
PHYSICAL REVIEW A, VOLUME 61, 052713
Treatment of the tµ¿D2 reaction by the methods of quantum reactive scattering
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We have applied the methods of quantum reactive scattering to the key resonant reaction in the muon
catalyzed fusion~MCF! cycle that leads to the formation of adtm muonic molecular ion, in which fusion takes
place very rapidly. We have calculated reaction probabilities for the resonances that occur intm1D2 scattering
for incident kinetic energies less than 0.6 eV and total angular momentumJtot50. To reduce the six-body
problem to a three-body problem, the motions of the electrons were treated in the Born-Oppenheimer~BO!
approximation while those of the muon were treated with a sophisticated adiabatic approximation. The result-
ing three-body potential energy surface~PES! was represented by a pairwise additive approximation. Thedtm
part of the PES was scaled to allow it to exhibit the correct binding energy of the crucial (J,v)5(1,1) state.
Scattering calculations were carried out using a hyperspherical formulation, and the positions of the resonances
were found to occur at energies of a few meV greater than ifdtm is assumed to be a point particle. A
comparison of the resonances with the Breit-Wigner formula allowed us to calculate partial widths for back
decay,Ge

Jtot. Once these are known for all significantJtot , the rate of formation ofdtm can be determined. This
rate, next to the sticking fraction, is the most important parameter in determining the rate of the entire MCF
cycle. We have also carried out a calculation whereby the muon was treated in a BO formalism and have found
significant differences in the final results, demonstrating the importance of treating the muon as accurately as
possible. This work represents a successfulab initio calculation of this reaction.

PACS number~s!: 34.50.2s, 36.10.Dr
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I. INTRODUCTION

It has been known since about 1980 that a negativ
charged muon in a deuterium-tritium mixture at room te
perature can catalyze more than 100 nuclear fusion react
The muon~m! first of all binds a deuteron~d! and a triton~t!
to form the muonic molecular iondtm, in which the two
nuclei are so close together that fusion occurs very rapi
Thereafter, the muon is usually released and is thus fre
bring about further fusion reactions like a chemical cataly
There exist a number of review articles on muon cataly
fusion ~MCF! in the literature@1–7#.

One of the most important steps in the MCF cycle is
resonance mechanism, described by Vesman@8#, that leads
to dtm formation. As is well known, this resonant reactio
can take place because of a remarkable coincidence:dtm has
a weakly bound (J,v)5(1,1) excited state with a nonrelativ
istic binding energy 0.66 eV, whereJ is the angular momen
tum of dtm andv50,1,... denotes the vibrational states w
angular momentumJ in order of increasing energy.1

The key processes in this reaction are

1Unfortunately, the practice of listing the vibrational quantu
number last is deeply entrenched in the MCF literature. Howe
the standard practice in the spectroscopy, molecular physics,
chemistry communities is to use the notation (v, j ), with j 5J, to
denote such states, wherev and j are the vibrational and rotationa
quantum numbers, respectively. To minimize confusion, we w
use here the MCF notation fordtm but the standard notation for a
other molecular species.
1050-2947/2000/61~5!/052713~14!/$15.00 61 0527
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T1D2 �
back decay

ldtm

@~dtm!11dee# →
Auger decay

@~dtm!Jvde#11e,

~1.1!

whereD[de and we have definedT[tm. To a good ap-
proximation, the@(dtm)11dee# complex can be regarded as
H2-like molecule with one nucleus the particled and the
other thedtm system in its~1,1! state. As a consequence o
the very small binding energy of the~1,1! state, the energy o
the reactants can equal the energy of excited rovibratio
states of the intermediate complex in low-energy collisio
dtm can also be formed inT1D2 collisions by nonresonan
processes, but the rate of formation is much slower@9,5#.

The resonant formation of the intermediate complex c
taining the dtm molecule, with rateldtm , is, next to the
effective sticking fraction~the probability that in a given
cycle a side reaction occurs in which the muon ends
bound to ana particle and is thus unable to catalyze a
further fusion reactions!, the most important parameter de
termining fusion efficiency@5#. Given that the muon lifetime
is 2.231026 sec, and that about 1000 fusion cycles sho
be catalyzed by a single muon for MCF to be considere
viable potential source of large-scale energy production,
cycle rate for the entire MCF reaction must be greater tha
critical value oflcrit'43108 sec21. The rate of formation
of dtm must also, therefore, be greater than this value. T
rate is extremely energy~and therefore temperature! depen-
dent due to the resonance mechanism of reaction~1.1!. A
detailed knowledge of howldtm behaves as a function o
initial kinetic energy of the reactants in Eq.~1.1! is therefore
crucial.
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An experimental analysis of the dependence ofldtm on
the temperature@10#, as well as on the density of the initia
d-t mixture@11#, was performed by Joneset al. in the 1980s.
Their measured rates hovered aroundlcrit , thus highlighting
the importance of an accurate knowledge of the behavio
ldtm . Another experimental investigation is currently
progress by Marshall and co-workers@12–14#, while Naga-
mine et al. @15# expect to begin experiments shortly.

A. Previous calculations

Previous treatments@16–24# of reaction~1.1! have been
based on the Breit-Wigner formula for the resonant to
cross sectionsa(E) for the Auger process. Men’shikov an
Faifman@18#, for example, take this to be of the form

sa~E!5
p

k2 (
Jtot50

`

~2Jtot11!
Ge

JtotGa
Jtot

~E2Er !
21

1

4
~Ge

Jtot1Ga
Jtot!2

,

~1.2!

whereE is the energy of the relative motion ofT and D2, k
is the associated wave vector, andEr is the energy of the
resonant stater under consideration, relative to the energy
T and D2 at infinite separation. The partial widths are defin
as follows: Ge

Jtot is the back decay partial width for tota

angular momentumJtot andGa
Jtot is the corresponding partia

width for the Auger decay process. Equation~1.2! neglects
any target angular momentum and any spin angular mom
tum on theT, but these can easily be taken into account.

Using the relation that@16,18,25–28#

Ge
Jtot!Ga

Jtot!Er , ~1.3!

an approximate expression can be obtained forsa(E) of the
form @16,18#

sa~E!'
2p2

k2 Ged~E2Er !, ~1.4!

where

Ge5 (
Jtot50

`

~2Jtot11!Ge
Jtot. ~1.5!

Thus, in this approximation, the key parameter in determ
ing sa(E) is Ge , which is determined from a knowledge o
the partial widths$Ge

Jtot%Jtot50

` for the back decayprocess. In

deriving Eq.~1.4!, the resonances are treated as being of z
width. The effect of resonance broadening is taken into
count by Petrov and Petrov@22,23#.

The resonant rate of formation ofdtm, at a temperatureT,
is given by

ldtm~T!5nD2
E vc~E!sa~E! f ~E,T!dE, ~1.6!

wherenD2
is the density of the D2 molecules,vc(E) is the

collision velocity ofT relative to D2, and f (E,T) is a distri-
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bution function, which is usually assumed to be a Maxw
distribution, due to the thermal spread ofvc(E). The two
most recent calculations@23,24# both yield ldtm(T) values
that vary aroundlcrit , once again emphasizing the necess
for an accurate determination ofldtm as a function of tem-
perature~and therefore kinetic energy!. It is our aim to per-
form ab initio calculations ofldtm . As a start toward this
goal we have performed calculations for total angular m
mentumJtot50 using the methods of quantum reactive sc
tering.

