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Linear-least-squares fitting method for the solution of the time-dependent Schro¨dinger equation:
Applications to atoms in intense laser fields
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An alternative theoretical approach for solving the time-dependent Schro¨dinger equation for atoms in an
intense laser field is presented. In this method the time-dependent wave function is expanded in a basis set but
the expansion coefficients are determined by linear-least-squares fitting of the wave function on discrete mesh
points in configuration space, thus avoiding the need of evaluating a large number of matrix elements. We
illustrate the method by computing wave functions, above-threshold ionization spectra, and harmonic genera-
tion spectra of a model atom and compare the results with those obtained using the split-operator method.

PACS number~s!: 42.50.Hz, 32.80.Qk, 32.80.Rm, 32.80.Wr
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I. INTRODUCTION

When atoms are exposed to an intense laser field, m
photon phenomena such as the above-threshold ioniza
~ATI ! and harmonic generation~HG! have been observed i
experiments@1–3#. In order to describe these phenome
theoretically, perturbative approaches are not useful w
the laser field strength is comparable to the atomic fie
Among the nonperturbative methods that are commo
used, the important ones are the Floquet theory@4,5#, the
direct solution of the time-dependent equation on numer
grid points @6–10#, and the basis set expansion method.
the basis set expansion method, the time-dependent w
function is expanded in some basis set and the problem
reduced to the solution of a set of coupled first-order diff
ential equations in time. The basis functions that have b
used so far include the set of field-free bound and continu
states@11–13#, a set of states generated from theB splines
@14# or the set of Sturmian functions@15,16#. In other cases
Volkov states which are eigenstates of a free electron
laser field have also been used as basis functions@17#. The
basis function approach in general can be tailored more
rectly to the physical problems on hand, however, it do
require the evaluation of a large number of matrix eleme
which is very time consuming, especially those elements
tween continuum states. Solving the time-dependent prob
on the numerical grids would avoid the need of evaluat
matrix elements. However, the accurate representation
rapidly oscillating function requires relatively dense gr
points and thus memory and CPU requirement becomes
stantial.

From the mathematical viewpoint the interaction betwe
an intense laser field with atoms is not very different fro
the interaction of a charged particle with atoms in that o
has to solve the time-dependent Schro¨dinger equation non-
perturbatively. In general the theory of ion-atom collisions
perceived as more difficult because of the two-center nat
where one needs to describe charge transfer processes
dition to the excitation and ionization processes. For ato
1050-2947/2000/61~5!/053411~7!/$15.00 61 0534
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in a laser field, it is perceived as simpler because it i
single-center problem. This perception is correct if the ‘‘l
ser’’ is a half-cycle pulse@18# ~or quarter-cycle pulse@19#!,
but not when it is a long pulse consisting of many cycles.
a longer pulse the electron experiences many back-and-f
oscillations of the laser field, resulting in complicated inte
ference of the electronic wavefunctions which are not ea
expanded in a small set of basis functions. The represe
tion of the wavefunction of an atomic electron in a laser fie
in general requires a larger primitive basis set, much lar
than those employed normally in ion-atom collisions.

The perception of the success of the basis set expan
method in ion-atom collisions in fact is misguided. It is du
mostly to the lack of detailed experimental studies of t
momentum distributions of the ionized electrons so far,
pecially at lower energies. In recent years, with the adven
the COLTRIMS apparatus@20,21#, detailed ejected electron
momentum distributions have been measured and the lim
tion of the basis set expansion method became appa
New theoretical approaches have to be developed in orde
address the electron momentum distributions. In the met
of Sidky and Lin @22#, the time-dependent wavefunction
expanded in basis functions in momentum space. The pro
gation of the wavefunction is carried out in configuratio
space where the expansion coefficients, instead of be
found by solving the coupled equations as in the stand
approach, were obtained by a linear-least-squares fitting
cedure on a set of grid points. When the number of g
points goes to infinity the result of the linear-least-squa
fitting procedure is formally identical to solving the clos
coupling equations exactly. However, the goal of the line
least-squares fitting method is to solve a large set of coup
equations approximately. Clearly this method offers no
vantages if the number of coupled equations is small si
one may just solve the coupled equations exactly. On
other hand, there are situations where one intrinsically ha
deal with a large number of coupled equations. Exact so
tion of such close-coupling equations would be rather ti
consuming and impractical. With the fitting procedure, it
anticipated that the large number of coupled equations ca
©2000 The American Physical Society11-1
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XIAOXIN ZHOU AND C. D. LIN PHYSICAL REVIEW A 61 053411
solved approximately to certain degrees of accuracy. T
alternative method is attractive since it removes the nee
the most time-consuming part of evaluating matrix eleme
where the CPU requirement goes roughly withN3 to N4,
whereN is the basis size. The fitting procedure is expected
increase roughly linearly with the basis size.

