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In this paper we employ the hydrodynamic quantization approach to studying the macroscopic state occu-
pation of a bosonic system. We propose that the condensed state is a coherent state of the phase field
component associated with the quantized field operator. By makingZmea functional states, we transform
the problem of finding the phase and density associated with the condensate into a variational problem. We
also discuss some properties of the condensed state, like superfluidity. In close analogy with Bose-Einstein
condensation in thézO state, we propose some possible wave functions for the excited states of a condensed
system.

PACS numbses): 03.75.Fi, 05.30.Jp, 02.70.Lq

I. INTRODUCTION p(X)= g% (X) h(X),
1
The experimental realization of Bose-Einstein conden- P(X)=p(x)e' ¢, @
sates[1] have opened up new frontiers, and brought back
fundamental questions related to many-body systems. Untflenominated density and phase variables, respectively. They
recently, “He was the only experimental system to offer pos-aré canonically conjugated to each other, as we shall see
sibilities for comparison between theory and experiment.bemW- For this reason we impose the following commutation

Nonetheless, the produced quantum liquid in this system jkelations among the density operator and the phase operator:

far from being considered a dilute gas, where only a two- - A ,
body theory permits a reasonable treatment. The recent real- [p(X), p(X")]=16(x=X"). 2

ization of degenerated quantum gases using laser-cooled al- the quantization method, based on commutation relations

kalis opened a new perspective to real possibilities for,mong density and phase operators, is called a hydrodynamic
comparison with theory. guantization, and its application in superfluidity, where
Experiments involving interference between condensateggse-Einstein condensation, is known to ociit
have been realizg@]. In this context questions related to the  The commutation relation in E@2), in conjunction with
nature of the condensate become relevant, i.e., whether #n explicit representation of these operators, requires a de-
represents a coherent state or any other type of state, and tparture from typical quantization approaches. Within the
question related to the phakg of a condensate. density representation, in which the number density is a
In this paper, we employed a hydrodynamic quantizatiorc-number operator, the states are represented as functionals
approach, as originally used by Chan and Valafdihand  of the number density. These functionals, as well as other
recently by Recami and Sale€l$], to demonstrate that the physically relevant quantities, are written as integrals over
condensate is a coherent state of the phase field componesface-time “densities.” In terms of the field, the classical
associated with the quantized field operator. We discuss theagrangian density, for the nonrelativistic scalar particles,
properties of the condensate phase and propose possibilitiéss
for excited state wave functions. .
In field_ theory, a description of scalar boson; is_ achieved L= I—{zﬂ*(x)[atw(x)]—[atzﬁ*(x)]zp(x)}
by associating a complex fielgl(x) to a nonrelativistic Bose 2
particle. The quantization is done through typical equal-time . -
commutation relations between the field and its canonically _ V= () Vi(x)
conjugated variabley*, followed by a typical quantization 2m
scheme implemented with the introduction of the Fock
space. This method is especially useful when we deal Witwvhere?—[' is the interaction Hamiltonian density. We define
systems for which the number of particles is well defined, forthe Hamiltonian density{ as
example in the description of scattering processes. . .
Here we propose an alternative procedure: a so-called hy- Vg (x) - Vig(x)
drodynamic quantization of the field. In this scheme we use a H(x)= 2m
new set of variableg(x) and ¢(x), which are more conve-
nient in the description of properties related to Bose-Einstein Placing Eq.(1) into Eq.(3), one can see that the classical
condensation. These new variables are defined as Lagrangian density can be written in the general form

—H'[P* () $(x)], ()

+H[PF 0] @)
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de(X) The physical reasoning for this dependence is that Lagrang-
at —H(X). 5 ian (3) is U(1) symmetric, carrying that to the eigenstates.
The discrete staté, for which
The use of hydrodynamical quantization introduces a
rather nonconventional description of a quantum bosonic Ho ©)

system. This approach might be useful in describing physicqg a minimum, is the ground state of the system. We shall

systems in which the number of particles in a given state i%1ssume that the ground state is a functional of the density
very large, and therefore followed by great uncertainty. INunder the form

this case, as we have learned in the example of quantum
coherence in opticg2], another set of states, like coherent Yol p]=e WIrl (10)
states, are more appropriate. This is the main reason to look
again into this question in the context of Bose-Einstein conand a specific form fokV[ p] will be discussed in Sec. V.
densation. We shall see that by using variational techniques, All other states of the system will be generated by apply-
hydrodynamic quantization provides a framework for study-ing some functionalFp(x) to the ground state
ing Bose-Einstein condensation.