B. The challenge

The treatments based on the Breit-Wigner formula are
part, phenomenological. The challenge is to carry out a
tailed quantum mechanical treatment of the reaction~1.1!.
We have shown@29# how a Breit-Wigner type formula for
sa(E) arises from a detailed close-coupling treatment of
reaction ~1.1!. However, the approach we used would
very complicated to apply numerically. An alternative a
proach is to adopt the methods of quantum reactive sca
ing that have already been applied to chemical reacti
@30–32#. We gave an account of how this might be done in
previous publication@33#.

Chemical reactions such as

H1D2↔HD1D ~1.7!

have been extensively studied using quantum mechan
methods. Reaction~1.1! is similar to reaction~1.7! in that
they both involve collisions between D2 and an atom con-
taining particles of unit positive and negative charge. Ho
ever, comparison of reactions~1.1! and ~1.7! shows that re-
action~1.1! has special features not present in reaction~1.7!,
notably the Auger decay process which leads to the los
an electron. Equation~1.7! corresponds quite closely to th
much slower side reaction

T1D2↔TD1D, ~1.8!

whereTD5@(dtm)Jv
e#. This reaction proceeds through th

same resonances as reaction~1.1!,

T1D2↔@~dtm!11dee#→TD1D. ~1.9!

In this case the resonant complex decays forward into
muonic molecule@(dtm)Jv

e# and aD atom or backward into

T1D2. Reaction~1.9! can be treated using methods that ha
been applied to reaction~1.7!. In this paper, we present re
sults obtained by applying the method that Pack and Pa
@30# have developed for rearrangement scattering react
of this type. An important question we face is how to obta
information relevant to reaction~1.1! from our treatment of
reaction~1.9!.

There is no easy way of including the Auger decay ch
nel directly in our present treatment. We assume that, fo
given partial wave, the resonant cross section for decay
the products on the right-hand side~RHS! of Eq. ~1.9! is
given by the Breit-Wigner formula
3-2
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sn
Jtot~E!5

p

k2 ~2Jtot11!
Ge

JtotGn
Jtot

~E2Er !
21

1

4
~Ge

Jtot1Gn
Jtot1Ga

Jtot!2

,

~1.10!

whereGn
Jtot is the partial width for the decay of the comple

into the products on the RHS of Eq.~1.9!. As we are not
including the Auger decay process,Ga

Jtot50 in our calcula-
tions. As pointed out by Men’shikov and Faifman@18#, the
coupling between the resonant channels is small as the
time of the resonant complex is much longer than the ti
the complex takes to complete a vibration. Thus, the vari
decay processes operate essentially independently, an
should be able to obtain accurate values forGn

Jtot andGe
Jtot by

fitting our results for resonant total cross sections to form
~1.10! with Ga

Jtot set to zero@33#. As pointed out earlier, quite
accurate values ofsa(E) can be obtained from a knowledg
of Ge

Jtot. If required, values ofGa
Jtot can be obtained from a

number of calculations@25–28#.

II. THE INTERACTION POTENTIAL

The system here@dtmdee# consists of six particles, eac
of which has a unit positive or negative charge. In a non
ativistic treatment at this stage, the total potential energ
the sum of all the Coulombic attractions and repulsions
tween the particles. However, an accurate treatment of
problem at the six-body level is not presently possible.
simplify the problem, we note that for this low-energy sc
tering problem the electrons move much faster than the
clei, and we use the familiar Born-Oppenheimer~BO! ap-
proximation to solve for the electronic motions with th
nuclei held fixed, average over the motions of the electro
and obtain an effective potential for the nuclear motio
Furthermore, although the muon is intermediate in mass
tween the electrons and the nuclei, it stays so close to
nuclei that it moves even faster than the electrons, and
can also average over its motions with the nuclei held fix
However, its mass is not negligible compared to the nuc
masses, and we treat it with a sophisticated adiabatic
proximation discussed in Sec. II B to account for that.

Use of these two approximations has the effect of excl
ing the Auger decay already discussed, but it should allow
other accessible processes to be treated quite accurate
reduces the six-body problem to a three-body problem wh
the bodies are the muonic and electronic atoms denote
Eq. ~1.8!, and they move on the resulting effective potent
energy surface~PES!. This greatly reduces the complexity o
the problem.

If the electronic-muonic problem just described we
solved accurately, it would require expensive computati
in which the motions of the muon and the electrons w
correlated and would yield a complicated three-body P
We hope to do that in future calculations. However, for t
purposes of this reactive scattering calculation on this s
tem, we note that theT atom is very small~about 200 times
smaller than a D atom!, and it has only a tiny polarizability
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As a result, it has an appreciable interaction with only one
the D atoms at a time, even if it is inside the electron
charge cloud of the D2 molecule. Because of this, we use
pairwise additive approximation to the PES; i.e.,

V5VDD81VTD1VTD8 , ~2.1!

whereVDD8 , for example, represents the interaction betwe
the two D atoms. Each of these diatomic potentials depe
only on the distance between the two atoms. This pairw
additive approximation includes some effects of the fin
size of muonic atoms and molecules but omits others,
these will be discussed further in Sec. II C.

The interactionVDD8 is the familiar BO potential for the
hydrogen molecule. It has been calculated accurately
Kołos and Wolniewicz@34#, and we use their results in th
present calculations.

VTD andVTD8 represent the adiabatic interaction betwe
the T and the D atoms. This attraction cannot be calcula
accurately enough using the BO approximation, as the r
of the mass of the muon to the mass of the nuclei is too la
In this case, the mass of the muonmm5206.8me and there-
fore mm50.056md . Thus, in the following subsection w
start with the BO approximation and discuss ways in wh
more accurate results can be obtained.

A. The Born-Oppenheimer
and standard adiabatic approximations

The total Hamiltonian for the internal motion of thedtm
system is

Ĥ52
1

2mdt
¹R

2 2
1

2mm~dt!
¹ r

21
1

R
2

1

r dm
2

1

r tm
, ~2.2!

whereR represents the internuclear vector pointing from t
lighter nucleus~d! to the heavier~t!, and r is the position
vector of the muon, relative to the center of mass of
nuclei. The reduced masses are defined as

mdt5
mdmt

md1mt
, mm~dt!5

mm~md1mt!

mm1md1mt
. ~2.3!

In the BO approximation the effectived-t potential is ob-
tained by fixing the nuclei and calculating the energy of t
resulting system,VBO(R), as a function of the internuclea
distanceR. In this approximation, the BO wave functions fo
dtm are written in separated form:

CBO
i ~r ,R!5Fi~R!fBO

i ~r ;R!, ~2.4!

wherei represents a particular solution and the muonic wa
functions fBO

i (r ;R) depend only parametrically onR. The
VBO(R) of interest is the lowest (i 50) eigenvalue of the
Schrödinger equation,

ĤBOfBO
0 ~r ;R!5VBO~R!fBO

0 ~r ;R!, ~2.5!

where
3-3
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ĤBO52
1

2mm
¹ r

21
1

R
2

1

r dm
2

1

r tm
. ~2.6!

