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Stochastic phase-space localization for a single trapped particle

Stefano Mancini,* David Vitali, and Paolo Tombesi
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We propose a feedback scheme to control the vibrational motion of a single trapped particle based on
indirect measurements of its position. It results in the possibility of a motional phase-space uncertainty con-
traction, corresponding to cool the particle close to the motional ground state.

PACS number~s!: 32.80.Pj, 03.65.2w, 42.50.Dv
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I. INTRODUCTION

In recent years there has been an increasing interes
trapping phenomena and related cooling techniques@1#.
Some years ago it has been shown that, using resolved
band cooling, a single ion can be trapped and cooled do
near to its zero-point vibrational energy state@2# and re-
cently, analogous results have been obtained for neutra
oms in optical lattices@3#. The possibility to control trapped
particles, indeed, gave rise to other models in quantum c
putation@4#, in which information is encoded in two interna
electronic states of the ions and the two lowest Fock state
a vibrational collective mode are used to transfer and m
nipulate quantum information between them. It may happ
however, that a trapped ion that is a favorable candidate
quantum information processing since it posseses a hype
structure with long coherence times~as, for example,25Mg1

@5#! is not suitable for resolved sideband cooling. In su
cases it may be helpful to have an alternative cooling te
nique that can be applied when resolved sideband coolin
impractical to use.

In this paper we present a way to control the motion o
trapped particle, which is able to give a significant pha
space localization. The basic idea of the scheme is to rea
an effective and continuous measurement of the position
the trapped particle and then apply a feedback loop abl
decrease the position fluctuations. Due to the continuous
ture of the measurement and to the effect of the trapp
potential coupling the particle position with its momentu
feedback will realize an effective phase-space localizatio

With this respect there are some analogies between
present method and resolved-sideband stimulated Ra
cooling @6#, which can be viewed as a sort of feedba
scheme. In fact, one of the two Raman lasers performs
effective measurement of the vibrational number by cha
ing the particle internal state only if it is an excited vibr
tional state. The second Raman laser performs instead
feedback step, because it puts the particle back in the in
internal state, after having removed a vibrational quantu
The feedback scheme proposed here measures the pa
position rather than its energy and tries to achieve cooling
phase-space localization, using the particle oscillatory m
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tion to mix position and momentum quadratures.
A second analogy is given by the fact that the propos

method needs a Doppler pre-cooling stage, as it happen
resolved-sideband cooling. In fact, the effective trapped p
ticle position measurement is realized only in the Lam
Dicke regime, i.e., when the recoil energy is much sma
than the energy of a vibrational quantum, which can be
tained only when the particle has undergone a prelimin
cooling stage. Our scheme will provide therefore furth
phase-space localization and cooling.

The paper is organized as follows. In Sec. II we sh
how to realize the indirect continuous measurement of
position by coupling the trapped particle with a standi
wave. In Sec. III we shall introduce the feedback loop,
Sec. IV we shall study the properties of the stationary stat
the presence of feedback and Sec. V is for concluding
marks.

II. CONTINUOUS POSITION MEASUREMENT

We consider a generic particle trapped in an effective h
monic potential. For simplicity we shall consider the on
dimensional case, even if the method can be in princi
generalized to the three-dimensional case. This particle
be a ion trapped by a linear rf trap@7# or a neutral atom in an
optical trap@3,8#. Our scheme, however, does not depend
the specific trapping method employed and therefore
shall always refer from now on to a generic trapped ‘‘atom

The trapped atom of massm, oscillating with frequencyn
along thex̂ direction, and with position operatorx5x0(a
1a†),x05(\/2mn)1/2, is coupled to a standing wave wit
frequencyvb , wave-vectork along x̂, and annihilation op-
eratorb. The standing wave is quasiresonant with the tran
tion between two internal atomic levelsu1& and u2&. The
Hamiltonian of the system is@9#

H5
\v0

2
sz1\na†a1\vbb†b

1 i\e~s11s2!~b2b†!sin~kx1f!, ~1!

where sz5u1&^1u2u2&^2u, s65u6&^7u, and e is the
coupling constant. In the interaction representation with
spect toH05\v(b†b1sz/2), wherev;vb will be speci-
fied later, and making the rotating wave approximation, t
Hamiltonian becomes
©2000 The American Physical Society04-1
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H5
\D

2
sz1\na†a1\db†b1 i\e~s1b2s2b†!

