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Evaporative cooling of a two-component degenerate Fermi gas
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~Received 25 October 1999; published 18 April 2000!

We derive a quantum theory of evaporative cooling for a degenerate Fermi gas with two constituents and
show that the optimum cooling trajectory is influenced significantly by the quantum statistics of the particles.
The cooling efficiency is reduced at low temperatures due to Pauli blocking of available final states in each
binary collision event. We compare the theoretical optimum trajectory with experimental data on cooling a
quantum degenerate cloud of potassium-40, and show that temperatures as low as 0.3 times the Fermi tem-
perature can now be achieved.

PACS number~s!: 03.75.Fi, 05.30.Fk, 05.20.Dd, 67.40.Fd
ti
th
i-

be
o
e
fin

b
e
ll
e

iu

oi
e
o
qu
s
e

h
he

d
a

e
r
tim

s
st

d-
is
Th
m
n

-
hi

at

the
ur,
on-
e

he
se-
nto

of
ate.
tial
this
g.
m-
lli-
est

um
the
um
d

ely
il-

an-

en
n
ted

m-

ic
vely
le
ent
a

nto

e
a

The recent demonstrations of Bose-Einstein condensa
in dilute alkali-metal and hydrogen gases have required
ability to reach extremely low temperatures in the m
crokelvin to nanokelvin scale. Although eventually it may
possible to use laser cooling to reduce the temperature
dilute gas to this regime@1#, so far experiments which hav
demonstrated quantum degeneracy have employed a
stage of forced evaporative cooling@2#. Efficient evaporative
cooling can allow the temperature of a gas to be reduced
orders of magnitude without prohibitive loss in the numb
of atoms. It has universal application to cool magnetica
trapped atomic and molecular vapors and has already b
applied to produce quantum degenerate clouds of rubid
@3#, sodium@4#, lithium @5#, potassium@6#, and hydrogen@7#.

For a bosonic gas, cooling can be continued to the p
where no discernible normal component of the gas is pres
closely approximating a zero-temperature system. Dem
strating the ability to reach this regime has been a prere
site to many of the recent experiments on collective effect
these systems. Collective phenomena that have now b
observed include linear response@8–11#, surface modes@12#,
and topological excitations such as vortices@13,14#. A cur-
rent goal is to observe the conjugate low-temperature p
nomena in a fermionic gas when it is cooled well below t
onset of quantum degeneracy@15–18#.

In evaporative cooling, a ‘‘cut’’ is made at a prescribe
energy and all atoms with energies greater than the cut
removed from the system. The remaining atoms will reth
malize by collisions to form an equilibrium with a lowe
temperature. The crucial parameter that determines the
scale for cooling is therefore the rate of rethermalizationG.
For a dilute gas at temperatures where quantum statistic
not play a role, rethermalization is determined by the ela
collision rate, given byG5n̄sv, where n̄ is the spatially
averaged density-weighted density,s is the collision cross
section, andv is the root-mean-square velocity of the colli
ing species. In a harmonic trap,G may increase as the gas
cooled despite the obvious reduction in average velocity.
reason for this is simply that as the cloud cools, the ato
fall to the bottom of the trap and become more tightly co
fined, increasing the number densityn and more than com
pensating for the loss in energy per particle. Achieving t
regime, known asrunaway evaporation, is typically an ex-
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perimental prerequisite for following a cooling trajectory th
leads to a quantum degenerate gas.

