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We study the feasibility of preparing a Bose-Einstein condensed sample of atoms in a macroscopic quantum
state that resemblesspin monopoleln this state, the atomic internal spins lie in thg plane and point along
the radial direction. The stability and dynamics of this structure are studied analytically in some cases and
numerically in the more general situation. We find these structures to be stable objects giving rise to a
nontrivial state of a Bose-Einstein condensate.

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION properties of those kind of states, although only a few of
them have been observed. One of the few examples found in
After the successful generation of Bose-Einstein condenBECs are the recently obtained vortices in multicomponent
sation of alkali-metal atoms, the creation and manipulatiorsystemg8]. However, other cases are known in other fields,
of macroscopic quantum states remains as one of the fundatich as the vortex vector solitof@] and dipole-mode soli-
mental goals in the field of atomic physics. During recent  tons of nonlinear optic$10] and the vectorial defects and
years, several ways to create vorti¢2s3] and solitong2,4] patterns in laser physid4.1].
with atomic Bose-Einstein condensatBEC9 have been In this paper we study a macroscopic quantum state for a
proposed. These nonlinear states have been observed rimulticomponent BEC that we call spin monopolelt is a
many other contexts, such as condensed matter or nonlinestate in which the atomic spin points in the radial direction in
optical systems, and are characteristic of systems describefde x-y plane[Fig. 1(a)]. This has certaitimostly graphical
by nonlinear partial differential equations, like the Gross-analogies with the never found magnetic monopoles that mo-
Pitaevskii equatioriGPB giving the evolution of an atomic tjvate the choice of the name “spin monopole.” We must
condensate. In this last system, it has been shown that solitress that the same name has been used to describe different
tons and vortices may become dynamically stdblewhich byt somewnhat related nontrivial objects found in BECZ].
has motivated a strong experimental effort to generate themye will show that a spin monopole is stable under realistic

and verify some of their properties. o conditions and analyze a method to generate it that requires
On the other hand, the first experiments in which atomsnly current experimental technology.

were condensed in two or more internal std&sopened up
a new field for the theoretical analysis of Bose-Einstein con-
densate$13,14). In particular, the experiments offer the pos-
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sibility of creating macroscopic quantum states incorporating AN P4 7 \ ~ ©
different kinds of topological defects. In multicomponent -« - 4 v - -«
systems there is a vector degree of freedom that leads to new Vs ~ LY ¥ P 4 AN
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structures sometimes called vector structures or vectorial de-
fects when they are related in some way to singularities of

any of the components of the vector field. In the JILA ex- by ¥ (©) Vir) V()
periments the components of the vector states are character- R R
ized by the value of the internal atomic staéspin) at each \/</
point of space and cannot easily be created experimentally in x Al v
Wi z

other systems. There is a vast literat(i/@ on theoretical
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FIG. 1. (8 Spin monopole in two dimensions. Far#0 the
*Electronic address: jjgarcia@ind-cr.uclm.es spins rotate as a function of timéb) Ring trap. (c) Potential
TElectronic address: vperez@ind-cr.uclm.es V(r,z).
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II. SPIN MONOPOLES IN A RING B. Stability

A. Model To analyze the stability of the ring spin monopole we
have considered a small perturbation around the monopole
solution, such thatg; {6,7)= 7% 6,7) +ea; 6,7). In-
L§erting this expression into E(R) and expanding up to first

We consider a Bose-Einstein condensed sampld af-
oms within the mean field approximation, i.e., in the limit in
which it can be described by Gross-Pitaevskii models. Th - . . :
atoms have two internal levels,) and||), with N; andN. orderlne We_qbtaln alinear Sit of co(li)pled ﬁ%uatlonséqrz
atoms in each. The atomic motion is confined by an externaq‘nd ay,. Writing ale(Q'T):En:—W_“LZ T_)e, ) and d'ecou—
trap with a ring shapdsee Fig. 1b)] [15]. If the motion p!mg md_ependgnt terms_, we obtain an infinite family of or-
along the radialr) and axial(z) direction is frozen, the dy- dinary differential equations
namics of the motional state depends only on the polar angle P
(6). We write the wave function as iz_&(”)z EHpa™, (6)

