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Stochastic phase-space localization for a single trapped patrticle
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We propose a feedback scheme to control the vibrational motion of a single trapped particle based on
indirect measurements of its position. It results in the possibility of a motional phase-space uncertainty con-
traction, corresponding to cool the particle close to the motional ground state.

PACS numbs(s): 32.80.Pj, 03.65-w, 42.50.Dv

I. INTRODUCTION tion to mix position and momentum quadratures.
A second analogy is given by the fact that the proposed

In recent years there has been an increasing interest anethod needs a Doppler pre-cooling stage, as it happens for
trapping phenomena and related cooling technigigs  resolved-sideband cooling. In fact, the effective trapped par-
Some years ago it has been shown that, using resolved sidécle position measurement is realized only in the Lamb-
band cooling, a single ion can be trapped and cooled dowRicke regime, i.e., when the recoil energy is much smaller
near to its zero-point vibrational energy st4® and re- than the energy of a vibrational quantum, which can be ob-
cently, analogous results have been obtained for neutral atained only when the particle has undergone a preliminary
oms in optical lattice$3]. The possibility to control trapped cooling stage. Our scheme will provide therefore further
particles, indeed, gave rise to other models in quantum conPhase-space localization and cooling.
putation[4], in which information is encoded in two internal ~ The paper is organized as follows. In Sec. Il we show
electronic states of the ions and the two lowest Fock states dfow to realize the indirect continuous measurement of the
a vibrational collective mode are used to transfer and maposition by coupling the trapped particle with a standing
nipulate quantum information between them. It may happenwave. In Sec. Ill we shall introduce the feedback loop, in
however, that a trapped ion that is a favorable candidate fobec. IV we shall study the properties of the stationary state in
quantum information processing since it posseses a hyperfirige presence of feedback and Sec. V is for concluding re-
structure with long coherence timéss, for example?®Mg*™  marks.
[5]) is not suitable for resolved sideband cooling. In such

cases it may be helpful to have an alternative cooling tech- II. CONTINUOUS POSITION MEASUREMENT
nigue that can be applied when resolved sideband cooling is ] ] ) ) ]
impractical to use. We consider a generic particle trapped in an effective har-

In this paper we present a way to control the motion of amonic potential. For simplicity we shall considei the_ one-
trapped particle, which is able to give a significant phasedimensional case, even if the method can be in principle
space localization. The basic idea of the scheme is to realiZéeneralized to the three-dimensional case. This particle can
an effective and continuous measurement of the position d?€ a ion trapped by a linear rf trgg] or a neutral atom in an
the trapped particle and then apply a feedback loop able tgPtical trap[3,8]. Our scheme, however, does not depend on
decrease the position fluctuations. Due to the continuous ndP€ Specific trapping method employed and therefore we
ture of the measurement and to the effect of the trappinghall always refer from now on to a generic trapped “atom.”
potential coupling the particle position with its momentum, The trapped atom of mass, oscillating with frequency
feedback will realize an effective phase-space localization. along thex direction, and with position operator=xq(a

With this respect there are some analogies between thé a'),xo=(%/2mv)*?, is coupled to a standing wave with
present method and resolved-sideband stimulated Ramafequencyw,, wave-vectork alongX, and annihilation op-
cooling [6], which can be viewed as a sort of feedbackeratorb. The standing wave is quasiresonant with the transi-
scheme. In fact, one of the two Raman lasers performs afion between two internal atomic levels-) and|—). The
effective measurement of the vibrational number by changHamiltonian of the system ig9]
ing the particle internal state only if it is an excited vibra-
tional state. The second Raman laser performs instead the

w
feedback step, because it puts the particle back in the initial H= TOUZ+ﬁVaTa+ fhwyb'b
internal state, after having removed a vibrational quantum.
The feedback scheme proposed here measures the particle +ite(o,+o_)(b—bNsin(kx+ ¢), @
position rather than its energy and tries to achieve cooling as
phase-space localization, using the particle oscillatory mowhere o,=|+){(+|—|=)—|, o-=|=){(F|, and € is the

coupling constant. In the interaction representation with re-
spect toH,=%w(b'b+ o,/2), wherew~ w,, will be speci-
*Present address: Dipartimento di Fisica, Universitailano,  fied later, and making the rotating wave approximation, this
Via Celoria 16, 1-20133 Milano, Italy. Hamiltonian becomes
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hA the fluctuations of trap parameters due to ambient fluctuating
H=702+ﬁvaTa+ﬁ5bTb+iﬁ6(U+b—Ube) electrical fields in the ion trap cad€], and due to laser
intensity noise and beam-pointing fluctuations in the case of
X sin(kx+ ¢), (2)  far-off resonance optical trapsee Ref[8] and references

therein. We assume the presence of this heating due to trap
where A= wy— w and 6= w,— w are the atomic and field imperfections, and we describe it with the following term in
mode detuning, respectively. the master equation, characterized by a heating yatesee
There are now two different ways of realizing an effective[12]):
continuous measurement of the atom position and we shall

describe them separately, even if they present many similari-
ties. g’ Y P Y ﬁhD=%(2aDaT—aTaD—DaTa)