3sin~kx1f!, ~2!

where D5v02v and d5vb2v are the atomic and field
mode detuning, respectively.

There are now two different ways of realizing an effecti
continuous measurement of the atom position and we s
describe them separately, even if they present many simi
ties.

A. The resonant case

We consider the case when the standing wave is perfe
resonant with theu1&↔u2& transition, i.e.,vb5v0. It is,
therefore, convenient to choose the frequency of the rota
frame v5vb5v0 in this case, so that both detunings a
equal to zero. Moreover, we shall consider the case of a v
intense standing wave, so that it can be treated classic
that is,b can be replaced by thec numberb. Choosing the
phase of the field such thatb52 i ubu, Hamiltonian~2! be-
comes

H5\na†a1\eubusx sin~kx1f!, ~3!

wheresx5s11s2 . If we finally set the spatial phasef
50 ~i.e., the atom is trapped near a node of the class
standing wave! and assume the Lamb-Dicke regime, we c
approximate the sine term at first order and get@10,11#

H5\na†a1\xsxX, ~4!

where x52eubukx0 is the effective coupling constant be
tween the internal and the vibrational degrees of freed
andX5(a1a†)/2 is the dimensionless position operator
the trapped atom. This Hamiltonian shows how one can
alize an effective measurement of the atomic position.
fact, the atom displacement away from the electric field no
increases the probability of electronic excitation, and he
displacements can be monitored by means of the ato
fluorescence. Therefore, the two-level~sub!system can be
used as a meter to measure the position quadratureX.

The evolution equation for the total density operatorD for
the vibrational degree of freedom and the internal state
determined by Hamiltonian~4! and by the terms describin
the spontaneous emission from the levelu1& responsible for
the fluorescence,

LspontD5
k

2
~2s2Ds12s1s2D2Ds1s2!, ~5!

where k is the spontaneous emission rate. Here we h
neglected the recoil and the associated heating of the vi
tional motion. This is reasonable in the Lamb-Dicke limit w
have assumed from the beginning, since the associated
ing rate is given byk(kx0)2 vibrational quanta per second
which is negligible for a sufficiently small Lamb-Dicke pa
rameter kx0. In practical situations, also other heatin
mechanisms exist, caused by technical imperfections suc
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the fluctuations of trap parameters due to ambient fluctua
electrical fields in the ion trap case@7#, and due to laser
intensity noise and beam-pointing fluctuations in the case
far-off resonance optical traps~see Ref.@8# and references
therein!. We assume the presence of this heating due to
imperfections, and we describe it with the following term
the master equation, characterized by a heating rategh ~see
@12#!:

LhD5
gh

2
~2aDa†2a†aD2Da†a!

1
gh

2
~2a†Da2aa†D2Daa†!. ~6!

The heating rategh has not to be too large, in order to sta
within the assumed Lamb-Dicke regime. The Lamb-Dic
condition also implies that the trapped atom has to be
tially prepared in a sufficently cold state, i.e., an effecti
thermal state with, say, a mean vibrational numbern0;10.
This can be obtained with a preliminary Doppler coolin
stage, which is then turned off att50 and replaced by the
proposed feedback cooling scheme. We shall see that
scheme is able to further cool the trapped atom, close to
ground state, even in the presence of moderate heating
cesses.

The resulting master equation for the internal and vib
tional degrees of freedom is

Ḋ5LhD2
i

\
@H,D#1

k

2
~2s2Ds12s1s2D2Ds1s2!.

~7!

