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Evaporative cooling of a two-component degenerate Fermi gas
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We derive a quantum theory of evaporative cooling for a degenerate Fermi gas with two constituents and
show that the optimum cooling trajectory is influenced significantly by the quantum statistics of the particles.
The cooling efficiency is reduced at low temperatures due to Pauli blocking of available final states in each
binary collision event. We compare the theoretical optimum trajectory with experimental data on cooling a
guantum degenerate cloud of potassium-40, and show that temperatures as low as 0.3 times the Fermi tem-
perature can now be achieved.

PACS numbs(s): 03.75.Fi, 05.30.Fk, 05.20.Dd, 67.40.Fd

The recent demonstrations of Bose-Einstein condensatioperimental prerequisite for following a cooling trajectory that
in dilute alkali-metal and hydrogen gases have required théeads to a quantum degenerate gas.
ability to reach extremely low temperatures in the mi- For bosons, once the temperature is reduced below the
crokelvin to nanokelvin scale. Although eventually it may becritical temperature for Bose-Einstein condensation to occur,
possible to use laser cooling to reduce the temperature of effects due to quantum statistics assist the evaporation. Con-
dilute gas to this regimgl], so far experiments which have sider a typical collision event involving two atoms from the
demonstrated quantum degeneracy have employed a finabrmal thermal gas that initially have approximately the
stage of forced evaporative coolifig). Efficient evaporative mean energy of the distribution. The presence of a Bose-
cooling can allow the temperature of a gas to be reduced biginstein condensate modifies the scattering probability into
orders of magnitude without prohibitive loss in the numbereach possible final state and enhances the likelihood of
of atoms. It has universal application to cool magneticallystimulated scattering of one of the atoms into the condensate.
trapped atomic and molecular vapors and has already bedhe other atom then obtains the total energy of the initial
applied to produce quantum degenerate clouds of rubidiumpair and can be removed by the evaporative cut. Clearly this
[3], sodium[4], lithium [5], potassium 6], and hydrogefi7].  type of collision leads to very efficient evaporative cooling.

For a bosonic gas, cooling can be continued to the point The opposite situation is true for fermions. As the tem-
where no discernible normal component of the gas is presenperature falls below the Fermi temperature, efficient colli-
closely approximating a zero-temperature system. Demorsions turn off due to Pauli blocking since the states of lowest
strating the ability to reach this regime has been a prerequienergy become occupied with high probabilf}9,2qd. In
site to many of the recent experiments on collective effects ithis paper we study this effect on the achievable optimum
these systems. Collective phenomena that have now be@&vaporation trajectory. Our calculations are motivated by the
observed include linear respori&-11], surface modefl2], first application of evaporative cooling to produce a quantum
and topological excitations such as vorti¢d8,14). A cur-  degenerate Fermi gg€]. This recent experiment has opened
rent goal is to observe the conjugate low-temperature phethe door to the study of Fermi statistics in an extremely
nomena in a fermionic gas when it is cooled well below thedilute regime—perhaps eventually allowing for the possibil-
onset of quantum degeneralp—1§. ity of investigating Cooper pairing and the BCS phase tran-

In evaporative cooling, a “cut” is made at a prescribed sjtion in these dilute systems.
energy and all atoms with energies greater than the cut are At typical temperatures of interest, collisions between
removed from the system. The remaining atoms will retheratom pairs are purelswave since the characteristic collision
malize by collisions to form an equilibrium with a lower energies are well below the centrifugal barrier associated
temperature. The crucial parameter that determines the timgjth channels of nonzero orbital angular momefgd].
scale for cooling is therefore the rate of rethermalizafion  gince for fermions the total wave function must be antisym-
For a dilute gas at temperatures where quantum statistics qfetric with respect to exchange of any pair of atoswave
not play a role, rethermalization is determined by the elasti¢o|lisions are only possible if at least two internal atomic
collision rate, given byl’=nov, wheren is the spatially hyperfine states are simultaneously present, or alternatively
averaged density-weighted density,is the collision cross if sympathetic cooling is performed with a distinguishable
section, and is the root-mean-square velocity of the collid- species, such as a different isotope or a different element
ing species. In a harmonic trap,may increase as the gas is [22,23. Here, we consider the first of these possibilities—a
cooled despite the obvious reduction in average velocity. Théwo-component Fermi gas.
reason for this is simply that as the cloud cools, the atoms The Hamiltonian for this system may be separated into
fall to the bottom of the trap and become more tightly con-two parts,H=Hy+H,, whereH is the usual single-particle
fined, increasing the number densityand more than com- energy of the system ardl; describes binary collisions. The
pensating for the loss in energy per patrticle. Achieving thisHamiltonianHg for a two-component mixture confined in a
regime, known asunaway evaporationis typically an ex- three-dimensional harmonic oscillator is
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dA, 1
Ho=2 Eq(aay+biby), (D) =25 2 WomgplAB(1—Br)(1-Ay)
n dt 2 m'q‘p
—ABn(1-By(1-Ap}, 4
where we have assumed the potential is identical for both
species. The summation is taken over the three integer com- dB, 1
ponents ofn=(ny,ny,n,). If the harmonic potential is iso- a9t 2 nEqp Wi miaptApBg(1—Bm) (1—Ap)
tropic with oscillation frequencyw, then E,=fo(n,+n, "
+n,+3/2). The annihilation operators for the two compo- —ABn(1-By(1-Ap},