The Schro¨dinger equation~2.5! can be solved exactly if both
sides are expressed in terms of prolate spheroidal coo
nates, as this equation is separable in these coordinates@35#.
For the method of evaluation as applied to H2

1, see, for
example, Bateset al. @36# and Wind@37#. Details of the so-
lution to a three-particle system in general are given,
example, by Hunter and Pritchard@38#.

The standard adiabatic~SA! approximation is the lowest
order correction to the BO approximation. Whereas in
BO approximation all coupling between the muonic a
nuclear motion is omitted, in the SA approximation the
fect of the coupling term involving¹R

2fBO
0 (r ;R) is included

in the potential to first order using perturbation theory. T
can be regarded as including in the potential the effect on
nuclear motion of the averaged motion of the muon in
ground state. Thus,

VSA~R!5VBO~R!1^fBO
0 ~r ;R!uĤ8ufBO

0 ~r ;R!& r , ~2.7!

where the perturbation correction to the BO Hamiltonian

Ĥ85Ĥ2ĤBO52
1

2mdt
¹R

2 2
1

2~md1mt!
¹ r

2. ~2.8!

The BO and SA approximations are particularly unsu
able for accurate calculations of asymmetric diatomic m
ecules. This is because the BO wave functions are symm
with respect to the two nuclei. For thedtm molecule, for
example, this results in an incorrect dissociation at largeR to
an equal mixture ofdm1t andtm1d. Sincetm has a lower
ground state energy thandm, the correct dissociation prod
ucts should betm1d. Pack@39,40# has shown how to solve
this problem within an adiabatic formalism; prior to this
was thought that computationally expensive nonadiab
methods were necessary.

For further details concerning the SA approximation a
its limitations, see, for example, the review by Kołos@41#.

B. The improved adiabatic and higher-order approximations

The improved adiabatic~IA ! approximation was devel
oped by Struenseeet al. @42#. It is a modification of the
‘‘best adiabatic’’~BA! method@40,43#, which was the first to
yield the correct dissociation energy at largeR for asymmet-
ric molecules without the use of a nonadiabatic formalis
The IA method also yields correct dissociation energies,
has been found to be more reliable than the BA at smalleR.

In the IA approximation the effect of the angular motio
of the nuclei is included in the potential. Instead of addin
perturbation correction to the BO potential, we start with
potential that is calculated by treating the nuclei as a ri
rotor. The Hamiltonian in Eq.~2.2! is separated into

Ĥ5Ĥ IA
0 1Ĥ IA8 , ~2.9!

where
05271
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Ĥ IA
0 5ĤBO2

1

2~md1mt!
¹ r

21
L̂R

2

2mdtR
2 ~2.10!

and

Ĥ IA8 52
1

2mdt
S ]2

]R2 1
2

R

]

]RD . ~2.11!

L̂R is the operator for the relative angular motion of t
nuclei. The wave function is a sum of terms which are s
erated into components in a similar way as in Eq.~2.4!,
except here the nuclear component is a function of only
internuclear distance and the muonic component is a fu
tion of the remaining five coordinates, and depends o
parametrically on the internuclear distance,

C IA~r ,R!5(
i

x i~R!f IA
i ~r ,R̂;R!. ~2.12!

The ground state (i 50) zeroth order potential is then evalu
ated by solving

Ĥ IA
0 f IA

0 ~r ,R̂;R!5U IA~R!f IA
0 ~r ,R̂;R!. ~2.13!

The IA potentialVIA(R) of Struenseeet al. @42# is ob-
tained by adding the lowest-order perturbation term
U IA(R) due to the action ofĤ IA8 on f IA

0 (r ,R̂;R). Since, for a
real IA wave function that is normalized at allR, it can easily
be shown that

K f IA
0 ~r ,R̂;R!U2R ]

]RUf IA
0 ~r ,R̂;R!L

r ,R̂

50, ~2.14!

where the integration is over the variables that precede
semicolon, it follows that the IA potential of Struenseeet al.
is given by

VIA~R!5U IA~R!

2
1

2mdt
K f IA

0 ~r ,R̂;R!U ]2

]R2Uf IA
0 ~r ;R̂;R!L

r ,R̂

.

~2.15!

As can be seen, for example, from the variational cal
lation of the energy of the~1, 1! state ofdtm by Bhatiaet al.
@26#, to a very good approximation the angular momentu
of dtm is located on the nuclei. Thus in the IA approxim
tion the muon can be taken with high accuracy to be in as
state with zero angular momentum about the internuc
axis. In this case the summation in the IA wave function
Eq. ~2.12! collapses to only one term and, as pointed out
Struenseeet al. @42#, the IA potential for nonzero angula
momentum can be obtained by simply adding the centrifu
term J(J11)/(2mdtR

2) to the IA potential forJ50.
The use of muonic wave functionsf IA

i (r ,R̂;R), which

are functions of the internuclear unit vectorR̂, and the pres-
ence of the term involvingL̂R

2 in the associated Hamiltonia

Ĥ IA
0 ensure that the muon remains close to the triton at la
3-4
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R. VIA(R) therefore has~virtually! the correct energy at larg
R, corresponding to the binding energy of thetm atom.
VSA(R), on the other hand, exhibits an incorrect asympto
energy corresponding to the average of the binding ener
of tm and dm. The improved adiabatic behavior ofVIA(R)
comes about because the IA approximation incorporates
of the terms from the SA approximation, but also some ter
that would normally be considered nonadiabatic in the st
dard formalism@44#.

As is shown in Sec. IV A, the IA potential gives consi
erably more accurate values for the binding energies of
five bound states ofdtm than do the BO or SA potentials. I
breaks the symmetry, so that for the lowest state the mu
wave function shifts over onto the triton asR gets large.
However, because the second term in Eq.~2.15! enters per-
turbationally rather than variationally, this shift occurs t
rapidly, and the second term in the equation gets too la
and produces a small unphysical barrier at around 8am . That
this barrier is unphysical was shown by Cohen and Struen
@44# who did two-state nonadiabatic coupled channel cal
lations ondtm using an IA internal basis. The two states th
included use the potential energy curves that at largeR cor-
respond to the two channelstm1d and dm1t. No sign of
the barrier appears in their scattering results because of
agonal radial coupling terms cause the effects of the ba
to cancel. Unfortunately, the values of Cohen and Struen
@44# for the two terms of Eq.~2.15! are no longer available
@45# but an approximation to the first term was obtained
follows. Cohen and Struensee@44# did perform an adiabatic
to diabatic transformation on their equations, and the res
ing 232 diabatic potential matrix was still available@45#.
This was diagonalized and the resulting derivative coupl
neglected. Its lower root gave a potential which is smo
and which dissociates properly to thetm1d limit. We have
used this potential here and will refer to it as having be
calculated in the IA1 approximation.