Above-threshold ionization and harmonic generation
fascinating observable phenomena in laser-atom collis
and they are easily calculated from theory once we can
tain accurate representation of the fast oscillating tim
dependent electronic wave function. If the time-depend
wave function is to be expanded in some basis set, cle
continuum basis functions are needed in order to repre
ionization. In such calculations, as stated before, the eva
tion of matrix elements between continuum functions
rather problematic. If square-integrable basis functions
used, then reflected waves from the boundaries would
duce complicated interference and introduce unphysical
cillations. To eliminate these interferences, one of the co
monly used approaches is to introduce absorber near
boundaries to inhibit these reflections. For example, abso
are used in the split-operator methods@23#.

Numerical methods which do not require the evaluation
matrix elements are often based on calculating the w
function at the grid points in configuration space. In order
be able to use efficient algorithms, the grid points in m
cases are required to be equally spaced. This limits the fl
ibility of the method since fine-spaced meshes are neede
represent the atomic core region where the atomic pote
changes rapidly, but relatively larger spaced meshes ca
used to describe the ionized electron in the outer reg
where the potential is weak and flat.

In the present approach, the time-dependent electr
wavefunction in a laser field is expanded in a basis set
solving the time-dependent equations for the expansion
efficients, however, we used a linear-least-squares fit
procedure. We will show how the ‘‘accuracy’’ of the fittin
can be controlled by the basis functions and the range of
numerical integration or the ‘‘box’’ size. The fitting proce
dure can remove high-frequency interferences which ten
come from reflections at the boundaries. In fact, by choos
the basis functions judiciously the need of introducing a
sorber on the boundaries can be avoided.

The rest of this paper is arranged as follows. In Sec. II
discuss the present numerical method tailored for the la
atom collision system. The formulation will be limited to
one-dimensional problem but generalization to thr
dimensional systems is straightforward. In Sec. III w
present a number of test calculations and the results are c
pared to those obtained from the split-operator method.
latter method is considered to be well-established for
one-dimensional problem. Thus the present calculations
compared with the split-operator method results in orde
establish the reliability of the fitting method. Our goal is
generalize the present method to full three-dimensional p
lems and to arbitrary fields and potentials. The harmo
generation spectra and the ATI spectra calculated for
model problem are used to show the validity of the pres
05341
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method. A short summary and discussion of the future
tension of the method is given in Sec. IV.

II. THEORETICAL METHODS

A. Basic formulation

We consider a one-dimensional atom in a laser field.
the dipole approximation the time-dependent Schro¨dinger
equation in the length gauge is~atomic units are used
throughout this paper!

i
]c~x,t !

]t
5H~x,t !c~x,t !, ~1!

whereH(x,t) is the full Hamiltonian

H~x,t !52
1

2

d2

dx2 1V~x!2xe~ t !, ~2!

andV(x) is the model potential of the atom. In this paper w
will consider the soft Coulomb potential@24#

V~x!52
1

A11x2
~3!

only in order to be able to compare with other theoreti
results. In Eq.~2!, e(t) is the electric field of the the lase
pulse. The time-dependent solutionc(x,t) can be expanded
in a basis set

c~x,t !5 (
n51

N

cn~ t !wn~x!. ~4!

Substitution of Eq.~4! into Eq. ~1! leads to

i (
n51

N
dcn~ t !

dt
wn~x!5 (

n51

N

H~x,t !cn~ t !wn~x!. ~5!

The ‘‘standard’’ approach in solving Eq.~5! is to project it
onto the basis functionswn(x) to obtain a set of coupled
first-order differential equations forcn(t). The number of
matrix elements needed to be evaluated then is of the o
of N2 if N is the size of the basis set. The first-order coup
equations are then integrated to obtain the expansion co
cients to extract the scattering amplitudes.

An alternative approach, as first employed by Sidky a
Lin @22#, is to solve Eq.~5! on the discretized space coord
natexa (a51,2, . . . ,M ). Define the column matricesĊ and
A, and a rectangular matrixB by
1-2
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Ċ5F dc1~ t !/dt

dc2~ t !/dt

•••

dcN~ t !/dt

G B5F w1~x1! w2~x1! ••• wN~x1!

w1~x2! w2~x2! ••• wN~x2!

••• ••• ••• •••

w1~xM ! w2~xM ! ••• wN~xM !

G A53
(

n
H~x1 ,t !cn~ t !wn~x1!

