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Model-independent approach to nondissipative decoherence
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We consider the case when decoherence is due to the fluctuations of some classical variable or parameter of
a system and not to its entanglement with the environment. Under few and quite general assumptions, we
derive a model-independent formalism for this nondissipative decoherence, and we apply it to explain the
decoherence observed in some recent experiments in cavity QED and on trapped ions.

PACS number~s!: 42.50.Ar, 32.80.2t, 03.65.2w
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I. INTRODUCTION

Decoherence is the rapid transformation of a pure lin
superposition state into the corresponding statistical mix

uc&5auc1&1buc2&⇒rmix5uau2uc1&^c1u1ubu2uc2&^c2u;
~1!

this process does not preserve the purity of the state, tha
Tr rmix

2 ,1, and therefore it has to be described in terms o
nonunitary evolution. The most common approach is via
called environment-induced decoherence@1,2#, which is
based on the consideration that it is extremely difficult
isolate a system perfectly from uncontrollable degrees
freedom~the ‘‘environment’’!. The nonunitary evolution of
the system of interest is obtained by considering the inte
tion with these uncontrolled degrees of freedom and trac
over them. In this approach, decoherence is caused by
entanglement of the two states of the superposition with
approximately orthogonal states of the environmentuE1& and
uE2&,

~auc1&1buc2&) ^ uE0&⇒uc& tot

5auc1& ^ uE1&1buc2& ^ uE2&. ~2!

Tracing over the environment and using^E1uE2&.0, one
gets

Trenv$uc& tot̂ cu%5rmix , ~3!

wherermix is defined in Eq.~1!. The environment behaves a
a measurement apparatus because the statesuEi& behave as
‘‘pointer states’’ associated withuc i&; in this way, the envi-
ronment acquires ‘‘information’’ on the system state a
therefore decoherence is described as an irreversible flo
information from the system into the environment@1#. In this
approach, the system energy is usually not conserved an
interaction with the environment also accounts for the ir
versible thermalization of the system of interest. Howev
this approach is inevitablymodel dependent, because one ha
to assume a model Hamiltonian for the environment and
interaction between system and environment. This model
tion, and therefore any quantitative prediction, becom
1050-2947/2000/61~5!/053802~8!/$15.00 61 0538
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problematic whenever the environmental degrees of freed
responsible for decoherence are not easily recognizable.

Decoherence is not always necessarily due to entan
ment with an environment, but it may be due, as well, to
fluctuations of some classical parameter or internal varia
of the system. This kind of decoherence is present eve
isolated systems, where environment-induced decohere
can be neglected. In these cases the system energy is
served, and one has a different form of decoherence, w
we shall call ‘‘nondissipative decoherence.’’ In such cas
every single experimental run is characterized by the us
unitary evolution generated by the system Hamiltonia
However, definite statistical predictions are obtained only
repeating the experiment many times, and this is when de
herence takes place, because each run corresponds to
ferent random value or stochastic realization of the fluctu
ing classical variable. The experimental results corresp
therefore to an average over these fluctuations and they
describe in general an effective nonunitary evolution.

In this paper we shall present a quite general theory
nondissipative decoherence for isolated systems which
be applied for two different kinds of fluctuating variables
parameters: the case of a random evolution time and the
of a fluctuating Rabi frequency yielding a fluctuation of th
Hamiltonian. In both cases one has random phasese2 iEnt/\

in the energy eigenstates basis that, once averaged over m
experimental runs, lead to the decay of off-diagonal ma
elements of the density operator, while leaving the diago
ones unchanged.

The outline of the paper is as follows. In Sec. II we sh
derive the theory under general assumptions, follow
closely the original derivation presented in@3,4#. In Sec. III
we shall apply this theory in order to describe the decoh
ence effects observed in two cavity QED experiments, o
describing Rabi oscillations associated with the resonant
teraction between a Rydberg atom and a microwave ca
mode@5#, and the second one a Ramsey interferometry
periment using a dispersive interaction between the ca
mode and the atom@6#. In Sec. IV we shall apply our ap
proach to a Rabi oscillation experiment for trapped ions@7#,
and Sec. V is for concluding remarks.