[ (6,7)= N1 (60,7)[1)+N22(0,7)[1), (D) o
where the variable is a column vector:

whereg, , are the motional wave functions corresponding to
the internal statef, | ), respectively, and fulfill the coupled aM=[a{V, a{ M oD o{ntDT 7)
GPE

Here, H,=K,+H™ rules the evolution, and is decomposed

2 into 4X 4 matrices,

d d 5 5
'(9—7}!"1: _ﬁ+51+u11|¢1| Uy ho|?| ¢1, (28

E=diag1,—1,1-1), (8a)
i i 2 2 K,=diagn?n?,(n+1)>—1(n—-1)2-1 8b
|(9—T¢2: _ﬁ+52+u12|¢1| +ugd ¢al? | 2, (2b) n=diadn?,n%(n+1)°=1,(n-1)"-1], (8b)
. i . ) Uqp Uop 1 1
with normalization Hnt= ® : (80
1 27
e f do| LA 6,7)|?=1. (3) where® denotes the tensor product.
0

The stability analysis can be carried out by diagonalizing
_ _ the matrice€H,,. Complex eigenvalues, =i\; correspond
In this model,51,2_ d_enotes the energy (_)f the two.mternal to exponentially growing solutionfa(7) = a(0)e e
states andi; =uj; (i,j=1,2) describe their mutual interac- anq thus correspond to stationary solutions thatdgreami-
tions. All the quantities in Eqg2) have been rescaled so that cally unstable Real eigenvalues lead to small oscillatory
they are dimensionless. In particular, the are proportional  giutions [a(7)=a(0)e**7], which may correspond to
to the number of atomsl, ,, thg corresponding scattering higher (\>0) or lower (\<0) values of the Gross-
length, and the square of the ring radfsee Eq.(118 be-  pijtaevskii energy functional with respect to the stationary
low]. The normalization of each component is preserved durgqytion. In the first case, the stationary solutiorsiable
ing evolution since the type of coupling present in E&).  \yhereas in the latter the systeneisergetically unstablehis
QOes not lead to transfer of particles between spin polarizaneans that if energy can be drained out from the system at a
tions. _ _ _ given rate, then the stationary solution is unstable on that
We can find stationary solutioi$6] of Egs.(2) such that  ime scale. Finally, when one of the matrices is not simple
m, i mp i (i.e., nondiagonalizab)e there are solutions that grow at
¢1(0,)=e 17, P10, 7)=e"e M7, (4 most polynomically with timefor example, for a X 2 Jor-
dan matrix corresponding to a degenerate eigenvalue
with pj=j—1+uy+uz+ 46 (j=1,2). Defining the Pauli )\ a(7)=a(0)(1+\7)]. This can be regarded asdgnami-
operatoro=(oy,0y,0,) as usual, we see that the stalg  cal instability with a much slower time scale

with (4) is an eigenstate of the operai@rn with On the other hand, there is a simple sufficient condition
for the stability of the system, which involves the positivity
2N;N, cos 6— u7) of H,: If all matrices#,=0 and the projector operator §
- _ on the kernel ofH,, commutes with E for all n, then the
n=|{ 2yN;N;sin(6—u7) (5)  stationary solution is stableThe proof is as follows: first,
N;—N, the positivity of H,, ensures the positivity of the Gross-

Pitaevskii energy functional and therefore there cannot be
andu=u,— u;. This means that for.=0 the projections of ~energetic instabilities; secondly, all eigenvaluesE6t,, are
the spins are always pointing outward in they plane, also eigenvalues of Y 2EH ¥'2, which is Hermitian(has real
whereas for other conditions they rotate as shown in Figeigenvaluesand therefore there cannot be dynamical insta-
1(a). bilities; finally, if [P§,E]=0 one can easily prove that if a
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10‘% 10 IIl. SPIN MONOPOLE IN THREE DIMENSIONS

Dynamically
_\E: U192 Unstable A. Model
Ao 5 In order to establish whether the monopole remains stable
_/: in a realistic three—dimensional situation, we consider a trap-

