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Quantum approach to rotation-state relaxation theory
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The principles of the quantum theory of open systems are used to calculate the collisional relaxation
parameters of the ground rotational transition for a dipole molecule. The conditions for a microwave-field
saturation of the rotational transition are specified taking into account degeneracy of the excited state. A simple
guantum model is used to illustrate the idea of rigorous substantiation of the second law of thermodynamics.

PACS numbgs): 34.10:+x, 05.30—d, 05.70.Ln, 42.50.Ct

. INTRODUCTION pact on a quantum systefan object with HamiltonianH.

. . ~ The external medium in our consideration is represented as a
One major achievement over the last two decades is thget of identical physical subsysters homogeneous flow
awareness that the physical kinetics is part of the generghat alternately interact with the object. We are interested in

theory of open systerr{d—4]. From this stand point the ir- {he eyolution of the object state under the action of external
reversibility of relaxation processes is essentially of a quaNimpacts.

tum n_ature_and is conditioned by interactions of the object in We designate the Hamiltonian of a single external sub-
guestion with the external subsystems that are not measured -
after interaction. This approach was applied in R&fto the ~ SyStem(element of the flow throughH,, and the system-
quantum models of interaction with exact solutions to obtairobject interaction by collision througH;,.. We also intro-
relations between the longitudinal and cross-relaxation timeguce the energy conservation conditidrtiy, Hs+H,]
for a system with two energy levels. =0. In a particular case of relaxation when the object inter-
Following the long established tradition nearly all prin- acts with thermal radiation, the element of the flow acts as a
ciple calculations in atomic-molecular spectroscopy are donéeld oscillator. A flow of arbitrary physical origin possessing
on the basis of the semiclassical Bloch equatisee Ref. equilibrium statistical properties is also referred to as a ther-
[6]). This equation contains two empirical parameters: charmostat.
acteristic times of the longitudinal; and crossT, relax- By po and o, we define the density operators of initial
ations. In terms of the formalism of density matrix, they states for the object and the element of the flow, respectively,
correspond, respectively, to relaxation to equilibrium valuesand suppose them to be statistically independent. We write
of diagonal and nondiagonal matrix elements. With numerithe density matrix of the object after interaction in an ordi-
cal values ofT; and T, chosen from available experimental nary form(see Ref[4)):
data, the Bloch equation is frequently employed for descrip-
tion of quantum transitions between degenerated energy lev- N
els, which is clearly not quite correct. <n|P1|m>:§V: (n,v[UpoaU™|m,v). D
The use of a consistent quantum approach enables one to

minimize the number of empirical parameters of the theory, -
and calculate tha,/T, ratio within the framework of the Here and elsewhere through the paper, the eigenstates of the

adopted physical model of relaxation. Particularly, for a non-ObjeCt are marked by Latin and those of the element of the

degenerate quantum transition in the asymptotic limit ofOW by Greek letiers. The unitary evolution operatbrop-
weak relaxation perturbations, one obtalhg T, =2 [5]. erates in the expanded Gilbert space including the states of

The degeneracy of an excited state is a difficult problenfOth interacting subsysteni¢he direct product space, see
in the relaxation theory of molecular rotational spectra. TheXef-[8]). If we describe the subsystems operators in the en-
available standard method§,7] either fail in this case or €9y representation and the time evolution of states in colli-

require application of arbitrary empirical assumptions. wesion in the interaction representation, we shall have to as-

propose a possible solution to this problem employing rigorSUme that
ous methods of the quantum theory of open systems that ~ .
allow us to carry out the entire computational procedure U=exp{—iH .}, (2
without addressing the empirical phenomenology.

wheret, is the interaction timéin the system witth =1). In

Il. QUANTUM KINETIC EQUATION our analysis of the models we shall sometimes specify the

Let us describe derivation of the kinetic equation in termsgvolution operatorJ directly, omitting the corresponding
of the theory of open systenjd]. Consider an external im- Hj, in the explicit form.
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We use the subscriptto indicate successive interactions [ll. ROTATION STATES
of the object with the elements of the flow, and the notation o . .
Let us model the principal mechanisms of relaxation by

p; for the density operator of the object state after fife e collision of identical dipole symmetric molecules. Then,

impact. Assuming the initial mixed states of all of the ele-\ya sha| study excitation of a molecule rotation state transi-

ments of the flow to be identical and mutually independentyjon py 4 resonance electric field and discuss some peculiari-

from Eq. (1) we obtain ties in the behavior of the absorption line for various condi-
tions.

