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We have applied the methods of quantum reactive scattering to the key resonant reaction in the muon
catalyzed fusiofMCF) cycle that leads to the formation oftlx muonic molecular ion, in which fusion takes
place very rapidly. We have calculated reaction probabilities for the resonances that dgctiDy scattering
for incident kinetic energies less than 0.6 eV and total angular momed#0. To reduce the six-body
problem to a three-body problem, the motions of the electrons were treated in the Born-OpperiB&iner
approximation while those of the muon were treated with a sophisticated adiabatic approximation. The result-
ing three-body potential energy surfa@ES was represented by a pairwise additive approximation. ditise
part of the PES was scaled to allow it to exhibit the correct binding energy of the crdaigl=(1,1) state.
Scattering calculations were carried out using a hyperspherical formulation, and the positions of the resonances
were found to occur at energies of a few meV greater thadtif is assumed to be a point particle. A
comparison of the resonances with the Breit-Wigner formula allowed us to calculate partial widths for back
decay,l“i“". Once these are known for all significaly;, the rate of formation ofitu can be determined. This
rate, next to the sticking fraction, is the most important parameter in determining the rate of the entire MCF
cycle. We have also carried out a calculation whereby the muon was treated in a BO formalism and have found
significant differences in the final results, demonstrating the importance of treating the muon as accurately as
possible. This work represents a succesafuinitio calculation of this reaction.

PACS numbdps): 34.50-s, 36.10.Dr

I. INTRODUCTION Nty
7+D, = [(dtu);,dee] —  [(dtu);de]" +e,
It has been known since about 1980 that a negatively back decay Auger decay

charged muon in a deuterium-tritium mixture at room tem- (1.0
perature can catalyze more than 100 nuclear fusion reactionwhere D=de and we have defined=tu. To a good ap-
The muon(w) first of all binds a deuterofd) and a triton(t)  proximation, the (dtw),,de€] complex can be regarded as a
to form the muonic molecular iodtu, in which the two  H,-like molecule with one nucleus the particteand the
nuclei are so close together that fusion occurs very rapidlyother thedtu system in its(1,1) state. As a consequence of
Thereafter, the muon is usually released and is thus free tthe very small binding energy of th&, 1) state, the energy of
bring about further fusion reactions like a chemical catalystthe reactants can equal the energy of excited rovibrational
There exist a number of review articles on muon catalyzedtates of the intermediate complex in low-energy collisions.

fusion (MCF) in the literaturg1-7]. dtu can also be formed ifi+ D, collisions by nonresonant
One of the most important steps in the MCF cycle is theprocesses, but the rate of formation is much slojes].
resonance mechanism, described by Vesi#nthat leads The resonant formation of the intermediate complex con-

to dtu formation. As is well known, this resonant reaction taining thedtx molecule, with ratehy,,, is, next to the
can take place because of a remarkable coincidetigehas  effective sticking fraction(the probability that in a given
a weakly bound {,v) =(1,1) excited state with a nonrelativ- cycle a side reaction occurs in which the muon ends up
istic binding energy 0.66 eV, whetkis the angular momen- bound to ana particle and is thus unable to catalyze any
tum ofdtu andv=0,1,... denotes the vibrational states with further fusion reactions the most important parameter de-
angular momentund in order of increasing enerdy. termining fusion efficiency5]. Given that the muon lifetime
The key processes in this reaction are is 2.2<10 ®sec, and that about 1000 fusion cycles should
be catalyzed by a single muon for MCF to be considered a
viable potential source of large-scale energy production, the
lunfortunately, the practice of listing the vibrational quantum cygle rate for the entire MCF rezjl(l:tlon must be greater.than a
number last is deeply entrenched in the MCF literature. HoweverCfitical value ofA¢i~4x10°sec . The rate of formation
the standard practice in the spectroscopy, molecular physics, arfRf dtu must also, therefore, be greater than this value. This
chemistry communities is to use the notatianj(, with j=J, to  rate is extremely energfand therefore temperatyrdepen-
denote such states, whareandj are the vibrational and rotational dent due to the resonance mechanism of readtiofy. A
quantum numbers, respectively. To minimize confusion, we willdetailed knowledge of howy;,, behaves as a function of
use here the MCF notation foitx but the standard notation for all initial kinetic energy of the reactants in Ed..1) is therefore
other molecular species. crucial.
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bution function, which is usually assumed to be a Maxwell

the temperaturg¢l0], as well as on the density of the initial distribution, due to the thermal spread wf(E). The two

d-t mixture[11], was performed by Jones al.in the 1980s.
Their measured rates hovered aroung, thus highlighting

most recent calculation23,24 both yield A 4;,(T) values
that vary around\ ., once again emphasizing the necessity

the importance of an accurate knowledge of the behavior ofor an accurate determination af;;, as a function of tem-
Mgt - Another experimental investigation is currently in perature(and therefore kinetic enerpylt is our aim to per-

progress by Marshall and co-workdrs2—14], while Naga-
mine et al. [15] expect to begin experiments shortly.

A. Previous calculations
Previous treatmentsl6—24 of reaction(1.1) have been

based on the Breit-Wigner formula for the resonant total
cross sectionr,(E) for the Auger process. Men’shikov and

Faifman[18], for example, take this to be of the form

 Z F;‘totr;tot
Ua(E)=FJ20 (23t 1) T
tot™ 2 2
(E—E,)"+ — (IO T
4\ e a

(1.2

whereE is the energy of the relative motion Gfand D,, k

form ab initio calculations of 4, . As a start toward this
goal we have performed calculations for total angular mo-
mentumJ,,;=0 using the methods of quantum reactive scat-
tering.

B. The challenge

The treatments based on the Breit-Wigner formula are, in
part, phenomenological. The challenge is to carry out a de-
tailed quantum mechanical treatment of the reactibr).

We have showri29] how a Breit-Wigner type formula for
o,(E) arises from a detailed close-coupling treatment of the
reaction (1.1). However, the approach we used would be
very complicated to apply numerically. An alternative ap-
proach is to adopt the methods of quantum reactive scatter-
ing that have already been applied to chemical reactions

is the associated wave vector, aid is the energy of the [30—32. We gave an account of how this might be done in a
resonant state under consideration, relative to the energy of previous publicatior33].
Tand D, at infinite separation. The partial widths are defined Chemical reactions such as

as follows: Fi‘“‘ is the back decay partial width for total
angular momentund,y, andl“jltOt is the corresponding partial

width for the Auger decay process. Equatidn?) neglects

H+D,—HD+D (1.7)

have been extensively studied using quantum mechanical

any target angular momentum and any spin angular momennethods. Reactioil.1) is similar to reaction(1.7) in that

tum on the7, but these can easily be taken into account.
Using the relation th&t16,18,25—28

J (0] J (o)
[ O<T*<E,, (1.3

an approximate expression can be obtainedsfdiE) of the
form [16,18]