\ Stable ping potential of the form
EE 0

-10 2 -
0 10 20 30 40 0 5 10 V(r,2) = $mw3z%+ smo?r?+Vee r2/(20%) (10
U u

[Fig. 11(c)]. This corresponds to a standard dipole trap
with an off-resonant Gaussian laser beam propagating along
the z direction[15]. V, gives the ac Stark shift at the center
of the trap and determines the equilibrium pdihalong the
radial direction, which is given bRr= 202 In[VO/(mwroz)]

In order to have a truly ring trap, we choose the parameters
such thatR>Ar, whereAr is the typical size of the atomic
cloud along thez and r directions. Writing | (r,z,6))
=i(r,z,0)|1)+ a(r,z,0)|] ), the Gross-Pitaevskii equa-
tions governing the evolution become

FIG. 2. Left panel: Excitation frequencies as a functiorudor
u;,=10. Right panel: Stability diagram.

vector belongs to the kernélange of H,,, then it also be-
longs to the kernel{range of E*,, and therefore this last
matrix is simple.

We will apply the preceding considerations to our system
We distinguish two situations. The first onetig,u,,> u3,.
Given thatk ,=0 for |n|>2, the theorem above allows us to
concentrate on|=1. Furthermore, since the first three di-
agonal minors ofH, are positive, we only have to impose 72y 2 o B
that the determinant be posmve to get absolute stability. The i — lﬂl—( - +V+h 681+ Uyl )2+ Uy ¢2|2) W1,
conclusion is that ifi; Uy~ u12+ Uyo/2—3U44/2— 3/4>0 the o 2m
monopole from Eq.(4) is stable. Let us investigate which
kind of instabilities occur in the opposite case. We will again -ﬁﬁ
restrict ourselves tgn|=1 and find the eigenvalues of the at
matrix EH;. In the relevant case, which ig,;=u,=u (see
below), this can be done analytically. We obtain the result Heres, , are two constant offsets, the nonlinearity is pa-
that the eigenvalues are always real, either positive or Negas metrized bW.J A2 a;;/m, anday;=a; are thes-wave

%2v2

2m

+V+ 18y + Ugg| g+ Ugo| ]2

Y= .

tive: scattering lengths corresponding to the different collisions.
. Y Aoz 12 Finally, the functionsy, , are normalized to the number of
A=1[2(1Hu y1+2utu) 7 © atomsN, , in each internal state.
The second case is; U < u%,. With this type of param- Let us first make the connection between the three-

eter, a numerical inspection of the matrices shows that &fimensional(3D) model and the ring. We consider the

least a pair of the eigenvalues is complex. Indeed, if Wesimpk_—:- situation in which the ”.‘9“0”5 alon_g_the rad_ial e_xnd
assume once more that =u, then the eigenvalues &H direction are frozen. The conditions of validity of this situa-
have the same analytic ex,pressi(i?) which has nonrelal tion will be discussed below. If the number of atoms in each

roots. Therefore, in this case the system is dynamically uniniérnal level is the saméy,=N,=N/2, we can reduce the
full three-dimensional problem to the ring case studied above

stable.
Summing up, the scenario is as follows: by writing 1 Ar,2,6,t) =[Ny o/(4m) 1" 1 A1, 2) 1A 6.1),
multiplying the coupled GPE b/ , and integrating im and
ulz\u —u—3/4, stable, z. We obtain the result thap, , satisfy the Eqs(2) with
u?—u—3/4<ui,<u? energetically unstable, . .
u?<u?,, dynamically unstable. uij =2VN;N;R%ay; fodzjo rdrlfi(r,2)|?f;(r,2%, (11a

The eigenvalues as well as the stability diagram are shown in
Fig. 2. Foru>u,, and when the interaction energy becomes
more important than th&otationa) kinetic energy (>1),
the solution is stable as long as-u;,=1. Since bothu and
U, are proportional to the number of atofNsone can com-
pletely stabilize the spin monopole by increasiNg As a
side note, an interesting situation occurs tigf u;5; in that
case the matriEH, is not simple, which implies that the
perturbation grows only linearly with time. Finally, we must
say that the dynamical instability occurring foru,, also

2mRe
s=—g (hote), 7= (11b

t!
2mR2

wheree; is the expectation value of the kinetic plus potential
energy with the wave functiofy .

