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Quantum approach to rotation-state relaxation theory
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The principles of the quantum theory of open systems are used to calculate the collisional relaxation
parameters of the ground rotational transition for a dipole molecule. The conditions for a microwave-field
saturation of the rotational transition are specified taking into account degeneracy of the excited state. A simple
quantum model is used to illustrate the idea of rigorous substantiation of the second law of thermodynamics.

PACS number~s!: 34.10.1x, 05.30.2d, 05.70.Ln, 42.50.Ct
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I. INTRODUCTION

One major achievement over the last two decades is
awareness that the physical kinetics is part of the gen
theory of open systems@1–4#. From this stand point the ir
reversibility of relaxation processes is essentially of a qu
tum nature and is conditioned by interactions of the objec
question with the external subsystems that are not meas
after interaction. This approach was applied in Ref.@5# to the
quantum models of interaction with exact solutions to obt
relations between the longitudinal and cross-relaxation tim
for a system with two energy levels.

Following the long established tradition nearly all pri
ciple calculations in atomic-molecular spectroscopy are d
on the basis of the semiclassical Bloch equation~see Ref.
@6#!. This equation contains two empirical parameters: ch
acteristic times of the longitudinalT1 and crossT2 relax-
ations. In terms of the formalism of density matrix, th
correspond, respectively, to relaxation to equilibrium valu
of diagonal and nondiagonal matrix elements. With nume
cal values ofT1 andT2 chosen from available experiment
data, the Bloch equation is frequently employed for desc
tion of quantum transitions between degenerated energy
els, which is clearly not quite correct.

The use of a consistent quantum approach enables on
minimize the number of empirical parameters of the the
and calculate theT2 /T1 ratio within the framework of the
adopted physical model of relaxation. Particularly, for a no
degenerate quantum transition in the asymptotic limit
weak relaxation perturbations, one obtainsT2 /T152 @5#.

The degeneracy of an excited state is a difficult probl
in the relaxation theory of molecular rotational spectra. T
available standard methods@6,7# either fail in this case or
require application of arbitrary empirical assumptions. W
propose a possible solution to this problem employing rig
ous methods of the quantum theory of open systems
allow us to carry out the entire computational proced
without addressing the empirical phenomenology.

II. QUANTUM KINETIC EQUATION

Let us describe derivation of the kinetic equation in ter
of the theory of open systems@4#. Consider an external im
1050-2947/2000/61~5!/052715~7!/$15.00 61 0527
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pact on a quantum system~an object! with HamiltonianĤs .
The external medium in our consideration is represented
set of identical physical subsystems~a homogeneous flow!
that alternately interact with the object. We are interested
the evolution of the object state under the action of exter
impacts.

We designate the Hamiltonian of a single external s
system~element of the flow! through Ĥt , and the system-
object interaction by collision throughĤ int . We also intro-
duce the energy conservation condition:@H int , Hs1Ht]
50. In a particular case of relaxation when the object int
acts with thermal radiation, the element of the flow acts a
field oscillator. A flow of arbitrary physical origin possessin
equilibrium statistical properties is also referred to as a th
mostat.

By r̂0 and ŝ0 we define the density operators of initia
states for the object and the element of the flow, respectiv
and suppose them to be statistically independent. We w
the density matrix of the object after interaction in an or
nary form ~see Ref.@4#!:

^nur1um&5(
n

^n,nuUr0sU1um,n&. ~1!

Here and elsewhere through the paper, the eigenstates o
object are marked by Latin and those of the element of
flow by Greek letters. The unitary evolution operatorÛ op-
erates in the expanded Gilbert space including the state
both interacting subsystems~the direct product space, se
Ref. @8#!. If we describe the subsystems operators in the
ergy representation and the time evolution of states in co
sion in the interaction representation, we shall have to
sume that

Û5exp$2 iĤ inttc%, ~2!

wheretc is the interaction time~in the system with\51). In
our analysis of the models we shall sometimes specify
evolution operatorÛ directly, omitting the corresponding
Ĥ int in the explicit form.
©2000 The American Physical Society15-1
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We use the subscriptj to indicate successive interaction
of the object with the elements of the flow, and the notat
r̂ j for the density operator of the object state after thej th
impact. Assuming the initial mixed states of all of the e
ments of the flow to be identical and mutually independe
from Eq. ~1! we obtain

^nur j 11um&5(
p,q

~n,mup,q!^pur j uq&. ~3!

