuations of ex-
Decoherence is not always necessarily due to entanglgerimental origin. This would mean a completely new de-
ment with an environment, but it may be due, as well, to thescription of time in quantum mechanics. In fact, the evolu-
fluctuations of some classical parameter or internal variabléion time of a systemt’ (and not the “clock” timet) would
of a system. This is a different form of decoherence, which issecome an intrinsically random variable with a well-defined
present even in isolated systems, and that we have callgstobability distribution, without the difficulty of introducing
nondissipative decoherence. In this paper we have presentad evolution time operator. In R€f3] a relation of the non-
a model-independent theory for nondissipative decoherenceero limit for ~ with the “energy time”#/2AE is suggested,
which can be applied in the case of a random evolution timgvhere AE is the uncertainty in energy. This would give a
or in the case of a fluctuating Hamiltonian. This approachprecise meaning to the time-energy uncertainty relation be-
proves to be a flexible tool, able to give a quantitative un-cause nowr rules the width of the time distribution function.
derstanding of the decoherence caused by the fluctuations pfowever, this “intrinsic assumption” is not necessarily im-
classical quantities. In fact, in this paper we have given glied by the formalism developed 8] and applied, with a
simple and unified description of the decoherence phenonmore pragmatic attitude, in the present paper.
ena observed in recent Rabi oscillation experiments per-
formed in a cavity QED configuratiofb] and on a trapped ACKNOWLEDGMENTS
ion [7]. In particular, this approach has allowed us to explain
in simple terms the power-law scaling of the coherence de- This work has been partially supported by INFM through
cay rates of Eq(45), observed in the trapped ion experiment. the PAIS “Entanglement and Decoherence.” Discussions
The relevant aspect of the approach applied here, and irwith J. M. Raimond, H. Walther, and D. Wineland are grate-
troduced in Ref[3], is its model independence. The formal- fully acknowledged.
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