To convert thedtm potential into an effective DT poten-
tial, the effect of electron screening has been added pe
batively. Cohen and Struensee@44# have calculated the elec
tronic component in a BO formalism, and we have used th
results in our calculation.

Relativistic and QED effects are not formally included
any of the potentials that we have used. As is discus
further in Sec. IV A, the shift in binding energies caused
these and other nonadiabatic effects is incorporated into
calculations by scaling thedtm potential such that it exhibits
the correct binding energy of 0.5966 eV. This assumes
thedtm molecule remains in its lowestF50 hyperfine state
throughout the entire reaction, whereF is the spin of theT
atom~i.e., F̂5Ŝt1Ŝm). This is a valid assumption due to th
smallness of relativistic effects and the large size of the
perfine splitting@46#.

C. Finite-size effects and resonance positions

In Eq. ~2.1! we have taken the PES to be pairwise ad
tive. This includes some of the effects due to the finite size
the TD and omits others. It includes the effect due to t
finite size of the equilibrium bond length of this molecul
05271
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However, in the current potential the electrons always se
particle of unit charge at the position of the deuteron for
d-t distances. This is correct at large and at very smalld-t
distances. However, at intermediated-t distances, a more
accurate calculation would allow the electrons to see the s
of the muon density and thus to see partial charges on b
the d and thet that change withd-t distance.

An approximation neglecting all finite-size effects h
been previously used@47,48# to calculate the energies of th
various bound states of@(dtm)11dee#. In those calculations
the entiredtm molecule was treated as a point particle so t
the six-body complex was treated equivalently to a diatom
molecule. Using their calculations one can estimate the
sitions of the resonances based on the conservation of
ergy:

E@T#1E@D2#v i j i
1EnK

kin5E@Xdee#nK1E@dtm#11,
~2.16!

whereX[dtm, mX5md1mt1mm , (v i , j i) are the rovibra-
tional quantum numbers of the initial D2 molecule, and~n,
K! are the rovibrational quantum numbers corresponding
bound states of the fictitious diatomic molecule wheredtm is
treated as a point particle. In this equation,EnK

kin corresponds
to the relative kinetic energy betweenT and D2 that gives
rise to a resonance corresponding to a particular~n, K!. How-
ever, since we have included some finite-size effects in
calculations, the kinetic energies that give rise to resonan
according to Eq.~2.16! will not exactly match the positions
of our resonances.

Furthermore, conservation of angular momentum requ
that

Ĵtot5 Ĵ1K̂ . ~2.17!

Since the angular momentum ofdtm is J51, and in our
calculation we have only consideredJtot50, then we must
haveK51. We therefore cannot yet account for resonan
broadening effects due to multiple values ofK ~for nonzero
Jtot).

Harstonet al. @52# have performed perturbation calcula
tions intended to yield a value for the finite-size correctio
to the energy of@(dtm)11dee#. They have obtained correc
tions up to first order in accuracy, but have concluded tha
precise estimate would require the evaluation of higher-or
terms. A prediction for the finite-size corrections for the s
body complex, which is expected to be of the order of s
eral meV, is therefore presently unavailable. However, H
ston et al. @53# have obtained a value of 0.5 meV for th
finite-size correction to the (dtm)11e molecule, resulting in a
binding energy of 0.5961 eV. We have scaled our DT poten-
tials so that they give this value for the binding energy of t
~1,1! state.

Finally, we have neglected corrections to theF50 hyper-
fine energy levels of theT atom that are due to the presen
of the other particles. These corrections constitute a shif
less than 1 meV@46#.
3-5
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III. THE SCATTERING CALCULATION
IN THE APH FORMALISM

In this section we briefly review the scattering theory
the APH~adiabatically adjusting, principal axes hypersphe
cal! formalism forJtot50 and outline details particular to th
present calculation. Further details concerning the A
method for nonzeroJtot are given by Pack and Parker@30#. A
sample of some of the subsequent calculations using
method, with emphasis on its practical application, is giv
in Refs.@49–51#.

A. The APH coordinates

The choice of coordinates that are appropriate for the
ometry of the system under consideration is essential to
taining accurately converged results in a minimum amo
of time when performing scattering calculations that requ
a large amount of computation. In the case of reactive s
tering where the initial reactants~e.g.,T1D2) are different
from the final products~e.g., D1DT), it is convenient to use
a coordinate system that transforms smoothly from one
rangement to the other. Hyperspherical coordinates h
been found to satisfy this condition, and a number of diff
ent types have been used for atom-diatom reactive scatte
calculations~see, for example, Refs.@30–32#!. The coordi-
nates that we have used are theadiabatically adjusting, prin-
cipal axes hyperspherical~APH! coordinates@30#. In what
follows, we review how the APH coordinates are related
other well-known but less sophisticated coordinates.

Let us denote the atoms, for example, in reaction~1.7!, by
A, B, andC, with A the atom in the entrance channel. The
are three possible sets ofJacobi coordinates$Rt ,r t% (t
5A,B,C), depending on which scattering channel is und
consideration. Thus, for example,RA is the position vector of
atomA with respect to the center of mass of atomsB andC
as origin, andrA is the position vector of atomC relative to
atomB.

The mass-scaled Jacobi coordinatesare defined as@30#

St5dtRt , st5r t /dt , ~3.1!

where

dt5Fmt

m̄ S 12
mt

M D G1/2

, m̄5FmAmBmC

M G1/2

, ~3.2!

and M5mA1mB1mC is the total mass of the system. Th
resulting kinetic energy operator is symmetric in that t
same reduced mass factor is applied to both of its com
nents, i.e.,

T̂52
1

2m̄
~¹st

2 1¹St

2 !. ~3.3!

This property proves to be advantageous when transform
to other coordinate systems.

The APH coordinates are obtained by performing an
thogonal transformation,
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FQq G5T~xt!FSt

st
G , ~3.4!

whereT(xt) is the proper, orthogonal 636 matrix,

T~xt!5F cosxtI sinxtI

2sinxtI cosxtI
G , ~3.5!

and I is the 333 unit matrix. The kinematic anglext is a
continuous variable, witht denoting its origin. Asxt→0, Q
and q becomeSt and st . This angle is converted into a
APH coordinate,x i , where i denotes the initial scattering
arrangement, by choosing it to take on a value that ma
mizesQ5uQu. This is possible asx i is a function ofSt , st ,
and Qt . Such a choice results inQ and q being in the di-
rections of the instantaneous principal axes of inertia of
system in the plane of the atoms, with associated momen
inertiam̄q2 andm̄Q2, respectively. Also, as atomt becomes
infinitely far from the other two atoms,

lim
St→`

~stfinite!

Q56St . ~3.6!

This supplies the desired link between the three channel
The APH internal coordinates~in the plane of the atoms!

are defined by$r,u,x i%, where

u5
p

2
22 tan21~q/Q!, ~3.7!

and the hyperradius is defined by

r5~Q21q2!1/25~St
21st

2!1/2. ~3.8!