2

21
o (E)=~ —kz—Feﬁ(E— E,), (1.4
where
re:JE_O (2ot 1T (1.5
tot™

they both involve collisions between,and an atom con-
taining particles of unit positive and negative charge. How-
ever, comparison of reactiori$.1) and(1.7) shows that re-
action(1.1) has special features not present in reactib),
notably the Auger decay process which leads to the loss of
an electron. Equatiofil.7) corresponds quite closely to the
much slower side reaction

T+ Dy~ TD+D, (1.8
where7D=[(dt,u)Jve]. This reaction proceeds through the
same resonances as reactiarml),

Thus, in this approximation, the key parameter in determinin this case the resonant complex decays forward into the
ing o,(E) is I'g, which is determined from a knowledge of muonic moleculg (dtu), e] and aD atom or backward into

the partial widths{l“i“"}jimz0 for the back decayprocess. In

7+ D,. Reaction(1.9) can be treated using methods that have

deriving Eq.(1.4), the resonances are treated as being of zerbeen applied to reactiofi.7). In this paper, we present re-
width. The effect of resonance broadening is taken into acsults obtained by applying the method that Pack and Parker

count by Petrov and Petrd22,23.
The resonant rate of formation dfu, at a temperatur€,
is given by

)\dt#(T):nsz v(E)oa(E)T(E, T)E, (1.6

where Np, is the density of the Pmoleculesy(E) is the
collision velocity of 7 relative to B, andf(E,T) is a distri-

[30] have developed for rearrangement scattering reactions
of this type. An important question we face is how to obtain
information relevant to reactio(l.1) from our treatment of
reaction(1.9).

There is no easy way of including the Auger decay chan-
nel directly in our present treatment. We assume that, for a
given partial wave, the resonant cross section for decay into
the products on the right-hand sidBHS) of Eq. (1.9 is
given by the Breit-Wigner formula
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ot Jtot As a result, it has an appreciable interaction with only one of
Sy gy = e n he D at ta ti if it is inside the electroni
o (E)—F(ZJtoﬁ 1) I , the D atoms at a time, even if it is inside the electronic
(E—E,)?+ _(I‘Jtot+ [Pty F‘Jtot)Z charge cloud of the Pmolecule. Because of this, we use a
' 4 ¢ n a pairwise additive approximation to the PES; i.e.,

(1.10
; V:VDD!+VTD+V'ZD! y (21)
wherel" ' is the partial width for the decay of the complex
into the products on the RHS of E¢L.9). As we are not WhereVpp,, for example, represents the interaction between
; ; Jot—( i the two D atoms. Each of these diatomic potentials depends
including the Auger decay process,=0 in our calcula- P P

tions. As pointed out by Men'shikov and Faifméhg], the only on the distance between the two atoms. This pairwise

. . .. additive approximation includes some effects of the finite
coupling between the resonant channels is small as the life- ; i
. ) . Size of muonic atoms and molecules but omits others, and
time of the resonant complex is much longer than the tim

S 'M&hese will be discussed further in Sec. 11 C.
the complex takes to complete a vibration. Thus, the various The interactionVpp, is the familiar BO potential for the

decay processes operate essentially independently, and we
. N oy ydrogen molecule. It has been calculated accurately by
should be able to obtain accurate valuesif andl' by o105 and WolniewicZ34], and we use their results in the
fitting our results for resonant total cross sections to formulebresent calculations
(1.10 with I",*" set to zerd 33]. As pointed out earlier, quite Vv, andVp, represent the adiabatic interaction between
accurate values af,(E) can be obtained from a knowledge the 7 and the D atoms. This attraction cannot be calculated
of ritot_ If required, values or;tot can be obtained from a accurately enough using the BO approximation, as the ratio
number of calculationf25-2§. of the mass of the muon to the mass of the nuclei is too large.
In this case, the mass of the muom,=206.8n, and there-
fore m,=0.056ny. Thus, in the following subsection we
Il. THE INTERACTION POTENTIAL start with the BO approximation and discuss ways in which

The system hergdtude€] consists of six particles, each MOre accurate results can be obtained.
of which has a unit positive or negative charge. In a nonrel-
ativistic treatment at this stage, the total potential energy is A. The Born-Oppenheimer
the sum of all the Coulombic attractions and repulsions be- and standard adiabatic approximations
tween the particlgs. However,.an accurate treatme_nt of the The total Hamiltonian for the internal motion of thukw
problem at the six-body level is not presently possible. To

o : system is
simplify the problem, we note that for this low-energy scat- y
tering problem the electrons move much faster than the nu- " 1, 1 , 1 1 1 2.2
clei, and we use the familiar Born-Oppenhein{BO) ap- H=— Ve— Vitg———, (22
PP mBO) ap 2mg B 2Muay © R Tgu T

proximation to solve for the electronic motions with the
nuclei hel_d fixed, average over _the motions of the eleCt_ronﬁNhereR represents the internuclear vector pointing from the
and obtain an effective potential for the nuclear motlons.Iighter nucleus(d) to the heaviert), andr is the position

Furthermore, although the muon is intermediate in mass be{iector of the muon. relative to the center of mass of the
tween the electrons and the nuclei, it stays so close to thﬁuclei The reduced'masses are defined as

nuclei that it moves even faster than the electrons, and we
can also average over its motions with the nuclei held fixed.
However, its mass is not negligible compared to the nuclear Mgt
masses, and we treat it with a sophisticated adiabatic ap-
proximation discussed in Sec. Il B to account for that. N , .

Use of these two approximations has the effect of exclugi” the BO approximation the effective-t potential is ob-
ing the Auger decay already discussed, but it should allow alf2in€d by fixing the nuclei and calculating the energy of the
other accessible processes to be treated quite accurately.[gSulting systemVgo(R), as a function of the internuclear
reduces the six-body problem to a three-body problem WherglstanceR. I_n thls_ approximation, the BO wave functions for
the bodies are the muonic and electronic atoms denoted fit« are written in separated form:
Eq. (1.8), and they move on the resulting effective potential i i .
energy surfacéPES. This greatly reduces the complexity of Vo1, R)=F'(R) ¢go(riR), 24
the problem. ) ) ) )

If the electronic-muonic problem just described Werewher_el represents a particular solution anq the muonic wave
solved accurately, it would require expensive computationfunctions ¢o(r;R) depend only parametrically oR. The
in which the motions of the muon and the electrons wereVso(R) of interest is the lowesti(=0) eigenvalue of the
correlated and would yield a complicated three-body PESSCchralinger equation,
We hope to do that in future calculations. However, for the R
purposes of this reactive scattering calculation on this sys- HBO¢(B’O(r;R)=VBO(R) ¢go(r;R), (2.5
tem, we note that th& atom is very smallabout 200 times
smaller tha a D atom), and it has only a tiny polarizability. where

mgmy m,(My+m)
- v M=
Mg+ m, m,,+mg+m

(2.3
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Ago= et 2 2.6 N0 _p L .. Lk
BO 2mlu r R rd# rt#. ' HlA:HBO_ z(md+ mt) Vr+ 2mdtR2 (Zl@