II. GENERAL FORMALISM

The formalism describing nondissipative decoherence
isolated systems was derived in@3,4# by considering the case
©2000 The American Physical Society02-1
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of a system with random evolution time. The evolution tim
may be random because of the finite time needed to pre
the initial state of the system or because of the randomn
of the detection time, as well as for many other reasons.
example, in cavity QED experiments, the evolution time
the interaction time, which is determined by the time of flig
of the atoms within the cavity. This time can be random d
to atomic velocity dispersion of classical or quantum orig

In these cases, the experimental observations are no
scribed by the usual density matrix of the whole systemr(t),
but by its time averaged counterpart@3,4#,

r̄~ t !5E
0

`

dt8P~ t,t8!r~ t8!, ~4!

wherer(t8)5exp$2iLt8%r(0) is the usual unitarily evolved
density operator from the initial state andL¯5@H,...#/\.
Thereforet8 denotes the random evolution time, whilet is a
parameter describing the usual ‘‘clock’’ time. Using Eq.~4!,
one can write

r̄~ t !5V~ t !r~0!, ~5!

where

V~ t !5E
0

`

dt8P~ t,t8!e2 iLt 8 ~6!

is the evolution operator for the averaged state of the sys
Following Refs.@3,4#, we determine the functionP(t,t8) by
imposing the following plausible conditions:~i! r̄(t) must be
a density operator, i.e., it must be self-adjoint, positive d
nite, and with unit trace. This leads to the condition th
P(t,t8) must be non-negative and normalized, i.e., a pr
ability density int8, so that Eq.~4! is a completely positive
mapping. ~ii ! V(t) satisfies the semigroup propertyV(t1
1t2)5V(t1)V(t2), with t1 ,t2>0.

The semigroup condition is satisfied by an exponen
dependence ont,

V~ t !5$V1%
2t/t2, ~7!

wheret2 naturally appears as a scaling time. A solution s
isfying all the conditions we have imposed can be found
separatingV1 into its Hermitian and anti-Hermitian part
V15A1 iB and by considering the Gamma function integ
identity @8#

~V1!2t/t25~A1 iB !2t/t2

5
1

G~ t/t2!
E

0

`

dl l t/t221e2lAe2 ilB. ~8!

Now the right hand side of Eq.~8! can be identified with the
right hand side of Eq.~6! if we impose the following condi-
tions: l5t8/t1 , wheret1 is another scaling time, generall
different fromt2 ; B5Lt1 in order to make the exponentia
terms identical; andA51 in order to get a normalized prob
ability distributionP(t,t8). This choice yields the following
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expressions for the evolution operator for the averaged d
sity matrix V(t) and for the probability density
P(t,t8,t1 ,t2) @3,4#:

V~ t !5~11 iL t1!2t/t2, ~9!

P~ t,t8,t1 ,t2!5
e2t8/t1

t1

~ t8/t1!~ t/t2!21

G~ t/t2!
. ~10!

Notice that the ordinary quantum evolution is recover
when t15t25t→0; in this limit P(t,t8,t1 ,t2)→d(t2t8)
so thatr̄(t)5r(t) andV(t)5exp$2iLt% is the usual unitary
evolution. Moreover, it can be seen that Eq.~9! implies that
r̄(t) satisfies a finite difference equation~3!. The semigroup
condition leads to the form of the probability distributio
P(t,t8,t1 ,t2) we use to perform the average on the fluc
ating evolution times. However, notice that this probabil
distribution depends on both the two scaling timest1 andt2
only apparently. In fact, if we change variable in the tim
integral, t95(t2 /t1)t8, it is possible to rewrite the integra
expression forV(t) in the following way:

V~ t !5~11 iL t1!2t/t25E
0

`

dt9P~ t,t9,t2!e2 iL ~t1 /t2!t9,

~11!

where

P~ t,t9,t2!5
e2t9/t2

t2

~ t9/t2!~ t/t2!21

G~ t/t2!
. ~12!

This probability density depends only ont2 . However, Eq.
~11! contains an effective rescaled time evolution genera
Leff5L(t1 /t2). The physical meaning of the probability dis
tribution of Eq.~12!, of the rescaled evolution operator, an
of the two scaling times can be understood if we consider
following simple example. Let us consider a system w
HamiltonianH(t)5 f (t)H0 , where

f ~ t !5 (
n50

`

u~ t2nt2!u~nt21t12t ! ~13!

@u(t) is the Heaviside step function#, that is, a system with
HamiltonianH0 which is periodically applied for a timet1 ,
with time periodt2 (t2>t1), and which is ‘‘turned off’’
otherwise. The unitary evolution operator for this system
U(t)5e2 iF (t)L0, whereL05@H0 ,...# and

F~ t !5H t1n~t12t2!, nt2<t<nt21t1

~n11!t1 , nt21t1<t<~n11!t2,
~14!