We have divided this paper as follows. In Sec. Il we YLpl=Flplolp]. (13)
present a hydrodynamic quantization of a quantum complex .
Bose field, presenting the Hamiltonian in terms of the den- The local momentuni(x) is defined as
sity and phase operators. In order to make clear the transition
to the first quantization method, in Sec. Ill we discuss the d )
vacuum state and free-particle states. These states will be op(x))
relevant in a description of excited states of the system. In o )
Sec. IV we deal with a very special set of states: coherent N terms of local momentum, the Hamiltonian density op-
states. These states are eigenstates of the field operator €rator is written as

L=—p(x)

v

(x)z+€¢(x)=—iﬁ< (12)

P+ (x)p(x)- P(X)
2m

P,(x)=€i#00), 6)

which is the pure phase component of the boson complex

field. In Sec. V, we apply the functional approach to a study o the interaction with electromagnetic field, we just use
of the ground state. The basis of the method is an ansatge minimal coupling substitution in EGL3):

functional that we extremize in order to obtain the energy of

the ground state and the respective wave function. From the VoV—ieA (14)
variational approach we obtain a general method for conden-

sate states, which is done in Sec. VI. In the remaining S€Crinally the field operatoi) is represented by

tions, we present examples. These examples cover well-

H(x)= +H'[p(x)]. (13)

known cases of condensates, and we have focused our main I(x)= p(x)ei;;_ (15)
interest on superfluidHe. Finally, we present explicit ex-
amples of possible wave functionaland wave functions The time evolution of an operat®(x) is given by the

for excited states of those systems. These examples are V8%isenberg equation of motion
much like Feynman’s wave functional to superfidide [7].

This, once again, shows the unifying picture for Bose- 90(x) L
Einstein condensation provided by the hydrodynamic ap- pr =i[H,0(x)]. (16
proach.
Within the density representation the equations of motion of
Il. HYDRODYNAMIC QUANTIZATION APPROACH the density and phase operators can be written, formally, as
In dealing with the hydrodynamic quantization, we shall - N
use the so-called density representatfdn, in which the Ie(X) —_ 6H (17)
density operator is a classical number and the phase is ot op(x)’
represented by the operator R
dp(X) 6H
&(X)E—ii, (7) At Se(X) (18)
op(x)

: : . . S From the above equation it follows thatand ¢ are canoni-
in this representation the commutation relati@ is auto- cally conjugated variables.

matically guaranteed. . The momentum equation of motion is given by
In the density representation, the state vectors are func-
tionals of the density only, that is al?’(x)

= lp). ® FaAtl 19
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where the local force operatér(x) is, formally, written as

Th»

oA )
(20)

dp(x)

The Hamiltonian operator in Eq€L6)—(20) is the integral
of the Hamiltonian density

(x >=—v*(

H:f dxH[ ¢,p]. (22)

We shall assume that the interaction Hamiltonian density

has the general form
H'Tp(0)]= = wp(x) +U(X)p(X) + p(x)e(X,p)
=[—p+U)]p+H™p(x)]

where u in Eqg. (19) is the chemical potentialJ(x) is an
external potential, and(x,p) is the internal energy per par-
ticle. The last term™ ™[ p(x)] describes internal forces

(22)

among the particles. If one admits only two-body interac-

tions, we write

Hi”t[p]=%fJV(X—X’)p(x’)p(x)dx’dx. (23)

One of the interesting features of the hydrodynamic quan-
tization is that the quantum equation of motion resembles
that a classical fluidfrom this fact derives the hydrodynamic

name. In fact, from Eqgs.(2), (13), (17) and(19) the formal
time evolution equations

a¢ p2

- ‘f;tx): 2:]()—#+U(x)+h(x), (24)
00 __g, p00P0) 5

P [ P2

== V(2 )+Fext(x)+Vh X) (26)

follows whereh(x) in Eq. (24) and (26) is the entropy per
particle (as we shall see later

int

h)=375

(27)

The termF o,(x) in Eq. (26) is the force exerted on each

of the charged particles of the system as a result of the ex-

ternal fieldU(x),

Fex(¥)==VU(X); (28

defining the velocity operatdv by
V(x)= PO 29
(X)=—1 (29
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the current density becomes

J()=pOV(x). (30
Equation(25) is the continuity equation
o7p(X) 2
P -J(x)=0. (3

IIl. VACUUM AND FOCK STATES

To simplify the interpretation, we shall go from the func-
tional formalism to the wave function interpretation. Simply,
we take forp, the density associated with pointlike particles.
Within the time-independent method we write

p(k’>=pp<i>zi§l S(X—X),

) ) (32
P(x)=—1V,
so that, formally, the kinetic term becomes
R=f d3xP(x)p-P(x)—+ 2, V;-V;. (33

Using Eq.(32), for the two-body, time-independent inter-
action, we obtain the expression

"2
H= 2 +§[ M+U(X)]+EZ V(x. X))
(34)