The Schrdinger equatiorf2.5) can be solved exactly if both and
sides are expressed in terms of prolate spheroidal coordi- 5
nates, as this equation is separable in these coordifzgs ~ 1 ( d 2 4 )

R2TRIR

For the method of evaluation as applied tg*H see, for H'A__m

example, Batest al.[36] and Wind[37]. Details of the so-

lution to a three-particle system in general are given, forl is the operator for the relative angular motion of the

example, by Hunter and Pritchaf@8]. nuclei. The wave function is a sum of terms which are sep-
The standard adiabat{&A) approximation is the lowest- erated into components in a similar way as in Eg.4),

order correction to the BO approximation. Whereas in theexcept here the nuclear component is a function of only the

BO approximation all coupling between the muonic andinternuclear distance and the muonic component is a func-

nuclear motion is omitted, in the SA approximation the ef-tion of the remaining five coordinates, and depends only

fect of the coupling term involvingﬁcﬁgo(r;R) is included parametrically on the internuclear distance,

in the potential to first order using perturbation theory. This

can be regarded as including in the potential the effect on the _ i [ 5.

nuclear motion of the averaged motion of the muon in its TialrR) Z X (R)Gia(r.RiR). (212

ground state. Thus,

(2.1)

The ground statei €0) zeroth order potential is then evalu-
Vsa(R) = Veo(R)+(30(r;R)| A’ [430(r;R)),, (2.7)  ated by solving

50 40 D _ 0 D
where the perturbation correction to the BO Hamiltonian is Hiadin(rRIR)=Ua(R)ia(r,R;R). (213
The IA potential V5 (R) of Struenseeet al. [42] is ob-
A 1 1 . . :
H' =H—Hgo= 2 V2. (2.9 tained by adding the lowest-order perturbation term to

— VR_
+ . ~ ~ .

2 Mgy 2(mg+my) Ua(R) due to the action ofl[, on ¢4 (r,R;R). Since, for a

The BO and SA approximations are particularly unsuit-eal 1A wave function that is normalized at &) it can easily
able for accurate calculations of asymmetric diatomic mol-P€ Shown that
ecules. This is because the BO wave functions are symmetric 2 4
with respect to the two nuclei. For thitu molecule, for <¢&(r,ﬁ;R)‘§ R ¢,°A(r,|i;R)> =0, (214
example, this results in an incorrect dissociation at l&g¢e r.R
an equal mixture oflu+t andtu+d. Sincetu has a lower
ground state energy thatu, the correct dissociation prod-
ucts should béx+d. Pack[39,40 has shown how to solve
this problem within an adiabatic formalism; prior to this it
was thought that computationally expensive nonadiabatic Via(R)=Up(R)
methods were necessary.

where the integration is over the variables that precede the
semicolon, it follows that the 1A potential of Struenseteal.
is given by

For further details concerning the SA approximation and 0., & &2 0, A
its limitations, see, for example, the review by Kofdsl]. —5—{ P RR) | =52 Pia(IRIR) )
2my; JR rR
B. The improved adiabatic and higher-order approximations (2.19
The improved adiabati¢lA) approximation was devel- As can be seen, for example, from the variational calcu-

oped by Struenseet al. [42]. It is a modification of the lation of the energy of thél, 1) state ofdtu by Bhatiaet al.
“best adiabatic”(BA) method[40,43, which was the firstto  [26], to a very good approximation the angular momentum

yield the correct dissociation energy at lafgéor asymmet-  of dtu is located on the nuclei. Thus in the IA approxima-
ric molecules without the use of a nonadiabatic formalismtion the muon can be taken with high accuracy to be in a

The IA method also yields correct dissociation energies, bustate with zero angular momentum about the internuclear

has been found to be more reliable than the BA at smRller axis. In this case the summation in the 1A wave function of
In the IA approximation the effect of the angular motion Eq. (2.12 collapses to only one term and, as pointed out by

of the nuclei is included in the potential. Instead of adding aStruenseeet al. [42], the IA potential for nonzero angular

perturbation correction to the BO potential, we start with amomentum can be obtained by simply adding the centrifugal

potential that is calculated by treating the nuclei as a rigicerm J(J+1)/(2myR?) to the IA potential forJ=0.

rotor. The Hamiltonian in Eq(2.2) is separated into The use of muonic wave functiong!,(r,R;R), which

H=H% +A’ 2.9 are functions of the internuclear unit vec®r and the pres-
~—Mia IA . . L ~o . I
ence of the term involvind i in the associated Hamiltonian
where H®, ensure that the muon remains close to the triton at large
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R. V,a(R) therefore hasgvirtually) the correct energy at large However, in the current potential the electrons always see a

R, corresponding to the binding energy of thg atom. particle of unit charge at the position of the deuteron for all

Vsa(R), on the other hand, exhibits an incorrect asymptoticd-t distances. This is correct at large and at very st

energy corresponding to the average of the binding energiedistances. However, at intermediadet distances, a more

of tu anddu. The improved adiabatic behavior Wi (R) accurate calculation would allow the electrons to see the shift

comes about because the IA approximation incorporates afif the muon density and thus to see partial charges on both

of the terms from the SA approximation, but also some termshe d and thet that change withd-t distance.

that would normally be considered nonadiabatic in the stan- An approximation neglecting all finite-size effects has

dard formalism{44]. been previously usefd!7,48 to calculate the energies of the
As is shown in Sec. IV A, the IA potential gives consid- various bound states ¢fdtu)q,de€]. In those calculations

erably more accurate values for the binding energies of théhe entiredtu molecule was treated as a point particle so that

five bound states aftu than do the BO or SA potentials. It the six-body complex was treated equivalently to a diatomic

breaks the symmetry, so that for the lowest state the muonimolecule. Using their calculations one can estimate the po-

wave function shifts over onto the triton & gets large. sitions of the resonances based on the conservation of en-

However, because the second term in Egql5 enters per- ergy:

turbationally rather than variationally, this shift occurs too i

rapidly, and the second term in the equation gets too large  E[Z]+E[D2], j, + E;k=E[Xded,«+E[dtu]y,

and produces a small unphysical barrier at arouag .8That (2.1

this barrier is unphysical was shown by Cohen and Struensee

[44] who did two-state nonadiabatic coupled channel calcu- _ _ . .

lations ondtw using an IA internal basis. The two states theyWherex:dt'“’ My=Mg+my+m,, (v;,];) are the rovibra-

ncluded use the polentl enery cuves tal i (072 U ILTOS 0L e Ol e
respond to the two channelg.+d anddu+t. No sign of q P g

the barrier appears in their scattering results because off dPOUhd states of.the f'Ct.'tlous dla'Fomlc mgle&ule whettg is
eated as a point particle. In this equati@}, corresponds

agonal radial coupling terms cause the effects of the barrietlr . o .
g ping the relative kinetic energy betweéhand D, that gives

to cancel. Unfortunately, the values of Cohen and Struens di idul
[44] for the two terms of Eq(2.15 are no longer available ''S€ t0 @ resonance corresponding to a partidulaK). How-