In general, we look for stationary solutions with a singu-
larity on thez axis:

— ] —ipgt
appears for the homogeneous stationary solution and there- Ya(r,2,0,0) = VN1/2f4(r,z)e 2, (129
fore it simply corresponds to phase separationf the two L
componentginternal statels as could be expected. Wo(1,2,0,t) =N,/2f 5(r,z)€' Yo~ 1#2!, (12b
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Here f,, are normalized real functions satisfyiig ,f,, a™=(g,—g)®(1,1) giving @W—Uy)f2 This means that

=0, where the lowest energy will be of the order oiN(u
5/ ) o —Upp)/[27R(Ar)?].
T,=— L Ei+d__ (n-1 As long as this energy is larger th#&/(2mR?) we can
2m\ gr2 rdr d7 r? consider both cases separately, treaipgas a perturbation;

. ~ . in both the correction is positive, i.e., the monopole is stable.
+V(1,2) =18y~ fipn+ Uinfi+Usnf5. (13 If the energy is smaller thah?/(2mR2), one has to be more
careful in the perturbation analysis, as the excitation energies
B. Stability may become negative;lnlhe end we obtain a necessary con-
_ - - _ dition for stability, N(u—u;,)/[27R(Ar)?]>#%2/(2mR?).

We will concentrate on the case;;=Uy=U (equiva-  ysing Eq.(118 we can write this condition as—u;,>1,
lently, a;,=az,=a), which is the relevant experimental situ- which coincides with the basic stability condition derived for
ation described below. In the limR>Ar the centrifugal the ring. It means that the interactions have to be sufficiently
term inL, can be approximated by a const&rif(2mR). If strong to stabilize the monopole.
there is no phase separatiom>a;,) we find f(r,z)
=f,(r,2)=f(r,2) and w=pu,— u,=h/(2mRe)+5,— 4. IV. DISCUSSION
Solution(12) is again an eigenstate of o with n=[cos( In order to be specific, we will propose a particular con-
— ut),sin(6—ut),0], being the eigenvalue proportional to figuration to create the spin monopole. We consider an
|f(r,2)|%. Thus it represents a state where the atoms havelkali-metal atom in a groun8 =1 hyperfine state. We will
their spins in thex-y plane forming a 2D monopole. The assume that the energy of the =0 level is made higher, so
length of the spin at each point depends on the correspondingat it is not involved in the dynamics. This can be achieved
local density. We now analyze the stability of such a solu-y using an off-resonant laser or a resonant radio-frequency
tion. As before, we linearize around the soluti@@®) by field and the fact that the Clebsch-Gordan coefficients are
adding a small quantityr; , and expanding it in powers of different for them=0 than for them= +1 states. In this
e'’. We obtain Eq.(6) where nowH,,=L+K,+H™ a 4 case we can identify|t)=|F=1mg=1) and ||)=|F

X4 matrix operator with L=diag@l;,L;,[,,L,),K, =1mg=—1), the collisions do not change spin, ang,
=#12/(2mrd)K,,, andH™=f2H" Again usingR>Ar, we  =Uy=U. _

havel,=L, and thereforeL =L, times the 4<4 identity In order to generate the 2D spin monop¢l&) we pro-
matrix. pose to use an off-resonant Raman beam. The atoms are

Since we are only interested in the stability, we analyzdnitially condensed in the interngl’) state. A Raman laser
the positivity of ,. As before, we just have to study the that connects the stat¢$) and|]) is then switched on. It
cases withn|<2. Let us distinguish two situations. should have the appropriate spatial dependence so that the

Weak interactionsin the limit N(a+ay,)/R<1 the inter- ~angular momentum in thedirection is changed by one unit

action energWu/[ 2wR(Ar)?] is much smaller than the har-
monic oscillator quantunt w. In that caseAr=a, where
ag=[%/(mw)]*?is the size of the harmonic potential ground