For bosons, once the temperature is reduced below
critical temperature for Bose-Einstein condensation to occ
effects due to quantum statistics assist the evaporation. C
sider a typical collision event involving two atoms from th
normal thermal gas that initially have approximately t
mean energy of the distribution. The presence of a Bo
Einstein condensate modifies the scattering probability i
each possible final state and enhances the likelihood
stimulated scattering of one of the atoms into the condens
The other atom then obtains the total energy of the ini
pair and can be removed by the evaporative cut. Clearly
type of collision leads to very efficient evaporative coolin

The opposite situation is true for fermions. As the te
perature falls below the Fermi temperature, efficient co
sions turn off due to Pauli blocking since the states of low
energy become occupied with high probability@19,20#. In
this paper we study this effect on the achievable optim
evaporation trajectory. Our calculations are motivated by
first application of evaporative cooling to produce a quant
degenerate Fermi gas@6#. This recent experiment has opene
the door to the study of Fermi statistics in an extrem
dilute regime—perhaps eventually allowing for the possib
ity of investigating Cooper pairing and the BCS phase tr
sition in these dilute systems.

At typical temperatures of interest, collisions betwe
atom pairs are purelys-wave since the characteristic collisio
energies are well below the centrifugal barrier associa
with channels of nonzero orbital angular momenta@21#.
Since for fermions the total wave function must be antisy
metric with respect to exchange of any pair of atoms,s-wave
collisions are only possible if at least two internal atom
hyperfine states are simultaneously present, or alternati
if sympathetic cooling is performed with a distinguishab
species, such as a different isotope or a different elem
@22,23#. Here, we consider the first of these possibilities—
two-component Fermi gas.

The Hamiltonian for this system may be separated i
two parts,H5H01H1, whereH0 is the usual single-particle
energy of the system andH1 describes binary collisions. Th
HamiltonianH0 for a two-component mixture confined in
three-dimensional harmonic oscillator is
©2000 The American Physical Society10-1
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H05(
n

En~an
†an1bn

†bn!, ~1!

where we have assumed the potential is identical for b
species. The summation is taken over the three integer c
ponents ofn5(nx ,ny ,nz). If the harmonic potential is iso
tropic with oscillation frequencyv, then En5\v(nx1ny

1nz13/2). The annihilation operators for the two comp
nents,an and bn , obey the usual Fermi commutation rel
tions. Binary collisions are described by the interacti
Hamiltonian

Ĥ15 (
n,m,q,p

Cn,m;q,pan
†bm

† bqap , ~2!

where the matrix element is

Cn,m;q,p5U0E d3x an* ~x!bm* ~x!bq~x!ap~x!. ~3!

The oscillator eigenfunctionsan and bn form a complete
orthonormal basis that spans the two-component Hilb
space. In calculating the matrix element, we have repla
the physical two-particle potential by a contact potential. T
dimensional prefactor isU054p\2a/m, where m is the
atomic mass, anda is the s-wave scattering length, which
includes contributions from both direct and exchange sca
ing.

Although, in principle, one could solve the evolution
this isolated many-body system, we are primarily interes
here in a simplified description on a coarse-grained ti
scale. Such a description is given by quantum kinetic the
where a set of relevant observables are quantities of inte
The underlying theoretical framework derives from the pro
erty that collisions in the dilute gas are extremely well se
rated in time. This allows the Born and Markov approxim
tions to be made and the subsequent derivation o
perturbative theory in lowest orders of the interaction Ham
tonian @24#. The relevant observables are the populations
the two species~diagonal elements of the single-particle de
sity matrix!: An5^an

†an& andBn5^bn
†bn&.

This approach must be extended in order to treat bos
fermion mixtures, or Fermi gases at temperatures wh
Cooper pairing is important. In those situations it would
necessary to expand the set of relevant observables to
sider diagonal and off-diagonal contributions to the norm
and anomalous densities, as well as the role of mean fi
@25#.

Following this procedure, the quantum kinetic equatio
~also referred to as the ‘‘quantum Boltzmann equations’’! for
the two-component Fermi gas are given by
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dAn

dt
5

1

2 (
m,q,p

Wn,m;q,p$ApBq~12Bm!~12An!

2AnBm~12Bq!~12Ap!%, ~4!

dBm

dt
5

1

2 (
n,q,p

Wn,m;q,p$ApBq~12Bm!~12An!

