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Plane-wave Born treatment of projectile-electron excitation and loss
in relativistic collisions with atomic targets
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Electron excitation and loss of relativistic ion projectiles colliding with atomic targets are studied within the
framework of the first order of the plane-wave Born approximation. General expressions are derived for the
elastic and electron-electron contributions to the electron excitation and loss cross sections. In the limit of
nonrelativistic collision velocities these expressions go over into known nonrelativistic formulas. In ultrarela-
tivistic collisions shielding effects are shown to be very important for the excitation and loss cross sections
even for collisions of highly charged projectiles with light atomic targets. Results of our calculations for the
electron loss cross sections are in reasonable agreement with available experimental data on projectile-electron
loss in relativistic collisions.

PACS numbd(s): 34.10+x, 34.50-s, 34.50.Fa

[. INTRODUCTION The reason for this disagreement, revealed ByeSsen
[11], is that the loss cross section, obtained7h does not
Processes of excitation and loss of the projectile electroorrectly describe shielding effects in ultrarelativistic colli-
in collisions with atomic targets at nonrelativistic collision sions. In the paper of @enser{11], within the framework of
velocities have been extensively studied during the last fevfirst-order perturbation theory, a simple and physically at-
decades(see[1-3] and references therginThe result of tractive semiqualitative investigation was given for the so-
these studies is a rather good understanding of these prsa”ed elaStiC(fOf the targel, (-)r SC-reening, Contribution-to the -
cesses, especially those which can be considered within firsg/€ctron 10ss process. Within this approach the elastic contri-
order perturbation theory. Some nonperturbative approaché’é‘t'on to the loss cross section is separated into a close and

are also available at present to treat the projectile-electrof} distant CO”'IS'O? gon'gilht?utﬁ]n. g_he close—collltsmn contrl_bu—
excitation and loss in nonrelativistic collisiofsee, e.g.[4] t:gz :g?fhgvti)lljliii(e)nsvgetlvr\:eer? thgarr%igzgloeugleeétra:)%p;)gr?ﬁe-
and references thergin proj

The process of the proiectile-electron loss in relativisticnUCIeus of the neutral atom. The distant-collision contribu-
P he proj tion was estimated by using the method of equivalent pho-

¢ Anhol d coliab 571 and ref %ons. The so-called electron-electron, or antiscreening, con-
pers of Anholt and collaboratorsee[5-7] and references tribution to the loss cross section, which cannot be treated

therein. In these papers electron loss cross _sectlons WeTgithin such an approach, was estimated by applying a rela-
calculated. The method used by these authors is based on tfign, hetween the electron-electron and elastic contributions
first-order perturbative treatment of ionization in relativistic yhich follows from the free collision model of Bolsee,
collisions with structureless pointlike chardés9l. In order e.g.,[1,2)). The results, calculated {i1], are in reasonable
to take into account the fundamental difference between agreement with the experimental dfia].
pointlike charge and a neutral atom, they employed results |n a recent papef12] another approach was applied to
for the projectile-electron loss in nonrelativistic collisions treat the elastic contribution to the projectile electron loss
with neutral atoms and introduced some intuitive assumpeross section. In the rest frame of the projectile-ion the inci-
tions to adapt the nonrelativistic results to relativistic colli- dent atom was described as a beam consisting of the nucleus
sions. The most complete set of results for the loss process #nd the electrons moving with a constant relativistic velocity
relativistic collisions, obtained in this way, was presented inalong straight-line classical trajectories. The scalar and vec-
a paper of Anholt and Beck¢r]. In that paper the electron tor potentials, created by this beam, were calculated. The
loss cross sections were given for a variety of projectile-quantum nature of the atomic electrons was taken into ac-
target pairs for collisions up to relativistic projectiles with count by averaging these potentials over the density distribu-
y=<1000, wherey is the Lorentz factor. tion of the electrons “frozen” in the ground state of the
In a recent experimenflO] electron capture and loss with incident atom. The time-dependent Dirac equation for the
Pb ions as projectiles were investigated for several targetslectron of the ion, making transitions in the field of the
(from Be to Au at a collision energfe=160 GeV/nucleon incident relativistic atom, was treated in the first-order of the
and a considerable difference between the th€jwnd the  perturbation theory in the electron-atom interaction and the
experimental data was found for the projectile electron losscreening cross section was calculated. Since the approach
Cross sections. used in[12] can hardly be generalized to incorporate the
electron-electron contribution, this contribution to the loss
cross section was estimated in a similar manner as done in
*On leave from the Arifov Institute of Electronics, 700143 Tash-[11]. The results obtained ifi2] agree well with the experi-
kent, Uzbekistan. ment[10].
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The present paper is an attempt to give a more generauclear and atomic energy scales are very different, Cou-
treatment of projectile-electron excitation and loss in relativlomb collisions between the ion and the atom, resulting in
istic collisions with atomic targets within the first order of excitation of nuclear degrees of freedom, are of negligible
the plane-wave Born approximati¢RWBA). Our consider- importance for cross sections of electron transitions. There-
ation is mainly restricted to projectiles carrying a single elecfore the atomic and ionic nuclei can be treated as pointlike
tron. In this case the transitions of the projectile electron carstructureless charges. Second, in a reference frame, where
be described in the first order perturbation theory for thethe atom or the ion is initially at rest, its typical recoil veloc-
electron-target interaction ifi) Z,<Z,, where Z, is the ity after the collision is not only nonrelativistic but also
charge of the target nucleus a4 is the charge of the much less than the Bohr velocityg=1 a.u.(see the Appen-
nucleus of the projectile-ion, diii) Z,<v, wherev is the  dix).
collision velocity. In relativistic collisions the latter condi-  Taking into account the remarks mentioned above, a con-
tion Z,<v is fulfilled for any atomic numbeZ, . venient way to calculate the transition matrix eleméhtis