which can, however, be well approximated by the ‘‘re
caled’’ evolution operatorUeff(t)5e2iL0t(t1 /t2). In fact, the
maximum relative error in replacingF(t) with t(t1 /t2) is
(t22t1)/t and becomes negligible at large times~see Fig.
1!. This fact suggests interpretation of the time average
Eq. ~11! as an average over unitary evolutions generated
L, taking place randomly in time, with mean time widtht1 ,
and separated by a mean time intervalt2 . This interpretation
2-2
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is confirmed by the fact that whent5kt2 , for integerk, the
probability distributionP(t,t9,t2) of Eq. ~12! is a known
statistical distribution giving the probability density that th
waiting time for k independent events ist9 when t2 is the
mean time interval between two events. A particularly cle
example of the random process in time implied by the ab
equations is provided by the micromaser@9# in which a mi-
crowave cavity is crossed by a beam of resonant atoms
mean injection rateR51/t2 , and a mean interaction tim
within the cavity corresponding tot1 . In the micromaser
theory, the nonunitary operatorM describing the effective
dynamics of the microwave mode during each atomic cro
ing replaces the evolution operatore2 iL t1 @3#. Another ex-
ample of interrupted evolution is provided by the experime
tal scheme proposed in@10# for the quantum nondemolition
~QND! measurement@11# of the photon number in a high-Q
cavity. In this proposal, the photon number is determined
measuring the phase shift induced on a train of Rydb
atoms sent through the microwave cavity with mean r
1/t2 , and interacting dispersively with the cavity mod
These two examples show that the two scaling timest1 and
t2 have to be considered not as new universal constants
as two characteristic times of the system under study.

However, in most cases, one does not have an interru
evolution as in micromaserlike situations, but a standa
continuous evolution generated by a HamiltonianH. In this
case the ‘‘scaled’’ effective evolution operator has to co
cide with the usual one,L, and this is possible only ift1
5t25t. In this caset is simply the parameter characterizin
the strength of the fluctuations of the random evolution tim
This meaning of the parametert in the case of equal scalin
times is confirmed by the expressions for the mean and
variance of the probability distribution of Eq.~10!,

^t8&5
t1

t2
t, ~15!

s2~ t8!5^t82&2^t8&25
t1

2

t2
t. ~16!

When t15t2 , the mean evolution time coincides with th
‘‘clock’’ time t, while the variance of the evolution tim
becomess2(t8)5tt. In the rest of the paper we shall alway

FIG. 1. The functionF(t) defined in Eq.~14! ~full line! is plot-
ted as a function of time~expressed in arbitrary units! and com-
pared with its ‘‘linear approximation,’’ the rescaled timett1 /t2

~dashed line!. The relative error between them is given by (t2

2t1)/t and is negligible at large timest.
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consider the standard situation of an isolated system w
HamiltonianH, continuously evolving in time, and we sha
always assumet15t25t.

When t50, V(t)5exp$2iLt% is the usual unitary evolu-
tion. For finitet, on the contrary, the evolution equation~9!
describes a decay of the off-diagonal matrix elements in
energy representation, whereas the diagonal matrix elem
remain constant, i.e., the energy is still a constant of moti
In fact, in the energy eigenbasis, Eqs.~5! and ~9! yield

r̄n,m~ t !5
1

~11 ivn,mt1! t/t2
rn,m~0!

5
e2 inn,mt

~11vn,m
2 t1

2! t/2t2

5e2gn,mte2 inn,mtrn,m~0!, ~17!

wherevn,m5(En2Em)/\ and

gn,m5
1

2t2
ln~11vn,m

2 t1
2!, ~18!

nn,m5
1

t2
arctan~vn,mt1!. ~19!

This means that, in general, the effect of the average over
fluctuating evolution time yields an exponential decay an
frequency shiftvn,m→nn,m of every term oscillating in time
with frequencyvn,m . Notice that the formalism presente
here holds true also if the parameterst1 andt2 are a function
of the clock timet. To make this generalization implies re
nouncing the semigroup condition, which, however, mea
having now the possibility to also describe nonexponen
decay of quantum coherence.

The phase diffusion aspects of the present approach
also be seen if the evolution equation of the averaged den
matrix r̄(t) is considered. In fact, by differentiating Eq.~5!
with respect to time and using Eq.~9!, one gets the following
master equation forr̄(t) ~we consider the caset15t25t!:

rG ~ t !52
1

t
ln~11 iL t!r̄~ t !; ~20!

expanding the logarithm at second order inLt, one obtains

rG 52
i

\
@H,r̄~ t !#2

t

2\2 †H,@H,r̄~ t !#‡, ~21!

which is the well-known phase-destroying master equat
@12#. Hence Eq. ~20! appears as a generalized phas
destroying master equation taking into account higher or
terms in t. Notice, however, that the present approach
different from the usual master equation approach in
sense that it is model independent and no perturbative
specific statistical assumptions are made. The solution of
~21! gives an expression forr̄n,m(t) similar to that of Eq.
~17!, but with @12#
2-3
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gn,m5
vn,m

2 t

2
, ~22!

nn,m5vn,m , ~23!

which are nonetheless obtained also as a first order ex
sion in t15t25t of Eqs. ~18! and ~19!. In the case where
t}t one would obtain from Eq.~17! a Gaussian decay. Th
opposite limit vm,nt@1 has been discussed in detail
Ref. @3#.