[45] but an approximation to the first term was obtained asVer Sif‘ce we haye ipcluded_some finjte-size effects in our
follows. Cohen and Struensged] did perform an adiabatic c@lculations, the kinetic energies that give rise to resonances
to diabatic transformation on their equations, and the resul2ccording to Eq(2.16 will not exactly match the positions

ing 2x 2 diabatic potential matrix was still availabjas]. ~ Of Our resonances. . .
This was diagonalized and the resulting derivative coupling Furthermore, conservation of angular momentum requires
neglected. Its lower root gave a potential which is smoot hat

and which dissociates properly to the+d limit. We have

used this potential here and will refer to it as having been 3. =3+R 2.17
calculated in the |A approximation. tot ' '

To convert thedtu potential into an effective D poten-
tial, the effect of electron screening has been added pertusince the angular momentum oty is J=1, and in our
batively. Cohen and Struensp&4] have calculated the elec- calculation we have only considerel,,=0, then we must
tronic component in a BO formalism, and we have used theihave K =1. We therefore cannot yet account for resonance
results in our calculation. broadening effects due to multiple valueskoffor nonzero

Relativistic and QED effects are not formally included in J, ).
any of the potentials that we have used. As is discussed Harstonet al. [52] have performed perturbation calcula-
further in Sec. IV A, the shift in binding energies caused bytions intended to yield a value for the finite-size corrections
these and other nonadiabatic effects is incorporated into oup the energy of (dtu),;de€]. They have obtained correc-
calculations by scaling thetx potential such that it exhibits  tions up to first order in accuracy, but have concluded that a
the correct binding energy of 0.5966 eV. This assumes thajrecise estimate would require the evaluation of higher-order
thedtu molecule remains in its lowe$t=0 hyperfine state terms. A prediction for the finite-size corrections for the six-
throughout the entire reaction, wheffeis the spin of theZl'  body complex, which is expected to be of the order of sev-
atom(i.e., F=5+8,). This is a valid assumption due to the eral meV, is therefore presently unavailable. However, Har-
smallness of relativistic effects and the large size of the hyston et al. [53] have obtained a value of 0.5 meV for the
perfine splitting[46]. finite-size correction to thedtw) 1, molecule, resulting in a

binding energy of 0.5961 eV. We have scaled odarfiaten-
o . tials so that they give this value for the binding energy of the
C. Finite-size effects and resonance positions (1,1) state.

In Eq. (2.1) we have taken the PES to be pairwise addi- Finally, we have neglected corrections to the 0 hyper-
tive. This includes some of the effects due to the finite size ofine energy levels of thé atom that are due to the presence
the 7D and omits others. It includes the effect due to theof the other particles. These corrections constitute a shift of
finite size of the equilibrium bond length of this molecule. less than 1 me\/46].
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IIl. THE SCATTERING CALCULATION Q S,
IN THE APH FORMALISM {q}=T(XT) s |’ (3.9
In this section we briefly review the scattering theory in ) _
the APH (adiabatically adjusting, principal axes hyperspheri-WhereT(x.) is the proper, orthogonal>66 matrix,
cal) formalism forJ,,;=0 and outline details particular to the )
present calculation. Further details concerning the APH TG = cosy,l  siny.l 3.5
method for nonzerd,, are given by Pack and Par&0]. A Xr —siny,l cosy,l|’ '

sample of some of the subsequent calculations using this
method, with emphasis on its practical application, is givenand| is the 3<3 unit matrix. The kinematic anglg, is a
in Refs.[49-51. continuous variable, withr denoting its origin. Asy,— 0, Q
and g becomeS, ands.. This angle is converted into an
A. The APH coordinates APH coordinate,y;, wherei denotes the initial scattering
The choice of coordinates that are appropriate for the gearrangement, by choosing it to take on a value that maxi

. P ) mizesQ=|Q|. This is possible ag; is a function ofS,, s,
famn?rt]fy giéh?afftirgnug?eé dc?gsmlltera_l;log :i'r?'sr:errrlflaalr;% Or:)'nd(ﬂ)r. Such a choice results i® andq being in the di-

flt'l 9 hu Bf/ werg it sults II | t'l ' tl;1 i UNtections of the instantaneous principal axes of inertia of the
of imé when perlorming scattering caicufations tha reqUIresystem in the plane of the atoms, with associated moments of

a large amount of computation. In the case of reactive scale o rtiamg? — 2 :
. L ; nertiamg- andmQ<, respectively. Also, as atombecomes
tering where the initial reactantg.g., 7+ D,) are different q Q P y

) 1 i infinitely far from the other two atoms,
from the final productge.g., D+ D7), it is convenient to use y

a coordinate system that transforms smoothly from one ar- im Q=+S (3.6)
rangement to the other. Hyperspherical coordinates have S o o '
been found to satisfy this condition, and a number of differ- (s, finite)

ent types have been used for atom-diatom reactive scattering
calculations(see, for example, Ref§30—32). The coordi-  This supplies the desired link between the three channels.
nates that we have used are Huabatically adjusting, prin- The APH internal coordinatesn the plane of the atoms
cipal axes hypersphericd/APH) coordinateq30]. In what  are defined byp, 6,xi}, where
follows, we review how the APH coordinates are related to
other well-known but less sophisticated coordinates. T .

Let us denote the atoms, for example, in reactibid), by 0= 5—2tan (a/Q), 3.7
A, B, andC, with A the atom in the entrance channel. There
are three possible sets dhcobi coordinates{R,,r.} (7 and the hyperradius is defined by
=A,B,C), depending on which scattering channel is under
consideration. Thus, for exampl, is the position vector of p=(Q%+q?)¥2=(S2+s2)12 (3.9
atomA with respect to the center of mass of atoBiandC

as origin, and , is the position vector of ator@@ relative to  Note that asT(y,) is orthogonal,p is invariant under the
atomB. _ _ _ transformation(3.4). These coordinates are very suitable for
The mass-scaled Jacobi coordinatage defined af30] describing rearrangement processes since tfigyadjust
S—dR s—r_/d 3.0 qqiabatically to follow any atom that Ieavg; the other two,
oo T T ' (ii) treat all arrangements equivalently, afiid) make pos-
sible a smooth transition between channels. They are particu-

where larly suitable for our purposes as they give a dynamical de-
1 2 scription of the resonant compléxdtw),dee] that occurs
d.— g( 1— ﬂr” e MaMgMc (3.2 in both reaction(1.9) and reaction(1.1).
T |m M ' M ' ' In practice it is often convenient to transform to a simpler

set of coordinates outside the exchange region, when one
and M =m,+mg+ mc is the total mass of the system. The atom is far away from the other two. In our calculation we
resulting kinetic energy operator is symmetric in that thetransform toDelves coordinates=or a given arrangement
same reduced mass factor is applied to both of its compathese are defined by the hyperradjysas in Eq.(3.9), the
nents, i.e., hyperangle

A 1, 9, =tan (s,/S,), (3.9
T=— o=(V24V2), (3.3
moo and® ., the angle betwees, andS, .