The equation for the wave functional,

Hylp]l=Eylp], (35)

becomes the equation for the wave function by means of the
identification

Y(Xa, o X)=9P) =S a5y (36)
i=1

whereas for the time-dependent approach one replaces, in all
integrals oveix’, the density by

p(X')=3(t' ~t)py(X"), (37
so that the wave function is obtained fraophp] by
P(Xa, o XOD= Y]y s vy - (38)

The state for which there are no particles in the system is
the vacuum state. We shall assume that the vacuum state is
characterized by the property

¢(X) o= (39

This ensures that the vacuum has zero momentum,
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Pio=0. (40) iy, k(X Xn)
In view of Egs.(40) and(7), we shall associate with the — elkiagikmm. . . glkoXoy  (49)
vacuum state a constant field l#m#-- - #p=1
olpl= o (41 IV. COHERENT STATES

A generic state will be built by successive products of the !N this section we introduce a set of states which, as we
density to the vacuum. Let us illustrate this point by con-Shall see later, are associated with a macroscopic occupation

structing the wave functionals associated with particles witPf the ground state. We start by looking for phase eigen-
well-defined momenta. The simplest states we can build arét@tes, and we consider the eigenvalue problem

states describing free particles possessing well-defined mo- P

mentumk. ¢.(X)dlpl=—i~ ) Ylpl=e(X)¥lp]. (50)
The wave functional associated with just one particle with P

momentumk and energyk?/2m, is Within the density representation this is equivalent to

finding eigenstates for the part of the figldrelated to the

. phase. Defining the field operator as a product of two opera-
lﬁk[P]: f elkXP(X)dX¢O' (42) tors
% " y — 1/2 Y
with k= (k?/2m,k) , whereas for two particles carrying mo- Y= pX) p(X), (5D
mentumk, andk; we write it follows from Eq. (1) that a pure phase component of the

field operator can be defined. This pure phase component

baelp1= | 260,00 ) pdgdrg,  (ag Wil be writen as

Po(X)=€1#00, (52)
where
It should be noted that the phase eigenstates are eigen-
p2(X1,X2) = p(x)[p(X2) = 6(x1—X2) ]. (44)  states of the phase component of the figldTherefore,
9 —gie(
For| free particles the associated wave functional can be Po(X)Plp]=€* Yl p]. (53

eneralized as . . A .
g Since they are eigenstates of the figeldphase eigenstates

| are then coherent states, for which the following property
i - holds true:
‘//kl...kl[p]:f dx,- - 'dX|e'[Zl kixilp (Xq, .oX)

45)  y*[pleletn. .. gleyf p]=el el .. gleot yx[ p]yf p].
(54)

where . . . .
The solution of Eq(50) is straightforward, and results in
pn(X1, - X)) =p(X)[p(X2) = (X2 —X1) ] Y[ p]=eT I eop)dx (55)
X[p(Xg) = oXg=X2) = (Xs = X1)] We notice that, due to the commutation relation, we can-
X[p(X)— (X=X _1)— - - - not find eigenvalues of the field itself. However, we can fur-
ther improve our coherent states in such a way that they look
—48(x—1)]. (46)  like eigenstates of the field. Let us consider the eigenstate

It should be stressed then, and in view of the above ex- I ga()p(x) _ . w2
amples, that the analog of Fock states are obtained by apply-'p[p]_e ’ = exp | dX[igo(x)+ Inpg (x)]p(X)
ing products of densities to the vacuum states. (56)

For one free particle ang given by Eq.(32), we obtain , . .
P A g y Ea.32 which are eigenstates such that the following holds:

UXes - x) =S ey 47) &0yl p1=o(x) ¥l p1= o0& P ylp].  (57)
=1

As a consequence, these states are functional eigenstates of
the pure phase of the field

e Xy = ik1X) aikoX; } 48 ~
VigoXar - Xn)= 2 e, (49 ()Yl p1= ()¢l ], (58)
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and the following factorization property holds true: ¢[p]:e—fdxfdx’p(x)g(x—x’)p(x’) (65)

whose wave function is, from E@32),

y*[pleiet.. -eié(xﬂw[p]:iljl o) ¥ [ 1Yl p].