Note that asT(xt) is orthogonal,r is invariant under the
transformation~3.4!. These coordinates are very suitable f
describing rearrangement processes since they~i! adjust
adiabatically to follow any atom that leaves the other tw
~ii ! treat all arrangements equivalently, and~iii ! make pos-
sible a smooth transition between channels. They are par
larly suitable for our purposes as they give a dynamical
scription of the resonant complex@(dtm)11dee# that occurs
in both reaction~1.9! and reaction~1.1!.

In practice it is often convenient to transform to a simp
set of coordinates outside the exchange region, when
atom is far away from the other two. In our calculation w
transform toDelves coordinates. For a given arrangementt,
these are defined by the hyperradiusr, as in Eq.~3.8!, the
hyperangle

qt5tan21~st /St!, ~3.9!

andQt , the angle betweenst andSt .

B. The scattering calculation

The total Hamiltonian in APH coordinates, forJtot50,
takes the following form:
3-6
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Ĥ52
\2

2m̄r5

]

]r
r5

]

]r
2

\2

2m̄r2

3S 4

sin 2u

]

]u
sin 2u

]

]u
1

1

sin2 u

]2

]x i
2D 1V~r,u,x i !.

~3.10!

Here V(r,u,x i) is the potential energy surface. It depen
only on the three internal coordinates. In our calculationsV
is the pairwise additive potential of Eq.~2.1!.

In the calculations ther range is divided into a number o
intervals or sectors. On thejth sector, the overallJtot50
wave functionCn of the system is expanded in a basis set
‘‘sector adiabatic’’ or ‘‘diabatic-by-sectors’’ ‘‘surface func
tions’’ F t(u,x i ,rj), which are determined at the center
the sector,rj :

Cn5
&

p
r25/2(

t
c t

n~r!F t~u,x i ;rj!, ~3.11!

wherec t
n(r) is regular atr50 andn51,...,N denotes the

particular solution under consideration. The inclusion
Wigner D functions of the APH~external! Euler angles in
Eq. ~3.11! would be necessary ifJtot were nonzero. ForJtot
50 only even parity (p50) solutions exist.

Use of this wave function gives the coupled channel sc
tering equations as@30#

S ]2

]r2 1
2m̄E

\2 Dc t
n~r!

5
2m̄

\2 (
t8

^F t~u,x i ;r!uĤ i uF t8~u,x i ;r!&c t8
n

~r!,

~3.12!

where

Ĥ i52
\2

2m̄r2 S 4

sin 2u

]

]u
sin 2u

]

]u
1

1

sin2 u

]2

]x i
2D

1
15\2

8m̄r2 1V~r,u,x i !, ~3.13!

andE is the total energy of the system. Equations~3.12! are
solved forr values in a finite number of intervals or secto
ranging fromrmin to rmax. rmin is chosen such that all sur
face function eigenvalues are strongly repulsive, whilermax
is well outside the exchange region. The scattering par
eters are determined by carrying out an orthogonal trans
mation atrmax from the APH wave functions to laborator
fixed Delves wave functions, writing the asymptotic Jaco
coordinate wave functions in terms of Delves coordinat
and matching them to obtain the reactance orK matrix.

The surface functionsF t(u,x i ,rj) are independent ofr
in each sector as they are determined atrj , the center of the
sector. These functions are obtained by solving a tw
dimensional Schro¨dinger equation on the surface of the h
persphere,
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Ĥ iF t~u,x i ;rj!5Et~rj!F t~u,x i ;rj!. ~3.14!

The surface function eigenvaluesEt(rj) represent effective
potentials for ther motion to the extent that this motion i
slow enough that theu and x i motions can adjust adiabat
cally. In the asymptotic region of the infiniter the off-
diagonal matrix elements in Eq.~3.12! become zero and
Et(rj) become equivalent to the diatomic bound state en
gies.

In our calculations, forr,0.92, the surface function
were obtained by using a finite element method~FEM!.
These methods are ideal at smallr where the surface func
tions are delocalized over much of the surface of the hyp
sphere. However, asr is increased and the arrangeme
channels become more localized in small regions of the
face, FEMs require the use of very fine grids and beco
inefficient to use. Eventually, due to computational limit
tions, it becomes impossible to obtain accurately conver
surface functions. We used as fine a grid as we found
possible, with over 500 intervals inu and over 2000 intervals
in x i . A second method which is often used at smallr in
quantum reactive scattering calculations is the discrete v
able representation~DVR! method. This method is usuall
more efficient than FEMs at larger values ofr, but in cases
like the present calculation where one diatomic molec
~e.g., DT! has a much shorter bond length than another~e.g.,
D2), FEMs prove to be more efficient@50#.

For r.0.92 an analytic basis method~ABM ! @50# was
used. This method uses basis functions that are anal
simple harmonic functions of an anharmonic variable, allo
ing for the inclusion of anharmonicity. The basis functio
are centered in the arrangement channels and therefore r
in a very compact representation at larger. While this ABM
method works well for most reactions involving diatom
molecules where the potential as a function ofqt is nearly
harmonic, we experienced difficulties in obtaining converg
results for the arrangement involving DT, which is an ex-
tremely anharmonic molecule. We solved this by modifyi
the basis functions to better allow for the case of anharmo
molecules. The details of this are given in the Appendix.
our calculation we used basis functions with rovibration
quantum numbers up to (v, j )5(14,22) for D2 and~30,3! for
DT.

In our calculations we used 515 different hyperradial s
tors by varyingr logarithmically from 0.66a0 to 10a0 . The
surface functions corresponding to the lowest 50 eigenva
Et(r) were calculated, and 50 close-coupled equations w
then propagated using the log derivative method@54#. Two
separate calculations were performed using two differ
PESs, corresponding to treating thedtm potential in the BO
and IA1 formalisms as outlined in Sec. II. Resonances w
located by performing calculations around the expected re
nance energies, given by Eq.~2.16! for En1

kin,0.6 eV. The
resonances were then mapped out by performing calculat
with energy increments of about 0.1 meV, and interpolat
was used in between these mesh points.

The calculations were performed on a Sun Ultra 1 co
puter, which needed about 1 week of CPU time to calcul
3-7
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the surface functions and about 1 hour of CPU time
scattering energy to propagate the close-coupling equati

IV. RESULTS

A. The dtµ potential

As outlined in Sec. II, the muon to nuclei mass ratio is t
large for the applicability of the BO approximation. Th
most accurate calculation to date of adtm potential which is
a function of only the internuclear distanceR has been per-
formed in the IA approximation by Struenseeet al. @55#.
There have also been a large number of variational calc
tions performed which have resulted in much more accu
values of thedtm binding energies~see, for example, the
review articles by Froelich@5# and Ponomarev@3# for a com-
parison of these!.

We have calculated thedtm potential and the binding
energies of the various (J,v) states in the BO and SA for
malisms as outlined in Sec. II A. We have also used the
potential calculated Struenseeet al. @55# as well as the IA1
potential, as outlined in Sec. II B, using the calculations
Cohen and Struensee@44#. These potentials, as a function
the internuclear distance, are shown in Fig. 1. Only the
and IA1 potentials dissociate at largeR to the correct
asymptotic limit corresponding to the binding energy oftm.
The main difference between these two potentials is the p
ence of an unphysical barrier in the IA potential.