<”|Pj+1|m>:2 (n,m(p,a){p|p;|a). 3 We designate by andA the vector-operators of the ro-
P tational moments for the molecule object and molecule-
element of the flow, respectively. The hamiltonians of the
molecular rotation, omitting the additive terms that have no
significance at rather low temperatureee Ref[10]), are
(n,mlp,q)= EA (n,ulUlp,»){(v[a|\)(q\|UTIm, ). written in the form:
v,

(4

Expression(3) is a quantum kinetic equatiof@ generalized
Markov chain in which the transition matrix {,m|p,q)  wherel is the moment of inertia. The energy levels of the
does not necessarily have the probability mearisee Ref.  molecules, (2) 'xL(L+1) and (2) *A(A+1), are de-
[9D. . o generated (R+1)- or (2A+1)-fold, where L (A)
_For spectroscopic problems of collision-induced relax-=0,1,2 . .. . In ourrelaxation model we investigate only the
ation, this equation is used as follows. We identify one mol+two lower levels L(A)=0,1 and the transitions between
ecule as the object and describe its excitation by a resonanggem. It will be shown further that such a simplified ap-
electromagnetic field. The other molecules in the gas volum@roach is quite sufficient to describe inelastic relaxation for

under consideration are treated as an external flow respofhe above quantum transitions, but needs to be refined for the
sible for relaxation of the object’s excitations. The states ofgescription of elastic collisions.

the molecules in the flow are assumed to be equilibrium ones \we now impose the conditions of conservation for the
(their weak excitation by the field is neglecjedt can be i . :
easily seen that this is the only approximation that allows folt&! €nergy in collision and for the total moment vector
the description of spectral excitation of a molecule using the+ A. This means that the unitary operator of the collision
linear theory. _ _ o evolutionU must satisfy the conditions
To pass over to the differential form of the kinetic equa-
tion we need to make use of the “course-grain” averaging
idea[2]. We suppose that over some tirdé a molecule is
exposed to multiple collisions, and denote the characteristic
time between them by. Then, Eq.(3) can be rewritten as  In all other respects we follow the maximum simplicity cri-
g terion in deriving the explicit form of operatdy.
o Let us label the states of a complete system of two dipole
giénlelm=7 ' % (n.m[p,a)(plela)—(nlp[m) . molecules with four quantum numbels,m; A,u). The
(5) semicolon is used to separate one-molecule states. Here,
and A take on the values 0,1 and number the energy levels;
To make this equation complete, one has to account for théhe z projections of the moments and u take on the values
field-induced excitation. We shall define this excitation as0,=1 for L(A)=1, and 0 forL(A)=0. So, the expanded

the time-dependent operatfj(t) that affects only the states Gilbert space for description of molecular collision has 16
of the object. The latter restriction is not imperative: actually,coordinates.
any nonequilibrium action can be described in terms of the Next, we collect the multiplet distribution of the basis
open systems theory similarly to the relaxation thermal colvectors|L,m; A,u); the states of each multiplet contain
lisions (see Ref[3]). However, the classical-field approxi- e€qual sums of the quantum numberél +1)+ A(A+1)
mation proves to be sufficient for most problems of theand of the quantitiesn+ w that remain unchanged in colli-
atomic-molecular spectroscopy. With this in mind we finally Sion according to the conditiori8). For further discussion, it
write should be specified straightforward in which multiplets the
transformation is induced by the elastic collisions and in
d ] which of them due to inelastic collisions.
a<”|P|m>:'<”|[P:V(t)]|m> (1) Singlets:

Here,

H=(2) L% HA,=(21) 'A% (7)