A. The resonant case " %(ZaTDa—aaTD _ DaaT). ©)
We consider the case when the standing wave is perfectly

resonant with the +)«|—) transition, i.e..wp=w,. Itis, The heating ratey,, has not to be too large, in order to stay

therefore, convenient to choose the frequency of the rmatin%ithin the assumed Lamb-Dicke regime. The Lamb-Dicke

frame w=w,=wo in this case, so that both detunings are .., yiion also implies that the trapped atom has to be ini-
gqual to zero._Moreover, we shall consider the case of aver%{a"y prepared in a sufficently cold state, i.e., an effective
intense standing wave, so that it can be treated classicall¥ T

; : hermal state with, say, a mean vibrational numbgt 10.
that is,b can be replaced by thenumberg. Choosing the : ; ! - .
phase of the field such thgi= — |, Hamiltonian(2) be- This can be obtained with a preliminary Doppler cooling

comes stage, which is then turned off &0 and replaced by the
proposed feedback cooling scheme. We shall see that our

H=7%va'a+he| B oy sinkx+ ), (3)  scheme is able to further cool the trapped atom, close to the
ground state, even in the presence of moderate heating pro-

whereo,=0,+o_. If we finally set the spatial phas¢  C€SSE€S.

=0 (i.e., the atom is trapped near a node of the classical The resulting master equation for the internal and vibra-

standing waveand assume the Lamb-Dicke regime, we cantional degrees of freedom is

approximate the sine term at first order and [gé&, 11]

. i K
D=L,D— %[H,D]ﬁ- E(ZO',D0'+—0'+U,D—D0'+0',).

7
where y=2¢|B|kx, is the effective coupling constant be- "
tween the internal and the vibrational degrees of freedoml et us now see how to realize the continuous position mea-
and X=(a+a')/2 is the dimensionless position operator of surement. It has been recently shown that when excited by a
the trapped atom. This Hamiltonian shows how one can relow intensity laser field, a single trapped atom emits its fluo-
alize an effective measurement of the atomic position. Irrescent light mainly within a quasimonochromatic elastic
fact, the atom displacement away from the electric field nodeeak[13]. The fluorescent light spectrum was measured by
increases the probability of electronic excitation, and hencéeterodyne detection. By improving the technique it does not
displacements can be monitored by means of the atomiseem impractical to get a homodyne detection of the single-
fluorescence. Therefore, the two-levslubsystem can be ion fluorescent light. In Ref{14], it was shown how one
used as a meter to measure the position quadrature could achieve such a measurement. Thus, by exploiting the

The evolution equation for the total density operdddior ~ resonance fluorescence it could be possible to measure the
the vibrational degree of freedom and the internal states iguantity % ,=(o_e '¢+ o, €'?) through homodyne detec-
determined by Hamiltoniax4) and by the terms describing tion of the field scattered by the atom along a certain direc-
the spontaneous emission from the leje)) responsible for tion [9]. In fact, the detected field may be written in terms of
the fluorescence, the dipole moment operator for the transitipn)«|+) as

(9]

H=#va'a+hyoX, 4

[,spomD=g(20'_D0'+—a'+(r_D—D(T+a'_), (5 Egﬂ(t):\/ﬁoz(t), (8

where « is the spontaneous emission rate. Here we havahere» is an overall quantum efficiency accounting for the
neglected the recoil and the associated heating of the vibraletector efficiency and the fact that only a small fraction of
tional motion. This is reasonable in the Lamb-Dicke limit we the fluorescent light is collected and superimposed with a
have assumed from the beginning, since the associated heatode-matched oscillator.

ing rate is given byk(kxo)? vibrational quanta per second,  As a consequence ¢8), the homodyne photocurrent will
which is negligible for a sufficiently small Lamb-Dicke pa- be[15]

rameter kXy. In practical situations, also other heating

mechanisms exist, caused by technical imperfections such as () =27k(2 ,(1)) e+ VpK&(t), 9)
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where the phase is related to the local oscillator, which, fluorescence. The double commutator wikhis typical of
since we have assumed the resonance condkie®, in the  quantum nondemolitiofQND) measurements of the posi-
present case is provided by the same driving field generatinjon. However this indirect measurement is not properly
the classical standing wave. The subscdph Eg. (9) de- QND because of the presence of the vibrational bare Hamil-
notes the fact that the average is performed on the state cotenian#va'a mixing the position quadrature with the mo-
ditioned on the results of the previous measurements anghentum.