The SA approximation yields a potential energy functi
VSA(R) that represents an upper bound for the exact po
tial energy at anyR @41#. However, this does not mean th
the binding energy of any particular state is necessaril
lower bound to the exact value. This is because the bind
energy is defined to be the difference between the disso
tion energy at infiniteR and the energy of a bound state. T
binding energies of the bound states are compared with
nonrelativistic ‘‘exact values’’ in Table I. Although the tota
energies of the bound states are more accurately predicte
the SA approximation than by the BO, the overcompensa
of the dissociation energy in the SA approximation results

FIG. 1. Potential energies ofdtm as a function of theinternu-
clear distance, calculated using various approximations. Distan
and energies are in muonic atomic units wheream5(me /mm)a0

and 1 m.a.u.5(mm /me) a.u.
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binding energies that are less accurate~more tightly bound!
than in the BO.

The IA potential, however, gives binding energies that
about a factor of 10 more accurate, but, due to the unphys
barrier, the crucial (J,v)5(1,1) state is calculated to b
slightly unbound. However, the IA1 potential yields a~1,1!
binding energy value of 0.97 eV. The binding energies of
five states are most accurately calculated using the IA1 po-
tential.

The potentialVDT , as required for the PES of Eq.~2.1!, is
interpreted as being a function of the interatomic distan
~i.e., the distance from the center of mass of D to the cen
of mass ofT!; the binding energies of the variousdtm po-
tentials considered in Table I have assumed the radial c
dinate to be the internuclear distance. This approximatio
almost equivalent to the replacement ofmdt in Eq. ~2.15!
with mDT . The resulting binding energies for the IA1 po-
tential are shown in Table II. The effects of electron
screening were taken into account@44# through a BO formal-
ism and added to thedtm potential to convert it into a DT
potential. This IA1 potential was then scaled in such a w
as to yield a precise DT~1,1! binding energy, including rela-
tivistic and QED effects, of 0.5961 eV. This value incorp
rates a 0.5 meV shift@53# of the dtm(1,1) binding energy
when taking into account electronic screening. The result
binding energies of all five states are shown in the last c
umn of Table II.

The potentials were scaled by first shifting the curv
shown in Fig. 1 so that their asymptotic energies are ze
and then stretching them in the vertical and/or horizon

es

TABLE I. Binding energies ofdtm (J,v) states calculated using
potentials obtained in various approximations as outlined in Sec
and compared to the exact nonrelativistic values. All energies ar
units of eV.

(J,v)
Exact

nonrelativistic BO SA IA IA1

~1,1! 0.66 8.4 15.7 ;22 0.97
~0,1! 34.83 43.7 53.3 31.2 33.71
~2,0! 101.42 106.6 123.3 99.9 100.54
~1,0! 232.47 239.4 253.9 230.3 230.75
~0,0! 319.14 329.2 340.9 317.2 317.74

TABLE II. Binding energies of the original IA1dtm potential,
after replacingmdt with mDT , and after scaling to yield the exac
relativistic value for the~1,1! state. All energies are in units of eV

(J,v)
Exact

relativistic
Original

IA1 mdt→mDT
After

scaling

~1,1! 0.60 0.97 2.12 0.60
~0,1! 34.77 33.71 33.45 31.95
~2,0! 101.42a 100.54 103.93 96.31
~1,0! 232.58 230.75 233.25 224.02
~0,0! 319.41 317.74 319.30 309.53

aRelativistic and QED corrections are unknown for this state.
3-8
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directions such that they yield the correct binding energy
the ~1,1! state, using the pairwise additive potential. For t
IA1 curve, this was done by multiplying in the vertical d
rection by a factor of 0.977, i.e., VIA1

scaled(R)
50.977VIA1

unscaled(R). The BO curve was scaled according
VBO

scaled(R)51.101VBO
unscaled(0.899R). A comparison of the re-

sulting scaled potentials is shown in Fig. 2. Since we h
used the pairwise additive potential for calculating the bin
ing energies in this scaling procedure, the radial distance
longer corresponds to the internuclear distance, but the in
atomic distance.

B. The potential energy surface and surface functions

In Fig. 3 we show the 50 lowest surface function eige
valuesEt(r) for the IA1 calculation, obtained by solving th
two-dimensional Schro¨dinger equation of Eq.~3.14!. In this
figure zero energy is defined as the sum of the binding e

FIG. 2. Potential energies ofdtm as a function of theinter-
atomicdistance, in the BO and IA1 approximations after scaling to
yield the exact value for the binding energy of the~1,1! state. Both
potentials have been shifted so that their asymptotic values
proach zero. Distances and energies are in muonic atomic u
wheream5(me /mm)a0 and 1 a.m.u.5(mm /me) a.u.

FIG. 3. The lowest 50 surface function eigenvaluesEt(r) for the
IA1 calculation. The bottom four curves correspond asymptotic
to the lowest four bound states of DT. Zero energy is defined as th
ground state of the initial reactants.
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gies of the initial reactants in their ground states, i.e.,E@T#
1E@D2#00. In the asymptotic region of larger, the bottom
four curves correspond to the four lowest states of DT. The
remaining network of curves correspond, in the asympto
region, to DT~1,1! and the various D2 states.

At r50.92 there is a slight discontinuity in each of th
curves due to the switchover from the FEM to the ABM
This discontinuity is more evident for higher states, whi
are not as important as the lower ones. Also, apart from
four lowest curves, which are not very important with rega
to the intermediate resonant complex, the eigenvaluesr
50.92 are all well above the classically forbidden bounda
for the low scattering energies considered here.

Figure 4 is a magnified version of Fig. 3, which clear
shows the eigenvalues of the state that corresponds
DT~1,1! in the asymptotic region as it intersects the vario
D2(v, j ) states. The former curve is the one that exhibits
deepest well. The reaction proceeds by initially starting
one of the D2 states at larger. As theT atom approaches D2,
r decreases until it attains a certain critical value at wh
there no longer exists a potential barrier between the twT
1D2 and DT1D arrangements, allowing exchange to ta
place. Forr less than this value, the intermediate reson
complex@(dtm)11dee#, which corresponds to the curve wit
the deepest well, is very likely to form. The curve corr
sponding to the resonant complex is clearly classically f
bidden in the asymptotic region. In the muon catalyzed
sion reaction~1.1!, after the system has oscillated in th
potential well for a while, the complex is then most likely
undergo irreversible decay by an Auger process. For our
culation corresponding to reaction~1.9!, the most probable
event is for the complex to transfer to one of the curv
corresponding to a D2 state in the asymptotic region. How
ever, it is also possible that the resonant complex will de
to one of the four bottom curves that asymptotically cor
spond to DT.