Finally, a comment concerning the form of the evoluti
operator for the averaged density matrixV(t) of Eq. ~9!. At
first sight it seems thatV(t) is in general a multivalued func
tion of the Liouvillian L, and thatV(t) is uniquely defined
only whent/t25k,k integer. However, this form forV(t) is
a consequence of the time average overP(t,t8,t1 ,t2) of Eq.
~10!, which is a properly defined, non-negative probabil
distribution only if the algebraic definition of the power-la
function (t8/t1)(t/t2)21 is assumed. This means that in E
~9! one has to take the first determination of the power-l
function and in this wayV(t) is unequivocally defined.

III. APPLICATION TO CAVITY QED EXPERIMENTS

A first experimental situation in which the above forma
ism can be applied is the Rabi oscillation experiment of R
@5#, in which the resonant interaction between a quanti
mode in a high-Q microwave cavity~with annihilation op-
eratora! and two circular Rydberg states~ue& andug&! of a Rb
atom has been studied. This interaction is well described
the usual Jaynes-Cummings@13# model, which in the inter-
action picture reads

H5\VR~ ue&^gua1ug&^eua†!, ~24!

whereVR is the Rabi frequency.
The Rabi oscillations describing the exchange of exc

tions between atom and cavity mode are studied by injec
the velocity-selected Rydberg atom, prepared in the exc
stateue&, into the high-Q cavity and measuring the popula
tion of the lower atomic levelg, Peg(t), as a function of the
interaction timet, which is varied by changing the Rydber
atom velocity. Different initial states of the cavity mod
were considered in@5#. We shall restrict ourselves to only th
case of vacuum-state-induced Rabi oscillations, where
decoherence effect is particularly evident. The Hamilton
evolution according to Eq.~24! predicts in this case Rab
oscillations of the form

Peg~ t !5 1
2 @12cos~2VRt !#. ~25!

Experimentally, instead, damped oscillations are observ
which are well fitted by

Peg
expt~ t !5 1

2 @12e2gt cos~2VRt !#, ~26!

where the decay time fitting the experimental data isg21

540msec @14# and the corresponding Rabi frequency
VR/2p525 kHz ~see Fig. 2!. This decay of quantum coher
ence cannot be associated with photon leakage out of
05380
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cavity because the cavity relaxation time is larger~220msec!
and also because in this case one would have an asymp
limit Peg

expt(`)51. Therefore decoherence in this case has c
tainly a nondissipative origin, and dark counts of the atom
detectors, dephasing collisions with background gas, or s
magnetic fields within the cavity have been suggested
possible sources of the damped oscillations@5,14#.

The damped behavior of Eq.~26! can be easily obtained i
one applies the formalism described above. In fact, from
linearity of Eq. ~4!, one has that the time-averaging proc
dure is also valid for mean values and matrix elements
each subsystem. Therefore one has

P̄eg~ t !5E
0

`

dt8P~ t,t8!Peg~ t8!. ~27!

Using Eqs.~5!, ~9!, ~10!, and~25!, Eq. ~27! can be rewritten
in the same form as Eq.~26!:

P̄eg~ t !5 1
2 @12e2gt cos~nt !#, ~28!

where, using Eqs.~18! and ~19!,

g5
1

2t
ln~114VR

2t2!, ~29!

n5
1

t
arctan~2VRt!. ~30!

If the characteristic timet is sufficiently small, i.e.,VR
2t2

!1, there is no phase shift,n.2VR , and

g52VR
2t ~31!

@see also Eqs.~22! and ~23!#. The fact that in Ref.@5# the
Rabi oscillation frequency essentially coincides with t
theoretically expected one suggests that the timet character-
izing the fluctuations of the interaction time is sufficient
small so that it is reasonable to use Eq.~31!. Using the above
values forg andVR , one can derive an estimate fort, so as
to get t.0.5msec. This estimate is consistent with the a
sumptionVR

2t2!1 we have made, but, more importantly,
turns out to be comparable to the experimental value of
uncertainty in the interaction time. In fact, the fluctuations
the interaction time are mainly due to the experimental
certainty of the atomic velocityv, that is,dt/t.dv/v51%
~see Ref.@5#!, and taking an average interaction timet̄
.50msec, one getst.dt5 t̄dv/v50.5msec, which is just

FIG. 2. The Rabi oscillations of the transition probabilityPeg(t)
as a function of time, according to the fitting function of Eq.~26!.
2-4
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MODEL-INDEPENDENT APPROACH TO . . . PHYSICAL REVIEW A61 053802
the estimate we have derived from the experimental valu
This simple argument supports the interpretation that the
coherence observed in@5# is essentially due to the random
ness of the interaction time. In fact, in our opinion, the oth
effects proposed as possible sources of decoherence, su
dark counts of the atomic detectors, dephasing collisi
with background gas, or stray magnetic fields within the c
ity, would give an overall, time-independent, contrast red
tion of the Rabi oscillations, different from the observed e
ponential decay.

