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Spin monopoles with Bose-Einstein condensates
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We study the feasibility of preparing a Bose-Einstein condensed sample of atoms in a macroscopic quantum
state that resembles aspin monopole. In this state, the atomic internal spins lie in thex-y plane and point along
the radial direction. The stability and dynamics of this structure are studied analytically in some cases and
numerically in the more general situation. We find these structures to be stable objects giving rise to a
nontrivial state of a Bose-Einstein condensate.

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

After the successful generation of Bose-Einstein cond
sation of alkali-metal atoms, the creation and manipulat
of macroscopic quantum states remains as one of the fu
mental goals in the field of atomic physics@1#. During recent
years, several ways to create vortices@2,3# and solitons@2,4#
with atomic Bose-Einstein condensates~BECs! have been
proposed. These nonlinear states have been observe
many other contexts, such as condensed matter or nonli
optical systems, and are characteristic of systems descr
by nonlinear partial differential equations, like the Gros
Pitaevskii equation~GPE! giving the evolution of an atomic
condensate. In this last system, it has been shown that
tons and vortices may become dynamically stable@5#, which
has motivated a strong experimental effort to generate th
and verify some of their properties.

On the other hand, the first experiments in which ato
were condensed in two or more internal states@6# opened up
a new field for the theoretical analysis of Bose-Einstein c
densates@13,14#. In particular, the experiments offer the po
sibility of creating macroscopic quantum states incorporat
different kinds of topological defects. In multicompone
systems there is a vector degree of freedom that leads to
structures sometimes called vector structures or vectoria
fects when they are related in some way to singularities
any of the components of the vector field. In the JILA e
periments the components of the vector states are chara
ized by the value of the internal atomic state~spin! at each
point of space and cannot easily be created experimental
other systems. There is a vast literature@7# on theoretical
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properties of those kind of states, although only a few
them have been observed. One of the few examples foun
BECs are the recently obtained vortices in multicompon
systems@8#. However, other cases are known in other field
such as the vortex vector solitons@9# and dipole-mode soli-
tons of nonlinear optics@10# and the vectorial defects an
patterns in laser physics@11#.

In this paper we study a macroscopic quantum state fo
multicomponent BEC that we call aspin monopole. It is a
state in which the atomic spin points in the radial direction
thex-y plane@Fig. 1~a!#. This has certain~mostly graphical!
analogies with the never found magnetic monopoles that
tivate the choice of the name ‘‘spin monopole.’’ We mu
stress that the same name has been used to describe dif
but somewhat related nontrivial objects found in BECs@12#.
We will show that a spin monopole is stable under realis
conditions and analyze a method to generate it that requ
only current experimental technology.

FIG. 1. ~a! Spin monopole in two dimensions. FormÞ0 the
spins rotate as a function of time.~b! Ring trap. ~c! Potential
V(r ,z).
©2000 The American Physical Society09-1
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II. SPIN MONOPOLES IN A RING

A. Model

We consider a Bose-Einstein condensed sample ofN at-
oms within the mean field approximation, i.e., in the limit
which it can be described by Gross-Pitaevskii models. T
atoms have two internal levels,u↑& andu↓&, with N1 andN2
atoms in each. The atomic motion is confined by an exte
trap with a ring shape@see Fig. 1~b!# @15#. If the motion
along the radial~r! and axial~z! direction is frozen, the dy-
namics of the motional state depends only on the polar a
(u). We write the wave function as

uC~u,t!&5AN1f1~u,t!u↑&1AN2f2~u,t!u↓&, ~1!

wheref1,2 are the motional wave functions corresponding
the internal statesu↑,↓&, respectively, and fulfill the coupled
GPE

i
]

]t
f15S 2

]2

]u2
1d11u11uf1u21u21uf2u2D f1 , ~2a!

i
]

]t
f25S 2

]2

]u2
1d21u12uf1u21u22uf2u2D f2 , ~2b!

with normalization

1

2p E
0

2p

duuf1,2~u,t!u251. ~3!