Here,

~n,mup,q!5 (
m,n,l

^n,muUup,n&^nusul&^q,luU†um,m&.

~4!

Expression~3! is a quantum kinetic equation~a generalized
Markov chain! in which the transition matrix (n,mup,q)
does not necessarily have the probability meaning~see Ref.
@9#!.

For spectroscopic problems of collision-induced rela
ation, this equation is used as follows. We identify one m
ecule as the object and describe its excitation by a reson
electromagnetic field. The other molecules in the gas volu
under consideration are treated as an external flow res
sible for relaxation of the object’s excitations. The states
the molecules in the flow are assumed to be equilibrium o
~their weak excitation by the field is neglected!. It can be
easily seen that this is the only approximation that allows
the description of spectral excitation of a molecule using
linear theory.

To pass over to the differential form of the kinetic equ
tion we need to make use of the ‘‘course-grain’’ averag
idea @2#. We suppose that over some timedt a molecule is
exposed to multiple collisions, and denote the character
time between them byt. Then, Eq.~3! can be rewritten as

d

dt
^nurum&5t21S (

p,q
~n,mup,q!^puruq&2^nurum& D .

~5!

To make this equation complete, one has to account for
field-induced excitation. We shall define this excitation
the time-dependent operatorV̂(t) that affects only the state
of the object. The latter restriction is not imperative: actua
any nonequilibrium action can be described in terms of
open systems theory similarly to the relaxation thermal c
lisions ~see Ref.@3#!. However, the classical-field approx
mation proves to be sufficient for most problems of t
atomic-molecular spectroscopy. With this in mind we fina
write

d

dt
^nurum&5 i ^nu@r,V~ t !#um&

1t21S (
p,q

~n,mup,q!^puruq&2^nurum& D .

~6!
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III. ROTATION STATES

Let us model the principal mechanisms of relaxation
the collision of identical dipole symmetric molecules. The
we shall study excitation of a molecule rotation state tran
tion by a resonance electric field and discuss some pecul
ties in the behavior of the absorption line for various con
tions.

We designate byLŴ andLŴ the vector-operators of the ro
tational moments for the molecule object and molecu
element of the flow, respectively. The hamiltonians of t
molecular rotation, omitting the additive terms that have
significance at rather low temperatures~see Ref.@10#!, are
written in the form:

Ĥs5~2I !21L̂2; Ĥt5~2I !21L̂2, ~7!

where I is the moment of inertia. The energy levels of th
molecules, (2I )213L(L11) and (2I )21L(L11), are de-
generated (2L11)- or (2L11)-fold, where L (L)
50,1,2, . . . . In ourrelaxation model we investigate only th
two lower levels L(L)50,1 and the transitions betwee
them. It will be shown further that such a simplified a
proach is quite sufficient to describe inelastic relaxation
the above quantum transitions, but needs to be refined fo
description of elastic collisions.

We now impose the conditions of conservation for t

total energy in collision and for the total moment vectorLŴ

1LŴ . This means that the unitary operator of the collisi
evolutionÛ must satisfy the conditions

@U,Hs1Ht#50; @U,LW 1LW #50. ~8!

In all other respects we follow the maximum simplicity cr
terion in deriving the explicit form of operatorÛ.

Let us label the states of a complete system of two dip
molecules with four quantum numbersuL,m; L,m&. The
semicolon is used to separate one-molecule states. HeL
andL take on the values 0,1 and number the energy lev
thez projections of the momentsm andm take on the values
0,61 for L(L)51, and 0 forL(L)50. So, the expanded
Gilbert space for description of molecular collision has
coordinates.

Next, we collect the multiplet distribution of the bas
vectors uL,m; L,m&; the states of each multiplet conta
equal sums of the quantum numbersL(L11)1L(L11)
and of the quantitiesm1m that remain unchanged in colli
sion according to the conditions~8!. For further discussion, it
should be specified straightforward in which multiplets t
transformation is induced by the elastic collisions and
which of them due to inelastic collisions.

~1! Singlets:

u0,0;0,0&,u1,1;1,1&,u1,21;1,21&.