[UH+H=0; [U,L+A]=0. (8)

#7 3 (nmlp.a)(plplay—(nlpim |. 0000 1L LAY,

(6) (2) Doublets:
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[1,1;1,0,/1,0;1,9 _ N (0,0p|1,0) of the ground transition for a “working” mol-
1-1:1,0,/1,0:1-1) elastic transitions, ecule. For this we need to specify notation in the description
T of the equilibrium state of its “collision partner.”
By o, we denote any equal eigenvalue of the density

1,0:0.0,/0.0:1.0 matrix related to the upper energy states
11,1;0,0,10,0;1, inelastic  transitions.
11,-1;0,0,/0,0;1~ 1) oy=0 =0 =011 =(3+exp(B}h) Y, (1)
(3) Triplet; whereB=(16) ' and the parametér !, which is inverse to
the inertia moment, in our system of units is exactly the
[1,1;1-1),]1,0;1,0,]1,—1;1,D. energy difference between the states1 andL=0. In a

similar way we write for the lower staté®,0)
The transitions inside the only triplet are caused by elastic

collisions. As follows from the above classification, the elas- o=0g0=(1+ 3exd -8 L (12
tic processes here are understood as quantum transitions that _ _ o
feature no energy exchange between the molecules. Calculation of the cross-relaxation coefficient by the for-

In order to satisfy the condition®) for the conservation mula(4) yields
of the additive invariants, it would be sufficient to take the
transformation matrix n m p ¢4

(L,m; A, x|U|L,n;A,v)

A
in the block-diagonal form in which each block operates only = > (0,0:A,2|U[0,0A,p)ay ,
. . . - A=01v=—A
in the subspace of the corresponding multiplet. In this case,
the unitary blocks will effect transformation in the subspaces X(1,0;A,v|UT|1,0:A,v)

where matrix representations of the additive integrals of mo-

tion, L2+ A2 andL,+A,, are multiples of the unit matrix,
which will ensure fulfillment of Eq(8).

Then, taking into account that the quantum phases cann
be observed, we can choose for the doublets the transform
tion with real parametera and b. Note that parametel
which stands for the “transformation depth” is not necessar
ily equal for the elastic and inelastic processes. Further we
will discuss this issue in greater detail, and meanwhile as- (0 gp|1,00=(—b?%r + , 0,
sume that all of the above doublets have identical block dt< AplL.0=( (U2 1(){0.4pI1O. (19
transformations

=1-b2(1/2+30,). (13

Jthe last expression in E@13) is written to the accuracy of
Hle termb? inclusive. By substituting this result into E(p)

we obtain the off-diagonal component of the relaxation equa-
tion for the density matrix

wheref(6)=30y.
a b Let us now calculate the “longitudinal” coefficients of
(L,m;A,M|U|L’,n;A’,v):< b ); a?+b?=1. relaxation. We bear in mintsee Ref[4]) that the transition
a 9 coefficients for the diagonal elements of the density matrix
for the object exposed to a stationary homogeneous flow are,

It can be Checked that the numbering order of the basis Ve@ssentia”y, the transition probabilities of the MarkOV Chain.
tors inside the doublets does not affect the observable result§herefore, we write

Again, following the criterion of maximum simplicity in
describing transitions inside the triplet, we choose the matrix P(L,m[L",n)=(L,m;L,m|L",n;L",n). (15
of a three-dimensional representation of group(BUsee
Ref. [8]) with the same parametessandb as for the two-
dimensional case

Calculations by analogy with the previous ones, i.e., to an
accuracy of the terms-b? inclusive, yield

a2 abyz b2 P(1,00,00=P(1,10,0)=P(1,—1/0,0)0=b?%c,, (16)
. . 2_RK2
(1Lm1u|Ulin1r)=| —aby2 a’~b® aby2|, P(0,0/1,0)=P(0,0/1,1)=P(0,0[1,~1)=b%a,, (17)
b?>  —aby2 a?
(10) P(1,11,00=P(1,0[1,1)=P(1,—-1[1,00=P(1,011,—1)
where the triplet states have the same numbering order as =3b%0,=b*(0), (18)
above.
Now that we have completed modeling collision we pass P(1,011,00=1-b*(1+f(#0)), (19
over to calculations of the kinetic coefficients. As before, let
us start with the relaxation of the off-diagonal element P(0,0|0,O)=1—b2f(0). (20