In this model,d1,2 denotes the energy of the two intern
states andui j 5uji ( i , j 51,2) describe their mutual interac
tions. All the quantities in Eqs.~2! have been rescaled so th
they are dimensionless. In particular, theui j are proportional
to the number of atomsN1,2, the corresponding scatterin
length, and the square of the ring radius@see Eq.~11a! be-
low#. The normalization of each component is preserved d
ing evolution since the type of coupling present in Eq.~2!
does not lead to transfer of particles between spin polar
tions.

We can find stationary solutions@16# of Eqs.~2! such that

f1
mp~u,t!5e2 im1t, f2

mp~u,t!5eiue2 im2t, ~4!

with m j5 j 211u1 j1u2 j1d j ( j 51,2). Defining the Pauli
operatorsW 5(sx ,sy ,sz) as usual, we see that the state~1!

with ~4! is an eigenstate of the operatorsW •nW with

nW 5S 2AN1N2 cos~u2mt!

2AN1N2 sin~u2mt!

N12N2

D ~5!

andm[m22m1. This means that form50 the projections of
the spins are always pointing outward in thex-y plane,
whereas for other conditions they rotate as shown in F
1~a!.
05360
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B. Stability

To analyze the stability of the ring spin monopole w
have considered a small perturbation around the mono
solution, such thatf1,2(u,t)5f1,2

mp(u,t)1ea1,2(u,t). In-
serting this expression into Eq.~2! and expanding up to firs
order ine we obtain a linear set of coupled equations fora1,2

anda1,2* . Writing a1,2(u,t)5(n52`
` a1,2

(n)(t)einu and decou-
pling independent terms, we obtain an infinite family of o
dinary differential equations

i
]

]t
aW (n)5EHnaW (n), ~6!

where the variable is a column vector:

aW (n)5@a1
(n) ,a1

(2n)* ,a2
(n11) ,a2

(2n11)* #T. ~7!

Here,Hn[Kn1H int rules the evolution, and is decompose
into 434 matrices,

E5diag~1,21,1,21!, ~8a!

Kn5diag@n2,n2,~n11!221,~n21!221#, ~8b!

H int5S u11 u21

u12 u22
D ^ S 1 1

1 1D , ~8c!

where^ denotes the tensor product.
The stability analysis can be carried out by diagonaliz

the matricesEHn . Complex eigenvaluesl r6 il i correspond
to exponentially growing solutions@a(t)5a(0)eilrtel it#
and thus correspond to stationary solutions that aredynami-
cally unstable. Real eigenvaluesl lead to small oscillatory
solutions @a(t)5a(0)e6 ilt#, which may correspond to
higher (l.0) or lower (l,0) values of the Gross
Pitaevskii energy functional with respect to the stationa
solution. In the first case, the stationary solution isstable,
whereas in the latter the system isenergetically unstable; this
means that if energy can be drained out from the system
given rate, then the stationary solution is unstable on t
time scale. Finally, when one of the matrices is not sim
~i.e., nondiagonalizable!, there are solutions that grow a
most polynomically with time@for example, for a 232 Jor-
dan matrix corresponding to a degenerate eigenva
l,a(t)5a(0)(11lt)#. This can be regarded as adynami-
cal instability with a much slower time scale.

On the other hand, there is a simple sufficient condit
for the stability of the system, which involves the positivi
of Hn : If all matricesHn>0 and the projector operator P0

n

on the kernel ofHn commutes with E for all n, then th
stationary solution is stable. The proof is as follows: first,
the positivity of Hn ensures the positivity of the Gross
Pitaevskii energy functional and therefore there cannot
energetic instabilities; secondly, all eigenvalues ofEHn are
also eigenvalues ofH n

1/2EH n
1/2, which is Hermitian~has real

eigenvalues! and therefore there cannot be dynamical ins
bilities; finally, if @P0

n ,E#50 one can easily prove that if
9-2
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vector belongs to the kernel~range! of Hn , then it also be-
longs to the kernel~range! of EHn , and therefore this las
matrix is simple.

We will apply the preceding considerations to our syste
We distinguish two situations. The first one isu11u22.u12

2 .
Given thatKn>0 for unu.2, the theorem above allows us
concentrate onunu51. Furthermore, since the first three d
agonal minors ofHn are positive, we only have to impos
that the determinant be positive to get absolute stability. T
conclusion is that ifu11u222u12

2 1u22/223u11/223/4.0 the
monopole from Eq.~4! is stable. Let us investigate whic
kind of instabilities occur in the opposite case. We will aga
restrict ourselves tounu51 and find the eigenvalues of th
matrix EH1. In the relevant case, which isu115u22[u ~see
below!, this can be done analytically. We obtain the res
that the eigenvalues are always real, either positive or ne
tive:

l516@2~11u6A112u1u12
2 !#1/2. ~9!