~2! Doublets:
5-2
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u1,1;1,0&,u1,0;1,1&

u1,21;1,0&,u1,0;1,21&J elastic transitions,

u1,0;0,0&,u0,0;1,0&

u1,1;0,0&,u0,0;1,1&

u1,21;0,0&,u0,0;1,21&
J inelastic transitions.

~3! Triplet:

u1,1;1,21&,u1,0;1,0&,u1,21;1,1&.

The transitions inside the only triplet are caused by ela
collisions. As follows from the above classification, the ela
tic processes here are understood as quantum transition
feature no energy exchange between the molecules.

In order to satisfy the conditions~8! for the conservation
of the additive invariants, it would be sufficient to take t
transformation matrix

^L,m;L,muUuL,n;L,n&

in the block-diagonal form in which each block operates o
in the subspace of the corresponding multiplet. In this ca
the unitary blocks will effect transformation in the subspac
where matrix representations of the additive integrals of m
tion, L̂21L̂2 and L̂z1L̂z , are multiples of the unit matrix
which will ensure fulfillment of Eq.~8!.

Then, taking into account that the quantum phases ca
be observed, we can choose for the doublets the transfo
tion with real parametersa and b. Note that parameterb
which stands for the ‘‘transformation depth’’ is not necess
ily equal for the elastic and inelastic processes. Further
will discuss this issue in greater detail, and meanwhile
sume that all of the above doublets have identical blo
transformations

^L,m;L,muUuL8,n;L8,n&5S a b

2b aD ; a21b251.

~9!

It can be checked that the numbering order of the basis
tors inside the doublets does not affect the observable res

Again, following the criterion of maximum simplicity in
describing transitions inside the triplet, we choose the ma
of a three-dimensional representation of group SU~2! ~see
Ref. @8#! with the same parametersa and b as for the two-
dimensional case

^1,m;1,muUu1,n;1,n&5S a2 abA2 b2

2abA2 a22b2 abA2

b2 2abA2 a2
D ,

~10!

where the triplet states have the same numbering orde
above.

Now that we have completed modeling collision we pa
over to calculations of the kinetic coefficients. As before,
us start with the relaxation of the off-diagonal eleme
05271
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^0,0uru1,0& of the ground transition for a ‘‘working’’ mol-
ecule. For this we need to specify notation in the descript
of the equilibrium state of its ‘‘collision partner.’’

By su we denote any equal eigenvalue of the dens
matrix related to the upper energy states

su5s1,15s1,05s1,215~31exp$b%!21, ~11!

whereb5(Iu)21 and the parameterI 21, which is inverse to
the inertia moment, in our system of units is exactly t
energy difference between the statesL51 andL50. In a
similar way we write for the lower stateu0,0&

s l5s0,05~113exp$2b%!21. ~12!

Calculation of the cross-relaxation coefficient by the fo
mula ~4! yields

n

(0,0:

m

1,0u
p

0,0;

q

1,0)

5 (
L50,1

(
n52L

L

^0,0;L,nuUu0,0;L,n&sL,n

3^1,0;L,nuU1u1,0;L,n&

.12b2~1/213su!. ~13!

The last expression in Eq.~13! is written to the accuracy o
the termb2 inclusive. By substituting this result into Eq.~5!
we obtain the off-diagonal component of the relaxation eq
tion for the density matrix

d

dt
^0,0uru1,0&5~2b2/t!~1/21 f ~u!!^0,0uru1,0&, ~14!

where f (u)53su .
Let us now calculate the ‘‘longitudinal’’ coefficients o

relaxation. We bear in mind~see Ref.@4#! that the transition
coefficients for the diagonal elements of the density ma
for the object exposed to a stationary homogeneous flow
essentially, the transition probabilities of the Markov cha
Therefore, we write

P~L,muL8,n!5~L,m;L,muL8,n;L8,n!. ~15!

Calculations by analogy with the previous ones, i.e., to
accuracy of the terms;b2 inclusive, yield

P~1,0u0,0!5P~1,1u0,0!5P~1,21u0,0!5b2su , ~16!

P~0,0u1,0!5P~0,0u1,1!5P~0,0u1,21!5b2s l , ~17!

P~1,1u1,0!5P~1,0u1,1!5P~1,21u1,0!5P~1,0u1,21!