(
n

H~x2 ,t !cn~ t !wn~x2!

•••

(
n

H~xM ,t !cn~ t !wn~xM !
4 ~6!
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the resulting algebraic equations from~5! on the discretized
points can be expressed as

i (
n51

N

Bmn

dcn~ t !

dt
5Am , m51,2, . . . ,M ~M.N!

~7!

or in matrix form

i B Ċ5A. ~8!

The matrixB is often called the design matrix. Since th
number of equationsM is greater than the numberN of un-
knowns@dcn(t)/dt# , this equation is overdetermined. Thu
instead of searching for equality on the two sides of~7!, we
look for the least squares,

X5 (
m51

M U i (
n51

N

Bmn

dcn~ t !

dt
2AmU2

. ~9!

The set of linear coefficients@dcn(t)/dt# which makeX the
smallest then satisfy the equations~see Presset al. @25#!

i (
n851

N S (
m51

M

BnmBmn8D dcn8~ t !

dt
5 (

m51

M

BnmAm

n51,2, . . . ,N. ~10!

In matrix form, this is

i ~BTB!Ċ5BTA, ~11!

whereBT is the transpose ofB. Equation~11! is a set ofN
algebraic equations ofN unknowns which can be solved d
rectly. Thus the linear-least-squares fitting procedure p
vides a way to calculatedcn(t)/dt without the need of com-
puting the matrix elements. It is understood that the met
is an approximate solution to the coupled equations and
can show formally that as the number of discretized po
goes to infinity, the fitting procedure gives the same res
as the original coupled equations. Once the coefficie
ci(t0)( i 51,2, . . . ,N) are given att0, the best values o
dci(t0)/dt are sought based on the data ofB andA using the
standard LU decomposition and back substitution proced
After the time derivatives are obtained, the propagation
the next time stepci(t01dt) is straightforward. We used th
fourth-order Runge-Kutta method.
05341
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This method allows us to integrate the time-depend
wave functionc(x,t) till the time when the laser pulse i
turned off. Once the wave function is available, it is a simp
matter to evaluate the following experimental quantities:

1. Harmonic generation

Harmonic-generation spectra are proportional to
modulus-squared of the Fourier transforma(v) of the ex-
pectation value of the accelerationa(t). By means of Ehren-
fest’s theorem,

a~ t !5^c~x,t !u2
x

~11x2!3/2
2e~ t !uc~x,t !&. ~12!

2. ATI spectrum

The ATI spectrum can be obtained by projecting the tim
dependent wave function att5Tf inal onto the field-free con-
tinuum statesfc

E(x),

P~E!5u^wc
E~x!uc~x,t5Tf inal!&u2 ~13!

3. Total ionization probabilities

The total time-dependent ionization probability is defin
as

Pion~ t !512 (
bound

u^wn~x!uc~x,t !&u2, ~14!

where the summation is over all the bound stateswn(x)
when the field has been turned off.

B. Basis set

To implement the present method we need to specify
basis functions and the range of the variablex which is con-
fined to (2xmax,1xmax). In order to represent the con
tinuum functions adequately it is desirable to have de
distribution of pseudostates. To this end each basis func
is expanded as

w j~x!5 (
n51

n1

Anfn~x!1 (
n51

n2 FBncosS npx

xmax
D1CnsinS npx

xmax
D G ,
~15!
1-3
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XIAOXIN ZHOU AND C. D. LIN PHYSICAL REVIEW A 61 053411
where thefn(x) are the bound state wavefunctions of t
field-free Hamiltonian, constructed from theB-spline basis,
and the sine and cosine functions are members of a trunc
Fourier series. The basis functions,w j (x), with energyEj ,
are obtained by diagonalizing the field-free Hamiltonian a
thus are orthogonal. The energies of the lowest 20 eig
states thus obtained are identical to those given by Eb
et al. @26#. The diagonalization also gives a spectrum
states where the energies are above the field-free thres
These are the pseudostates and their density can be
trolled by the size of the box.

The basis functions thus generated are then used to
form time-dependent calculations as outlined in the previ
subsection.