052715-3



V. L. VAKS AND V. V. MITYUGOV

PHYSICAL REVIEW A 61052715

The transition probabilities satisfy the normalization condi-where T;'=(b%7)[1+2f(6)]=2T,* T, =b%7. Note

tions
> P(L,m[L’,n)=1 (21
L,m

for all values ofL’ andn.

that the polarization-to-energy relaxation times rafio/ T,
=2 is typical of the classical system of charged patrticles too,
given weak viscous friction.

We now analyze the stationary solution to the system

(27)—(29). Let us calculate the value of Imbecause it is the
dimensionless characteristic of the rate of field energy ab-

Let us derive the kinetic equations for calculations of thesorption by a molecule af; 1#0. Supposing all the time

line shape following excitation of transition®1 by an al-

derivatives to be zero, we perform some simple algebraic

ternating near-resonance electric field that, without loss ofg|culations to obtain

generality, is supposed to be polarized along thexis.

Omitting extensive description of the excitation structure we
just note(see Ref[11]) that its resonance terms can be rep-

resented by a two-row matrix in the subspage @),|1,0))
with a nonzero element
(0,0V(1)]1,0=(V/2)expiet} (22)

and with the element Hermitian conjugate to it. Heres w
— wy, w is the frequency of the exciting field ang,=1"1is

the frequency of the quantum transition. The energy ampli-

tude of the disturbanc¥ is proportional to the field ampli-
tude and to the matrix element of the dipole moment.

~ VT,Y(e)(1/2—20,)
m = b
Pmay 2V2T T,Y(e)(1/2+20)

(30

where Y(g)=(1+¢°T3) L. For weak saturation \?°T;T,
<1, the non-Lorentz addition to the standard form of the
absorption line is defined as

(AIMD)ponro=2Y2(e)V3T3T (405—1/4). (31

This formula describes the smoothing of the line peak due to

This disturbance does not change the equilibrium zer@aturation, that accountsvithin our mode] for the elastic-
value of the relative population difference of the upperinelastic relaxation between the sublevels of the degenerate

boundary state$l,=1). With this in mind, we put in the
variables

S()=(1,1p[1,D+(1,~1[p|1,~ 1), (23
s(t)=(0,0p/0,0+3(1,0p[1,0. (24)
Using the normalization condition
L
> 2 (LmlplL,m)=1, (25)
L=0,1m=-L

one can easily express the quantity=(0,0p
—(1,0p|1,0) throughS ands:

0,0

r=2(1-9)-s. (26)
Then, by supplementing Eq(14) and introducing p
=(0,0p|1,00exp(—iet), we find employing Eq(6) the equa-
tion

dp . i~
a=—(I8+T2 )p+iV(1—S—s/2),

(27)
whereTz‘lz(bZ/T)[1/2+f(a)]. In a similar way, the sub-
stitution of the coefficient$16)—(20) and the excitation for-
mula (22) into Eq. (6) yields

ds ~

§p = (- UT(s=1)+2Vim’p, (28)
ds
gt = (" UTa)(S-20y9), (29)

excited state.

We have already mentioned that the relaxation parameters
in elastic and inelastic processes are different in general. In
order to understand how this is reflected in the equations we
consider the ideal situation when only elastic transformations
occur by collision. Note that we do not claim direct applica-
bility of our calculations but attempt at providing a deeper
insight into the mathematical structure of the theory.