53b2su5b2f ~u!, ~18!

P~1,0u1,0!512b2~11 f ~u!!, ~19!

P~0,0u0,0!512b2f ~u!. ~20!
5-3
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V. L. VAKS AND V. V. MITYUGOV PHYSICAL REVIEW A 61 052715
The transition probabilities satisfy the normalization con
tions

(
L,m

P~L,muL8,n!51 ~21!

for all values ofL8 andn.
Let us derive the kinetic equations for calculations of t

line shape following excitation of transition 0⇔1 by an al-
ternating near-resonance electric field that, without loss
generality, is supposed to be polarized along thez axis.
Omitting extensive description of the excitation structure
just note~see Ref.@11#! that its resonance terms can be re
resented by a two-row matrix in the subspace (u0,0&,u1,0&)
with a nonzero element

^0,0uV~ t !u1,0&5~V/2!exp$ i«t% ~22!

and with the element Hermitian conjugate to it. Here,«5v
2v0 , v is the frequency of the exciting field andv05I 21 is
the frequency of the quantum transition. The energy am
tude of the disturbanceV is proportional to the field ampli-
tude and to the matrix element of the dipole moment.

This disturbance does not change the equilibrium z
value of the relative population difference of the upp
boundary statesu1,61&. With this in mind, we put in the
variables

S~ t !5^1,1uru1,1&1^1,21uru1,21&, ~23!

s~ t !5^0,0uru0,0&13^1,0uru1,0&. ~24!

Using the normalization condition

(
L50,1

(
m52L

L

^L,muruL,m&51, ~25!

one can easily express the quantityr 5^0,0uru0,0&
2^1,0uru1,0& throughS ands:

r 52~12S!2s. ~26!

Then, by supplementing Eq.~14! and introducing r̃
5^0,0uru1,0&exp(2i«t), we find employing Eq.~6! the equa-
tion

dr̃

dt
52~ i«1T2

21!r̃1 iV~12S2s/2!, ~27!

whereT2
215(b2/t)@1/21 f (u)#. In a similar way, the sub-

stitution of the coefficients~16!–~20! and the excitation for-
mula ~22! into Eq. ~6! yields

ds

dt
5~21/T1!~s21!12V Im r̃, ~28!

dS

dt
5~21/T3!~S22sus!, ~29!
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where T1
215(b2/t)@112 f (u)#52T2

21 ,T3
215b2/t. Note

that the polarization-to-energy relaxation times ratioT2 /T1
52 is typical of the classical system of charged particles t
given weak viscous friction.

We now analyze the stationary solution to the syst
~27!–~29!. Let us calculate the value of Imr̃ because it is the
dimensionless characteristic of the rate of field energy
sorption by a molecule atT1

21Þ0. Supposing all the time
derivatives to be zero, we perform some simple algebr
calculations to obtain

Im r̃5
VT2Y~«!~1/222su!

112V2T1T2Y~«!~1/212su!
, ~30!

where Y(«)5(11«2T2
2)21. For weak saturation 2V2T1T2

,1, the non-Lorentz addition to the standard form of t
absorption line is defined as

~DIm r̃ !non-Lor52Y2~«!V3T2
2T1~4su

221/4!. ~31!

This formula describes the smoothing of the line peak due
saturation, that accounts~within our model! for the elastic-
inelastic relaxation between the sublevels of the degene
excited state.

We have already mentioned that the relaxation parame
in elastic and inelastic processes are different in genera
order to understand how this is reflected in the equations
consider the ideal situation when only elastic transformati
occur by collision. Note that we do not claim direct applic
bility of our calculations but attempt at providing a deep
insight into the mathematical structure of the theory.

Let all the three ‘‘inelastic’’ doublets~see the multiplet
classification given above! break down into singlets, and th
remaining two doublets and the triplet undergo conventio
transformations with parametersa andb. Then, instead of the
relation ~13! we obtain

~0,0;1,0u0,0;1,0!5123b2su . ~32!

Further analysis of the relaxation coefficients and comp
son of the results with Eqs.~27!–~29! lead to the expression

T2
215~b2/t! f ~u!, T1

2150. ~33!