£(t) is a Gaussian white noidd5]. In fact, the continuous

monitoring of the electronic mode performed through the B. The off-resonant interaction

homodyne measurement modifies the time evolution of the ) o
whole system, and the state conditioned on the result of mea- ©ON€ can realize an effective indirect measurement of the

surement described by a stochastic conditioned density m tomic position als_o in the opposite lirmit qf large detun_ing
trix D, evolves according to the following stochastic differ- etween the standing wave field and the intemnal transition.

ential equation(considered in the Ito sense In fact, when the internal detuning is very large @&
>v,8,k,€) the excited leve]+) can be adiabatically elimi-

) i nated: the state of the whole systéatom+standing wave
D.=LpD¢— %[H,Dc] mode can be written ag/, |+ )+ ¢_|—), and adding a con-
stant termAA/2 to the Hamiltonian(2), the corresponding
K Schralinger equations will be

+ E(ZU,DC0'+ —0,0 _D.—D.o,0_)

iy, =(A+vata+ sbb)y, +iesin(kx+ )by,

+nk E(t)(e 9o _De+e¥Deo. —2(3,)De). (13
Since we are considering a strong fluorescent transition, it iy_=(va'a+ob'b)y_—iesinkx+ )by, . (14

is reasonable to assume that the spontaneous emissian rate

is large, i.e.,k>y. This means that the internal two-level In the adiabatic limit of very largd we can neglect the time
system is heavily damped and that it will almost always be inderivative in(13) and put

its lower statg — ). This allows us to adiabatically eliminate

the internal degree of freedom and to perform a perturbative L€ |

calculation in the small parametgt «, obtaining(see also go=—I Ksm(kx+ d)bir_ . (15
Ref.[16]) the following expansion for the total conditioned

density matrixD, Inserting this equation int@l4), one gets an equation for

¢_, which is equivalent to having the following effective

X Hamiltonian for the vibrational motion of the atom and the
De=pe®|— W —|—i = [Xpc®|+)—| = pe®| =} +|X
o= Pe®| =)= K Pt +)=[=pc®| -)(+X|, standing wave mode alone,
(10)
62
wherep.=Trg D, is the reduced conditioned density matrix H =ﬁ5b*b+hvaTa—thTb sirf(kx+¢).  (16)

for the vibrational motion. In the adiabatic regime, the inter-
nal dynamics instantaneously follows the vibrational one an
therefore one gets information on the position dynamity

observing the quantityx,. The relationship between the

qf we now set the spatial phask= w/4, we can rewritg16)

conditioned mean values follows from EJ.0) &2 &2
th( 65— —) b'b+#4vata—# ——b'b sin(2kx).
Y _ 2A 2A
(T ()= ;(X(t)>csmcp- (13) 17

It is clear that in this case it is convenient to choose the
Igrequencyw of the rotating frame so thaf=e%/2A. The
Hamiltonian(17) assumes the desired form when the Lamb-
Dicke regime is again assumed so to approximate the sine
term with its argument, and when the case of an intense

Moreover, if we adopt the perturbative expressidf)
and perform the trace over the internal mode, we get a
equation for the reduced density matpxconditioned to the
result of the measurement of the observallg(t))., and

therefore(X(t))c standing wave is considered. However, in this case we shall
_ X2 not neglect the quantum fluctuations of the standing wave
pc=Lppe—iv[a'a,p.]— 2—[X,[X,pc]]+ Vaxel k E(t) field, and we shall make the replacemént: 3+b, where
K B>1 describes the classical coherent steady state of the ra-
X(ie'?pX—ie X p.+ 2 sing(X(t))epe)- (12)  diation mode andb is now the annihilation operator describ-

ing the quantum fluctuations. One gets

This equation describes the stochastic evolution of the vibra- 5
tional state of the trapped atom conditioned to the result of _ 1, 3 € 2., o t
the continuous homodyne measurement of the resonance H=hva'a=r A kx(|5]*+ B* b+ Bb’). (18
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Shifting the origin along thex direction by the quantity can be described by an additional term in the master equa-
h€’k| B|?2/Amv?, one finally gets an effective Hamiltonian tion, linear in the photocurren(t), i.e.,[17]
analogous to that of the resonant céée (t—7)