Results similar to that of Ref.@5# have been very recentl
obtained by Varcoeet al. in a Rabi oscillation experimen
involving again a high-Q microwave cavity mode resonantl
interacting with Rydberg atoms@15#. In this case, three dif-
ferent initial Fock statesun& of the cavity mode,n50,1,2,
have been studied, and preliminary results show a g
quantitative agreement of the experimental data with our
oretical approach based on the dispersion of the interac
times.

Another cavity QED experiment in which the observ
decay of quantum coherence can be, at least partially,
plained with our formalism in terms of a random interacti
time, is the Ramsey interferometry experiment of Bru
et al. @6#. In this experiment, a QND measurement of t
mean photon number of a microwave cavity mode is
tained by measuring, in a Ramsey interferometry scheme
dispersive light shifts produced on circular Rydberg states
a nonresonant microwave field. The experimental schem
this case is similar to that of the Rabi oscillation experime
with two main differences:~i! two low-Q microwave cavities
R1 and R2 , which can be fed by a classical sourceS with
frequencyvR , are added just before and after the cavity
interestC; ~ii ! the cavity mode is highly detuned from th
atomic transition (d5v2veg@VR), so as to work in the
dispersive regime. In the interaction picture with respect

H05
\vR

2
@ ue&^eu2ug&^gu#

~we use the classical field as reference for the ato
phases!, the Hamiltonian has the following dispersive for
@10#:

H5
\D

2
@ ue&^eu2ug&^gu#1\x~ t !~ ug&^eu1ue&^gu!1\va†a

1\
VR

2~ t !

d
~ ug&^gua†a2ue&^euaa†!, ~32!

whereD5veg2vR , the Rabi frequency within the classic
cavitiesx(t) is nonzero only when the atom is inR1 andR2 ,
and VR(t) is nonzero only withinC. In the experiment,
single circular Rydberg atoms are sent through the appar
initially prepared in the stateue&. Let us assume that the m
crowave cavity mode inC is in a generic state(ncnun&. The
atom is subject to ap/2 pulse inR1 , so that

(
n

cnun&ue&→(
n

cnun&
~ ue&1ug&)

&
. ~33!
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Then the atom crosses the cavityC with an interaction time
t int and the dispersive interaction yields

uc&5(
n

cne2 ivntint

&
un&FexpS 2 i

D

2
t int1 i

VR
2

d
~n11!t intD ue&

1expS D

2
t int2 i

VR
2

d
ntintD ug&G . ~34!

Finally, the atom is subjected to the secondp/2 pulse in the
second Ramsey zoneR2 and the joint state of the Rydber
atom and the cavity mode becomes

uc&5(
n

cn expS 2 ivnT1 i
VR

2

2d
t intD un&

3FcosS VR
2

d
~n1 1

2 !t int2
D

2
TD ug&

1 i sinS VR
2

d
~n1 1

2 !t int2
D

2
TD ue&G , ~35!

whereT is the time of flight fromR1 to R2 . The experimen-
tally interesting quantity is the probability of finding at th
atom the end in theg state, Peg(n,T), whose theoretical
expression according to Eq.~35! is

Peg~n,T!5cos2S T

2
~D2en! D , ~36!

where the photon-number-dependent frequency shiften is
given by

en5
VR

2

d

w

d~R1 ,R2!
~2n11!. ~37!

In Eqs. ~36! and ~37! we have used the fact thatt int /T is
equal to the ratio between the waist of the cavity modew and
the distance between the two Ramsey cavitiesd(R1 ,R2).
The actual experiment of Ref.@6# was performed in the bad
cavity limity Trel,t int in which the cavityC relaxation time
Trel is smaller than the atom-cavity interaction time. In th
case, the cavity photon number randomly changes duringt int
and in the corresponding expression~37! for the frequency
shift en , the photon numbern has to replaced by the mea
value n̄. The Ramsey fringes are observed by sweeping
frequency of the classical sourcevR around resonance, tha
is, studyingPeg(n̄,T) as a function of the detuningD. The
experimentally observed Ramsey fringes show a redu
contrast, which, moreover, decreases for increasing de
ings D ~see Fig. 2 of Ref.@6#!. Therefore one can try to
explain the reduced contrast, i.e., the loss of quantum co
ence, in terms of a fluctuating evolution time, which in th
case means a random time of flightT originating again from
the dispersion of the atomic velocities. We average again
quantity Peg of Eq. ~36! over the probability distribution
P(t,t8) derived in Sec. II, replacingt8 with a random time of
flight T8, and we obtain
2-5
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P̄eg~D!5 1
2 $11F~D2en!cos@~D82en8!T#%, ~38!