nents,a, andb,, obey the usual Fermi commutation rela- - '
tions. Binary collisions are described by the interactionwhere the transition rates are found from Fermi's golden

Hamiltonian rule,
2 Ok, +E, EE
\Nn,m;q,p:7lcn,m;q,p|2 ho ey 5
|:|1: 2 Cn,m;q,parﬁbrﬁwbqapi 2 . .
n,m,q,p Note the factors such as {1A,) and (1-B,,) give rise to

the mechanism known as Pauli blocking. The Kronecker
delta function,é, constrains the collision to be precisely on
where the matrix element is the energy shell. This is an unphysical artifact of the Markov
approximation that is valid for the dilute gas only when the
elastic collision rate is much less than the oscillation fre-
_ 3 % N quency in the trap. Otherwise the collisional broadening of
Chmap= UOJ d°X ay (%) Bn(X) Bo(¥) ap(X). 3 the levels would be greater than their spacing, and the energy
basis we use here would not be an appropriate choice since
off-diagonal elements would then be important. We assume
The oscillator eigenfunctions,, and 8, form a complete ~ €rgodicity by assigning equal population to each state in the
orthonormal basis that spans the two-component Hilberflegenerate manifold of states with the same principal quan-
space. In calculating the matrix element, we have replace!m numbem (and therefore the same eneygWe denote
the physical two-particle potential by a contact potential. Thdhe ergodic populations b%n andBen (indexed only by the
dimensional prefactor isJ,=4m%%a/m, wherem is the discrete values of the energy), which are related to previ-
atomic mass, and is the swave scattering length, which ously defined populations for an arbitrary quantum stafe
includes contributions from both direct and exchange scatter@NdBn by
ing.

Although, in principle, one could solve the evolution of
this isolated many-body system, we are primarily interested genAefEn: e, EAn
here in a simplified description on a coarse-grained time
scale. Such a description is given by quantum kinetic theory
where a set of relevant observables are quantities of interest. B — E s B
The underlying theoretical framework derives from the prop- e, e, ~ e Epns
erty that collisions in the dilute gas are extremely well sepa-
rated in time. This allows the Born and Markov approxima-with ge, denoting the degeneracy of states for the three-
tions to be made and the subsequent derivation of &imensional harmonic oscillator,
perturbative theory in lowest orders of the interaction Hamil-
tonian[24]. The relevant observables are the populations of 1
the two speciegdiagonal elements of the single-particle den- Qe,= E(H’L 1)(n+2). @)
sity matrix): A,=(a'a,) andB,=(bb,).

This approach must be extended in order to treat bosoriFhe quantum kinetic equations given in E4) may be sim-
fermion mixtures, or Fermi gases at temperatures wherplified by approximating the summations by integrals over
Cooper pairing is important. In those situations it would becontinuous distributions. This is typically always a good ap-
necessary to expand the set of relevant observables to coproximation for fermions, since for a sufficiently large
sider diagonal and off-diagonal contributions to the normalsample, a macroscopic number of states are occupied even at
and anomalous densities, as well as the role of mean fieldgery low temperature. The quantum kinetic equations then
[25]. describe the rate of transfer of population between continu-

Following this procedure, the quantum kinetic equationsous distribution functions. We denote these functi¢oisa
(also referred to as the “quantum Boltzmann equatigrfef ~ continuous energy variable) as A(e) and B(e), which
the two-component Fermi gas are given by evolve according to

(6)
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dA(e,) mo X 10° .
P(en)T:W demdeqdepa(A)P(emin) 2x104
X{A(e,)B(eg)[1-B(ey)[1-A(e,)] < '5
~A(e)B(en)[1-B(eg) I[1-Alep) 1}, 2 1
8 323 05
2ol =i %6 18
dB(e,) mo 2
plen g™ = T3 | dedede,s(A)p(ema) g
X {A(e,)B(eg)[1—B(en) [1-A(e,)] . . .
0 5 10 15 20
—A(en)B(en)[1-B(ey)[1-A(ep) 1}, Energy g (k)