Although there is no absorption of the field energy in th
case and the spectral line cannot therefore be observed u
stationary conditions, the above example is of certain fun
mental importance. It shows that, given degeneracy of
excited level, the cross relaxation can occur due to ela
processes irrespective of the longitudinal relaxation. Hen
there is no requirement that the relationT252T1 be fulfilled
in the general case, even in the weak-collision approxim
tion.

Physically, elastic processes may take place by collisi
of a ‘‘working’’ molecule with other kinds of particles
~buffer particles! that have no resonance transition at fr
quencyv0. This also happens when the molecules colli
5-4
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QUANTUM APPROACH TO ROTATION-STATE . . . PHYSICAL REVIEW A 61 052715
with their ‘‘own’’ dipole molecules at higher excited levels
In this case, they are likely to exchange the moment pro
tions but there is no energy exchange.

It follows from the above that a consistent analysis of
elastic relaxation must take account of all of the rotat
states rather than of just two lower levels, even for a hom
geneous gas. Therefore, some of the formulas derived
could be applied only to the case of very low temperatur
when thermal excitation of higher levels may be neglect
The translational degrees of freedom of the thermostat m
ecules will also contribute to the relaxation, but this mec
nism is beyond the scope of the present paper.

All the difficulties involved in constructing the gener
theory are solely computational. Here, we have attempte
analyze only the cases allowing for easy-to-derive analyt
solutions.

IV. INCREASE OF ENTROPY

The considered relaxation processes are a typical exam
of thermodynamic irreversibility described at the quantu
microscopic level. Therefore, in their investigation it is im
possible to avoid basic issues involved with quantu
theoretical substantiation of the second law
thermodynamics.

Mathematical foundations of the consistent quantum
proach to solution of thermodynamic problems were l
back in the prewar works by Klein@12# and Elsasser@13#.
The logical origin for the increase of the sum of quantu
entropies from the zero initial value due to two particl
collision is revealed in the analysis of the famous Einste
Podolsky-Rosen paradox@14# and is due to the appearance
specifically quantum nonlocal states.

We believe that further discussion of these problems
physicists of the German school could lead to a comp
clarification of the situation already in the 1940’s. But h
tory reasoned differently, and the problem was conside
again only at the end of the century@4#.

A study of simple models also helps clarify the old pro
lem on the overflow of heat from hot to cold. Conside
following the same scheme, a single interaction of a tw
level atom with a thermal oscillator. Naturally, this proce
can be traced on other models, too, for example, by desc
ing molecular collisions. Yet, since we discuss so gener
question, we would rather choose a model of the interac
between subsystems of different physical nature.

Let us take a two-level object with energiesE1 ,E2 and
describe its interaction with a quantum oscillator of fr
quencyv5E22E1 ~in our system of units\51, and the
frequency has the dimension of energy!. We introduce the
oscillator’s HamiltonianĤt and its eigenvectorsun&

Ĥtun&5v~a†a11/2!un&5v~n11/2!un& ~34!

in the usual fashion. Here,a is the photon annihilation op
erator. Let us write the matrix of the dipole interaction b
tween the object and the oscillator. In the energy represe
tion the nonzero elements are
05271
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^1,nuH intu2,n21&5gAn ~35!

and those Hermitian conjugate to them. The valuesn51,2
here correspond to the object energiesE1 ,E2, and the con-
stantg is determined by the off-diagonal element of the d
pole moment.

The problem of the dipole interaction of a two-level sy
tem with quantum oscillator permits an exact solution. T
nonzero elements of the evolution unitary matrix have
form

S ^1,nuUu1,n& ^1,nuUu2,n21&

^2,nuUu1,n11& ^2,nuUu2,n&
D

5S cosaAn isinaAn

isinaAn11 cosaAn11
D , ~36!

wherea5gtc .
Let the initial mixed states of the atom and oscillator

statistically independent and described by the Gibbs den
operators with different temperaturesus andu t :

^nupum&5~11exp$2bs%!21exp$2En /us%dnm , ~37!

^nusum&5~12exp$2b t%!exp$2b tn%dm,n , ~38!

where, again, n51,2; E22E15v, and bs,t5v/us,t .
Without loss of generality, here and elsewhere we supp
E150.

Now we apply the transform~36! to these states and ca
culate the energy transfer by collision in the limita2!1:

D^Hs&52D^Ht&5 (
n51,2

EnDrn

5~1/2!a2v@ tanh~bs/2!coth~b t/2!21#. ~39!

