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Limits to sympathetic evaporative cooling of a two-component Fermi gas

M. Crescimanno, C. G. Kaoy, and R. Peterson
Physics Department, Berea College, Berea, Kentucky 40404

~Received 2 September 1999; published 5 April 2000!

We find a limit cycle in a quasiequilibrium model of evaporative cooling of a two-component trapped
fermion gas. The existence of such a limit cycle represents an obstruction to reaching the quantum ground state
evaporatively. We show that evaporativelybm;O(1). Wespeculate that one may be able to cool an atomic
Fermi gas further by photoassociating dimers near the bottom of the Fermi sea.

PACS number~s!: 32.80.Pj, 05.70.Ln, 05.30.Fk
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I. INTRODUCTION

The spectacular successes of laser-cooling technique
creating Bose-Einstein condensation~BEC! in trapped dilute
alkali-metal vapors@1–3# has stimulated efforts to form di
lute, nearly degenerate atomic fermion gases. Such sys
undoubtedly have unique phenomenology, and since one
control the composition, densities, and even scatte
lengths in principle, they furnish a window to familiar ph
nomena~such as superconductivity, etc.! in unusual param-
eter regimes@4–8#. A critical step in achieving BEC in dilute
alkali-metal vapors is evaporative cooling. In this paper
describe limitations to the use of evaporative cooling fo
harmonically trapped two-component Fermi system.

Overall antisymmetry of the final-state wave functio
forces thes wave scattering amplitude for two-body coll
sions in a single-component polarized Fermi gas to van
identically. However, in a system composed of two or mo
Fermi species there can still be appreciables-wave scattering
amplitudes at low energies. Recent experimental observa
of quantum-statistical effects reducing the scattering
quency at low temperature has been reported in Ref.@9#.
Sympathetic evaporative cooling in two-component Bo
systems has been experimentally verified@10#. Aspects of the
dynamics of sympathetic cooling in a two-component Fe
system have been discussed theoretically@11,12#, and re-
cently achieved experimentally@13#.

We will show in a robust model that sympathetic cooli
of trapped fermions is intrinsically limited to (m/T)
;O(1), whereT is the temperature andm is the chemical
potential. Largely independent of trap and atomic para
eters, this limit indicates that sympathetic evaporative co
ing alone cannot achieve occupation probabilities in the t
single-particle ground state characteristic of typical degen
ate Fermi systems~e.g., atomic nuclei and typical metals!.

In summary, we model evaporation as a succession
quasiequilibrium states. This shows that evaporation mo
the chemical potential toward saturation at a fixed~nonzero!
fraction of the evaporation energy. Lowering the evaporat
energy in an attempt to further cool simply causes both
Fermi surface and the temperature to recede, thus not
stantially increasing the occupation probability of the low
single-particle state. Rather than end on a pessimistic n
we conclude by speculating on a possible method for s
mounting the difficulty of cooling an atomic Fermi gas.
1050-2947/2000/61~5!/053602~6!/$15.00 61 0536
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II. MODEL

We aim to explain the general features of the evapora
cooling of a two-component fermion gas without recourse
the details of dynamics and transport. In particular, trap li
time and other time scales will play almost no role in o
model.

As described above, we focus on a two-fermion syst
cooling sympathetically by evaporation through interspec
two-body collisions only. Aspects of the thermodynamics
dilute, harmonically trapped fermions without an energy c
off are described in Ref.@5#. Furthermore, we ignore the
effect of any other environmental fields~for example, trap
fields! and assume them to be constant over the lifetime
the system. The average effect of the interactions betw
the different species is absorbed into a mean-field term
we sweep intom ~see, for example, Ref.@18#!. We further
assume that particle number is not communicated betw
the species, and so their individualm can differ. Interspecial
scattering processes do communicate energy between
cies, and so we assume that both species are always
common temperature.

Consider evaporating both species at the same energy
off Eevap. We complete the analysis for this case and th
turn to the opposite extreme where only one species eva
rates. If both fermion speciesa andb are ~nearly! the same
mass, then crossing symmetry equates the total rate for s
tering into final stateua,b& with that of ub,a&. This means
that for the same evaporative cutoff, the rate at which p
ticles of one species evaporates equals that of the other

Finally, for simplicity, we model the evaporative proce
as one that always reduces the particle number by 1
removes energyEevap. In the model we develop we wil
ignore the contribution to the cooling that results from t
interspecial mean field@18#. In the cases of interest in curren
experiments this interspecial mean-field energy is expec
to be very small compared with the other relevant ene
scales~for example, the Fermi energy!. Although this model
of evaporation is a gross simplification, it becomes a p
gressively better approximation as the temperature dro
and we are confident it captures the main features of
evaporative process.