Let all the three “inelastic” doublet¢see the multiplet
classification given aboyédreak down into singlets, and the
remaining two doublets and the triplet undergo conventional
transformations with parameteasandb. Then, instead of the
relation (13) we obtain

(0,0;1,00,0;1,0=1-3b%a,,. (32
Further analysis of the relaxation coefficients and compari-
son of the results with Eq$27)—(29) lead to the expressions

T, '=(b%7)f(g), T;'=0. (33
Although there is no absorption of the field energy in this
case and the spectral line cannot therefore be observed under
stationary conditions, the above example is of certain funda-
mental importance. It shows that, given degeneracy of the
excited level, the cross relaxation can occur due to elastic
processes irrespective of the longitudinal relaxation. Hence,
there is no requirement that the relatidg= 2T, be fulfilled
in the general case, even in the weak-collision approxima-
tion.

Physically, elastic processes may take place by collisions
of a “working” molecule with other kinds of particles
(buffer particle$ that have no resonance transition at fre-
guencywg. This also happens when the molecules collide
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with their “own” dipole molecules at higher excited levels. (Ly|Hi 20— 1)= y\v (35)
In this case, they are likely to exchange the moment projec-
tions but there is no energy exchange. and those Hermitian conjugate to them. The valoesl,2

It follows from the above that a consistent analysis of thehere correspond to the object enerdgissE,, and the con-
elastic relaxation must take account of all of the rotationstanty is determined by the off-diagonal element of the di-
states rather than of just two lower levels, even for a homopole moment.
geneous gas. Therefore, some of the formulas derived here The problem of the dipole interaction of a two-level sys-
could be applied only to the case of very low temperaturesiem with quantum oscillator permits an exact solution. The
when thermal excitation of higher levels may be neglectednonzero elements of the evolution unitary matrix have the
The translational degrees of freedom of the thermostat mokorm
ecules will also contribute to the relaxation, but this mecha-
nism is beyond the scope of the present paper. (Ly|U|1,v) (1y|U|2,p—1)

All the difficulties involved in constructing the general (20|U[1p+1)  (2,0]U]2,)
theory are solely computational. Here, we have attempted to ’ ' ’ '
analyze only the cases allowing for easy-to-derive analytical (COSQ\/Z isina\v

lutions. - N ’ %
solutions isinayv+1 cosayv+1 (36

IV. INCREASE OF ENTROPY wherea= ..
Let the initial mixed states of the atom and oscillator be

The considered relaxation processes are a typical exampl&agistically independent and described by the Gibbs density
of thermodynamic irreversibility described at the q“antum‘operators with different temperaturés and 6, :

microscopic level. Therefore, in their investigation it is im-

possible to avoid basic issues involved with quantum- (nlp|m)=(1+exp{— Bs}) texp—En/bs} Snm, (37)
theoretical substantiation of the second law of
thermodynamics. (v|o|p)=(1—exp{—B)exp—Biv}d,,,, (39

Mathematical foundations of the consistent quantum ap-
proach to solution of thermodynamic problems were laidwhere, again,n=1,2; E,~E;=w, and Bg;=w/6bs;.
back in the prewar works by Kleifil2] and Elsassef13]. Without loss of generality, here and elsewhere we suppose
The logical origin for the increase of the sum of quantumg,=0.
entropies from the zero initial value due to two particles Now we apply the transforn36) to these states and cal-
collision is revealed in the analysis of the famous Einsteinculate the energy transfer by collision in the limit<1:
Podolsky-Rosen parad@%4] and is due to the appearance of
specifically quantum nonlocal states.

We believe that further discussion of these problems by A(Hg)= _A<Ht>:n:212 EnApn
physicists of the German school could lead to a complete '

clarification of the situation already in the 1940’s. But his- =(1/2) a®w[tank B4/2)coth( B/2)—1]. (39
tory reasoned differently, and the problem was considered
again only at the end of the centu®]. In a similar way we find a change in the entropies