2AnBm~12Bq!~12Ap!%,

where the transition rates are found from Fermi’s gold
rule,

Wn,m;q,p5
2p

\
uCn,m;q,pu2

dEm1En ,Eq1Ep

\v
. ~5!

Note the factors such as (12An) and (12Bm) give rise to
the mechanism known as Pauli blocking. The Kronec
delta function,d, constrains the collision to be precisely o
the energy shell. This is an unphysical artifact of the Mark
approximation that is valid for the dilute gas only when t
elastic collision rate is much less than the oscillation f
quency in the trap. Otherwise the collisional broadening
the levels would be greater than their spacing, and the en
basis we use here would not be an appropriate choice s
off-diagonal elements would then be important. We assu
ergodicity by assigning equal population to each state in
degenerate manifold of states with the same principal qu
tum numbern ~and therefore the same energy!. We denote
the ergodic populations byAen

andBen
~indexed only by the

discrete values of the energyen), which are related to previ-
ously defined populations for an arbitrary quantum stateAn
andBn by

gen
Aen

5(
n

den ,En
An ,

~6!

gen
Ben

5(
n

den ,En
Bn ,

with gen
denoting the degeneracy of states for the thr

dimensional harmonic oscillator,

gen
5

1

2
~n11!~n12!. ~7!

The quantum kinetic equations given in Eq.~4! may be sim-
plified by approximating the summations by integrals ov
continuous distributions. This is typically always a good a
proximation for fermions, since for a sufficiently larg
sample, a macroscopic number of states are occupied ev
very low temperature. The quantum kinetic equations th
describe the rate of transfer of population between conti
ous distribution functions. We denote these functions~of a
continuous energy variablee) as A(e) and B(e), which
evolve according to
0-2
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r~en!
dA~en!

dt
5

ms

p2\3E demdeqdepd~D!r~emin!

3$A~ep!B~eq!@12B~em!#@12A~en!#

2A~en!B~em!@12B~eq!#@12A~ep!#%,

~8!

r~em!
dB~em!

dt
5

ms

p2\3E dendeqdepd~D!r~emin!

3$A~ep!B~eq!@12B~em!#@12A~en!#

2A~en!B~em!@12B~eq!#@12A~ep!#%,

whereemin5min$en ,em,ep ,eq% andD5en1em2eq2ep . The
quantum-mechanical cross section applicable here iss
54pa2 since the products of a collision event are in qua
tum mechanically distinguishable spin states@26#. The den-
sity of statesr(e) for the three-dimensional harmonic osc
lator can be found from the largen limit of Eq. ~7!, which
gives r(e)5 1

2 e2. Although these equations are similar
form to the discrete version in Eq.~4!, a key simplification
has been the replacement of the collision kernel@defined in
Eq. ~5!# by r(emin), which is the classical limit@27#. As was
shown in Ref.@28#, the convergence to the classical limit
very rapid asemin is raised. Significant quantum correctio
occurs only when both of the colliding atoms are in the lo
est few~of order one to five! states of the harmonic oscilla
tor. These lowest-energy collisions give a microscopic c
rection to the collision rate when the particles have Fe
statistics and are typically distributed over a macrosco
number of levels of the oscillator. The situation is quite d
ferent for the quantum degenerate Bose gas where a ca
treatment of these low-energy collisions is usually cruc
due to the possibility of condensate mean fields.

While the simultaneous equations in Eq.~8! may be
solved by direct numerical integration, the calculation
cumbersome given the multidimensional integrals that m
be performed at each time step. We provide a more intui
approach that is motivated by the near-equilibrium distrib
tions expected when the elastic collision rate is sufficien
high. We assume that the form of the population distribut
functions for both components is given by a truncated Fer
Dirac distributionF(e) as defined by

F~e!5H $exp@b~e2m!#11%21, e,K

0 otherwise.
~9!