We approximate each component’s scaled number
energy by cutoff equilibrium distribution functions

N5E
0

1 xddx

eb~x2m!11
, E5E

0

1 xd11dx

eb~x2m!11
, ~1!
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whereb andm are, respectively, the inverse temperature a
the chemical potential both made dimensionless by factor
Eevap. The exponentd depends on the actual spectrum of t
trap, and for a three-dimensional isotropic harmonic trap,d is
2. We will keep the discussion rather general with respec
d, but used52 in all the graphs and particular conclusio
below. We find that reducingd ~by, for example, signifi-
cantly changing the aspect ratio of the trap! makes sympa-
thetic evaporative cooling generally less effective. Finally,
Eq. ~1!, E is dimensionless~i.e., in units ofEevap) and we
have suppressed some overall factors that depend onEevap
and trap frequency.

We model evaporative cooling by simply following Eq
~1! through flow along

S dN
dED5S 21

21DdN. ~2!

By using symmetries of the scattering for fermion species
nearly equal mass for the case where both fermion spe
are being evaporated at the same energyEevap, we find that
the net effect on the individual distribution functions is e
capsulated in Eqs.~1! and ~2! for each species separate
~and so in what follows for this case we suppress indice!.

The resulting differential equations forb andm along this
evaporative trajectory read

db

dN
5

1

det~M !S 2
]E

]mU
b

1
]N

]mU
b
D , ~3!

dm

dN
5

1

det~M !S ]E

]bU
m

2
]N

]bU
m
D , ~4!

where the determinant det(M ) is given via

det~M !5
]N

]bU
m

]E

]mU
b

2
]N

]mU
b

]E

]bU
m

, ~5!

which, from the quasiequilibrium distribution functions o
Eq. ~1!, we find det(M ).0 for all b, d, andm. This positiv-
ity may be understood on general grounds via the connec
between det(M ) and the specific heat,cV at constantN,

cV5
b2det~M !

~]N/]m!ub
, ~6!

and by the fact that (]N/]m)ub.0 as a consequence of, fo
example, Eq. ~1!. The det(M ) vanishes in the low-
temperature limit as;p2m4/3b3. See Fig. 1 for an exampl
of this behavior~for d52 andm52/3!.

Starting far from degeneracy, the net effect of the eva
rative process is to alterm while increasingb. Note that
using the equilibrium distributions Eq.~1! implies by Eq.~3!
that b increases monotonically along the flow. We see t
m’s evolution does not share this property. Instead, we fi
that the system, Eqs.~1!, ~3!, and ~4!, has a limit cycle at
(]E/]b)um2(]N/]b)um50 in the ~b,m! plane. This limit
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cycle is at an intermediate value ofm5m* (b) for all tem-
peratures. Figure 2 is a graph ofm* as a function of tem-
perature ford52.

For d52, the low-temperature limit ofm* is 2/3. We
reiterate that for values of~b,m! below the curve, the evapo
rative process increasesm, whereas for~b,m! values above
the curve, theyreduce it. Thus as one tries to lower th
temperature by reducingEevap ~thus increasingm!, evapora-
tion causes the Fermi surfacem* Eevap to also drop away. Of
course, as one dropsEevap, the scaled inverse temperatureb
also drops trivially.

A figure of merit measuring how close one is to the qua
tum many-body ground state is the occupation probability
the trap single-particle ground state. This is a function of
ratio of the chemical potential to the temperature, in o
notationbm. This combination is independent ofEevapin our
simple model. We now show that this product is limited
the total scaled atom number N@which in the normalization
of Eq. ~1! is limited to be at most 1/(d11)].

We consider two cooling methodologies that we refer
alternatively as ‘‘passive’’ and ‘‘active.’’ They refer, respe
tively, to holding theEevap fixed or suddenly reducing it

FIG. 1. det(M ) for m52/3, as a function ofb.

FIG. 2. The evaporative limit cycle with the low-temperatu
asymptote.
2-2
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LIMITS TO SYMPATHETIC EVAPORATIVE COOLING . . . PHYSICAL REVIEW A61 053602
Unfortunately, in actual experiments underway@13#, Eevap is
varied continuously, so these two cooling methodologies
probably not good models of current experiments~see, how-
ever, Ref.@20#!. These choices of cooling methodologies a
advantageous analytically since they allow evaluation of
effects of evaporation without recourse to any dynami
time scales.