®9 VENEAE | ) (66)
We notice that, from Eq(59), the expectation value
A A where
P Lp1Pp(Xa) - - Pp(Xn) i . .
= Xi) (60) %) =g 9xi—X))
(o190 0] Ylpl il:[l ol (xi—x;)=e j (67)

We shall start with a simplénsatz exhibiting no corre-
lations for the trial wave functional. Let us start with a wave
functional of the form(56), keeping in mind that we are

context of superfluidity. . :
The introduction of these states, and the possibility ofxealglrgp\;g;za coherent states of the pure phase component.

their physical existence, is one of the main motivations for
working with the hydrodynamic quantization approach. The bolp, o] = €* 1M dolp.)]p(x) (68)
interesting property of these coherent states, which can be

explored in the condensation phenomena, is that they arghere

eigenstates of the kinetic energy per particle defined as

exhibits the property of being a product of fields, and this
property is similar to the propositions of Andergd@j in the

L Po(p,x)=p(x)e'#o, (69)
P*(X)P(x)
X)= “om (62) and the problem now consists of finding the extremum of the
functional
as, alternatively, - R
p[Veo()?  [VNp(0)]* |
. K(X) Hlp,pol=——5———+——F——+H[p]. (70
KO)ylpl= - vlel. (62)
In the presence of an electromagnetic field, the functional
where the eigenvaluk(x) is to be minimized is modified to
Veo)1? [V Inypo(x)]2 p(x) -5 [VNp()]?
= oL IVIRVPACOT g Hpp, ol = G [Fpo— AT+ = pr = + ],
2
2m 2m m 2m

(72)

Further consideration of expressi will be provided in . . . ' .
Sec. V. P @8) P The condensate state is defined as the field configuration

for which H[ p, ¢g] is minimum. Therefore,

V. FUNCTIONAL APPROACH TO THE GROUND STATE SH

Although the method employed here makes a closer con- op p—p 0. (72
nection with hydrodynamics, the only way of obtaining in- ¢
formation on the wave functionals associated with the SH
ground state, as well with excited states, is to guess a trial - =0. (73
wave functional, followed by the use of a variational method. op ®0=¢c

From the trial wave functional one can reduce the prob-
lem to a minimization of the functional given by The subindexc denotes the condensate state. Details

about the solution of Eqg72) and(73) will be presented in
L 1 Sec. VI. For the time being let us consider the problem of
(Hlp,el)=¢*[pIH[p,¢l¢lpl—————, (64 finding the energy of the ground state for simple condensed
¢*Lelyle] states. The simplest condensate that one can think of is the
one for which all particles are in the zero momentum state.
an |1 the absence of external electromagnetic field, the mini-
mum of Eq.(72) will occur for

which corresponds to the same functional used by Feynm
[7] in his approach to superfluid ifHe.

SeveralAnsazefor the wave functional can be used, and
they are divided into two categories. In the first category the @o(X)= =0, (74)
n particle systems have their positions correlated. In the sec-
ond the particles are not correlated, but behave as collectivgnd for a uniformp, that is
modes of the system. For the first category an example of the
two-particle correlation wave functional is p(X)=pp. (75
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This type of condensate is normally referred to as a Bo- P(x)
goliubov condensatg]. As we shall see later, they describe =em(X,pc) + 200 (86)
the condensation of particles in the zero-momentum state,
and in this case the Hamiltonian density of the condenseggmjitonian (71) describes a quantum system of particles
state is given by under the action of external electric and magnetic fields
H=H"(py), (76) whose associated potentials &Féx) anq,&(x).
The momentum of the condensate is
and the energy of the condensate is

Pe0)=~Vee(x) (87)
— int
Hmi“_j dxH " pp]. (7D Wwhereas the velocity is
In the presence of electromagnetic fields, the structure of the . P(x)—eA(X)
ground state is more complex. VeX)=———— (89)
We shall define condensed states as those corresponding
to the trial functional(68) for which the Lagrangian density Jj= pcgc:ﬁ(ﬁc_e,&)_ (89)
is the lowest. Therefore, m
6£|¢=%=0, (78  Time-independent condensates are associated with the mi-
croscopic occupation of a given state if the number of par-
8L|,-, =0, (79  ticle nin Eq.(32) corresponds to a large fraction of the total
¢ number of particles. Notice that the wave functional
where the Lagrangian density, from ,is
9reng g o el p,e(x)] =l 1N eIy, (90)

—L=pe+Hp,¢]. 80 . : . : . :
petHip.e] (80 is endowed with the following essential properties which

The equations that emerge from the above conditions are simplify the solution of the problem.
(1) For p(x)=pc(X), ¥lp.e] is an eigenstate of the

dpe(X) _ 6H 81) Hamiltonian density
ot So(x)| ' . .
e [H(pc(x), (X)) ]¢hclp, the(X)]
dpc(X) M 82) =[H(pc(X), XNl p,he(X)]. (91
at Sp(x) p=Pc-

The eigenvalue is the Hamiltonian density of the condensate.
(2) The quantum time evolution equations are satisfied in