Let us now see how to realize the continuous position m
surement. It has been recently shown that when excited
low intensity laser field, a single trapped atom emits its flu
rescent light mainly within a quasimonochromatic elas
peak@13#. The fluorescent light spectrum was measured
heterodyne detection. By improving the technique it does
seem impractical to get a homodyne detection of the sin
ion fluorescent light. In Ref.@14#, it was shown how one
could achieve such a measurement. Thus, by exploiting
resonance fluorescence it could be possible to measure
quantity Sw5(s2e2 iw1s1eiw) through homodyne detec
tion of the field scattered by the atom along a certain dir
tion @9#. In fact, the detected field may be written in terms
the dipole moment operator for the transitionu2&↔u1& as
@9#

Es
(1)~ t !5Ahks2~ t !, ~8!

whereh is an overall quantum efficiency accounting for th
detector efficiency and the fact that only a small fraction
the fluorescent light is collected and superimposed wit
mode-matched oscillator.

As a consequence of~8!, the homodyne photocurrent wil
be @15#

I ~ t !52hk^Sw~ t !&c1Ahkj~ t !, ~9!
4-2
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STOCHASTIC PHASE-SPACE LOCALIZATION FOR A . . . PHYSICAL REVIEW A61 053404
where the phasew is related to the local oscillator, which
since we have assumed the resonance conditionD50, in the
present case is provided by the same driving field genera
the classical standing wave. The subscriptc in Eq. ~9! de-
notes the fact that the average is performed on the state
ditioned on the results of the previous measurements
j(t) is a Gaussian white noise@15#. In fact, the continuous
monitoring of the electronic mode performed through t
homodyne measurement modifies the time evolution of
whole system, and the state conditioned on the result of m
surement described by a stochastic conditioned density
trix Dc , evolves according to the following stochastic diffe
ential equation~considered in the Ito sense!:

Ḋc5LhDc2
i

\
@H,Dc#

1
k

2
~2s2Dcs12s1s_Dc2Dcs1s2!

1Ahk j~ t !~e2 iws2Dc1eiwDcs122^Sw&cDc!.

Since we are considering a strong fluorescent transitio
is reasonable to assume that the spontaneous emission rk
is large, i.e.,k@x. This means that the internal two-lev
system is heavily damped and that it will almost always be
its lower stateu2&. This allows us to adiabatically eliminat
the internal degree of freedom and to perform a perturba
calculation in the small parameterx/k, obtaining~see also
Ref. @16#! the following expansion for the total conditione
density matrixDc ,

Dc5rc^ u2&^2u2 i
x

k FXrc^ u1&2u2rc^ u2&^1uXG ,
~10!

whererc5Trel Dc is the reduced conditioned density matr
for the vibrational motion. In the adiabatic regime, the int
nal dynamics instantaneously follows the vibrational one a
therefore one gets information on the position dynamicsX by
observing the quantitySw . The relationship between th
conditioned mean values follows from Eq.~10!

^Sw~ t !&c5
x

k
^X~ t !&c sinw. ~11!

Moreover, if we adopt the perturbative expression~10!
and perform the trace over the internal mode, we get
equation for the reduced density matrixrc conditioned to the
result of the measurement of the observable^Sw(t)&c , and
therefore^X(t)&c

ṙc5Lhrc2 in@a†a,rc#2
x2

2k
†X,@X,rc#‡1Ahx2/k j~ t !

3~ ieiwrcX2 ie2 iwXrc12 sinw^X~ t !&crc!. ~12!

This equation describes the stochastic evolution of the vib
tional state of the trapped atom conditioned to the resul
the continuous homodyne measurement of the reson
05340
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fluorescence. The double commutator withX is typical of
quantum nondemolition~QND! measurements of the pos
tion. However this indirect measurement is not prope
QND because of the presence of the vibrational bare Ha
tonian \na†a mixing the position quadrature with the mo
mentum.