Denoting byQ(z,r, ) the effective Rabi frequency, the
evolution equations are the above Gross-Pitaevskii equations
) _ = ) (11) but with a coupling term betweett; and ¢, propor-
Staée' ;’he SgeCtr”m_WO.l is dominated byL.. Th?ésrfd'sl tional to Q; the Raman detuning is incorporated in the defi-
and z dependence give rise to excitation energésy ( nition of &, ,. Initially, one takesd;>8,, so that the laser

integey. The lowest excitationk=0 correspond tax(r,z) does not affect the internal atomic state, since it is effectively

«f(r,z), and therefore we obtaih=7%%/(2mR)\ (much =~ o .
less thark  in absolute valug where\ is given in Eq.(9) gut of resonance. Thed,— §; is changed adiabatically until

with u anduy, given in Eq.(119. Thus, for excitation ener- S~ 61=0. ) .
gies lower thanhw the problem fully reduces to the ring The method is more robu_st than the one proposed m_Ref.
case. [2] to generate vortices, since the spatial wave functions

Strong interactions The opposite limit is the Thomas- f1(r,z) remain almost constant with our setup. Actuilly, in
Fermi regime, wheré\r =a,[ 32N(a+a;,)/R]Y% Now one this case one can simply usem?2 laser pulse, taking;
cannot simply separate radial azdexcitations from ring ='5,. This allows one to generate the monopole state on a
excitations. The excitation spectrum, ; is dominated by  much faster time scale, which will be of the order of several
L+H™ It is convenient to diagonaliZé™ and consider the inverse trap frequencies.
eigenfunctions separately. In order to evaluate our proposal, we have performed a

As a first case we can considaf” =(g;,9,) ® (1,— 1): th_ree-dmensmn_al n.umencal simulation of the Gross-
here FI™ is zero. and therefore the excitation frequenciesP'FaeVSk” equations in the presence of the laser for the cre-

' - ) ation of the spin monopole. We have used an optimized
correspond to those of, which are of the order of tnree-dimensional collocation Fourier method with typically
kfi?/[2m(Ar)?]>#%/(2mR?). A second possibility is two-  g0x 80x 40 collocation points and integrated in time with a
fold, with a(™=(g,g)®(1,1) H™ giving (U+U;,)f% and  symmetrized split-step operator technique. The results are
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population of the internal levels until the monopole is gen-
erated. After this process, we switch off the laser and apply
an internal energy shift so that the spins start precessing, as is
shown in Fig. 8c). For this figure we have taken realistic
parameters. For example, taking Na with=100 Hz, a,

=2 um, anda=52ag, we have the result that the number
of atoms is of the order of 210°. In order to ensure stabil-

ity, we have evolved the formed state in imaginary time
(renormalizing the state after each evolution stiep about

20 trap oscillation times, without noticing any instability.

V. SUMMARY

We have proposed a complex state of a spinor Bose-

FIG. 3. Preparation of the 2D spin monopole. Trap parameter&instein condensate, which we have callespan monopole

are w,=2w0,, R=10a,, 0=5a8;, V(;=200hw,, where a,
=(i/mw)Y? interactions arely;=Uy,=U,,/0.9=3600 w,a3; la-
ser parameters a@(r)=Qg[ sinkx) +isinky)] with Q,=0.280,
andk=7/(6R). All plots are in adimensional unit¢a) Final den-
sity distribution |,|? (dashed ling and |,|? (solid line) aty=z
=0 as a function ofk. (b) Evolution of the population of théf)
(dashed lingand||) (solid line) states.(c) Evolution of the spin
density after the preparation wiy— 6;=2w, ; the triangles point
along the expectation value ¢&) and are proportional to the local
density.

We have provided analytical and numerical evidence that the
spin monopoles are stable in a ring trap when the interactions
are sufficiently strong and also in a fully three-dimensional
configuration. Finally, we have also shown a way to prepare
such a state, and verified with a full 3D numerical simulation
that it can indeed be prepared with current experimental pa-
rameters following the guidelines of our proposal.
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