Considering the Hamiltonian given by E.1) the corre- i
9 g y E@ the following senses:

sponding equations become

5 _aA2 dg(X) JH
_9ecx)_ [VecX)—eAl ( o )wp,m pn = gy VP ®) o (92
at 2m =0 P=¢c
= 2
1 (1] Vpx) Ap(X) -
am E( CX) ) - ((:X) , (83 dp(X) IH
pol Pe g WP, = o bep@)] o, (99)
—u+U(x)+h(x), o e o= e
d The quantum wave function&90) is the one for which the
an action is the least.
Ip (3) Functional(90) describes a state in whidh(1) sym-
a—::—ﬁ.jc, (84) metry is spontaneously broken, because this state depends

explicitly on the phaser;(x). As a consequence,

whereh(x) is the per particle enthalpy, defined in Eg7). -
Using E(q.)(22), Perp i 9 AT RVA LA RS

lp:[Pa(ﬂc] el p, ]

(4) The Green'’s functions of the theory

= the(X). (94)
5eint( Xp)
op(X)

h(X) = ein(X,pc) + p(X) (85
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* 0T - - - (X showing that, for a single particle, the condensate wave func-
G(X1, .- Xp)= Lol *n) vxa)vtp] (95  tion coincides with the particle wave function.
v*Lplylp] From Eqs.(83) and (84), it follows that the density and

assumes, for the wave function@o0), the following form: phase fields satisfy the equations

G(Xy, - Xn) = thelX0) - YeXn) p(X0)  ++ p(X). 900 _[VeeI® 1 [1(¥p)" V0
(96) ot 2m am| 2\ pc Pec
Thus, forp close top,, (the Bogoliubov condensgteone FUX) + p, (101
can write

G(Xq, - .. ,xn>=i=Hl Pe(Xn). (97) =0. (102)

ape(X) - Pcﬁ‘Pc
TV

The above factorization property of the Green’s functions The ab i th i d ibi
is known as off-diagonal long-range order, and it has been € above equations are the equations describing a quan-

shown to be relevant in the context of superfluidi8y10]. tm fluid knqwn as a'Ma.deIung flu[dl,lq. In this case the.
(5) The most important property of functiond0) is that hydrodynamic quantization approach gives an exact solution.
In this sense our method is equivalent to recent papers deal-

for n particles in some definite positions, . .. x, at timet, ing with the hydrodynamic reformulation of the Sctieger
the associated wave function is theory directly from a variational approa¢h?] .
- - The second term on the right-hand side of EQ1) is
Po(X1, Xz, -+ Xn ?t)E‘/’0[P]|p(X’)=6(t’ft)6p(§) known as the quantum potential and it is obtained from the

functional variation of the term

=i1jlei%<x>¢pc<x)wo, (98)

corresponding to a state in which all particles occupying the
condensate.

We can now identifyo [ p] with wave functional of the in Eqg. (70).
condensed, therefore for the condensate wave function one It was shown recently by Recami and Salgsji that the

1 .
5 VP00 1} (103

can write quantum potential is a consequence of spin and Zitter-
: bewegung. In this way, it has a well-understood origin. In the
—g@iec(¥) ./ . . L .
Pe(X) = €N pe(X). (99 case of spiny particles, the nonrelativistic limit of Dirac

With a knowledge of the condensate wave function, all theequation lead to the following decomposition of the velocity,
relevant properties can be determined.
N V—-eA VXpS

= +
VIl. SOME APPLICATIONS m mp

(104

In this section we shall analyze some applications of the o _ _ o
functional variational method that we have proposed herewhere the last piece is the Zitterbewegung velocity which is

applying it to cases of interest. associated to the spmof the particle,
| - A. Smgle F)artlcle \755 VXpS, (105
The first obvious application of our approach, and the mp
simplest one, is the study of a single particle interacting with
an external potential. In this case we are obviously not talkso that
ing about Bose-Einstein condensation presented, but we
would like to check how reliable the approach is presented (Vp)2&2 (Vp)-§
here. The wave functional is again E§O), and since there *gz P _ve ) (106)
is only a single particle the wave function can be easily writ- m?p?  (mp)?
ten as
This result shows, in th&=1/2 case, the existence of a
ll/(X):f gl z//c(x’)p(x’)lp(xr):5()(_)(,)50,_t) connection of the quantum potential with spBi.
=l . ,p]|p:5(t,,t)5(x,x,) B. Condensation-noninteracting particles
= gln ¥c(®) Let us now consider the occupation of a state in the case
of particles that do not present self-interaction. The wave
= pc(x)e' e, (100  equation is therefore
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2V

2m

J
+UX) | h(Xq, ... ,XN):E#/I(XL co XN
(107

having the solution

> Vi

oSl )

(108

N
+2, U(x) (iﬂl Wil

which holds true forj.(x;) satisfying Eqs(101) and(102),
where ¢.(x) is defined in Eq(99).
Clearly the wave function, in this case, is

N
=L[l Ye(X)), (109

which describes a system Bf particles occupying the state
¥<(X). Again, our approach provides the right answer for the ‘/P—C

condensation.