B. The off-resonant interaction

One can realize an effective indirect measurement of
atomic position also in the opposite limit of large detuni
between the standing wave field and the internal transit
In fact, when the internal detuningD is very large (D
@n,d,k,e) the excited levelu1& can be adiabatically elimi-
nated: the state of the whole system~atom1standing wave
mode! can be written asc1u1&1c2u2&, and adding a con-
stant term\D/2 to the Hamiltonian~2!, the corresponding
Schrödinger equations will be

i ċ15~D1na†a1db†b!c11 i e sin~kx1f!bc2 ,
~13!

i ċ25~na†a1db†b!c22 i e sin~kx1f!b†c1 . ~14!

In the adiabatic limit of very largeD we can neglect the time
derivative in~13! and put

c1.2 i
e

D
sin~kx1f!bc2 . ~15!

Inserting this equation into~14!, one gets an equation fo
c2 , which is equivalent to having the following effectiv
Hamiltonian for the vibrational motion of the atom and th
standing wave mode alone,

H5\db†b1\na†a2\
e2

D
b†b sin2~kx1f!. ~16!

If we now set the spatial phasef5p/4, we can rewrite~16!
as

H5\S d2
e2

2D Db†b1\na†a2\
e2

2D
b†b sin~2kx!.

~17!

It is clear that in this case it is convenient to choose
frequencyv of the rotating frame so thatd5e2/2D. The
Hamiltonian~17! assumes the desired form when the Lam
Dicke regime is again assumed so to approximate the
term with its argument, and when the case of an inte
standing wave is considered. However, in this case we s
not neglect the quantum fluctuations of the standing w
field, and we shall make the replacementb→b1b, where
b@1 describes the classical coherent steady state of the
diation mode andb is now the annihilation operator describ
ing the quantum fluctuations. One gets

H5\na†a2\
e2

D
kx~ ubu21b* b1bb†!. ~18!
4-3
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STEFANO MANCINI, DAVID VITALI, AND PAOLO TOMBESI PHYSICAL REVIEW A 61 053404
Shifting the origin along thex direction by the quantity
\e2kubu2/Dmn2, one finally gets an effective Hamiltonia
analogous to that of the resonant case~4!

H5\na†a1\xYX, ~19!

where nowx524ubukx0e2/D and the atomic polarization
sx is replaced by the standing wave field quadratureY
5(be2 ifb1b†eifb)/2, wherefb is the phase of the classica
amplitudeb. This means that in this case the ‘‘meter’’
represented by the cavity mode and that an effective cont
ous measurement of the position of the trapped atom is
vided by the homodyne measurement of the light outgo
from the cavity. This measurement allows in fact to obta
the quantityYw5(ae2 iw1a†eiw)/2, which is analogous to
the quantitySw of the previous section. Therefore, all th
steps leading to Eq.~12! in Sec. II A can be repeated her
with the appropriate changes. In this nonresonant caseD
now refers to the density matrix of the system composed
vibrational mode and the standing wave mode and the sp
taneous emission term in the master equation~7! has to be
replaced by the formally analogous term describing damp
of the standing wave mode due to photon leakage. Thi
equivalent to interpreting the parameterk as a cavity mode
decay rate in this case and to replaces2 with b, s1 with b†,
and Sw with Yw in Eqs. ~7!, ~8!, ~9!, and ~10!. It is again
reasonable to assume that the standing wave mode is h
damped, i.e.,k@x, so that it is possible to eliminate it adia
batically. The perturbative expansion~10! now becomes

Dc5S rc2
x2

k2
XrcXD ^ u0&^0u2 i

x

k
~Xrc^ u1&^0u2rcX

^ u0&^1u!1
x2

k2
XrcX^ u1&^1u2

x2

k2A2

3~X2rc^ u2&^0u1rcX
2

^ u0&^2u!, ~20!

where un&, n50,1,2, are the lowest standing wave mo
Fock states. Using this adiabatic expansion and tracing o
the standing wave mode, one finally gets exactly Eq.~12!,
describing the reduced dynamics of the vibrational mo
conditioned to the result̂X(t)&c of the continuous position
measurement.