In a similar way we find a change in the entropies

DSs5DS 2(
n

rn ln rnD
5Ss82Ss

5a2bs@~exp$b t%21!21tanh~bs/2!2~exp$bs%11!21#,

~40!

DSt5DS 2(
n

sn ln snD
5St82St

5a2b t@~exp$bs%11!212~exp$b t%21!21tanh~bs/2!#,

~41!

using the definitionDS5DSs81DSt8 . Note that the sum of
the resulting entropies of the subsystemsSs81St8 is no longer
equal to the quantum entropy of the complete system, wh
does not change because the system is closed. The fact i
5-5
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V. L. VAKS AND V. V. MITYUGOV PHYSICAL REVIEW A 61 052715
in collision the subsystems lose their reciprocal statist
independence. Comparison of Eqs.~40! and ~41! with Eq.
~39! yields

DS5D^Hs&S 1

us
2

1

u t
D . ~42!

It is of principle importance thatDS is always non-negative
This is why a spontaneous energy transfer is always bo
towards a colder object irrespective of the physical nature
interacting bodies.

The inequalityDS>0 is easily tested in our model too
but here it has a much more general meaning. It can ha
rigorous proof for subsystems of arbitrary physical origin
any initial states, the only condition being that these s
systems be statistically independent prior to interaction@4#.

We present this proof here. We designate, as before,
density operators of independent initial states of the s
system of interest~I! and of the external object~II ! throughr̂

andŝ, respectively. We introduce the density operator of
complete system after the interaction of its parts

R̂5Ur̂ŝU1. ~43!

The entropy of the system is written in the usual fashion

S52Tr R̂ ln R̂52Tr r̂ ln r̂2Tr ŝ ln ŝ. ~44!

We then calculate the resulting density operators for the s
systems

r̂85TrIIR̂, ŝ85TrIR̂, ~45!

where the traces are calculated for an arbitrary complete
of quantum numbers of subsystems II and I, respectively

Let us designate throughL̂ and L̂ the operators of the
physical variables of the subsystems~or complete sets! for
which operatorsr̂8 andŝ8 have diagonal matrices. When th
initial states are stationary and the energy is conserved, t
operators commute or coincide with the Hamiltonians of
subsystems. By labeling, again, by Greek or Latin letters
corresponding sets of quantum numbers we write

^ l ur8um&5r l8d lm , ^lus8um&5sl8dlm . ~46!
.

el

05271
l

d
f

a

-

he
-

e

b-

et

se
e
e

The resulting entropy of the subsystems will then be writ
as

SI852(
l

r l8ln r l8 , SII852(
l

sl8 ln sl8 . ~47!

According to Shannon’s theory@15#,

SI81SII81(
l ,l

^ l ,luRu l ,l& ln^ l ,luRu l ,l&>0. ~48!

In addition, from Klein’s lemma@12,16# follows

2(
l ,l

^ l ,luRu l ,l& ln^ l ,luRu l ,l&>S. ~49!

By combining Eqs.~48! and ~49! we obtain

DS5SI81SII82S>0. ~50!

The inequality is proved.
Now it is absolutely certain that the inequalityDS>0 as

specified above is exactly the logical equivalent of the s
ond law of thermodynamics in a rigorous quantum theo
The expression~42! also proves to be general enough. Co
sider a physical object with an arbitrary energy spectrumEn
~it does not matter whether this range includes equal e
gies! interacting with the environment. It can be eas
shown that, for@H int ,Hs1Ht#50, this interaction does no
influence the initial stationary character of states of the s
systems@r,Hs#5@s,Ht#50. If the initial mixed state of the
object is a Gibbs state at temperatureu and the changes o
the eigenvalues of the density matrixDrn are not appreciable
in the interaction with the environment, we can write

DSs52(
n

~Drn!ln rn5u21(
n

EnDrn . ~51!

It is quite obvious that this expression is equivalent, to
accuracy of notation, to the differential definition of entrop
in thermodynamics@17#. Then, with account of the inequa
ity DS>0 and the law of energy conservation, the compl
theory of quasiequilibrium processes can be construc
solely on the axiomatic basis. We believe that the abo
study provides sufficient proof of the quantum origin of t
second law of thermodynamics.
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