where, using Eq.~17!, the fringe visibility function F(D
2en) is given by

F~D2en!5@11~D2en!2t2#2T/2t, ~39!

and (D82en8) is the frequency shift

~D82en8!5
1

t
arctan@~D2en!t#. ~40!

The parametert characterizing the strength of the fluctu
tions of the time of flightT can be estimated with argumen
similar to those considered for the Rabi oscillation expe
ment. SincedT/T.dv/v51.5% andT.300msec~see Ref.
@6#!, one hast.dT.4.5msec. For the interesting range o
detuningsD, one has (D2en)t!1, so that one can neglec
again the frequency shift~40! and approximate the fringe
visibility function ~39! with a Gaussian function, that is,

P̄eg~D!5 1
2 $11e2@~D2en!2/2#Tt cos@~D2en!T#%. ~41!

This Gaussian modulation of the Ramsey fringes with
width sD5(Tt)21/2.27 kHz is consistent with the typica
experimental Ramsey fringe signal~see Fig. 2 of Ref.@6#!,
but it is not able to completely account for the observ
modulation and contrast reduction of the fringes. This me
that, contrary to the case of the Rabi oscillation experime
in this case the role of other experimental imperfectio
such as random phases due to stray fields, imperfectp/2
pulses inR1 and R2 , and detection errors, is as relevant
that of the dispersion of atomic velocities and these ot
effects have to be taken into account to get an exhaus
explanation of the observed decoherence.

IV. RABI OSCILLATION EXPERIMENTS
IN TRAPPED IONS

Another interesting Rabi oscillation experiment, pe
formed on a different system, that is, a trapped ion@7#, has
recently observed a decoherence effect that cannot be a
uted to dissipation. In the trapped ion experiment of Ref.@7#,
the interaction between two internal states~u↑& and u↓&! of a
Be ion and the center-of-mass vibrations in thez direction
induced by two driving Raman lasers is studied. In the int
action picture with respect to the free vibrational and inter
Hamiltonian, this interaction is described by the followin
Hamiltonian@16#:

H5\Vu↑&^↓uexp$ i @h~ae2 ivzt1a†eivzt!2dt1f#%1H.c.,
~42!

wherea denotes the annihilation operator for the vibratio
along thez direction,vz is the corresponding frequency, an
d is the detuning between the internal transition and the
quency difference between the two Raman lasers. The R
frequencyV is proportional to the two Raman laser inten
ties, andh is the Lamb-Dicke parameter@7,16#. When the
two Raman lasers are tuned to the first blue sideband,
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e.,

d5vz , Hamiltonian~42! predicts Rabi oscillations betwee
u↓,n& and u↑,n11& ~un& is a vibrational Fock state! with a
frequency@16#

Vn5V
e2h2/2

An11
hLn

1~h2!, ~43!

where Ln
1 is the generalized Laguerre polynomial. The

Rabi oscillations have been experimentally verified by p
paring the initial stateu↓,n& ~with n ranging from 0 to 16!,
and measuring the probabilityP↓(t) as a function of the
interaction timet, which is varied by changing the duratio
of the Raman laser pulses. Again, as in the cavity QED
periment of @5#, the experimental Rabi oscillations ar
damped and well fitted by@7,16#

P↓~n,t !5 1
2 @11e2gnt cos~2Vnt !#, ~44!

where the measured oscillation frequenciesVn are in very
good agreement with the theoretical prediction~43! corre-
sponding to the measured Lamb-Dicke parameterh50.202
@7#. As concerns the decay ratesgn , the experimental values
are fitted in@7# by

gn5g0~n11!0.7 ~45!

where g0511.9 kHz. This power-law scaling has attract
the interest of a number of authors and it was investigate
Refs.@17,18#, even if a clear explanation of this behavior
the decay rates is still lacking. On the contrary, the scal
law ~45! can be simply accounted for in the previous form
ism if we consider the smallt limit of Eq. ~31!, which is
again suggested by the fact that the experimental and t
retical predictions for the frequenciesVn agree. In fact, then
dependence of the theoretical prediction of Eq.~43! for h
50.202 is well approximated, within 10%, by the power-la
dependence

Vn.V0~n11!0.35 ~46!