- T

[pe(D) 1= Kp(t), (21)

H=#Ava'a+AxYX, (19
) ) o where 7 is the time delay in the feedback loop aftdis a

where nowy= —4|B|kxoe“/A and the atomic polarization | jsyyille superoperator describing the way in which the
Ox 'S_f.ep'acgd. by the standing wave field quadratite feedhack signal acts on the system of interest.
= (be”'?s+bTe'?4)/2, whereg, is the phase of the classical - The feedback terni21) has to be considered in the Stra-
amplitude 8. This means that in this case the “meter” is {gnovich sense, since E(R1) is introduced as limit of a real
represented by the cavity mode and that an effective continysrgcess, then it should be transformed in the Ito sense and
ous measurement of the position of the trapped atom is projqged to the evolution equatidi2). A successive average
vided by the homodyne measurement of the light outgoing,yer the white noiseé(t) yields the master equation for the
from the cavity. Th|§imea%uEement allows in fact to obtainyihrational density matrixo in the presence of feedback.
the quantityY,=(ae '*+a’e'?)/2, which is analogous t0 only in the limiting case of a feedback delay time much
the quantityX , of the previous section. Therefore, all the shorter than the characteristic time of taenode is it pos-

steps leading to E¢12) in Sec. IIA can be repeated here, sjp|e to obtain a Markovian equati¢h7,18, which is given
with the appropriate changes. In this nonresonant cBse, by

now refers to the density matrix of the system composed by

vibrational mode and the standing wave mode and the spon- - I x°

taneous emission term in the master equationhas to be p=Lyp—ivia‘a,p]- Z[X’[X'p]]
replaced by the formally analogous term describing damping _ _

of the standing wave mode due to photon leakage. This is +K(ie'*pX—ie '*Xp)

equivalent to interpreting the parameterms a cavity mode 5
decay rate in this case and to replace with b, o, with b", n K o
andX, with Y in Egs.(7), (8), (9), and (10). It is again 29x% Kk
reasonable to assume that the standing wave mode is high_IIy ) . )

damped, i.e.x> y, so that it is possible to eliminate it adia- 1he Second term of the right-hand side of Eg2) is the

batically. The perturbative expansiot0) now becomes usual double-commutator term associated to the measure-
ment of X; the third term is the feedback term itself and the

fourth term is a diffusionlike term, which is an unavoidable

(22

2

De=| pe— X_ZXPCX ®]0)(0| — i %(ch®|1><0|—PcX consequence of the_nois_e introduced by the feedback itself.
K Then, since the Liouville superoperatrcan only be of
) ) Faaniltonian form[l?]T, we choose it asCp=—ig[P,p]/2
X X 16], whereP=(a—a')/2i is the adimensional momentum
®|0)(1)+ EXPCX®|1><1|_ K22 operator of the trapped particle agdis the feedback gain
related to the practical way of realizing the loop. One could
X (X2pe®|2)(0|+ pX2®]0)(2|), (200  have chosen to feed the system with a generic phase-

dependent quadrature; however, it is possible to see that the
where |n), n=0,1,2, are the lowest standing wave modeabove choice gives the best and simplest refsifif. Using
Fock states. Using this adiabatic expansion and tracing ovéhe above expressions in E@2) and rearranging the terms
the standing wave mode, one finally gets exactly 84), in an appropriate way, we finally get the following master
describing the reduced dynamics of the vibrational modeequation:
conditioned to the resulfX(t)). of the continuous position

. T
measurement. p=~5(N+ 1)(2apa’—atap—pa'a)
Ill. THE FEEDBACK LOOP r
+ =N(2a'pa—aa'p—paa')
We are now able to use the continuous record of the atom 2
position to control its motion through the application of a r
feedback loop. We shall use the continous feedback theory - EM(ZanaT—asz—paTz)
proposed by Wiseman and Milbufa7].
One has to take part of the stochastic output homodyne r
photocurrenti (t), obtained from the continuous monitoring - EM*(Zapa—azp—paz)
of the meter mode, and feed it back to the vibrational dy-
namics(for example, as a driving ternin order to modify g . .
the evolution of the mode. To be more specific, the pres- - ZS|n<p[a2—aT2,p]—|v[aTa,p], (23

ence of feedback modifies the evolution of the conditioned
statep.(t). It is reasonable to assume that the feedback effeavhere
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I'=—gsing; (24)  function [19] C(\,\*,t). The partial differential equation
corresponding to Eq23) is
1 x> 9
=—— +—t —|—-=; 25
gsing| """ 4« Y (25) I r g
&t+ §+|V )\(9)\+(§_|V))\*(9)\*+ES'”QD()\&)\*
L | ¢ t 26)
=— —— ———|— zcoto.
gsing| 4k 4py?k| 2 ¢