III. THE FEEDBACK LOOP

We are now able to use the continuous record of the a
position to control its motion through the application of
feedback loop. We shall use the continous feedback the
proposed by Wiseman and Milburn@17#.

One has to take part of the stochastic output homod
photocurrentI (t), obtained from the continuous monitorin
of the meter mode, and feed it back to the vibrational d
namics~for example, as a driving term! in order to modify
the evolution of the modea. To be more specific, the pres
ence of feedback modifies the evolution of the condition
staterc(t). It is reasonable to assume that the feedback ef
05340
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can be described by an additional term in the master eq
tion, linear in the photocurrentI (t), i.e., @17#

@ ṙc~ t !# f b5
I ~ t2t!

hx
Krc~ t !, ~21!

wheret is the time delay in the feedback loop andK is a
Liouville superoperator describing the way in which th
feedback signal acts on the system of interest.

The feedback term~21! has to be considered in the Str
tonovich sense, since Eq.~21! is introduced as limit of a rea
process, then it should be transformed in the Ito sense
added to the evolution equation~12!. A successive averag
over the white noisej(t) yields the master equation for th
vibrational density matrixr in the presence of feedback
Only in the limiting case of a feedback delay time mu
shorter than the characteristic time of thea mode is it pos-
sible to obtain a Markovian equation@17,18#, which is given
by

ṙ5Lhr2 in@a†a,r#2
x2

2k
†X,@X,r#‡

1K~ ieiwrX2 ie2 iwXr!

1
K 2

2hx2/k
r. ~22!

The second term of the right-hand side of Eq.~22! is the
usual double-commutator term associated to the meas
ment ofX; the third term is the feedback term itself and t
fourth term is a diffusionlike term, which is an unavoidab
consequence of the noise introduced by the feedback its

Then, since the Liouville superoperatorK can only be of
Hamiltonian form @17#, we choose it asKr52 ig@P,r#/2
@16#, whereP5(a2a†)/2i is the adimensional momentum
operator of the trapped particle andg is the feedback gain
related to the practical way of realizing the loop. One cou
have chosen to feed the system with a generic pha
dependent quadrature; however, it is possible to see tha
above choice gives the best and simplest result@16#. Using
the above expressions in Eq.~22! and rearranging the term
in an appropriate way, we finally get the following mast
equation:

ṙ5
G

2
~N11!~2ara†2a†ar2ra†a!

1
G

2
N~2a†ra2aa†r2raa†!

2
G

2
M ~2a†ra†2a†2r2ra†2!

2
G

2
M* ~2ara2a2r2ra2!

2
g

4
sinw@a22a†2,r#2 in@a†a,r#, ~23!

where
4-4
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G52gsinw; ~24!

N52
1

gsinw Fgh1
x2

4k
1

g2

4hx2/k
G2

1

2
; ~25!

M5
1

g sinw F x2

4k
2

g2

4hx2/k
G2

i

2
cotw. ~26!

Equation~23! is very instructive because it clearly shows t
effects of the feedback loop on the vibrational modea. The
proposed feedback mechanism, indeed, not only introduc
parametric driving term proportional tog sinw, but it also
simulates the presence of a squeezed bath@19#, characterized
by an effective damping constantG and by the coefficientsM
andN, which are given in terms of the feedback paramet
@16#. An interesting aspect of the effective bath described
the first four terms in the right-hand side of~23! is that it is
characterized by phase-sensitive fluctuations, depen
upon the experimentally adjustable phasew. This master
equation preserves the positivity ofr provided that the con-
dition uM u2<N(N11) is satisfied@19#, as it can be checked
in the present case. In fact, under this condition it is alw
possible to find a unitary transformation transforming E
~23! into a master equation manifestly of the Lindblad for

IV. THE STATIONARY SOLUTION

Because of its linearity, the solution of Eq.~23! can be
easily obtained by using the normally ordered characteri
er
s
v
g

i
e
r

h
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function @19# C(l,l* ,t). The partial differential equation
corresponding to Eq.~23! is

H ] t1S G

2
1 in Dl]l1S G

2
2 in Dl* ]l* 1

g

2
sinw~l]l*

1l* ]l!J C~l,l* ,t !