~see Fig. 3!, so that, using Eq.~31!, one has immediately the
power-law dependence (n11)0.7 of Eq. ~45!. The value of
the parametert can be obtained by matching the values c

FIG. 3. The ratio between Rabi frequenciesVn /V0 , experimen-
tally measured in Ref.@7# and well fitted by the theoretical predic
tion of Eq. ~43!, is plotted as a function of the initial vibrationa
numbern ~squares!, and compared with the power-law approxim
tion of Eq. ~46!, (n11)0.35 ~triangles!.
2-6
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responding ton50 and using Eq.~31!, that is,t5g0/2V0
2

.1.531028 sec, where we have used the experimental va
V0/2p594 kHz.

However, this value of the parametert cannot be ex-
plained in terms of some interaction time uncertainty, su
as the time jitter of the Raman laser pulses, which is exp
mentally found to be much smaller@19#. In this case, instead
the observed decoherence can be attributed, as already
gested in@16–18#, to the fluctuation of the Raman laser in
tensities, yielding a fluctuating Rabi frequency parame
V(t) of the Hamiltonian~42!. In this case, the evolution i
driven by a fluctuating HamiltonianH(t)5\V(t)H̃, where
H̃5H/V in Eq. ~42!, so that

r~ t !5expS 2 i L̃ E
0

t

dj V~j! D r~0!5e2 i L̃A~ t !r~0!, ~47!

where L̃5@H̃,...#/\, and we have defined the positive d
mensionless random variableA(t)5*0

t dj V(j), which is
proportional to the pulse area. It is now easy to underst
that the physical situation is analogous to that character
by a random interaction time considered in the preced
sections, withL replaced byL̃ andt8 by A(t). It is therefore
straightforward to adapt the formalism developed in Sec
to this case, in which the fluctuating quantity is the pu
areaA, yielding again random phases in the energy ba
representation. In analogy with Eq.~4!, one considers an
averaged density matrix

r̄~ t !5E
0

`

dA P~ t,A!e2 i L̃Ar~0!. ~48!

Imposing again thatr̄(t) must be a density operator and th
semigroup property, one finds results analogous to Eqs~9!
and ~10!:

V~ t !5~11 i L̃Vt!2t/t, ~49!

P~ t,A!5
e2A/Vt

Vt

~A/Vt!~ t/t!21

G~ t/t!
. ~50!

Here, the parametersV and t are introduced as scaling pa
rameters, but they have a clear meaning, as can be e
seen by considering the mean and the variance of the p
ability distribution of Eq.~50!,

^A&5Vt, ~51!

s2~A!5^A2&2^A&25V2tt, ~52!

implying that V must now be meant as a mean Rabi f
quency, and thatt quantifies the strength ofA fluctuations. It
is interesting to note that these first two moments ofP(t,A)
are consistent with the assumption that the fluctuating R
frequencyV(t) can be written as

V~ t !5V1j~ t !, ~53!

^j~ t !&50, ^j~ t !j~ t8!&5V2td~ t2t8!, ~54!
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that is, the Rabi frequencyV(t) is a white, non-Gaussian
@due to the non-Gaussian form ofP(t,A)# stochastic process
In fact, the semigroup assumption we have made implie
Markovian treatment in which the spectrum of the laser
tensity fluctuations is flat in the relevant frequency ran
This implies, in particular, that we are neglecting the dyna
ics at small times, of the order of the correlation time of t
laser intensity fluctuations.

The estimated value oft gives a reasonable estimate
the pulse area fluctuations, since it corresponds to a f
tional error of the pulse areaAs2(A)/^A&5At/t of 10% for
a pulse duration oft51 msec, and which is decreasing fo
increasing pulse durations.

The present analysis shows many similarities with that
Ref. @17#, which also tries to explain the decay of the Ra
oscillations in the ion trap experiments of@7# in terms of
laser intensity fluctuations. The authors of Ref.@17# in fact
use a phase-destroying master equation coinciding with
second order expansion~21! of our generalized master equa
tion of Eq. ~20! @see Eq.~16! of Ref. @17# with the identifi-
cationsG↔H/\ and G↔t# and moreover derive the sam
numerical estimate for the pulse area fluctuation stren
G↔t. Despite these similarities, they do not recover t
scaling~45! of the decay ratesgn only because they do no
use the general expression of the Rabi frequency~43! @and
which is well approximated by the power law~48!# but its
Lamb-Dicke limit Vn5V0(n11)0.5, which is valid only
when h!1. There is, however, another, more fundamen
difference between our approach and that of Ref.@17#. They
assume from the beginning that the laser intensity fluct
tions have a white and Gaussian character, while we mak
a priori assumption about the statistical properties of
pulse areaA. We derive these properties, i.e., the probabil
distribution ~50!, only from the semigroup condition, and
is interesting to note that this condition yields a Gauss
probability distribution for the pulse area only as a limitin
case. In fact, from Eq.~50! one can see thatP(t,A) tends to
become a Gaussian with the same mean valueVt and the
same widthV2tt only in the large time limitt/t@1,

P~ t,A! t@t.
1

A2pV2tt
expS 2

~A2Vt !2

2V2tt
D . ~57!