The second case isu11u22,u12
2 . With this type of param-

eter, a numerical inspection of the matrices shows tha
least a pair of the eigenvalues is complex. Indeed, if
assume once more thatuii 5u, then the eigenvalues ofEH1
have the same analytic expression~9!, which has nonrea
roots. Therefore, in this case the system is dynamically
stable.

Summing up, the scenario is as follows:

u12
2 <u22u23/4, stable,

u22u23/4,u12
2 ,u2, energetically unstable,

u2,u12
2 , dynamically unstable.

The eigenvalues as well as the stability diagram are show
Fig. 2. Foru.u12 and when the interaction energy becom
more important than the~rotational! kinetic energy (u@1),
the solution is stable as long asu2u12*1. Since bothu and
u12 are proportional to the number of atomsN, one can com-
pletely stabilize the spin monopole by increasingN. As a
side note, an interesting situation occurs foru5u12; in that
case the matrixEH1 is not simple, which implies that the
perturbation grows only linearly with time. Finally, we mu
say that the dynamical instability occurring foru,u12 also
appears for the homogeneous stationary solution and th
fore it simply corresponds to aphase separationof the two
components~internal states!, as could be expected.

FIG. 2. Left panel: Excitation frequencies as a function ofu for
u12510. Right panel: Stability diagram.
05360
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III. SPIN MONOPOLE IN THREE DIMENSIONS

A. Model

In order to establish whether the monopole remains sta
in a realistic three–dimensional situation, we consider a tr
ping potential of the form

V~r ,z!5 1
2 mvz

2z21 1
2 mv r

2r 21V0e2r 2/(2s2) ~10!

@Fig. 11~c!#. This corresponds to a standard dipole tr
with an off-resonant Gaussian laser beam propagating a
the z direction @15#. V0 gives the ac Stark shift at the cent
of the trap and determines the equilibrium pointR along the
radial direction, which is given byR52s2 ln@V0 /(mvr

2s2)#.
In order to have a truly ring trap, we choose the parame
such thatR@Dr , whereDr is the typical size of the atomic
cloud along thez and r directions. Writing uC(r ,z,u)&
5c1(r ,z,u)u↑&1c2(r ,z,u)u↓&, the Gross-Pitaevskii equa
tions governing the evolution become

i\
]

]t
c15S 2

\2¹2

2m
1V1\d̃11ũ11uc1u21ũ12uc2u2Dc1 ,

i\
]

]t
c25S 2

\2¹2

2m
1V1\d̃21ũ21uc1u21ũ22uc2u2Dc2 .

Here d̃1,2 are two constant offsets, the nonlinearity is p
rametrized byũi j 54p\2ai j /m, andai j 5aji are thes-wave
scattering lengths corresponding to the different collisio
Finally, the functionsc1,2 are normalized to the number o
atomsN1,2 in each internal state.

Let us first make the connection between the thr
dimensional ~3D! model and the ring. We consider th
simple situation in which the motions along the radial anz
direction are frozen. The conditions of validity of this situ
tion will be discussed below. If the number of atoms in ea
internal level is the same,N15N2[N/2, we can reduce the
full three-dimensional problem to the ring case studied ab
by writing c1,2(r ,z,u,t)5@N1,2/(4p)#1/2f 1,2(r ,z)f1,2(u,t),
multiplying the coupled GPE byf i* , and integrating inr and
z. We obtain the result thatf1,2 satisfy the Eqs.~2! with

ui j 52ANiNjR
2ai j E

2`

`

dzE
0

`

r dr u f i~r ,z!u2u f j~r ,z!u2, ~11a!

d i5
2mR2

\2
~\d̃ i1e i !, t5

\

2mR2
t, ~11b!

wheree i is the expectation value of the kinetic plus potent
energy with the wave functionf i .