A three-dimensional plot of the PES calculated using
IA1DT potential, atr51.7a0 , is shown in Fig. 5. Here we

p-
its

y

FIG. 4. As in Fig. 3, magnified to show the intersection of t
curve that asymptotically corresponds to DT~1,1! with the curves
that asymptotically correspond to the variousD2 states. The DT~1,
1! curve is the one that exhibits the deepest well in this figure.
3-9
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have used coordinates similar to Delves, corresponding
the D21T arrangement. In these coordinates, ther /R50 line
corresponds to the overlapping of the two D atoms, while
(r /R52,Q50) point corresponds to aT atom overlapping
with one of the D atoms. Forr51.7a0 there are two separat
potential ‘‘wells’’: the line at aboutr /R51.35 corresponds
to the well around the D2 molecule, while the circular featur
around the peak at (r /R52,Q50) corresponds to the we
around DT. Initially, as theT atom approaches the D2 mol-
ecule andr is decreasing, the linear well associated with2
moves closer to the circular well associated with DT. At a
critical value of r, the two wells touch each other so th
there no longer exists a potential barrier between the
arrangements. This occurs at aroundr51.6a0 , as shown in
Fig. 6. The removal of the potential barrier that classica
forbids a rearrangement reaction from proceeding first occ
at Q50, corresponding to a linear configuration of the thr
atoms. Asr is decreased further the two wells continue
merge together, as demonstrated by Fig. 7 wherer51.5a0 .
For r smaller than 1.5, the well moves into the repulsi
region of the D2 potential.

C. Reaction probabilities: resonances

The surface functions calculated from Eq.~3.14! were
used to solve the close-coupling Eqs.~3.12!, from which the
reactance matrix and reaction probabilities were calcula
For rearrangement reactions where the initial D2(v i j i) mol-
ecule reacts with aT atom to yield a D atom and aTD(v f j f)
molecule, the reaction probability is related to the cross s
tion by

sn
Jtot~v i j i→v f j f !5

p

ki
2 ~2Jtot11!Pv i j i

R ~v f j f !. ~4.1!

FIG. 5. The current PES of the@dtmdee# system plotted in
terms of the Delves coordinates for theD21T arrangement, atr
51.7a0 , using the IA1 approximation for thedtm potential. The
energy has been plotted using a logarithmic scale, and the botto
the DT well has been artificially truncated.
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The total reaction probability or reactivity for a particula
initial channel is obtained by summing over the reacti
probabilities of all possible final rovibrational states, i.e.,

Pv i j i

R 5(
v f j f

Pv i j i

R ~v f j f !. ~4.2!

In our case there are only four final rovibrational sta
that can form owing to energy considerations, correspond
to the four lowest DT states. In Fig. 8 we present the tot
reactivities, for the IA1 calculation, for initial D2 rovibra-
tional states of (v i , j i) equal to~0,0!, ~0,2!, and~1, 0!. These
represent the ground, first rotationally excited, and first
brationally excited states~nuclear symmetry allows only
transitions in D2 that result in even changes ofj!. The energy
E on the horizontal axes of this figure corresponds to

of

FIG. 6. As in Fig. 5 forr51.6a0 .

FIG. 7. As in Fig. 5 forr51.5a0 .
3-10
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initial kinetic energy relative to the ground~0,0! state of D2.
The kinetic energy corresponding to the scattering ofT from
the D2~0,2! state, for example, would then be equal toE
2E@D2#021E@D2#00. This figure demonstrates the dom
nance of the resonant behavior of theT1D2 reaction over the
nonresonant behavior. The resonances shown correspo
n53 andn54 in Eq. ~2.16!. For the~0,2! state, then54
resonance is much weaker than then53 resonance and
therefore cannot be seen in this figure. For the~1,0! state, the
threshold energy is such that onlyn>4 resonances are pos
sible.

A magnified version of this figure around the energ
corresponding to then53 resonance is shown in Fig. 9, an
around the energies corresponding ton54 in Fig. 10. Also
shown in these figures are the total reactivities correspon
to the BO calculation. There are significant differences
both position and magnitudes of the resonances, depen
on whether the IA1 or BO approximations are used for th
dtm potential. The positions of the resonances are compa
in Table III with those that are obtained in the approximati
wheredtm is treated as a point particle. The kinetic ener
resonance positions in this approximation,En1

kin , are calcu-
lated from Eq.~2.16!. For n53, the resonances in the IA1
approximation are found to occur at energies of about 4 m
greater thanE31

kin , while in the BO approximation they occu
at about 1 meV greater. The position of then54 resonance
is about 5 meV greater thanE41

kin , in the IA1 approximation,
and about 2 meV greater in the BO approximation. Since
calculation does include some finite-size effects, differen
of about this magnitude were expected. The center of thn
52 resonance is calculated to occur just slightly bel
threshold, but since we have considered only the cas
Jtot50, resonance broadening due to excitation of higher
tational levels of the intermediate complex has not been
cluded in our calculations. The rotational energy
@Xdee#nK , for a given vibrational quantum numbern, is
about 2.5K(K11) meV.

FIG. 8. Total reactivities of the IA1 calculation, with the initial
D2 molecule in its ground~0, 0!, first rotationally excited~0, 2!, and
first vibrationally excited~1, 0! states. The energy is with respect
the D2 ground state.
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The partial widths for reactive scattering,Gn
0, and the par-

tial widths for backscattering,Ge
0, were calculated by fitting

the total reactivities to the Breit-Wigner formula~1.10!, with
Ga

0 set equal to zero,

Pv i j i

R ~E!5
Ge

0Gn
0

~E2Er !
21 1

4 ~Ge
01Gn

0!2
. ~4.3!

This was done by using the method of least squares to ob
optimum values for the variablesEr , Ge

0, andGn
0 for ener-

gies wherePv i j i

R (E) was calculated to be greater than half

its maximum valuePv i j i

R (Er). Although Eq.~4.3! is symmet-

ric with respect to the two partial widths, the values of t
two widths were found to differ by several orders of mag
tude. Our results for nonreactive scattering indicate that
probability for elastic backscattering is much greater th
that for any other process, and we were thus able to as
Ge

0 to the larger of the two partial widths in Eq.~4.3!, andGn
0

to the smaller. Although our calculations forGe
0 do not in-

clude contributions from the inelastic backscattering proce
since elastic backscattering was found to strongly domin
this omission should be virtually negligible.

Use of the hyperradius in all configurations makes
derivation of the Breit-Wigner formula for the resonant cro
sections similar to that of Mott and Massey@56#. Our reso-
nances were found to fit this formula quite closely. We fou
that the position of the resonances remained almost the s
if coupling between channels was omitted, but the heigh
the resonant cross sections altered significantly. This sh

FIG. 9. Magnification of Fig. 8 around then53 resonance, also
showing the BO calculation. From Table III,E31

kin5281.0 meV.
3-11
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that the wave functions used to evaluate directly the pa
widths in the Breit-Wigner formula must take this couplin
into account, if accurate results are to be obtained.

In Tables IV and V we showGn
0 and Ge

0, for the reso-
nances shown in Figs. 9 and 10. There are significant dif

FIG. 10. Magnification of Fig. 8 around then54 resonance,
also showing the BO calculation. From Table III,E41

kin

5562.0 meV.