A study of simple models also helps clarify the old prob-

lem on the overflow of heat from hot to cold. Consider, AS=A[ =S p.in

following the same scheme, a single interaction of a two- n Pl on

level atom with a thermal oscillator. Naturally, this process

can be traced on other models, too, for example, by describ- =S;—Ss

ing molecular collisions. Yet, since we discuss so generala 1 1

question, we would rather choose a model of the interaction a’BL(explft = 1) “tani(5y/2) = (expiBs} +1) 7,

between subsystems of different physical nature. (40
Let us take a two-level object with energigs,E, and

describe its interaction with a quantum oscillator of fre-

quencyw=E,—E; (in our system of unitsi=1, and the AS{ZA( _EV o, In UV)

frequency has the dimension of energWe introduce the

oscillator's HamiltoniarH, and its eigenvectori) =S -S

A =Bl (exp{Bs+1) 1= (exp{ B} — 1) tani B4/2)],
Hv)=w(a'at+ 1/2)|v)=w(v+1/2)|v) (34) 1)

in the usual fashion. Here, is the photon annihilation op- using the definitiorAS=AS;+AS{. Note that the sum of
erator. Let us write the matrix of the dipole interaction be-the resulting entropies of the subsyste®s- S/ is no longer
tween the object and the oscillator. In the energy representaqual to the quantum entropy of the complete system, which
tion the nonzero elements are does not change because the system is closed. The fact is that
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in collision the subsystems lose their reciprocal statisticallThe resulting entropy of the subsystems will then be written

independence. Comparison of E¢40) and (41) with Eq. as
(39) yields
. S==2 pilnpl, Si=-2 allnal. (47
AS=A<H5>(?—§ (42)
s According to Shannon’s theofyL5],
It is of principle importance thaA S is always non-negative.
This is why a spontaneous energy transfer is always bound S/ +S|’|+Z (MR INGNR|TLN)=0. (49
towards a colder object irrespective of the physical nature of LA
interacting bodies. " -
The inequalityAS=0 is easily tested in our model too, In addition, from Klein’s lemmg 12,16} follows
but here it has a much more general meaning. It can have a
rigorous proof for subsystems of arbitrary physical origin in _g (LARIEAINCEAR]EN) =S, (49
any initial states, the only condition being that these sub- ’
systems be statistically independent prior to interacf#n By combining Eqs(48) and (49) we obtain
We present this proof here. We designate, as before, the ,
AS=5+S,—S=0. (50

density operators of independent initial states of the sub-
system of interestl) and of the external obje¢tl) throughp ~ The inequality is proved.

anda, respectively. We introduce the density operator of the Now it is absolutely certain that the inequaliyS=0 as
complete system after the interaction of its parts specified above is exactly the logical equivalent of the sec-
ond law of thermodynamics in a rigorous quantum theory.
The expressioti42) also proves to be general enough. Con-
sider a physical object with an arbitrary energy spectiym
(it does not matter whether this range includes equal ener-
gies interacting with the environment. It can be easily
shown that, fof H;,;,Hs+H;]=0, this interaction does not
We then calculate the resulting density operators for the su jnfluence the in_itial stati_onary character of states of the sub-
systems sygtem_s{p,Hs_]—[a,Ht]—O. If the initial mixed state of the
object is a Gibbs state at temperat@end the changes of
(45) the eigenvalues of the density mattiy, are not appreciable
in the interaction with the environment, we can write
where the traces are calculated for an arbitrary complete set
of quantum numbers of subsystems Il and I, respectively.
Let us designate through and A the operators of the
physical variables of the subsystertws complete sejsfor |t is quite obvious that this expression is equivalent, to an
which operatorg’ ando’ have diagonal matrices. When the accuracy of notation, to the differential definition of entropy
initial states are stationary and the energy is conserved, these thermodynamic$17]. Then, with account of the inequal-
operators commute or coincide with the Hamiltonians of theity AS=0 and the law of energy conservation, the complete
subsystems. By labeling, again, by Greek or Latin letters theheory of quasiequilibrium processes can be constructed

R=UpoU™. (43

The entropy of the system is written in the usual fashion
S=

~TrRINR=—Trplnp—Trolna. (44)

;)'=Tr|||32, (}’=TI’||§,

AS==2] (Apy)Inp, =671 EAp,. (51

corresponding sets of quantum numbers we write

(e’ lmy=p{im, (Mo'[w)=0\\u. (46

solely on the axiomatic basis. We believe that the above
study provides sufficient proof of the quantum origin of the
second law of thermodynamics.
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