+)\*(9k)]C()\,)\*,t)

Equation(23) is very instructive because it clearly shows the
effects of the feedback loop on the vibrational m@d&he
proposed feedback mechanism, indeed, not only introduces a
parametric driving term proportional tgsine, but it also
simulates the presence of a squeezed [Eh characterized

by an effective damping constalitand by the coefficientsl
andN, which are given in terms of the feedback parameters
[16]. An interesting aspect of the effective bath described by
the first four terms in the right-hand side @) is that it is The stationary state is reached only if the parameters sat-
characterized by phase-sensitive fluctuations, dependinigfy the stability condition that all the eigenvalues have posi-
upon the experimenta”y adjustab|e phaﬁe This master tive real part, which in the present case is achieved when
equation preserves the positivity pfprovided that the con- gsin ¢<0. In this case the stationary solution has the follow-
dition [M|2><N(N+1) is satisfied19], as it can be checked ing form:

in the present case. In fact, under this condition it is always
possible to find a unitary transformation transforming EQq.
(23) into a master equation manifestly of the Lindblad form.

—TI'N|A 2+

r 9. *)2
EM‘FzSIncp)()\ )

J’_

r g
EM*-ﬁ-ZSIn(p ANZC(NNF D). (27

2 1 2 1 2
C(NN*,0)=exp — Z|\| +§M(>\*) +§M*>\ ,
IV. THE STATIONARY SOLUTION (28)

Because of its linearity, the solution of E(3) can be
easily obtained by using the normally ordered characteristigvhere

‘- N(g®sir*¢+4v?)+gsing(2vim{M}—gsine R&M}) +g?sirfe/2.
- 412 ,

(29

r (N+1/2)gsing+TI" R{M}+2v Im{M} N gsing
= i

7 S —[ReM}—(N+1/2)]. 30

)

This means that in general, the stationary state is a generahermal master equation given by the first line of E2Q),
ized Gaussian state. However, in practical situations, the stavhose steady state is just the thermal state with mean pho-
tionary state assumes a much simpler form. In fact, the vinon numbeiN.
brational frequency is usually much larger than the heating  The expression foN given by Eq.(25) shows that it is
rate y,, and the feedback parametgrand in this limit, Egqs. convenient to choose= — 7/2 to get the smallest possible
(29) and (30) becomel~N and u=~0, respectively. Using values forN. In this way the stability condition is also auto-
Eq. (28), one has matically satisfied. Then, the minimum value for the station-
ary mean vibrational numbét can be obtained by minimiz-
ing it with respect to the feedback gagnthe optimal value

CON Y 0)=exi — NI\ 7], (31)  for gis given byg=4[(y,+ x?*/4x) nx?l4x]¥? and the cor-
responding minimum value dfl is
that is, the stationary state is an effective thermal state with 1 1+4kynlx?
mean vibrational numbeX. This can also be seen from the Nmin=7 Y 1|. (32

fact that in the largev limit, one can consider the master
equation(23) in the frame rotating at the frequeney and  This expression shows the best cooling result achievable
neglecting the rapidly oscillating terms, one ends up with awith the present feedback scheme. One has that when the
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P trapped particle. The method is based on an effective con-
-3 - tinuous measurement of the particle position that can be re-
s ~ alized in two different ways: by homodyning either the fluo-
rescence of a strong transition or directly homodyning the
light exiting the cavity, which is coupled to the trapped par-
».\ ticle. When the efficiency of the homodyne detection is close
X to one, the method is able to achieve ground state cooling. It
-2 -1 \.‘__/" 1 2 is interesting to note that, even if only the particle position is
\ / measured and the feedback is chosen in order to decrease
\ / position fluctuations, the scheme provideplase-spacéo-
\ 4 calization for all quadratures. This is essentially due to the
— fact that the bare atom Hamiltonidhva'a mixes the dy-
namics of the atomic position and momentum, so that the