The non-Gaussian character ofP(t,A) can be traced back to
the fact thatP(t,A) must be definite and normalized in th
interval 0,A,` and not in2`,A,1`. Notice that at
t5t, Eq. ~50! assumes the exponential formP(t,A)
5e2A/Vt/Vt. Only at large timest does the random variabl
A become the sum of many independent contributions
assume the Gaussian form.

Due to the non-Gaussian nature of the random variableA,
we find that the more generally valid phase-destroying m
ter equation is given by Eq.~20! ~with L replaced byVL̃!.
The predictions of Eq.~20! significantly depart from its sec
ond order expansion inLt, Eq. ~21!, corresponding to the
Gaussian limit, as soon ast becomes comparable with th
typical time scale of the system under study, which, in
present case, is the inverse of the Rabi frequency.
2-7
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The present analysis of the Rabi oscillation experimen
Ref. @7# can be repeated for the very recent experiment w
trapped ions@20#, in which Rabi oscillations involving the
vibrational levels and an optical quadrupole transition o
single 40Ca1 ion have been observed. Damped oscillatio
corresponding to initial vibrational numbersn50 andn51
were reported. From the data withn50, V0/2p521 kHz,
and g051 kHz, we gett.g0/2V0

2.331028 sec, and this
estimate is consistent with attributing the decoherence a
to the fluctuations of the Rabi frequency caused by la
intensity fluctuations. Moreover, in this case, the experim
was performed in the Lamb-Dicke limith!1, and therefore,
again using Eq.~31!, we expect, in this case, a linear scalin
with the vibrational number,gn52Vn

2t.g0(n11).

V. CONCLUDING REMARKS

Decoherence is not always necessarily due to entan
ment with an environment, but it may be due, as well, to
fluctuations of some classical parameter or internal varia
of a system. This is a different form of decoherence, which
present even in isolated systems, and that we have ca
nondissipative decoherence. In this paper we have prese
a model-independent theory for nondissipative decohere
which can be applied in the case of a random evolution t
or in the case of a fluctuating Hamiltonian. This approa
proves to be a flexible tool, able to give a quantitative u
derstanding of the decoherence caused by the fluctuation
classical quantities. In fact, in this paper we have give
simple and unified description of the decoherence phen
ena observed in recent Rabi oscillation experiments p
formed in a cavity QED configuration@5# and on a trapped
ion @7#. In particular, this approach has allowed us to expl
in simple terms the power-law scaling of the coherence
cay rates of Eq.~45!, observed in the trapped ion experime

The relevant aspect of the approach applied here, and
troduced in Ref.@3#, is its model independence. The forma
n
ca

um

.

05380
f
h

a
s

in
r
t

le-
e
le
s
ed
ted
e,
e
h
-
of

a
-

r-

n
-

.
in-

ism is in fact derived starting from few, very general a
sumptions:~i! the average density matrixr̄(t) has all the
usual properties of a density matrix;~ii ! r̄(t) is a time aver-
age of the usual density operator. In this respect, this
proach seems to provide a very general description of n
dissipative decoherence, in which the random properties
the fluctuating classical variables are characterized by
two system-dependent time parameterst1 and t2 . As we
have seen in Sec. II, in the cases where one has a stan
continuous evolution, the two times coincide,t15t25t.
Under ideal conditions of no fluctuating classical variable
parameter, one would havet50, and the usual unitary evo
lution of an isolated system in quantum mechanics would
recovered. However, the generality of the approach sugg
in some way the possibility that the parametert, even though
system dependent, might have a lower nonzero limit, wh
would be reached just in the case of no fluctuations of
perimental origin. This would mean a completely new d
scription of time in quantum mechanics. In fact, the evo
tion time of a systemt8 ~and not the ‘‘clock’’ timet! would
become an intrinsically random variable with a well-defin
probability distribution, without the difficulty of introducing
an evolution time operator. In Ref.@3# a relation of the non-
zero limit for t with the ‘‘energy time’’\/2DE is suggested,
whereDE is the uncertainty in energy. This would give
precise meaning to the time-energy uncertainty relation
cause nowt rules the width of the time distribution function
However, this ‘‘intrinsic assumption’’ is not necessarily im
plied by the formalism developed in@3# and applied, with a
more pragmatic attitude, in the present paper.
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