TABLE III. Positions of the energy resonances with respect
the ground-state energy ofD2 . En1

kin corresponds to the positions o
the resonances forJtot50, and thereforeK51, in the approximation
where all finite-size effects are omitted anddtm is treated as a poin
particle, in accordance with Eq.~2.16!. All energies are in units of
eV.

n En1
kin E~IA1! E~BO!

2 20.0101 ,0 ,0
3 0.2810 0.285 0.282
4 0.5620 0.567 0.564
05271
al

r-

ences between the IA1 and BO calculations forGn
0, while

Ge
0 appears to be more stable. For then53 resonance the

partial width for back decay is about 1 meV, while for th
n54 resonance it is on the order of 2 meV. As shown in S
I A, the rate of formation ofdtm, and therefore the theoret
ical limit on the rate of the entire MCF cycle, is essentia
dependent uponGe .

V. CONCLUSIONS

We have made a successful application of the A
method of quantum reactive scattering by Pack and Pa
@30# to the treatment of the keyT1D2 reaction in the muon
catalyzed fusion cycle, forJtot50. We have used an adiabat
potential that takes into account, as far as possible, impor
corrections to the Born-Oppenheimer approximation due
the fact that the muon is much more massive than the e
tron. Remaining inaccuracies are substantially reduced
scaling. We have demonstrated that the BO approxima
leads to results that are significantly different from those
tained from a sophisticated adiabatic treatment of the mu
although the partial widths for backscattering are somew
more stable.

In our calculations the resonances in the rearrangem
channel occur at energies a few meV greater than where
are predicted to occur if finite-size effects are omitted a
dtm is considered to be a point particle. It is clear that t
rearrangement reaction essentially proceeds only through
resonances. This is a vivid illustration of the mechanism
muonic molecule formation first suggested by Vesman@8# to
explain the temperature dependence of the cross sectio
ddm formation.

It has not been possible at this stage to include directly
Auger channel that leads to the most rapid formation ofdtm
in a state withJ50, in which fusion takes place within abou
10212sec@3#. We have instead considered the reaction~1.9!,
which proceeds through the same resonances of the inte
diate complex@(dtm)11dee# as in the muon catalyzed fusio
reaction~1.1!, and have demonstrated how the rate of form

TABLE IV. Back decay partial widths of then53 reactive
scattering resonances,Ge

0, and the corresponding reactive parti
widths,Gn

0, for Jtot50. All energies are in units of eV.

(v i , j i) Ge
0~IA1! Gn

0~IA1! Ge
0~BO! Gn

0~BO!

~0,0! 1.031023 6.031029 1.431023 2.531029

~0,2! 1.031023 1.831026 1.031023 1.531026

TABLE V. Back decay partial widths of then54 reactive scat-
tering resonances,Ge

0, and the corresponding reactive parti
widths,Gn

0, for Jtot50. All energies are in units of eV.

(v i , j i) Ge
0~IA1! Gn

0~IA1! Ge
0~BO! Gn

0~BO!

~0,0! 2.131023 7.031029 2.331023 5.031028

~0,2! 2.131023 2.031028 2.331023 1.231027

~1,0! 2.231023 6.231028 2.331023 3.331027
3-12
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tion of dtm, which imposes the theoretical limit to the effi
ciency of the entire MCF cycle, can be obtained from suc
treatment. This essentially involves the calculation of
back decay partial widths,Ge

Jtot. We have calculated thes
widths, forJtot50, to be about 1 meV for then53 resonance
of the intermediate complex and about 2 meV forn54.

The next step in these calculations should therefore b
incorporate states withJtot.0. This would allow us to calcu-
late Ge

Jtot for all Jtot , and thereforeldtm(T). A future im-
provement to our method would be to include the Aug
channel directly into the calculation, rather than relying
the Breit-Wigner formula. Also, improving the PES us
would include all finite-size effects.
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APPENDIX: IMPROVEMENT TO
THE ABM BASIS FUNCTIONS

The ABM method was developed by Parker and Pa
@50#. In determining the surface functions in a given sector
functions of the APH angular coordinatesu and x f in the
t f th arrangement channel, it is convenient to transform
Delves angular coordinatesq f andQ f for the channel unde
consideration. These coordinates are described at the en
Sec. III A.

This is an efficient way of obtaining surface functions th
satisfy the requirement of being centered in arrangem
channelt f . Q f is the internal rotational angle of the thre
body system. Thus the dependence of a given basis func
on this variable can be taken into account by including, a
factor, an associated Legendre function, expressed in te
of cosQf .

The variableq f describes what is basically a vibration
motion. The dependence of the basis functions on this v
able can be taken into account by using simple harmo
functions expressed in terms of an anharmonic variablezf .
This variable is a function ofq f chosen so as to match th
desired equilibrium position, fundamental frequency, and
harmonicity for the basis functions.

Full details of the method are given in the paper by Par
and Pack@50#. However, for molecules such as DT, for
which the potential as a function ofq f is extremely anhar-
monic, the convergence of the surface functions as the n
ber of basis functions is increased is very slow. In this
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pendix we make a change in the form ofzf to increase the
rate of convergence in this case.

As can be seen from Eqs.~17!–~19! of Ref. @48#, the q f
dependent part of the basis functions in the original AB
method was chosen to be

Y f~q f ;r!

sin 2q f
'

1

Bf~q f !
fn f

~zf !, ~A1!

wheref is a simple harmonic oscillator function ofzf ,

fn f
~zf !5

1

@p1/22n f~n f ! !#1/2Hn f
~zf !e

2zf
2/2, ~A2!

and the anharmonic variable takes the form

zf5af tanq f2
bf

tanq f
1cf . ~A3!

Equation~A3!, corresponding to Eq.~19! of Ref. @48#, is
replaced with

zf5af tann q f2
bf

tann q f
1cf , ~A4!

wheren51 corresponds tozf of Eq. ~A3!. As n is decreased
the basis functions should behave more like Morse functi
at larger, as shown by Schwenke@57#. In order for the new
primitive basis to retain orthonormality, the normalizatio
factor of Eq.~23! in Ref. @48# is replaced with

Bf~q f !5S sinn13~2q f !

n2n21~af sin2n q f1bf cos2n q f !
D 1/2

, ~A5!

and the parameters of Eqs.~A11!–~A13! of Ref. @48# are
replaced with

af5
cosn11 qM f

6n2 sinn21 qM f

S 3~n2sin2 qM f
1cos2 qM f

!g2
1/2

1
g3

g2
1/2sinqM f

cosqM f D , ~A6!

bf5
sinn11 qM f

6n2 cosn21 qM f

S 3~n1sin2 qM f
2cos2 qM f

!g2
1/2

2
g3

g2
1/2sinqM f

cosqM f D , ~A7!

cf5bf cotn qM f
2af tann qM f

. ~A8!

In our calculations we have found that a value ofn50.6
allows for convergence of the DT~1,1! state to within 0.1
meV using basis states with maximum vibration numbev
530, instead of up tov570 which is required forn51.
3-13
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