FIG. 1. Phase-space uncertainty contours obtained by cutting thePntinuous homodyne measurement actually gives informa-
Wigner function of the stationary state at//times its maximum 10N on both quadratures. This model shares some peculiari-
height. The dashed line refers to the initial thermal state with meafi€S With that one we have proposed[R0] to cool the vi-
vibrational numben,= 10; the solid line refers to the steady state brational motion of a macroscopic mirror of an optical
in the presence of feedback with=4 kHz, g=0.375 kHz, v cavity. The present application to a trapped atom stresses the
=1 MHz, y,=10 Hz, k=40 kHz,7=0.9, o= — =/2. Notice that  Versatility of the methods using feedback loops in systems

feedback provides cooling very close to the ground stiite cor-  characterized by the radiation pressure force in controlling
responding contour is given by the dotted )ine thermal noise.

It is also possible to see that the proposed scheme is not
able to reduce the noise below the quantum limit, i.e., the

- 5 ) ; . . stationary state variance of a generic motional quadrature
I?rl::tge q p())f:l]rlargette;]ré( e/:ffilé}etr:l: f'?"’tl:] wgrerlrt]loga:l nlrjnmbeNr 'Sm ncannot be made smgller_ than 1/4.. Thl_s is again a conse-

'y Dy the -ncy of the homodyne measureme Equence of the free vibrational Hamiltonidrva'a (it is in

7. 1n part!cular this fact is trug in the o.pt|.mal case \{vhere a”fact possible to get position squeezing in the limiting case
the technlcal sources of heatmg'are eliminated, which meang_ , [21]). Actually, position squeezing can be obtained by
vn=0 in all the above expressions. Therefore, the presentynsidering a suitable modification of the present scheme
scheme is able to achieve cooling to the motional grouncﬂzz]_
state especially in the off-resonant scheme, in which the par- as concerns the specific way in which a particular feed-
ticle position measurement is realized through homodyningyack Hamiltonian could be implemented, the important point
the radiation exiting the cavity. In fact, in this case the ho-is to be able to realize a term in the feedback Hamiltonian
modyne efficiency can be very close to one. This is shown irproportional to momentum. This is not straightforward, but
Fig. 1, where we have sketched the phase-space uncertairdpuld be realized by using the feedback current to vary an
contours obtained by cutting the Wigner function corre-external potential applied to the atom without altering the
sponding to Eq(28) at 1A/e times its maximum height. We trapping potential. On the other hand, shifts in the position
see that the feedback produces a relevant contraction of tHeeing strictly equivalent to a linear momentum term in the
uncertainty region, which becomes almost indistinguishabléiamiltoniar) are achieved simply by shifting all the position
from the region corresponding to the motional ground statélependent terms in the Hamiltonian, in particular the trap-
(inner dotted line in Fig. L The outer dashed line corre- PiNg potential. Alternatively, the use of laser pulses could be
sponds instead to the initial thermal state with mean vibratSeful as well, since, using a typical laser cooling scheme,
tional numbermn,= 10, prepared by the Doppler precooling the light can exert on the atom a force proportional to its
stage. momentum.

In the resonant case in which the effective position mea- As we have already remarked., n p_rlnC|pIe the model
surement is realized through the homodyne measurement CPL"d be extendeq to the t.hree—dlmensmnal case. As con-
8ems the model discussed in Sec. Il A, one should consider

the fluorescence, the measurement eff|C|e_n<_:y is much _Iow%ree different internal transitions, each one coupled with a
and ground state _cpollng becomes very difficult to achieve ; atiqng) degree of freedom, resonant with three orthogo-
However, this position measurement scheme based on fluy standing waves. For the off-resonant case presented in

rescence becomes necessary when one cannot extract §g¢ || B, one should only consider three orthogonal standing
light out of a cavity, such as in Rdf13], and one has to use y4ves far from resonant transitions.

the fluorescent light. In conclusion, although the implementation of the pre-
sented cooling method via feedback could be a hard task, it
can be useful whenever the use of resolved-sideband cooling
V. CONCLUSIONS is impractical. The possibility of having an alternative way
to cool trapped particles is particularly interesting for quan-
We have proposed a feedback scheme able to achiewam information processing applications, because it may
significant cooling of the motional degree of freedom of ahappen that the requirement of having two highly stable

heating rate is negligible with respect to the “QND cou-
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have been recently proposed, as for example the use dfie Advanced Research Project CA#@Nnd by the European
sympathetic cooling between two different species of iondJnion in the framework of the TMR Network “Microlasers
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