In the passive method, the system is held at a fixedEevap

and allowed to cool indefinitely by evaporation. Dynam
cally, since the emerging Fermi surface atm* is always a
fraction of Eevap, the cooling rate is limited by the overa
rate of escape, which~at low temperature! is Boltzmann-
suppressed by a factor ofe2b(12m* ) and the trap lifetime.
However, we reiterate that the ‘‘kinetic’’ model we emplo
analytically encapsulates limits to sympathetic evapora
cooling of the two-component fermion system without i
cluding ‘‘dynamical’’ effects~such as collisional or trap time
scales!.

In the active model, on the other hand, we abruptly low
Eevap to a value at or below our initialm* Eevap. Call this
new evaporation energyEevap8 . The distribution function is
invariant under such a change inEevap. Them andb values
will trivially jump by factors of the evaporative energy sca
ratio. Of course, the overall scaled phase-space constants
we suppressed in Eq.~1! do go as positive powers ofEevap.
Dropping Eevap to Eevap8 ,Eevap has the immediate effect o
droppingN, for example. This corresponds precisely to t
statement that all the particles withE.Eevap8 leave immedi-
ately.

Sincemb measures our progress towards the ground s
and is invariant under a sudden drop inEevap, we see that
only subsequent evaporation~and rethermalization! of the
remaining fermions can increase themb product. We now
show that evaporation after the drop inEevap does not lead
the system substantially closer to the quantum ground s

The evaporation equations above can be integrated
merically forb~m! by eliminatingN from Eqs.~3! and~4!. In
doing so, one finds that for values ofmÞm* , the change in
the dimensionless temperature ratiob is generally relatively
small, on the order ofb itself. To get to the nearly degene
ate Fermi system starting far away from the ground state,
need a cooling regime in which much larger temperat
drops are achievable. In numerical simulations, one finds
the only large temperature changes happen evaporat
when the system is at am very nearm* , basically within
10% of that value. Figure 3 is the integralb~m! of Eqs. ~3!
and ~4! for two initial conditions, (m i ,b i)5(0,2.5) and
~2.8,4.5!. Trajectories that start at higher initial temperatur
~lower b i) remain substantially lower in Fig. 3 througho
the entire evaporative trajectory, but do eventually wi
along the limit cycle atm* toward largeb. Recall that in the
active method we are actually starting generally at smalleb i
than shown.

Curiously, note that form@m* , the mb product can ac-
tually initially decreasealong the evaporative trajectory. I
the Conclusion we comment on a heuristic way of und
standing such counterintuitive behavior. At any rate, it
clear from Fig. 3 that achieving a condensed Fermi sys
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requires evolvingm close tom* . We now investigate some
liberal bounds on how well evaporation can achieve t
goal.

In Fig. 3 we integrated Eqs.~3! and~4! for b~m! by elimi-
nating N, not taking into account thatN must always be
positive and strictly decreasing. We now study how far alo
theseb~m! trajectories we may progress evaporatively un
we substantially run out of particles.

Analytically, at low temperature, we find that the flo
equation form near m* is independent ofb entirely, and
reads

dm

dN
5

p2

6

223m

m3
1¯, ~7!

which can be integrated for allm to read

F2
8

27
ln~m22/3!2m2

m11

3
2

4m

9 G
m i

m f

5
p2

2
DN. ~8!

The number evaporatedDN must of course be less than th
total number of particles in the trap. Using Eq.~1!, we see
that there are indeed stringent limits on the right-hand s
~RHS! of Eq. ~8!. Since we know that appreciable cooling
this scheme does not occur until one is close tom* ~equal to
2/3 at low temperature!, we know that the best one can do
to evaporate all the particles in excess of the ground stat
m* . For the scenario in which we start at am abovem* ~for
example, as may be created in the active method! this limits
the RHS substantially. Form,m* , the system evaporatively
evolves towardm* but can never reach itbecause there ar
simply not enough particles to evaporate. This is one rea
to use the active method in a phase of the cooling, sinc
can raise the initialm above them* . However, raisingm by
this means is also self-limiting for two reasons. First, if it
raised substantially above 1, too many particles are lost fr
the trap and there are too few remaining to evaporate bac
degeneracy. Second, as described earlier, it reducesb i by the
same factor it increasesm i , indicating the need to get eve

FIG. 3. Two typical cooling trajectories, one starting above a
one belowm* .
2-3
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closer tom* to wind along the limit cycle and recover larg
b. We explain this is more detail quantitatively below.