This property proves to be advantageous when transforming
to other coordinate systems.

The APH coordinates are obtained by performing an or- The total Hamiltonian in APH coordinates, fd,=0,
thogonal transformation, takes the following form:

B. The scattering calculation
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2 2 -
N M9 0 B Ri®@(0,xi:0) =Elp) P 0,x15pe). (319
H =5 ——p 5=
2mp> dp" dp 2mp
a . d 1 & The surface function eigenvaluégp,) represent effective
X sin20 39" 20£+ St o 1"7_)02 +V(p,0.xi). potentials for thep motion to the extent that this motion is

slow enough that th@ and y; motions can adjust adiabati-
(3.10  cally. In the asymptotic region of the infinite the off-
diagonal matrix elements in Eq3.12 become zero and
&(pg) become equivalent to the diatomic bound state ener-
gies.
In the calculations the range is divided into a number of In-our galculatlons_, forp<_0._92, the surface functions
were obtained by using a finite element meth@EM).

:lctevrv?lsn 0t|r rsg}cntorfst.hOn tr,:ar: isec)t(or,ntdhe d ?r\]/er?)wt"itzo i fThese methods are ideal at smalwhere the surface func-
. ave function ,c,) ?s_ys em 1S expa e” o a basIs Set Ol 15 are delocalized over much of the surface of the hyper-
sector adiabatic” or “diabatic-by-sectors” “surface func-

AN ; . sphere. However, ap is increased and the arrangement
:'r?;sseg(;ga’)_(i 1p¢), Which are determined at the center of channels become more localized in small regions of the sur-
Pe-

face, FEMs require the use of very fine grids and become
N inefficient to use. Eventually, due to computational limita-
W=—p 52D yl(p)D (0, Pe), (3.1  tions, it becomes impossible to obtain accurately converged
m t surface functions. We used as fine a grid as we found was
N . possible, with over 500 intervals hand over 2000 intervals
where ¢ (p) is regular atp=0 andn=1,..N denotes the i, A second method which is often used at smalh
particular solution under consideration. The inclusion ofgantum reactive scattering calculations is the discrete vari-
Wigner D functions of the APHexterna) Euler angles in  gpje representatioDVR) method. This method is usually
Eq. (3.11) would be necessary i, were nonzero. Fodioc  more efficient than FEMs at larger valuesgfbut in cases

HereV(p,0,x;) is the potential energy surface. It depends
only on the three internal coordinates. In our calculatigns
is the pairwise additive potential of E(R.1).

=0 only even parity p=0) solutions exist. like the present calculation where one diatomic molecule
Use of this wave function gives the coupled channel scate g. D7) has a much shorter bond length than anoteeg.,
tering equations ag30] D,), FEMs prove to be more efficief§0].
2 omE For p>0.92 an analytic basis methddBM) [50] was
—t —— | M) used. This method uses basis functions that are analytic,
2 72 i (p ; . ; . .
ap simple harmonic functions of an anharmonic variable, allow-

om ing for the inclusion of anharmonicity. The basis functions
m ‘)P : n tered in the arrangement channels and therefore result
=7 2 (PO.xi:p)[Hi| e (0,xi5p)) ¥ (p),  arecen geme nd th
t/ in a very compact representation at laggéVhile this ABM
(3.12 method works well for most reactions involving diatomic
molecules where the potential as a functiomXfis nearly

where harmonic, we experienced difficulties in obtaining converged
results for the arrangement involvingZPwhich is an ex-
- h? 4 9 d 1 52 tremely anharmonic molecule. We solved this by modifying
Hi=— 2mp2|sin26 96" 205t si7 e ax2 the basis functions to better allow for the case of anharmonic

molecules. The details of this are given in the Appendix. In

2 our calculation we used basis functions with rovibrational

+ 8mp? +V(p.0.xi), (3.13 quantum numbers up te (j) = (14,22) for D, and (30,3 for
D7T.
andE is the total energy of the system. Equatid8sl? are In our calculations we used 515 different hyperradial sec-

solved forp values in a finite number of intervals or sectors, tors by varyingp logarithmically from 0.66, to 10a,. The
ranging frompmin 10 pmax- Pmin IS chosen such that all sur- surface functions corresponding to the lowest 50 eigenvalues
face function eigenvalues are strongly repulsive, whilg,  &(p) were calculated, and 50 close-coupled equations were
is well outside the exchange region. The scattering paranthen propagated using the log derivative methd4d]. Two
eters are determined by carrying out an orthogonal transfoiseparate calculations were performed using two different
mation atpqa from the APH wave functions to laboratory PESs, corresponding to treating ttigu potential in the BO
fixed Delves wave functions, writing the asymptotic Jacobiand IA+ formalisms as outlined in Sec. Il. Resonances were
coordinate wave functions in terms of Delves coordinateslocated by performing calculations around the expected reso-
and matching them to obtain the reactancé&omatrix. nance energies, given by E(.16 for E';'{‘<0.6 eV. The
The surface functions(6,x;,p;) are independent gb  resonances were then mapped out by performing calculations
in each sector as they are determineg@ atthe center of the  with energy increments of about 0.1 meV, and interpolation
sector. These functions are obtained by solving a twowas used in between these mesh points.
dimensional Schidinger equation on the surface of the hy-  The calculations were performed on a Sun Ultra 1 com-
persphere, puter, which needed about 1 week of CPU time to calculate
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04 TABLE I. Binding energies ofltu (J,v) states calculated using
potentials obtained in various approximations as outlined in Sec. Il,
and compared to the exact nonrelativistic values. All energies are in

3 045 units of eV.
®
“i 0.5 Exac_t_ .
o (J,v) nonrelativistic BO SA 1A 1A+
\g; -0.55 1,9 0.66 8.4 157 ~-2 0.97
- 0, 34.83 43.7 53.3 31.2 33.71
0.6 (2,0 101.42 106.6 123.3 99.9 100.54
. . . . . (1,0 232.47 239.4 253.9 230.3 230.75
0 2 4 6 8 10 12 0,0 319.14 329.2 3409 317.2 317.74

Rgy (units of a,)

FIG. 1. Potential energies aftu as a function of thenternu- L . .
clear distance, calculated using various approximations. Distanceblndlng energies that are less accuratere tightly bound

: ; . . . than in the BO.
and energies are in muonic atomic units wherg=(me/m,)ag . . — .
and 1 m.a.u=(m, /my) a.u, The IA potential, however, gives binding energies that are

about a factor of 10 more accurate, but, due to the unphysical

barrier, the crucial {,v)=(1,1) state is calculated to be

the surface functions and about 1 hour of CPU time pegjighty unbound. However, the A potential yields &1,1)
scattering energy to propagate the close-coupling equationginging energy value of 0.97 eV. The binding energies of all

five states are most accurately calculated using the pb-

tential.
V. RESULTS The potentiaVp, as required for the PES of E@.1), is
A. The dtu potential interpreted as being a function of the interatomic distance

(i.e., the distance from the center of mass of D to the center
of mass of7); the binding energies of the varioaku po-
tentials considered in Table | have assumed the radial coor-
dinate to be the internuclear distance. This approximation is
almost equivalent to the replacement mf; in Eq. (2.15

As outlined in Sec. Il, the muon to nuclei mass ratio is too
large for the applicability of the BO approximation. The
most accurate calculation to date oflu potential which is
a function of only the internuclear distanBehas been per-

formed in the IA approximation by Struenset al. [55]. with mgr. The resulting binding energies for the +Apo-

There have also been a large number of variational calcula-. . ; .
. . . ential are shown in Table Il. The effects of electronic
tions performed which have resulted in much more accurate : .