A similar method was introduced in Ref.@27# to treat the
evaporative cooling of a classical gas. For simplicity, we a
take the simplest case ofA(e)5B(e)5F(e) at all times,
since if the distributions of the two components are initia
identical they will remain so due to the symmetry of t
equations. This means that the distribution functions for b
species are parametrized by the same three variables:~i! an
inverse temperatureb, ~ii ! a chemical potentialm, and~iii ! a
cut energyK. Given a value for the cut energy,b andm can
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be solved to give simultaneously the correct total numbe
atoms in one componentN, and total energy of these atom
E, according to

E
0

K

der~e!F~e!5N,

~10!

E
0

K

de er~e!F~e!5E.

The truncated Fermi-Dirac distribution function is illustrate
in Fig. 1 for the initial conditions of the evaporative simul
tion.

The simulation algorithm is the following.
~i! Starting with givenN, E, andK, solve Eq.~10! to find

b andm.
~ii ! Consider propagation of the kinetic equations for

time stepdt and determine the change in numberdN1 and
energydE1 due to atoms colliding and gaining energy abo
the cutK,

dN15dt
ms

p2\3E
K

2K

denE
0

2K2en
demE

em1en2K

K

depr~em!

3F~em1en2ep!F~ep!@12F~em!#, ~11!

dE15dt
ms

p2\3E
K

2K

denE
0

2K2en
demE

em1en2K

K

3depenr~em!F~em1en2ep!F~ep!@12F~em!#.

~iii ! Simulate background loss~energy-independent re
moval of atoms arising from nonideal vacuum conditions
experiments! with rateg from the trap,

dN25gN dt,
~12!

dE25gE dt.

FIG. 1. The truncated Fermi-Dirac distribution. The gra
shows the distribution function,r(e)F(e), as a function ofe/kB ,
wherekB is Boltzmann’s constant. The parameters used were th
for the start of the evaporation simulation withN53.23106, E
53NkBT, where T51.5 mK and K54E/N. The inset shows a
magnified view of the discontinuity at the cut energy.
0-3
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~iv! Lower the cut energy fromK to a new valueK8 and
find the change in number and energy due to trimming
highest-energy atoms:

dN35E
K8

K

der~e!F~e!,

~13!

dE35E
K8

K

de er~e!F~e!.

~v! Update the number and energy,

N→N2(
s

dNs ,

~14!

E→E2(
s

dEs ,

and repeat this sequence starting again from step 1.
A technical point is that solving Eq.~10! for b andm is a

two-dimensional root-finding problem that can potentially
nontrivial. We use a multidimensional Newton-Raphson
gorithm that will rapidly produce a good estimate of t
value of the solutions in a few iterations. To find a go
estimate to start with, we employ a simple three-point po
nomial extrapolation of solutions from previous time ste
In this extrapolation we use the cut energyK as the indepen-
dent variable, rather than the step number or time.

Although this method may be used to calculate the eva
ration trajectory for an arbitrary time dependence of the
energy, we are most interested here in determining the o
mum path. During the evaporation simulation, we follow
trajectory that maximizes the energy removed per part
from the system. That is, we choose a value forK8 in such a
way as to numerically maximize

(
s

dEs

(
s

dNs

~15!

for the subsequent time step.
In Fig. 2, we show the calculated optimum evaporat

trajectory for the two-component Fermi gas. In order to
dicate the level of quantum degeneracy, we have normal
energies and temperatures by dividing them by the Fe
energy and Fermi temperature~see caption!. The optimum
cut energy approaches closely the Fermi surface towards
end of the simulation. While the ideal evaporative trajecto
demonstrates the theoretical possibility for achieving v
low temperatures—with the chemical potential tending
wards the Fermi energy and with a macroscopic popula
remaining—the efficiency of the evaporation trajectory fa
dramatically as the system becomes degenerate.