C. Two-body interaction

PHYSICAL REVIEW A61 053607

which is again the Gross-Pitaevsky equatfds3] for local
self-interaction.

VIIl. INCOMPRESSIBLE CONDENSATES—
SUPERFLUIDITY

In close analogy with the usual fluids, we define an in-
compressible condensate as the one for which

(114

that is, the condensate is a uniform one. We shall see later
that Bogoliubov’s condensate is just a special case of incom-
pressible condensates.

From now on, in this section, we shall work with quasi-
incompressible condensates. That is, we will not consider
uniform condensates but condensates for whigix) varies

slowly as a function ofx. By this we mean tha¥2\/p, is
negligible when compared with,. The condition is

V92\/Pc(x) =0

pc(X)=pp=const;

(115

These quasi-incompressible condensates are the ones for
which one can neglect the quantum velocity contribution to
the Hamiltonian density:

As for a more realistic application, let us consider the case

of a system having a two-body interaction given by the po-

quantum [V In Vpe(X) ]2

The arguments of Salesi and Recdr] strongly suggests
that this approximation might be valid on quite general
grounds; that is, without evoking weak external fields.

Under approximation(115 we obtain, basically, the

(116)

tential V(x; —X;). In this case the condensate wave functions
P(x) satisfy the equations
- . , -
_ dpc(X) _ [V‘Pc(x)]z 1 1 Vp(X) B VZpC(X)
at 2m Am{ 12 pc(x) pc(X)

—u+U<x>+fV(x—x'>pc<x'>, (110
ap;ix)juv*- pVec) g (111)

The above set of Eq$111) and(112) is equivalent to

=2
irwc(x):( \ ¥ U0

ot 2m

+f dxU(x—x") g %(X’))%(X), (112
a variant of the Gross-Pitaevski equatidr3].

D. Hard-sphere interaction

equation of a superfluid. In this way, for nearly uniform con-
densates one expects that the condensate will move as a su-
perfluid.

In fact, Eq.(102) is the continuity equation, whereas Eq.
(101 can be written as

doo(X)  [Veo(x)]?
gt 2m

+h(X)p(X)+U(X)+ . (117

First of all, one notes that this equation is just an extended
version of Bernoulli’'s equation. In fact, for stationary solu-
tion we write, forU(x)=0,

. Px) P(x)
g = m e+ p(_X)’ (118
so that
Pix )—const. (119
2 p(x)

Within the hard-sphere approximation the above equation

becomes
.c?lﬂC(X) _ V_)Z * !
IT_ —E‘FU(X)_M_‘—)\wcl/JC(X) lzDC(X)

(113

For nonstationary solutions, taking the gradient of @4.7),
we obtain

dv. _(mVAx)| . )
Gi= V=% |~ Vh(0+Feq (120
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which corresponds to an ideal fluid equation. We notice that N,
Eq. (117 has the following form, when in the presence of HLpl=—mpot 5 po, (129
external electromagnetic fields:

whereN is related to the so-called scattering lengthby the

dP  _[P(0—-AX]? - i
——V[ (X)—AMX)] CVh(0+F., (121 relation

dt 2m

which allows the determination dﬁ(x), or subsequently A= m '’ (130

X).
(P(A)n important point to be stressed is that, as suggested bgnd it contains all the information of the interparticle poten-
Landau[6], there exist states associated with potential flow tial.
In the absence of magnetic field and for slowly varying ex- We are now ready to make estimates forNsbody sys-
ternal fields, we can write tem that undergoes Bose-Einstein condensation ipthé
R state. These results are fairly general, and we shall compare
PO p bl =[—iVie(X) ] ptbc], (129 Wwith the “He case[14]. We are interested in the following
features of the system: ground-state energy, density of the

so that, for slowly varying condensates, condensed, zero-temperature pressure, zero-temperature
R ) equation of state, and sound speed.
P.(X)=—Ve, (123 In the case of two-body interactions, condititi?7) be-
comes
and, as a consequence,
VX V(x)=0, (124) /f«:J V(X=X")pe(x")dx’, (139
which is associated with Landau’s potential flow. so that the problem of finding.(x") is analogous to finding

It is then tempting to propose a two-fluid picture for all the equipotentials of the two-body interaction. Since a typi-
condensates, as done by Landau for superfitid. Phenom- cal two-body potential has a minimal corresponding to a

enologically one can write depthAE, and since we are looking for the minimum of the
energy, we shall take the lowest value for this paramgter
P=pctPn, (129 From Eq.(130 a good guess fo is
V=V.+V, (126) n=AE, (132

wherep, is the condensate density apglis associated with whereAE is the depth of the interparticle potential.