- . Screening were taken into acco(iat] through a BO formal-
values of thedtu binding energieqsee, for example, the

: . . ism and added to thdtu potential to convert it into a D
review articles by Froelich5] and Ponomaref3] for a com- . . ! _

. potential. This IA+ potential was then scaled in such a way
parison of these

We have calculated thdtu potential and the binding as 1o yield a precise Ti1,1) binding energy, including rela-

energies of the various)(v) states in the BO and SA for- tivistic and QED effects, of 0.5961 eV. This value incorpo-

malisms as outlined in Sec. Il A. We have also used the IArates a 0.5 meV shift53] of the dtu.(1,1) binding energy

potential calculated Struenseeal.[55] as well as the 1A W.heT‘ taking Into account electronic screening. The resulting
. . ) . . binding energies of all five states are shown in the last col-
potential, as outlined in Sec. II B, using the calculations of
. . umn of Table II.
Cohen and Struens¢é4]. These potentials, as a function of . ) .
) . . The potentials were scaled by first shifting the curves
the internuclear distance, are shown in Fig. 1. Only the IAShOWn in Eig. 1 so that their asvmptotic eneraies are zero
and IA+ potentials dissociate at largR to the correct 9. ymp g '

e . " and then stretching them in the vertical and/or horizontal
asymptotic limit corresponding to the binding energyt af
The main difference between these two potentials is the pres- o . o .
ence of an unphysical barrier in the IA potential. TABLE II. Binding energies of the original 1A dtu potential,
The SA approximation yields a potential energy functionafter replacingmg, with mp7, and after scaling to yield the exact
Vsa(R) that represents an upper bound for the exact poter{_elativistic value for the1,1) state. All energies are in units of eV.
tial energy at anyR [41]. However, this does not mean that

the binding energy of any particular state is necessarily a Exact Original Aft(?\r
lower bound to the exact value. This is because the bindin§’?) relativistic IA+ Mg —Mp7  scaling
energy is defined to be the difference between the dissocigy 1 0.60 0.97 212 0.60
tion energy at infiniteR and the energy of a bound state. The (g 1) 34.77 33.71 33.45 31.95
binding energies of the bound states are compared with thg ¢ 101.4% 100.54 103.93 96.31
nonrelativistic “exact values” in Table I. Although the total 1,0 232.58 230.75 233.25 224.02
energies of the bound states are more accurately predicted l'()(y’o) 319.41 317.74 319.30 30953

the SA approximation than by the BO, the overcompensation
of the dissociation energy in the SA approximation results irfRelativistic and QED corrections are unknown for this state.
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0.05

-0.05

V' (units of m.a.u.)
Energy (eV)

0 2 4 6 8 10 12
Rp,7 (units of a,) 1 2 3 4
P (units of ag)

FIG. 2. Potential energies aftu as a function of thenter-
atomicdistance, in the BO and IA approximations after scaling to FIG. 4. As in Fig. 3, magnified to show the intersection of the
yield tl_we exact value for the binding energy of #1e1) stgte. Both curve that asymptotically corresponds t@(@,1) with the curves
potentials have been shifted so that their asymptotic values agy .. asymptotically correspond to the varidDs states. The D1,

proach zero. Distances and energies are in muonic atomic un"ﬁ curve is the one that exhibits the deepest well in this figure.
wherea,, = (mg/m,)a, and 1 a.m.u=(m,/my) a.u.

directions such that they yield the correct binding energy forgies of the initial reactants in their ground states, E.7]

the (1,1) state, using the pairwise additive potential. For the+E[D,]q. In the asymptotic region of large the bottom
IA+ curve, this was done by multiplying in the vertical di- four curves correspond to the four lowest states @f Dhe
recton by a factor of 0.977, ie., V23*{R) remaining network of curves correspond, in the asymptotic
=0.97WVIS¥{R). The BO curve was scaled according to region, to DI(1,1) and the various Pstates.
VER{R) = 1.10vVas¥*{0.89R). A comparison of the re- At p=0.92 there is a slight discontinuity in each of the
sulting scaled potentials is shown in Fig. 2. Since we havéurves due to the switchover from the FEM to the ABM.
used the pairwise additive potential for calculating the bind-This discontinuity is more evident for higher states, which
ing energies in this scaling procedure, the radial distance n@re not as important as the lower ones. Also, apart from the

longer corresponds to the internuclear distance, but the intefour lowest curves, which are not very important with regard
atomic distance. to the intermediate resonant complex, the eigenvalugs at

=0.92 are all well above the classically forbidden boundary

for the low scattering energies considered here.

. i . Figure 4 is a magnified version of Fig. 3, which clearly
In Fig. 3 we show the 50 lowest surface function eigen-ghows the eigenvalues of the state that corresponds to

values&(p) for the IA+ calculation, obtained by solving the p7(1 1) in the asymptotic region as it intersects the various

two-dimensional Schdinger equation of Eq3.14. In this  p_(;, j) states. The former curve is the one that exhibits the

figure zero energy is defined as the sum of the binding eneeepest well. The reaction proceeds by initially starting on

one of the D states at largp. As the7 atom approaches D

B. The potential energy surface and surface functions

100 LRRRRRRRRE p decreases until it attains a certain critical value at which
] there no longer exists a potential barrier between the Two
0 1 +D, and D7+ D arrangements, allowing exchange to take
] place. Forp less than this value, the intermediate resonant
% 100 [ k complex[ (dtu)q,de€], which corresponds to the curve with
=z i ] the deepest well, is very likely to form. The curve corre-
S [ ] sponding to the resonant complex is clearly classically for-
5 200} . bidden in the asymptotic region. In the muon catalyzed fu-
i ] sion reaction(1.1), after the system has oscillated in this
300 | ] potential well for a while, the complex is then most likely to
I ] undergo irreversible decay by an Auger process. For our cal-
400 o culation corresponding to reactida.9), the most probable