In general, we look for stationary solutions with a sing
larity on thez axis:

c1~r ,z,u,t !5AN1/2f 1~r ,z!e2 i m̃1t, ~12a!

c2~r ,z,u,t !5AN2/2f 2~r ,z!eiue2 i m̃2t. ~12b!
9-3
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Here f 1,2 are normalized real functions satisfyingL̃1,2f 1,2
50, where

L̃n52
\2

2m S ]2

]r 2
1

1

r

]

]r
1

d2

dz2
2

~n21!2

r 2 D
1V~r ,z!2\d̃n2\mn1ũ1nf 1

21ũ2nf 2
2 . ~13!

B. Stability

We will concentrate on the caseũ115ũ22[ũ ~equiva-
lently, a115a22[a), which is the relevant experimental situ
ation described below. In the limitR@Dr the centrifugal
term in L̃2 can be approximated by a constant\2/(2mR2). If
there is no phase separation (a.a12) we find f 1(r ,z)
5 f 2(r ,z)[ f (r ,z) and m̃[m̃22m̃15\/(2mR2)1 d̃22 d̃1.
Solution ~12! is again an eigenstate ofnW •sW with nW 5@cos(u
2m̃t),sin(u2m̃t),0#, being the eigenvalue proportional t
u f (r ,z)u2. Thus it represents a state where the atoms h
their spins in thex-y plane forming a 2D monopole. Th
length of the spin at each point depends on the correspon
local density. We now analyze the stability of such a so
tion. As before, we linearize around the solution~12! by
adding a small quantitya1,2 and expanding it in powers o
eiu. We obtain Eq.~6! where nowHn5L̃1K̃n1H̃ int, a 4
34 matrix operator with L̃5diag(L̃1 ,L̃1 ,L̃2 ,L̃2),K̃n

5\2/(2mr2)Kn , andH̃ int5 f 2H int. Again usingR@Dr , we
have L15L2 and thereforeL̃5L1 times the 434 identity
matrix.

Since we are only interested in the stability, we analy
the positivity of Hn . As before, we just have to study th
cases withunu,2. Let us distinguish two situations.

Weak interactions.In the limit N(a1a12)/R!1 the inter-
action energyNũ/@2pR(Dr )2# is much smaller than the har
monic oscillator quantum\v. In that case,Dr .a0 where
a05@\/(mv)#1/2 is the size of the harmonic potential groun
state. The spectrum ofH0,1 is dominated byL̃. The radial
and z dependence give rise to excitation energiesk\v (k
integer!. The lowest excitationsk50 correspond toa(r ,z)
} f (r ,z), and therefore we obtainl̃5\2/(2mR2)l ~much
less than\v in absolute value!, wherel is given in Eq.~9!
with u andu12 given in Eq.~11a!. Thus, for excitation ener
gies lower than\v the problem fully reduces to the rin
case.

Strong interactions. The opposite limit is the Thomas
Fermi regime, whereDr 5a0@32N(a1a12)/R#1/4. Now one
cannot simply separate radial andz excitations from ring
excitations. The excitation spectrum ofH0,1 is dominated by
L̃1H̃ int. It is convenient to diagonalizeH̃ int and consider the
eigenfunctions separately.

As a first case we can consideraW (n)5(g1 ,g2) ^ (1,21):
here H̃ int is zero, and therefore the excitation frequenc
correspond to those ofL̃, which are of the order of
k\2/@2m(Dr )2#@\2/(2mR2). A second possibility is two-
fold, with aW (n)5(g,g) ^ (1,1),H int giving (ũ1ũ12) f 2, and
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aW (n)5(g,2g) ^ (1,1) giving (ũ2ũ12) f 2. This means that

the lowest energy will be of the order ofN(ũ

2ũ12)/@2pR(Dr )2#.
As long as this energy is larger than\2/(2mR2) we can

consider both cases separately, treatingKn as a perturbation;
in both the correction is positive, i.e., the monopole is stab
If the energy is smaller than\2/(2mR2), one has to be more
careful in the perturbation analysis, as the excitation ener
may become negative. In the end we obtain a necessary
dition for stability, N(ũ2ũ12)/@2pR(Dr )2#@\2/(2mR2).
Using Eq.~11a! we can write this condition asu2u12.1,
which coincides with the basic stability condition derived f
the ring. It means that the interactions have to be sufficien
strong to stabilize the monopole.