excited stategparticles not in the condensate Taking this phenomenological parameter we reduce our
Although the result is interesting, the validity of the ap- variational problem of finding(x") to

proximation given by Eq(115 remain to be investigated,

since they are es_sentjal fpr thg results obta_ineq. In the.case AE:J' V(x=x")po(x")dX'. (133

where the approximation is valid, condensation is associated

with superfluid, always. ) ) ) )
For the case in whiclp. is constant, we have the uniform

condensate approximation. For this case, the following prop-
erties can be obtained.
We define Bogoliubov’'s condensate as an incompressible
condensate (.= const) with zero-momentum particles. For A. Ground-state energy
this case the problem is reduced to the variation problem From Eq.(132 it follows that

IX. BOGOLIUBOV'S CONDENSATE

SH! _
61();)) o (127 AE=\py, (134
p=pel) wherepy, is the Bogoliubov incompressible condensate.

wherep is the chemical potential. The first obvious result for ~ From EQ.(133), py is given by

]'Ehe case where there is no interparticle interaction is that, AE  AEM
rom Eq.(127), PO= T ara (135
n=0. (128 - o .
The Hamiltonian density in this case is
which is the well-known result in the free ideal gas case.
Within this approximation, for the hard-sphere two-body
interacting case, one can write

:_E 2:_2ia 2 136
H[Pb] 2pb m Pp > ( )
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and therefore the energy of the ground state is given by

A
H:f 'Hdv=—%(pr). (137

B. Density in the condensed phase

Admitting that allN particles are in a condensate,

N AE 138
C. Binding energy per particle
From Eq.(136), it follows that
NPy 27a

R (139

Applying this result for*He, where
m=3.5x10° eV, (140
a =26 A1 (142
AE=8.81x10"* eV, (142

we obtain the following values for the density of the total

condensate, and the binding energy per particle:

N
pp=oc =2.45x 107 atom/cnt,

v (143

e=—4.40<10* eV/atom. (144

For comparison we note that ftHe the experimental val-
ues are

N
pre=y; = 217X 10?2 atom/cnd, (145

e=—5.5x10* eV/atom. (146)

PHYSICAL REVIEW A61 053607

_ /ﬂ_ 41a
US_ m - m2 pb'

F. Equation of state

(149

For a two-body interacting system, one can predict from
Egs.(146) and(138), the following equation of state:

P
; =—c. (150
Again, in the case ofHe, our predictions are
P(0)=17 atom, (151
whereas the experimental result is
PeXP(0)=10 atom. (152
The sound speed we predict is
Usound= 150 m/s, (153
whereas, experimentally,
v =210 m/s (154)

where the experimental values were obtained from R&f.
and[14].

X. EXCITED STATES

Having established some properties of the ground state of
a condensed system, we should attempt with build wave
functionals associated with excited states. In particular, states
in which a certain number of particles are frg®t in the
trap). This would help in a calculation of condensate excita-
tions.

Based in the idea that other states can be generated by
applying some functional to the ground state, as described in
Sec. Il of this paper, the best guess for the wave functional
associated with an excited state in which one excitation is

thus showing that the calculated values are in good agregresent could bésee Eq.(46)]

ment with the experimental results.

D. Pressure at zero temperature

The pressure af =0 (in the ground stadewill be

h\ \pi 2ma 5
P‘P(E)‘T—?Pb- (147
E. Sound speed
The sound speed, defined as
3 [oP 1 148
US_ (9p m! ( )

can be evaluated by using E{.46); one can predict

PVp1= oLl o) = [ €p(0daylp]. (159

The wave function associated tb55) is therefore

N
P (X, ... ’XN):Z'l ey (xy, ... xy). (156

Wave function(156) becomes Feynman’s wave function if
one replaceg; by (X4, . .. XN) Whereyy is the ground-
state wave function.

The generalization is easy if one neglects self-interactions
[4]. Suppose thak[ p] is a solution of Eq(91) associated
with E=0. Under these circunstances the equation of the
wave function of the condensate is
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v2
~om TUX) —u [ §e(x)=0. (157)
It is easy to check that the functional

X[p]=f dxf(x)p(x) xol p] (158)

is a solution of Eq(91) with eigenvalueE if

52
( ~om U= [[F0 %) ]=ELfe(}) ¢e(X)].
(159
The wave function
n N

W )= 2 foIL wex) (160

corresponds to the wave functiondb8). From Eq.(159 it
follows that ' (x4, . .. X,) represents a state in which one
particle is in the excited statg(x) ¢:(x). The free-particle
excited statgEq. (155)] is just a simple example of Eq.
(158 in the free particle casE=k?/2m.

The functional which corresponds to excited states

f.0) (%), ...