III. NUMERICAL RESULTS AND DISCUSSION

To illustrate the present numerical method we chose
one-dimensional~1D! model problem with the modified
Coulomb potential Eq.~3! and laser field profile

e~ t !5H E0sin2S pt

6TD sinvt, 0<t<3T

E0sinvt, t.3T ,

~16!

whereE0 is the amplitude of the laser field. First we consid
these laser parameters:E050.1 a.u.,v50.148 a.u. (I 53.5
31014 w/cm2) and T52p/v. At this frequency it takes
about five photons to ionize the model atom from the grou
state. In the calculation, the density of states, as seen f
Eq. ~15!, is essentially determined by the interval (2xmax,
xmax). For xmax of the order of 150 a.u. the basis functio
are adequate for a good fitting of the time-dependent wa
function. In our calculations we typically taken153, n2
5200, 300, and 400 forxmax5200, 300, and 400, respec
tively @see Eq.~15!#. Thus the maximum energy of the pse
dostates is fixed roughly at 4.9 a.u. For the present soft C
lomb potential problem, we used equally-spaced grids
spacing of 0.3 or 0.4. The incremental step of the tim
integration is 0.06 to 0.08. For the harmonic generation
propagate the time to 16 cycles and for the ATI to 16.
cycles. The electron is initially in the ground state.

A. Results for E0Ä0.1 a.u. andvÄ0.148 a.u.

In Fig. 1 we show the modulus-squared or the probabi
of the wavefunction calculated att516T. Two calculations
with xmax5300 and 400 have been carried out. The t
calculations yield results that are not distinguishable in
figure. These results are compared to the calculations u
the split-operator method~dashed lines! with an absorber of
the form f (x)5@11exp(1.25x6350)#21 when the bound-
aries are set atxmax56400. Comparing the present resu
with those from the split-operator method, we note that
agreement is quite good forx between2150 and 150. Note
that the wavefunction obtained using the present met
vanishes forx less than2250 andx greater than 250, eve
though the boundaries were set further out. We will co
back to discuss this point later.
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In Fig. 2 we show the normalized harmonic generati
spectra. The peaks occur at the odd harmonic orders only
they are quite visible up to the 13th harmonic. The agr
ment between the present two calculations~solid lines and
dotted lines! are quite good, and they also agree with t
calculation using the split-operator method~dashed lines!.

In Fig. 3 we compare the ATI spectrum calculated at
516.25T. For the ATI spectrum, we have averaged over
population of the even and odd discrete states as done in
@24#,

FIG. 2. Harmonic generation spectra calculated using the w
functions generated with the parameters indicated in Fig. 1. S
line, present method, case~b! xmax5400 andN5800; dotted line,
present method, case~a! xmax5300 andN5600; dashed line, split-
operator method.

FIG. 1. Probability~or modulus squared of the wave function!
vs x calculated for a model 1D atom in a laser field of streng
E050.1,v50.148, andt516 T. Each calculation is confined to th
boundaries defined by2xmax andxmax. The solid line is from the
present least-squares fitting method, and the dotted lines are
the split-operator method with an absorber at the boundaries~see
text!. The present calculations used two sets of parameters:~a!
xmax5300 andN5600; ~b! xmax5400 andN5800 but the results
agree and are indistinguishable on the graph.
1-4
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LINEAR-LEAST-SQUARES FITTING METHOD FOR THE . . . PHYSICAL REVIEW A61 053411
P„1
4 ~Ei 211Ei1Ei 111Ei 12!,t…5

uci~ t !u2

Ei 112Ei 21
1

uci 11~ t !u2

Ei 122Ei
.

~17!

Clearly the present two calculations give essentially ident
results, and they agree very well with the split-opera
method results for up to about the sixth peak. From there
the high-energy ATI peaks obtained from the split-opera
methods have higher intensities than those from the pre
method. The discrepancy is likely due to the different me
ods of treating the loss of the flux~or probability! at the
boundaries. Note that in the split-operator method the
sorber changes the probability near the boundaries only.
present method, with the least-squares fitting, apparently
moves the probabilities over a larger region near the bou
aries. In Fig. 4 we show the calculated ionization probabi
as a function of the laser interaction time. The results fr
the present method~solid line! agree quite well with those
from the split-operator method~dashed lines!.

FIG. 3. ATI spectra calculated using the parameters of Fig
Symbols as in Fig. 2.

FIG. 4. Comparison of total ionization probability as a functi
of time calculated using the present method withxmax5400 and
N5800 and the result from the split-operator method.
05341
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We now return to discuss the probability of the wa
function shown in Fig. 1. The present method and the sp
operator method give essentially identical results in the in
region, while they disagree in the outer region. The proba
ity is much larger from the split-operator calculation. It va
ishes only near the boundaries and the sharp drop to
near the boundaries clearly is a consequence of the abso
adopted. With the absorber, one can still see the effec
interference, as evidenced by the rapid oscillation of
probabilities in the outer region in the split-operator resu
These fast oscillations from the interference may be
cause of the higher ATI peaks in the higher energy regi
On the other hand, the present fitting procedure removes
the higher oscillations, thus basis functions with high
eigenenergies are not populated. This explains why our
culated probabilities are smaller in the outer region and w
the high-energy ATI peaks are weaker.