IV. DISCUSSION

In order to be specific, we will propose a particular co
figuration to create the spin monopole. We consider
alkali-metal atom in a groundF51 hyperfine state. We will
assume that the energy of themF50 level is made higher, so
that it is not involved in the dynamics. This can be achiev
by using an off-resonant laser or a resonant radio-freque
field and the fact that the Clebsch-Gordan coefficients
different for them50 than for them561 states. In this
case we can identifyu↑&5uF51,mF51& and u↓&5uF
51,mF521&, the collisions do not change spin, andũ11

5ũ22[ũ.
In order to generate the 2D spin monopole~12! we pro-

pose to use an off-resonant Raman beam. The atoms
initially condensed in the internalu↑& state. A Raman lase
that connects the statesu↑& and u↓& is then switched on. It
should have the appropriate spatial dependence so tha
angular momentum in thez direction is changed by one un
@17#.

Denoting byV(z,r ,u) the effective Rabi frequency, th
evolution equations are the above Gross-Pitaevskii equat
~11! but with a coupling term betweenc1 and c2 propor-
tional to V; the Raman detuning is incorporated in the de
nition of d̃1,2. Initially, one takesd̃1@ d̃2, so that the laser
does not affect the internal atomic state, since it is effectiv
out of resonance. Then,d̃22 d̃1 is changed adiabatically unti
d̃22 d̃1.0.

The method is more robust than the one proposed in R
@2# to generate vortices, since the spatial wave functio
f 1,2(r ,z) remain almost constant with our setup. Actually,
this case one can simply use ap/2 laser pulse, takingd̃1

5 d̃2. This allows one to generate the monopole state o
much faster time scale, which will be of the order of seve
inverse trap frequencies.

In order to evaluate our proposal, we have performe
three-dimensional numerical simulation of the Gros
Pitaevskii equations in the presence of the laser for the
ation of the spin monopole. We have used an optimiz
three-dimensional collocation Fourier method with typica
80380340 collocation points and integrated in time with
symmetrized split-step operator technique. The results
9-4



y
ss
e

n-
ply
as is
ic

er
-

e

se-

the
ions
al

are
on
pa-

by
.’’
ian

te

l

SPIN MONOPOLES WITH BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A61 053609
shown in Fig. 3. In Fig. 3~a! we have plotted the final densit
profile along thex axis at the end of the generation proce
whereas in Fig. 3~b! we have plotted the evolution of th

FIG. 3. Preparation of the 2D spin monopole. Trap parame
are vz52v r , R510a0 , s55a0 , V05200\v r , where a0

5(\/mv)1/2; interactions areũ115ũ225ũ12/0.953600\v ra0
3; la-

ser parameters areV(r )5V0@sin(kx)1isin(ky)# with V050.28v r

andk5p/(6R). All plots are in adimensional units.~a! Final den-
sity distribution uc1u2 ~dashed line! and uc2u2 ~solid line! at y5z
50 as a function ofx. ~b! Evolution of the population of theu↑&
~dashed line! and u↓& ~solid line! states.~c! Evolution of the spin
density after the preparation withd22d152v r ; the triangles point
along the expectation value of^s& and are proportional to the loca
density.
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population of the internal levels until the monopole is ge
erated. After this process, we switch off the laser and ap
an internal energy shift so that the spins start precessing,
shown in Fig. 3~c!. For this figure we have taken realist
parameters. For example, taking Na withv r5100 Hz, a0
52 mm, anda552aB , we have the result that the numb
of atoms is of the order of 23105. In order to ensure stabil
ity, we have evolved the formed state in imaginary tim
~renormalizing the state after each evolution step! for about
20 trap oscillation times, without noticing any instability.

V. SUMMARY

We have proposed a complex state of a spinor Bo
Einstein condensate, which we have called aspin monopole.
We have provided analytical and numerical evidence that
spin monopoles are stable in a ring trap when the interact
are sufficiently strong and also in a fully three-dimension
configuration. Finally, we have also shown a way to prep
such a state, and verified with a full 3D numerical simulati
that it can indeed be prepared with current experimental
rameters following the guidelines of our proposal.
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