We graphically describe the consequences of Eq.~8! in
Fig. 4. All the discussion here is in the ‘‘best-case’’ scenar
in that we imagine starting with a system at already re
tively largeb @so Eq.~8! applies# and ask how well evapo
rative cooling can further increaseb and thusbm. Figure 4 is
a graph of Eq.~8!. The dashed line represents a maximu
possible RHS at that initialm. As per the preceding discus
sion, we have plotted the contribution from the total numb
of particles for m,m* , and plot the excessonly for m
.m* . The light dotted trace is the left-hand side~LHS! of
Eq. ~8!. Thus to estimate the maximum possible increase
decrease inm, starting at some initialm i , use the height of
the dashed line to estimate how much of a change in
height of the light dotted line you may achieve. The result
position at that height on the light dotted curve then is
~over!estimate of the largestm achievable.1

A study of the graph indicates that the process allows
to get within perhaps 10% ofm* at best. As a very crude
estimate, we can see that this occasions at most a rou
threefold increase inb. Cooling from a typical active-method
initial state of~b,m!;~1,1!, we find that one cannot achiev
bm products in excess of roughly 3. For such a gas,
typical occupation probability of the lowest energy sing
particle state in the trap is roughly 90%. Typical, nearly d
generate quantum Fermi systems such as nucleons in n
and electrons in typical metallic systems have much lar
bm products.

III. A SECOND MODEL

We now study the scenario in which the evaporat
thresholds for the two speciesa andb are very different. We
forgo a detailed quantitative analysis specific to this ca
and instead reduce to and reason from the simpler mode

1Note that although (]N/]m)ub is always greater than zero, th
total derivative (dN/dm)u,0 for m,m* because
(]N/]b)um(db/dm) is negative.

FIG. 4. Graph of Eq.~8!.
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have already discussed. For simplicity, we assume that
masses and the trap potential of the two species are iden
Thus the quasiequilibrium expectation values ofNa,b and
Ea,b are given by the obvious doubling and indexing of E
~1!. However, to include the fact that the evaporative thre
old for speciesa is so much larger than that of speciesb, we
replace the upper limit ‘‘1’’ of the integrals in Eq.~1! by
‘‘ `.’’ For speciesa, we then scaleb, ma , and mb by the
evaporative threshold of theb species. Subsequently,Eevap
refers to the evaporative threshold for speciesb only.

The conditiondNa50 now becomes a linear constraint
the space (ma ,mb ,b). All these variables are dimensionles
scaled by the appropriate factors ofEevap.

That linear constraint reduces the evaporative evolution
this two-component Fermi system again to a tw
dimensional dynamical system~i.e., at fixedEevap and Na ,
ma is really a function ofb!. In particular, scattering event
that lead to evaporation of a particle of speciesb at energy
Eevapwill, on average, remove a netEa from the total energy
of speciesa, and a netEb from speciesb, whereEa1Eb
5Eevap, and with ratioEa /Eb depending on (ma ,mb ,b). In
equations,dNa50 implies that

dEa

db
52

det~Ma!

~]Na /]ma!ub
~9!

@compare to Eq.~6!#, where det(Ma) is the determinant of
the matrix of partial derivatives for thea system only. Note
that this determinant det(Ma) is now computed with the in-
tegrals extending tò , and so is singular at high tempera
tures but still looks like the rest of the graph in Fig. 1 for lo
temperatures. The analogous function for theb species,
det(Mb), is precisely the same as for Eq.~5! with Eq. ~1!
~that is, using integration limits@0:1#!.

Energy conservation implies~in scaled dimensionles
quantities! that the evaporative trajectory is along

S dNb

d~Ea1Eb! D5S 21
21DdNb . ~10!

The differential relations betweenEb , Nb , mb , and b are
exactly the same as for the matrix system analyzed in
first model. We now use Eq.~9! to rewrite thedEb term in
Eq. ~10! in terms ofdb and to rewrite the two-dimensiona
system for the evolution ofmb andb in terms ofdNb . Recall
that ma also changes, but is given parametrically in terms
b ~andNa , which is held fixed!. We find

db

dNb

5
1

det~M! S 2
]Eb

]mb
U

b

1
]Nb

]mb
U

b
D , ~11!

dmb

dNb

5
1

det~M!S ]Eb

]b
U

mb

2
]Nb

]b
U

mb

2
det~Ma!

]Na /]maubD .

~12!