This is shown by the elastic collision rateG defined by
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ms

2Np2\3E dendemdepdeq d~D!r~emin!

3F~ep!F~eq!@12F~em!#@12F~en!#, ~16!

which is illustrated in Fig. 3. As the chemical potential b
comes positive, and Pauli blocking of available final sta
begins to play an important role, the elastic collision ra
falls sharply. Since the elastic collision rate determines
time scale for rethermalization, at the end of the simulati
evaporative cooling has virtually ceased. As this figure d
matically illustrates, towards the end of the evaporation t
jectory, the elastic collision rate may be more than an or

FIG. 2. Optimum evaporation trajectory. The parameters u
were those typical for the experiment reported in Ref.@6#; v/2p
570 Hz is the geometric mean of the trap frequencies,m is the
mass of potassium-40,g51/350 Hz, and the scattering is dom
nated by the triplet channel witha5157a0, wherea0 is the Bohr
radius@21#. The initial conditions used are given in Fig. 1.~a! The
optimized cut energyK divided by the Fermi energyEF . For a
three-dimensional harmonic oscillator the Fermi energy isEF

5(6N)1/3\v. ~b! The number of atoms in each component.~c! The
temperatureT, defined for the truncated Fermi-Dirac distribution
T51/(bkB). The temperature is normalized by the Fermi tempe
ture TF5EF /kB . ~d! The chemical potentialm in units of EF . ~e!
The Fermi temperatureTF .
0-4
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EVAPORATIVE COOLING OF A TWO-COMPONENT . . . PHYSICAL REVIEW A 61 053610
of magnitude suppressed from the value it would have
Pauli blocking of final states was absent.

In Fig. 4, we illustrate this trajectory on a semilogarithm
graph of temperature versus number and compare with
perimental data. The data are taken by evaporating a t
component gas of40K as described in Ref.@6#. For the por-
tion of the evaporation trajectory shown in Fig.
evaporation occurs using a 50-50 mixture of two spin sta
confined in a cylindrically symmetric harmonic trap who
radial frequency is 137 Hz and axial frequency is 19.5 H
After evaporation, one of the spin components is remo
quickly ~within 0.3 s! with the application of a frequency
swept microwave field; this removal provides a sm
amount of additional evaporative cooling that reduces
cloud temperature by 20%. The comparison shown in Fig
illustrates that although it is possible theoretically to rea
very low temperatures, the data correspond to less effic
evaporative cooling and are presumably limited by exp
mental artifacts. These experimental limitations could
clude heating of the trapped gas, finite energy resolution
the evaporative cut, reduced dimensionality of the evapo

FIG. 3. Elastic collision rate per atom for the optimized evap
ration trajectory. The solid line shows the true collision rate
defined in Eq.~16!. The dashed line shows what the collision ra
would be in the absence of Pauli blocking, by artificially replaci
the @12F(em)#@12F(en)# factors in Eq.~16! by unity.
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tive cut, and other similar problems.
In the current experiment we have recently found th

improving the stability of the magnetic trapping field in
creased the highest achievable quantum degeneracy
T/TF50.5 toT/TF50.3. The low-temperature part of an e
perimental evaporation trajectory that reachedT/TF50.3 is
also shown in Fig. 4. For these data we used a much slo
removal of the second spin component~within 25 s! to pro-
vide additional evaporative cooling which is not included
the theory. The experimental progress suggests that fur
technical improvements may enable experiments to appro
the low T/TF values that appear possible theoretically. F
thermore, Fig. 3 shows that the dramatic suppression of
elastic collision rate due to Pauli blocking could be observ
at the lowest temperatures of current experiments.
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FIG. 4. Optimum evaporation trajectory. Theh symbols show
points on the theoretical evaporation trajectory at time intervals o
s. For comparison, thed symbols show experimental data poin
giving a typical evaporation trajectory. Then symbols show the
lowestT/TF achieved in our current experiment, as described in
text.
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