. FIG. 1. The truncated Fermi-Dirac distribution. The graph
whereen,=min{e, €, .6 .6} andA=e,+en—eq—e,. The  shows the distribution functiom(e)F(e), as a function of/kg,
quantum-mechanical cross section applicable heresis \herekg is Boltzmann's constant. The parameters used were those
=4ma? since the products of a collision event are in quan-or the start of the evaporation simulation with=3.2x 10°, E
tum mechanically distinguishable spin staf@6]. The den-  =3NkgT, where T=1.5 K and K=4E/N. The inset shows a
sity of statesp(e) for the three-dimensional harmonic oscil- magnified view of the discontinuity at the cut energy.
lator can be found from the largelimit of Eq. (7), which
gives p(e)=2e?. Although these equations are similar in be solved to give simultaneously the correct total number of
form to the discrete version in E¢4), a key simplification —atoms in one componei, and total energy of these atoms
has been the replacement of the collision kefaefined in  E, according to
Eq. (5)] by p(enin), Which is the classical [imit27]. As was
shown in Ref[28], the convergence to the classical limit is jKd _

. ! . 2 . ep(e)F(e)=N,
very rapid asen,, is raised. Significant quantum correction 0
occurs only when both of the colliding atoms are in the low- (10)
est few(of order one to five states of the harmonic oscilla- K
tor. These lowest-energy collisions give a microscopic cor- jo de ep(e)F(e)=E.
rection to the collision rate when the particles have Fermi

statistics and are typically distributed over a macroscopicrhe truncated Fermi-Dirac distribution function is illustrated

number of levels of the oscillator. The situation is quite dif-jn Fig. 1 for the initial conditions of the evaporative simula-
ferent for the quantum degenerate Bose gas where a carefhn.

treatment of these low-energy collisions is usually crucial The simulation algorithm is the following.

due to the possibility of condensate mean fields. (i) Starting with givenN, E, andK, solve Eq.(10) to find
While the simultaneous equations in E@®) may be g and .

solved by direct numerical integration, the calculation is' (jj) Consider propagation of the kinetic equations for a

cumbersome given the multidimensional integrals that musfime stepdt and determine the change in numiag, and

be performed at each time step. We provide a more intuitivenergyd E, due to atoms colliding and gaining energy above
approach that is motivated by the near-equilibrium distributhe cytK,

tions expected when the elastic collision rate is sufficiently

high. We assume that the form of the population distribution mo (2K 2K—e, K
functions for both components is given by a truncated Fermi- ledthK denfo demf . _Kdepp(em)
Dirac distributionF (e) as defined by e En
XF(emten—epF(ey)[1-F(ey)], 11
{exd B(e—u)]+1} 7L, e<K
F(e)= . 9) mo (2K 2K—e, K
0 otherwise. dElzdtz_sf denf demf
m°h K 0 ente,—K

A similar method was introduced in Re27] to treat the
evaporative cooling of a classical gas. For simplicity, we also
take the simplest case @f(e)=B(e)=F(e) at all times, (iii) Simulate background loséenergy-independent re-
since if the distributions of the two components are initially moval of atoms arising from nonideal vacuum conditions in
identical they will remain so due to the symmetry of the experimentswith rate y from the trap,

equations. This means that the distribution functions for both

X deyenp(em)F(ente,—ep)F(ey)[1—F(em)].

species are parametrized by the same three varialbesn dN,=yN dt,
inverse temperaturg, (i) a chemical potentigk, and(iii) a (12)
cut energyK. Given a value for the cut energg,andu can dE,=yE dt.
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(iv) Lower the cut energy fronK to a new valuek’ and
find the change in number and energy due to trimming the

highest-energy atoms: "”LL10
x
K 5
dN3=J dep(e)F(e), 0
K!
(13 - 3F
K &
dE3:f de ep(e)F(e). =2
K’ E
= 1
(v) Update the number and energy, 0
15 .............................................
N—N-> dN,, L B (C)
7 -
(14) 05 .............................................
E—E-> dE,,

and repeat this sequence starting again from step 1.

A technical point is that solving E¢10) for 8 andu is a
two-dimensional root-finding problem that can potentially be
nontrivial. We use a multidimensional Newton-Raphson al-
gorithm that will rapidly produce a good estimate of the
value of the solutions in a few iterations. To find a good
estimate to start with, we employ a simple three-point poly-
nomial extrapolation of solutions from previous time steps.
In this extrapolation we use the cut eneigys the indepen-
dent variable, rather than the step number or time.