The denominator is
2-4
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detS M5det~Mb!1det~Ma!S ~]Nb /]mb!ub
~]Na /]ma!ub

D ~13!

and is again strictly positive.
We can now use the intuition gained by studying the fi

model to constrain cooling thea species in this scenario. Th
measure of how close to the ground state we are for
species is again the productbma . The most promising initial
~high-temperature! state in this case seems to beNa;Nb
~that is,ma;mb).

Looking now at Eq.~12!, we see that the limit cycle stil
exists and occurs at a valuemb* higher ~that is, closer to the
evaporative threshold! than in the first model we discusse
Also note that theb evolution equation in this scenario di
fers only by the prefactor det(M), from the first model we
considered. Due to positivity of the individual det(Ma,b), we
expect that factor toreducethe evolution ofb as compared
with the first model. Indeed, in the high-temperature limit t
suppression is through powers of the ratio of the evapora
energy scales of the two species, but for low temperatu
det(M);2 det(Mb). Thus, as may have been expected d
to the larger thermal inertia of the entire system compa
with that of an individual species, the actual overall evap
rative cooling efficiency is suppressed at low temperatu
relative to the first model we considered.

This means that if we cool in the active mode,mb will be
large initially and thus the temperature of the entire syst
will not drop dramatically as one evaporates. Efficient co
ing could occur if we are able to get tom;m* , but it is
difficult to reach that regime because, although we c
evaporateall of the b species@thereby having a continuou
curve for the dashed curve in Fig. 4 representing the up
bound for the RHS of Eq.~8!#, in the low-temperature limit
the cooling of the whole system proceeds slower, and so
light dotted curve in Fig. 4 is roughly twice as steep. Th
the obstruction to reaching the quantum ground state in
two-component system in this case~unequalEevap) can be
understood from the considerations and qualitative beha
of the first case~equalEevap).

IV. CONCLUSION

There exists a limit cycle in evaporative cooling a tw
component fermion system that has the consequence o
verely limiting the approach to the quantum degener
ground state. One heuristic way to understand this resu
that, since there is always a gap between the putative F
surface and the evaporative threshold, evaporation can a
ally ‘‘heat up’’ ~that is, disorder! the distribution function at
the Fermi surface. This is one way to understand the ra
counterintuitive finding that starting atm@m* , themb prod-
uct actually initiallydecreasesduring evaporation.

There have been many proposals for surmounting the
05360
t

at

e
s,
e
d
-
s

-

n

er

he
s
e

or

se-
e
is
mi
tu-

er

if-

ficulty of achieving a degenerate Fermi ground state, and
not the purpose of this paper to review these many inven
ideas. They include condensing Fermi-Bose mixtures~a dif-
ficult technical feat! @14–17,19# and using various perturbing
fields on pure Fermi systems. What this paper suggest
that proposed cooling techniques relying exclusively
evaporating fermions may be constrained by a limit cycle
the type we have described.

We would like to end with a brief speculative proposal f
reaching lowerbm products in a trapped atomic Fermi ga
Consider photoassociating Fermi dimers into states just
low the trap single-particle ground state. With fermions the
is no stimulated atomic channel back to the trap as th
would be in the case of photoassociating dimers from a B
condensate; instead, Pauli blocking and the Fermi ene
both push the system toward dimerization. The remain
fermions then scatter off the dimers. In a sense, photoa
ciating has enhanced the three-body collision rate, wh
even for identical fermions, is not suppressed by statistic
low energies. Every time a dimer breaks in collision, as lo
as the trapping potential is high enough, the fermions
back into the trap; the net effect of creating and break
dimers in this proposed scheme is to use the difference in
dimer pump beams to cool the fermion system ‘‘from b
low’’ ~near the single-particle ground state of the trap! in-
stead of evaporatively ‘‘from above’’~that is, above the
Fermi surface!. In that sense this scheme has the flavor
Bose-Fermi mixture schemes, but might be simpler tech
cally. Also, this cooling proposal does nota priori require a
two-fermion mixture, though we imagine that photoassoc
ing dimers composed of dissimilar fermions is likely to b
easier than photoassociation of identical fermions. It rema
to be seen whether such a technique can be practically im
mented in a polarized atomic Fermi system.

Finally, it would be of great interest to compare the pr
dictions of this simple evaporative model directly with e
periment. One step in that direction is to generalize
model to include a time-dependentEevap and trap lifetime
effects. One use of such a direct comparison would be
further test how large quantum-statistical effects are in c
rent experiments that are far from degeneracy. Investigat
of such ‘‘dynamical’’ effects are underway@20# but clearly
beyond the ‘‘kinematic’’ scope and spirit of this paper.
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