5H 2GNulu21S G

2
M1

g

4
sinw D ~l* !2

1S G

2
M* 1

g

4
sinw Dl2J C~l,l* ,t !. ~27!

The stationary state is reached only if the parameters
isfy the stability condition that all the eigenvalues have po
tive real part, which in the present case is achieved w
g sinw,0. In this case the stationary solution has the follo
ing form:

C~l,l* ,`!5expF2zulu21
1

2
m~l* !21

1

2
m* l2G ,

~28!

where
z5
N~g2sin2w14n2!1g sinw~2nIm$M %2g sinw Re$M %!1g2 sin2w/2

4n2
; ~29!

m5G
~N11/2!g sinw1G Re$M %12n Im$M %

4n2
1 i

g sinw

2n
@Re$M %2~N11/2!#. ~30!
ho-

e
-
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-
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This means that in general, the stationary state is a gen
ized Gaussian state. However, in practical situations, the
tionary state assumes a much simpler form. In fact, the
brational frequencyn is usually much larger than the heatin
rategh and the feedback parameterg, and in this limit, Eqs.
~29! and ~30! becomez'N and m'0, respectively. Using
Eq. ~28!, one has

C~l,l* ,`!5exp@2Nulu2#, ~31!

that is, the stationary state is an effective thermal state w
mean vibrational numberN. This can also be seen from th
fact that in the largen limit, one can consider the maste
equation~23! in the frame rotating at the frequencyn, and
neglecting the rapidly oscillating terms, one ends up wit
al-
ta-
i-

th

a

thermal master equation given by the first line of Eq.~23!,
whose steady state is just the thermal state with mean p
non numberN.

The expression forN given by Eq.~25! shows that it is
convenient to choosew52p/2 to get the smallest possibl
values forN. In this way the stability condition is also auto
matically satisfied. Then, the minimum value for the statio
ary mean vibrational numberN can be obtained by minimiz
ing it with respect to the feedback gaing: the optimal value
for g is given byg54@(gh1x2/4k)hx2/4k#1/2 and the cor-
responding minimum value ofN is

Nmin5
1

2 FA114kgh /x2

h
21G . ~32!

This expression shows the best cooling result achieva
with the present feedback scheme. One has that when
4-5



u-

en
a
a
e
n

pa
in
o

ai
re

f t
b
at
-
ra
g

ea
nt
w
ve
flu
t

e

ie
a

on-
re-

o-
the
r-
se

g. It
is

ease

the

the
ma-
iari-

al
the

ms
ing

not
the
ture
se-

se
by
me

d-
int
ian
ut
an

he
ion
he
n
p-
be
e,

its

el
on-
ider
h a
go-
d in
ing

e-
k, it
ling
y
n-
ay

ble

t

ea
te
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heating rate is negligible with respect to the ‘‘QND co
pling’’ parameterx2/4k, the final vibrational numberN is
limited only by the efficiency of the homodyne measurem
h. In particular this fact is true in the optimal case where
the technical sources of heating are eliminated, which me
gh50 in all the above expressions. Therefore, the pres
scheme is able to achieve cooling to the motional grou
state especially in the off-resonant scheme, in which the
ticle position measurement is realized through homodyn
the radiation exiting the cavity. In fact, in this case the h
modyne efficiency can be very close to one. This is shown
Fig. 1, where we have sketched the phase-space uncert
contours obtained by cutting the Wigner function cor
sponding to Eq.~28! at 1/Ae times its maximum height. We
see that the feedback produces a relevant contraction o
uncertainty region, which becomes almost indistinguisha
from the region corresponding to the motional ground st
~inner dotted line in Fig. 1!. The outer dashed line corre
sponds instead to the initial thermal state with mean vib
tional numbern0510, prepared by the Doppler precoolin
stage.