0 1 5 3 4 event is for the complex to transfer to one of the curves

corresponding to a pPstate in the asymptotic region. How-

ever, it is also possible that the resonant complex will decay
FIG. 3. The lowest 50 surface function eigenvaldgg) for the ~ to one of the four bottom curves that asymptotically corre-

IA+ calculation. The bottom four curves correspond asymptoticallyspond to [J.

to the lowest four bound states offlDZero energy is defined as the A three-dimensional plot of the PES calculated using the

ground state of the initial reactants. IA +D7 potential, atp=1.7a,, is shown in Fig. 5. Here we

P (units of ag)
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FIG. 5. The current PES of thedtudee] system plotted in FIG. 6. As in Fig. 5 forp=1.6a,.
terms of the Delves coordinates for tBe+ 7 arrangement, ap
=1.7a,, using the IA+ approximation for thedtu potential. The  The total reaction probability or reactivity for a particular
energy has been plotted using a logarithmic scale, and the bottom @fjtial channel is obtained by summing over the reaction
the D7 well has been artificially truncated. probabilities of all possible final rovibrational states, i.e.,

have used coordinates similar to Delves, corresponding to

the D,+ T arrangement. In these coordinates, tHe=0 line PvRijiZE_ P (viip)- (4.2
corresponds to the overlapping of the two D atoms, while the vl

(r/R=2,0=0) point corresponds to @ atom overlapping
with one of the D atoms. Fqgr=1.7a, there are two separate
potential “wells”: the line at abour/R=1.35 corresponds
to the well around the Pmolecule, while the circular feature
around the peak atr(R=2,0=0) corresponds to the well
around ¥ Initially, as the7 atom approaches the,Dnol-
ecule andp is decreasing, the linear well associated with D

moves closer to the circular well associated witf. [At a transitions in § that result in even changes pf The energy

critical value of p, the two wells touch each other so that : L
. . : E on the horizontal axes of this figure corresponds to the
there no longer exists a potential barrier between the two

arrangements. This occurs at aroyd 1.6a,, as shown in
Fig. 6. The removal of the potential barrier that classically
forbids a rearrangement reaction from proceeding first occurs pP=152
at ®=0, corresponding to a linear configuration of the three
atoms. Asp is decreased further the two wells continue to
merge together, as demonstrated by Fig. 7 wherd..5a,.

For p smaller than 1.5, the well moves into the repulsive
region of the B potential.

In our case there are only four final rovibrational states
that can form owing to energy considerations, corresponding
to the four lowest IO states. In Fig. 8 we present the total
reactivities, for the 1A+ calculation, for initial B rovibra-
tional states of¢; ,j;) equal to(0,0), (0,2), and(1, 0. These
represent the ground, first rotationally excited, and first vi-
brationally excited stategnuclear symmetry allows only

C. Reaction probabilities: resonances

The surface functions calculated from E@.14 were
used to solve the close-coupling E¢3.12), from which the
reactance matrix and reaction probabilities were calculated.
For rearrangement reactions where the initia{:pj;) mol-
ecule reacts with & atom to yietl a D atom and &D(v+j+)
molecule, the reaction probability is related to the cross sec- 1
tion by

w 25 -15
Jiot, i Py — R ;

o, (Uiji*)vfjf)_P(ZJtot+1)Puiji(vaf)- 4.7

I

FIG. 7. As in Fig. 5 forp=1.53,.
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FIG. 8. Total reactivities of the |A calculation, with the initial
D, molecule in its ground0, 0), first rotationally excited0, 2), and
first vibrationally excited 1, 0) states. The energy is with respect to
the D, ground state.
initial kinetic energy relative to the grour@,0) state of B.

The kinetic energy corresponding to the scattering @fom

the D,(0,2) state, for example, would then be equal Eo E — EX" (meV)
—E[D5]pot+ E[D,]ge. This figure demonstrates the domi- o .
nance of the resonant behavior of thie D, reaction over the FIG. 9. Magnification of Fig. 8 around the=3 resonance, also

nonresonant behavior. The resonances shown correspond $gowing the BO calculation. From Table IEg;"=281.0 meV.

v=3 andv=4 in Eq. (2.16. For the(0,2 state, thev=4

resonance is much weaker than the-3 resonance and  The partial widths for reactive scattering;, and the par-

therefore cannot be seen in this figure. Forthé) state, the tial widths for backscattering,?, were calculated by fitting

threshold energy is such that only=4 resonances are pos- the total reactivities to the Breit-Wigner formula.10), with

sible. 'Y set equal to zero,
A magnified version of this figure around the energies

corresponding to the=3 resonance is shown in Fig. 9, and R

around the energies correspondingite 4 in Fig. 10. Also Pviii(E):

shown in these figures are the total reactivities corresponding

to the BO calculation. There are significant differences in, . . .
g . . This was done by using the method of least squares to obtain
both position and magnitudes of the resonances, depending .. . 0 0
timum values for the variables, , I';, andI'; for ener-

on whether the |1A- or BO approximations are used for the R

dtu potential. The positions of the resonances are compare/€S WhereP, ; (E) was calculated to be greater than half of
in Table Il with those that are obtained in the approximationits maximum valudf’,'fiji(E,). Although Eq.(4.3) is symmet-
wheredtyu is treated as a point particle. The kinetic energyric with respect to the two partial widths, the values of the
resonance positions in this approximatidty,’, are calcu- two widths were found to differ by several orders of magni-
lated from EQ.(2.16. For v=3, the resonances in the A  tude. Our results for nonreactive scattering indicate that the
approximation are found to occur at energies of about 4 me\probability for elastic backscattering is much greater than
greater thalEE'{‘, while in the BO approximation they occur that for any other process, and we were thus able to assign
at about 1 meV greater. The position of the-4 resonance rg to the larger of the two partial widths in EGt.3), andl“ﬂ

is about 5 meV greater the; , in the IA+ approximation, to the smaller. Although our calculations fBf do not in-

and about 2 meV greater in the BO approximation. Since outlude contributions from the inelastic backscattering process,
calculation does include some finite-size effects, differencesince elastic backscattering was found to strongly dominate,
of about this magnitude were expected. The center ofvthe this omission should be virtually negligible.

=2 resonance is calculated to occur just slightly below Use of the hyperradius in all configurations makes the
threshold, but since we have considered only the case aferivation of the Breit-Wigner formula for the resonant cross
Jiot=0, resonance broadening due to excitation of higher rosections similar to that of Mott and Massgy6]. Our reso-
tational levels of the intermediate complex has not been innances were found to fit this formula quite closely. We found
cluded in our calculations. The rotational energy ofthat the position of the resonances remained almost the same
[Xded],k, for a given vibrational quantum numbet is  if coupling between channels was omitted, but the height of

about 2. K(K+1) meV. the resonant cross sections altered significantly. This shows

rirs
(E—E)2+3(T2+19?%

4.3
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FIG. 10. Magnification of Fig. 8 around the=4 resonance,
also showing the BO calculation. From Table IIEX"
=562.0 meV.
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TABLE IV. Back decay partial widths of the#=3 reactive
scattering resonancef?, and the corresponding reactive partial
widths, T'%, for J,,=0. All energies are in units of eV.