Although this method may be used to calculate the evapo-
ration trajectory for an arbitrary time dependence of the cut
energy, we are most interested here in determining the opti- FIG. 2. Optimum evaporation trajectory. The parameters used
mum path. During the evaporation simulation, we follow aWere those typical for the experiment reported in Rél; w/2m
trajectory that maximizes the energy removed per particle” /0 HZ is the geometric mean of the trap frequenciess the

e . . .
from the system. That is, we choose a valueKdrin such a mass of potassium-40y=1/350 Hz, and the scattering is domi-
way as to numerically maximize

nated by the triplet channel with=157a,, wherea, is the Bohr
radius[21]. The initial conditions used are given in Fig.(® The
optimized cut energK divided by the Fermi energ¥.. For a
three-dimensional harmonic oscillator the Fermi energyEjs
=(6N)Y*% w. (b) The number of atoms in each componén}t.The
temperaturdl, defined for the truncated Fermi-Dirac distribution as
T=1/(Bkg). The temperature is normalized by the Fermi tempera-
ture Te=Eg/kg . (d) The chemical potentigk in units of E¢. (e
The Fermi temperaturér .

> dE,

—_— (15)
> dN,

for the subsequent time step.

In Fig. 2, we show the calculated optimum evaporation
trajectory for the two-component Fermi gas. In order to in-
dicate the level of quantum degeneracy, we have normalized
energies and temperatures by dividing them by the Fermi
energy and Fermi temperatu(see caption The optimum
cut energy approaches closely the Fermi surface towards thehich is illustrated in Fig. 3. As the chemical potential be-
end of the simulation. While the ideal evaporative trajectorycomes positive, and Pauli blocking of available final states
demonstrates the theoretical possibility for achieving verybegins to play an important role, the elastic collision rate
low temperatures—with the chemical potential tending to-falls sharply. Since the elastic collision rate determines the
wards the Fermi energy and with a macroscopic populationime scale for rethermalization, at the end of the simulation,
remaining—the efficiency of the evaporation trajectory fallsevaporative cooling has virtually ceased. As this figure dra-

mo
= mf de,de,dey,dey S(A)p(emin)

XF(ep)F(eq)[l_F(em)][l_F(en)]i (16)

dramatically as the system becomes degenerate.
This is shown by the elastic collision rafedefined by

05361

matically illustrates, towards the end of the evaporation tra-
jectory, the elastic collision rate may be more than an order
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FIG. 3. Elastic collision rate per atom for the optimized evapo- FIG. 4. Optimum evaporation trajectory. The symbols show
ration trajectory. The solid line shows the true collision rate agPoints on the theoretical evaporation trajectory at time intervals of 5

defined in Eq.(16). The dashed line shows what the collision rate S- For comparison, th@® symbols show experimental data points

would be in the absence of Pauli blocking, by artificially replacing 91Ving @ typical evaporation trajectory. The symbols show the
the[1—F(e,)][1—F(e,)] factors in Eq.(16) by unity. lowestT/T achieved in our current experiment, as described in the

text.

of magnitude suppressed from the value it would have iftive cut. and other similar oroblems
Pauli blocking of final states was absent. In th,e current ex erimtgnt we héve recently found that
In Fig. 4, we illustrate this trajectory on a semilogarithmic . b y

graph of temperature versus number and compare with e)%[nproving the stability of the magnetic trapping field in-

perimental data. The data are taken by evaporating a twi creased the highest achievable quantum degeneracy from

0 . : : 0f/TFZO.S toT/Tg=0.3. The low-temperature part of an ex-
component gas of* as described in Ref6]. For the por 4 perimental evaporation trajectory that reaciiéd-=0.3 is

tion of the evaporation trajectory shown in Fig. 4, Iso shown in Fig. 4. For these data we used a much slower
evaporation occurs using a 50-50 mixture of two spin state§ 9. 2. . .
removal of the second spin componéwithin 25 g to pro-

confined in a cylindrically symmetric harmonic trap Whosevide additional evaporative cooling which is not included in

radial frequency is 137 Hz and axial frequency is 19.5 Hz. he theory. The experimental progress suggests that further
After evaporation, one of the spin components is remove eory. P prog 99
echnical improvements may enable experiments to approach

quickly (within 0.3 9 with the application of a frequency- ; .
swept microwave field; this removal provides a smallthe low T/Tg values that appear possible theoretically. Fur-

amount of additional evaporative cooling that reduces théhermore, Fig. 3 shows that the dramatic suppression of the

cloud temperature by 20%. The comparison shown in Fig. £|aStIC collision rate due to Pauli blocking could be observed

illustrates that although it is possible theoretically to reachat the lowest temperatures of current experiments.

very low temperatures, the data correspond to less efficient We would like to thank J. Cooper, R. Walser, B. Ander-
evaporative cooling and are presumably limited by experison, and J. Bohn for discussions. M.H. acknowledges sup-
mental artifacts. These experimental limitations could in-port for this work from the Department of Energy. D.J. and
clude heating of the trapped gas, finite energy resolution oB.D. acknowledge funding from the Office of Naval Re-
the evaporative cut, reduced dimensionality of the evaporasearch and the National Science Foundation.
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