In the resonant case in which the effective position m
surement is realized through the homodyne measureme
the fluorescence, the measurement efficiency is much lo
and ground state cooling becomes very difficult to achie
However, this position measurement scheme based on
rescence becomes necessary when one cannot extrac
light out of a cavity, such as in Ref.@13#, and one has to us
the fluorescent light.

V. CONCLUSIONS

We have proposed a feedback scheme able to ach
significant cooling of the motional degree of freedom of

FIG. 1. Phase-space uncertainty contours obtained by cutting
Wigner function of the stationary state at 1/Ae times its maximum
height. The dashed line refers to the initial thermal state with m
vibrational numbern0510; the solid line refers to the steady sta
in the presence of feedback withx54 kHz, g50.375 kHz, n
51 MHz, gh510 Hz, k540 kHz,h50.9, w52p/2. Notice that
feedback provides cooling very close to the ground state~the cor-
responding contour is given by the dotted line!.
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trapped particle. The method is based on an effective c
tinuous measurement of the particle position that can be
alized in two different ways: by homodyning either the flu
rescence of a strong transition or directly homodyning
light exiting the cavity, which is coupled to the trapped pa
ticle. When the efficiency of the homodyne detection is clo
to one, the method is able to achieve ground state coolin
is interesting to note that, even if only the particle position
measured and the feedback is chosen in order to decr
position fluctuations, the scheme provides aphase-spacelo-
calization for all quadratures. This is essentially due to
fact that the bare atom Hamiltonian\na†a mixes the dy-
namics of the atomic position and momentum, so that
continuous homodyne measurement actually gives infor
tion on both quadratures. This model shares some pecul
ties with that one we have proposed in@20# to cool the vi-
brational motion of a macroscopic mirror of an optic
cavity. The present application to a trapped atom stresses
versatility of the methods using feedback loops in syste
characterized by the radiation pressure force in controll
thermal noise.

It is also possible to see that the proposed scheme is
able to reduce the noise below the quantum limit, i.e.,
stationary state variance of a generic motional quadra
cannot be made smaller than 1/4. This is again a con
quence of the free vibrational Hamiltonian\na†a ~it is in
fact possible to get position squeezing in the limiting ca
n50 @21#!. Actually, position squeezing can be obtained
considering a suitable modification of the present sche
@22#.

As concerns the specific way in which a particular fee
back Hamiltonian could be implemented, the important po
is to be able to realize a term in the feedback Hamilton
proportional to momentum. This is not straightforward, b
could be realized by using the feedback current to vary
external potential applied to the atom without altering t
trapping potential. On the other hand, shifts in the posit
~being strictly equivalent to a linear momentum term in t
Hamiltonian! are achieved simply by shifting all the positio
dependent terms in the Hamiltonian, in particular the tra
ping potential. Alternatively, the use of laser pulses could
useful as well, since, using a typical laser cooling schem
the light can exert on the atom a force proportional to
momentum.

As we have already remarked, in principle the mod
could be extended to the three-dimensional case. As c
cerns the model discussed in Sec. II A, one should cons
three different internal transitions, each one coupled wit
vibrational degree of freedom, resonant with three ortho
nal standing waves. For the off-resonant case presente
Sec. II B, one should only consider three orthogonal stand
waves far from resonant transitions.

In conclusion, although the implementation of the pr
sented cooling method via feedback could be a hard tas
can be useful whenever the use of resolved-sideband coo
is impractical. The possibility of having an alternative wa
to cool trapped particles is particularly interesting for qua
tum information processing applications, because it m
happen that the requirement of having two highly sta

he

n
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internal states for quantum logic operations and a g
internal transition for sideband cooling cannot be simu
neously satisfied. With this respect other cooling strateg
have been recently proposed, as for example the us
sympathetic cooling between two different species of io
@5,23#.
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