(vi)  TAA+)  TR0A+)  TYBO) 'y (BO)
(0,0 1.0x10°% 6.0x10° 1.4x10°% 25x10°°
0,2 1.0x10°% 1.8x10% 1.0x10°% 1.5x10°°

ences between the HA and BO calculations fof'?, while

I'? appears to be more stable. For the 3 resonance the
partial width for back decay is about 1 meV, while for the
v=4 resonance it is on the order of 2 meV. As shown in Sec.
I A, the rate of formation ofitu, and therefore the theoret-
ical limit on the rate of the entire MCF cycle, is essentially
dependent upoif, .

V. CONCLUSIONS

We have made a successful application of the APH
method of quantum reactive scattering by Pack and Parker
[30] to the treatment of the key+ D, reaction in the muon
catalyzed fusion cycle, fal,,;=0. We have used an adiabatic
potential that takes into account, as far as possible, important
corrections to the Born-Oppenheimer approximation due to
the fact that the muon is much more massive than the elec-
tron. Remaining inaccuracies are substantially reduced by
scaling. We have demonstrated that the BO approximation
leads to results that are significantly different from those ob-
tained from a sophisticated adiabatic treatment of the muon,
although the partial widths for backscattering are somewhat
more stable.

In our calculations the resonances in the rearrangement
channel occur at energies a few meV greater than where they
are predicted to occur if finite-size effects are omitted and
dtu is considered to be a point particle. It is clear that the
rearrangement reaction essentially proceeds only through the
resonances. This is a vivid illustration of the mechanism for
muonic molecule formation first suggested by Vesrftirto
explain the temperature dependence of the cross section for

that the wave functions used to evaluate directly the partiagidu formation.

widths in the Breit-Wigner formula must take this coupling

into account, if accurate results are to be obtained.
In Tables IV and V we show? andT'¢, for the reso-

It has not been possible at this stage to include directly the
Auger channel that leads to the most rapid formatiod tpf
in a state withJ=0, in which fusion takes place within about

nances shown in Figs. 9 and 10. There are significant differl0” **se¢3]. We have instead considered the reactibi9),

which proceeds through the same resonances of the interme-

TABLE llI. Positions of the energy resonances with respect todiatelcompm){(dtﬂ) 11de€] as in the muon catalyzed fusion
the ground-state energy Bf,. EX" corresponds to the positions of reaction(1.1), and have demonstrated how the rate of forma-

the resonances fdk,=0, and therefor& = 1, in the approximation

where all finite-size effects are omitted atht. is treated as a point

particle, in accordance with E¢2.16). All energies are in units of
ev.

TABLE V. Back decay partial widths of the=4 reactive scat-
tering resonancesl‘g, and the corresponding reactive partial
widths,l“ﬂ, for J,.~=0. All energies are in units of eV.

v gkin E(IA+) E(BO) (vi.ii) 1A +) 1A +) riBo) r2(BO)

2 —0.0101 <0 <0 0,0 2.1x10°%  7.0x10°° 2.3x10°°% 50x10°8
3 0.2810 0.285 0.282 0,2 2.1x10°°% 2.0x10°% 2.3x10°% 1.2x1077
4 0.5620 0.567 0.564 (1,0 2.2x10°°% 6.2x10°% 2.3x10°% 3.3x107°
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tion of dtu, which imposes the theoretical limit to the effi- pendix we make a change in the form xfto increase the
ciency of the entire MCF cycle, can be obtained from such aate of convergence in this case.

treatment. This essentially involves the calculation of the As can be seen from Eq&l7)—(19) of Ref.[48], the ¥¢
back decay partial Widths]:iwf, We have calculated these dependent part of the basis functions in the original ABM

widths, forJ,,,=0, to be about 1 meV for the=3 resonance Method was chosen to be
of the intermediate complex and about 2 meV fet 4. Y oS- 1

The next step in these calculations should therefore be to f_( £:p) ~ b, (2)
incorporate states with,>0. This would allow us to calcu- sin29¢  Be(dy) T

Jiot .
late I' g™ for all Jyo;, and therefore)xdm(T)_. A future im where ¢ is a simple harmonic oscillator function af,
provement to our method would be to include the Auger

channel directly into the calculation, rather than relying on 1 2,
the Breit-Wigner formula. Also, improving the PES used b,(21)= (7727 (1 ,)]12Huf(2f)e_zf . (A2)
would include all finite-size effects. r

(A1)

and the anharmonic variable takes the form
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—+Cq, (A4)
f

wheren=1 corresponds ta; of Eq. (A3). Asnis decreased
the basis functions should behave more like Morse functions
at largep, as shown by SchwenK&7]. In order for the new

APPENDIX: IMPROVEMENT TO primitive basis to retain orthonormality, the normalization

THE ABM BASIS FUNCTIONS factor of Eq.(23) in Ref.[48] is replaced with
The ABM method was developed by Parker and Pack iP3(2.9 112
[50]. In determining the surface functions in a given sector as B.(9.)= S| (29¢) (A5)
. . . f( f) 2n71 'nZn Y b 52n 9 !
functions of the APH angular coordinat@sand y; in the n (afsi 1+ D¢ CO £)

7¢th arrangement channel, it is convenient to transform to
Delves angular coordinate® and® for the channel under and the parameters of EqeA11)~(A13) of Ref. [48] are

consideration. These coordinates are described at the end '&Placed with

Sec. Il A. cod*t1 g
This is an efficient way of obtaining surface functions that A= Mg
satisfy the requirement of being centered in arrangement °f 6n°sin"~* 9.

channelr;. O is the internal rotational angle of the three-

( 3(n—sin? 9y, +cos ﬂMf)gyz

body system. Thus the dependence of a given basis function 3 .

on this variable can be taken into account by including, as a + gﬁsmﬁMf cosdy, |, (AB)
factor, an associated Legendre function, expressed in terms

of cosOs. sim+1 D,

The variabled; describes what is basically a vibrational
motion. The dependence of the basis functions on this vari-
able can be taken into account by using simple harmonic
functions expressed in terms of an anharmonic variaple _ %SinﬁM cosdy, ) (A7)
This variable is a function of; chosen so as to match the 2 ! !
desired equilibrium position, fundamental frequency, and an-
harmonicity for the basis functions. ci=bycot’ Gy —astar dy, . (A8)

Full details of the method are given in the paper by Parker
and Pack[50]. However, for molecules such as7Dfor  In our calculations we have found that a valuerst0.6
which the potential as a function af; is extremely anhar- allows for convergence of the I01,1) state to within 0.1
monic, the convergence of the surface functions as the nunmmeV using basis states with maximum vibration number
ber of basis functions is increased is very slow. In this ap=30, instead of up t@ =70 which is required fon=1.

I . _ 12
bf_6n2co§‘lﬂMf 3(n+sir? 9y, —cos dy )93
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