So far in the present calculation we did not need to int
duce any absorber to remove reflections from the bounda
However, whenxmax was chosen to be 200 a.u. we foun
strong interference and the results were not acceptable.
interference is similar to what one would get from using t
split-operator method without the absorber. Within th
smaller range, the fitting procedure was not able to rem
the effect of reflection from the boundaries. Of course o
can introduce absorbers into the present fitting method
well. In Fig. 5 we show the probability calculated with th
present least-squares fitting method withxmax5200, one
without the absorber, and the other with the absorber, wh
the functional form of the absorber is the same as the
used in the split-operator method. Clearly without the a
sorber the probability~dotted lines! oscillates rapidly show-
ing the effect of reflection and interference. By introduci
the absorber, the probability~solid line! becomes much
smoother. We next compare the harmonic generation spe
obtained from calculations usingxmax5200 with the ab-
sorber~dotted lines!, with the results from usingxmax5400
without the absorber~solid line!. The results in Fig. 6 show

FIG. 5. The probability of the wave function calculated usi
boundaries atxmax5200 andN5400. The dashed lines are calcu
lated without the absorber and solid line is obtained using an
sorber identical to the one used in the split-operator method.

.

1-5
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XIAOXIN ZHOU AND C. D. LIN PHYSICAL REVIEW A 61 053411
that the agreement is quite acceptable. Figure 7 shows
comparison for the ATI spectra from the two calculatio
and they again agree quite well. Thus we can use a sm
range ofxmax to achieve the same results if the absorb
were added at the boundaries.

B. Harmonic generation for EÄ0.08 a.u. andvÄ0.06 a.u.

We next give another example for calculations carried
in the tunneling region where the Keldysh parameter is l
than one and where ionization is dominated by the tunne
of the electron in the oscillating laser field. In Fig. 8 we sho
the probability distribution calculated att516 T from the
present fitting procedure withxmax5300 and compare the
results to the split-operator method with absorbers. Again
results agree quite well. The harmonic generation spectra
shown in Fig. 9 also agree quite well to very high order.

IV. SUMMARY AND DISCUSSION

In this paper we have illustrated a different method
solving the time-dependent Schro¨dinger equation for a one

FIG. 6. Comparison of the harmonic generation spectra obta
using the present method but with different parameters. Solid l
xmax5400 andN5800 without the absorber; dashed lines,xmax

5200 andN5400 with the absorber.

FIG. 7. The same as Fig. 6 but for the ATI spectra.
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dimensional model atom in a laser field. The method is ba
on the eigenfunction expansion method but the result
time-dependent coefficients are calculated using the lin
least-squares fitting procedure. In the process the wavef
tions at discrete grid points are evaluated, thus eliminat
the need to calculate matrix elements involving the ba
functions. We summarize what we consider the highlights
this method:~1! The choice of basis functions is very flex
ible. They can be tailored to particular physical systems.~2!
The calculation does not require evenly spaced grid poi
Thus denser mesh points can be used for the region w
the atomic potential is strong while sparse mesh points
be used for the outer region where the atomic potentia
essentially zero.~3! There is no need to introduce absorbe
near the boundaries of the integration region. By restrict
basis functions to a certain energy range, the fitting pro
dure removes the highly oscillating components of the
time-dependent wavefunctions to damp out the oscillati

d
e,

FIG. 8. Probability of the wave function calculated for the 1
model atom in a laser field withE050.08,v50.06, andt516 T.
The solid line is from the present calculation usingxmax5300 and
N5600 and the dotted lines are from the split-operator method
with an absorber.

FIG. 9. The harmonic generation spectra calculated using
wave functions of Fig. 8.
1-6
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LINEAR-LEAST-SQUARES FITTING METHOD FOR THE . . . PHYSICAL REVIEW A61 053411
due to the reflection from the boundaries.~4! From the re-
sults shown in Figs. 5–8, it appears possible to reduce
range of the ‘‘box’’ by introducing absorbers on the boun
aries. This allows the use of a smaller basis set and sm
number of grid points to save computational time a
memory.

In summary we have shown that the least-squares fit
procedure for solving the time-dependent equation
achieve accurate results as obtained from the split-oper
method without the need of introducing absorbers. T
method can be easily applied to any form of laser fields
examine the effect of combined fields, and to study ph
controls. It is also straightforward to generalize the meth
to three-dimensional problems. Since the control on the b
g

. A

A.

et
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sets and the grid points is rather flexible, they can also
adjusted to simplify calculations depending on the spec
physical system.
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