Ja(X) (X)) has a general expression

Xip1= [ dae @ a0 FaOwpa(ia, - Haxel o)
(161

wherep,(X4, ... X,) is given by Eq.(46). The symmetric
wave function associated witi61) is

n

-an):'v E

Bi#

N
fa(x;)- - fn(xjn>i1jl Pe(X;).
(162

One can go further in the parallel with Feynman’s ap-
proach by using our expression substitutiflg with the
ground-state wave function. We obtain explicitly,

P(Xe, -

n=1

t//(l)[p]=f dXékxp(X)eXF{iJ' dX'¢c(X’)p(X)}X0[P]¢/o,
(163

where now

xalpl= exp [ dxInpep(0. (164

PHYSICAL REVIEW A 61 053607

So that the only difference between our wave function and
Feynman-Cohen’s wave function is in the replacement

N N N
> I perpe®ni— > hirpe*, (166
j=1i=1 =1

whereh;(r;) is Feynman and Cohen'’s guess to represent a
localized excitation.
However, looking at Eq(165), we see that the term

NG (167)
leads to a current of the form
- .k
j(r)=pc(r) (168

E!

and is similar to the Feynman-Cohen prediction. The total
current is then

Vee(r)
m H

- .k
I=pc(r) —+ (169

as conjunctured by Feynman and Cohen.

In this contextV ¢ (r)/m is just their famous backflow

current[16]

(170

For “He Feynman and Cohen suggested that for large

(pC(F) has the form of the velocity potential of a dipole,
which is

AP
3

be(r) ~ (172)

r—o

Finally we can introduce a correlation between the excitation
and the particles in the condensate. In this case we assume
phase correlation and write

' V[ pl= f dxexp(ikx)p(X)

xexp(i f dxge(x’ —X)p(x ) xolp] |-
172

The physical interpretation for this is that in H466) we

ensure a backflow around the atom with momenturithis
is another version of the Feynman-Cohen wave function, that

Once again we see the similarity with the Feynman-was originally written as

Cohen[16] wave function. In fact, by using Eq164) we
obtain for (%),

N N
PO, = expi 3 e P a3 €
(169

o DX, Xy

=§1 exp(ikxi)exp(iz @cri=T)xo(T1s T |,

i#]
173
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thus showing a great similarity with our expressions for thestates describe condensed states. We discuss some possible
excited states, as well as for the ground state. In our apaonuniform condensates.
proach we do have an explicit form for the ground state in We have discussed zero-momentum condensation within

terms of the wave function of the condensate. the uniform density approximation. We have shown that
many predictions about the condensed state can be made by
XI. CONCLUSIONS taking this simple approximation. We obtain simple esti-

mates for the uniform density, the binding energy of the
In this paper we have applied the framework provided byground state, the zero-temperature pressure, the zero-
the hydrodynamic quantization in order to study condensatemperature equation of state, and the sound speed. The com-
tion phenomena. This is done in close analogy with the wellparison with “He shows that these predictions are in fair
known phenomena of Bose-Einstein condensation inpthe agreement with the observed results.
=0 state. It is fairly simple to construct excited states for a con-
This approach provides a unifying picture to all theoriesdensed system. Under simple assumptions one can build
related to superfluidHe. In view of the common features of wave functions very similar to Feynman and Cohefwsth
condensation in the ground state, this method should be user without backflow. Presumably some of these wave func-
ful in the study of observed Bose-Einstein condensation ations will be useful in the general problem of Bose-Einstein
very low-temperature gases, as recently demonstrated.  condensation. This is a possible line of research to be pur-
We have seen that condensed states are well described Byed further.
coherent states of the pure phase component of the field. The The finite-temperature version of this functional approach
coherent-staté\nsatzwave functional reduces the problem should also be acomplished in order to obtain the thermody-
of finding the wave function of the condensatgto a varia- namic properties involved in the condensation. It should be
tion problem. The interesting aspect here is that the equapointed out that the approach presented here could comple-
tions of the density and phase of the wave function can bé&ent recently published theoretical work concerning predic-
cast under the forms of equations of motion of a quantuntions of properties in condensated trapped atoms.
liquid. From this it follows that whenever one can neglect the
quantum velocity termwithin a quasiuniform approxima-
tion), the equations for the quantum fluid become the equa-
tions of a classical fluid. We can thus predict that conden- We would like to acknowledge partial support from the
sates might become superfluid, as we observe in superfluidunda@ de Amparo aPesquisa do Estado dé ®®aulo
“He. Furthermore a two-fluid picture might be useful in un- (FAPESB, Conselho Nacional de Desenvolvimento Cient
derstanding properties of condensed states. fico e Tecnolgico (CNPg, and the Programa de Apoio a
We have shown that our framework can lead to an exacNucleos de Excélecia (PRONEX. Special thanks to
result in the case of a single particle. For particles that do no#. A. G. Martinez, M. S. Santos, and L. G. Marcossa for
interact with each other, we have seen that our coherertelpful discussions and proofreadings.
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