The present study is mainly focused in deriving generathe following. First, we evaluate the ion curre}j;(x) in the
expressions for cross sections of the projectile-electron excireference framé, , where the ion is initially at rest. Second,
tation and loss. In addition, some calculations for the lossye calculate the atom curredt#(x,) in the reference frame
cross sections are also presented. KA, Where the atom is initially at rest, and obtain the poten-

The paper is organized as follows. In Sec. Il we presentia| A#(x,) in this frame. Then we transform the potential
the PWBA theory for the projectile-electron excitation andtg the framek, and calculate the transition matrix elements
loss in relativistic collisions. In Sec. lll we introduce the anq corresponding cross sections in this frame.
approximation of a “nonrelativistic atom” and evaluate the  Assuming that the ion carries only one electron the tran-
e_Iastlc .an.d eIgctron—eIeptro_n contributions to thg Cross S€Gsition four-current)’ of the ion in the frameK, reads
tions within this approximation. In Sec. IV we give a com- "
parison of results of our numerical calculations with experi-
mental data of[10] and [13] and with other theoretical Jlo(x)ch nguf dBrvlRr, r.t)
results[7,11,13.

Atomic units are used throughout except where otherwise X[Z,83(x—R,) = B(x—R,— ) ]¥(R, 1 1),
stated.
Il. GENERAL CONSIDERATION J}(x)z—cj dale Erwl(R, rb)
In order to describe electronic transitions in composite s
atomic systems which are subject to the electromagnetic in- X a8 (X=R—=r)Wi(Ry,r,t). (©)]
teraction in the collision, we start with the transitiSmmatrix
element(see, e.g.[14]) In Egs. (3), Z, is the atomic number of the ioR, is the
) coordinate of the ion nucleus,is the coordinate of the elec-
= == g4I (0AE(x ) ’ 1 trpn of the_ ion with respect to the ion _nucleus,, are the
S ( CJ wOAR) @ Dirac matrixes for the electron of the ion, ad® is the

" three-dimensional delta-function. Since in the frakhethe
WhereJ'M(x) is the electromagnetic four-current of the pro- three-velocity of the ion nucleus is negligible when com-
jectile ion at a space-time poirt AX(x) is the four-potential ~ pared with that of the ion electron, we have neglected in the
of the electromagnetic field created by the target atom at theecond line in Eqgs(3) the contribution to the ion three-
same poink, andc is the speed of light. Here and below the current due to the motion of the nucleus.

indices| andA stand for the ion and atom, respectively. Further, in Egs(3) the wave functions of the initial and
The potential obeys the Maxwell equation final states read
OAR(X)= 47TJ" 2 1
)=~ A, @ Wi(R, 1, t)=——=exp(iP|- R —iE{)ou(r).  (4)

Wy

Here the symboj stands for both andf, which refer to the
initial and final states of the ion, respectiveB}, and P} are
22 the total three-momenteP(=0), E! andE} the total ener-
gies (including the rest energig®f the ion, ¢y and ¢, are
is the D’Alembert operator. Below the transitichmatrix  the relativistic Dirac bispinors for the initial and final intrin-
element(1) will be evaluated within first-order perturbation sic states of the ion, and, is a normalization volume for the
theory in the projectile-target interaction. plane wave describing a free motion of the ion before and
Before we proceed further, let us make two rather obviousifter the collision. Below we will be interested only in col-
but important remarks, which allow us to simplify consider- lisions where the intrinsic state of the ion is changed:0.
ably the treatment of the problem in question. First, since thé&or the process of electron excitation the final stateis a

whereJZ(x) is the four-current of the target atom and

P
O=A
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discrete state of the ion. Otherwise the stéteis a con-

tinuum state of the ion, properly normalized, and describes

the electron loss process.
The ansatZ4) represents a common forfaee, e.g.[17])

of a wave function for a free atomic system moving with a
nonrelativistic velocity[18], where we have neglected the

PHYSICAL REVIEW A 61 052704

Na
Fimo:Q=— | 11 d®gur(my,)

Na

xj;a.(j)exp(iQ-gnuo(rNA). 8

spin of the nucleus and the difference between the coordinate

of the nucleus of the ion and the coordinate of the center oHere Q=P'f—P'%*, Z, is the atomic numberN, is the
mass of the ion. The justification of both approximations liesnumber of the electrons of the atows,;, are the Dirac ma-
in the extremely large difference between the masses of nurices for theith electron,uy, are the wave functions de-

clei and of electrongsee, e.g., the discussion[ib6] devoted

to the justification of the neglect of the spin of a heavy par—rNA={§1,§2, ..

ticle in the equivalent photon methpd
Inserting Eq.(4) into Eqg. (3) and integrating oveR, we
obtain forn#0

CFL(nO;P'f—Pi')

i) —
J (X)= v,

exfi(Pl—PH)x—i(E|—ENt].
(5

We denote the four-component quanfity(n0;P;— P}) with
components

Fh(n0:P—P) =~ | &Pry}nexti(Ph—P)rlug(n).

F.'(no;P'f—Pb:—f ryl(r)exi (P—Phrlao(r),
®)

as the inelastic form factor of the ion. It can be seen from

Egs.(6) that the quantityF'M/VI forms a four-vector.

scribing initial and final intrinsic states of the atom, and
: ,§NA} represents the coordinates of tNg

atomic electrons with respect to the atomic nucleus. Since
the intrinsic motion of theinnen electrons in heavy atomic
systems is relativistic, then, in general, the wave functions
Uom are relativistic electronic wave functions. Exact solu-
tions for the Dirac equation with two and more electrons are
not known; however, approximate wave functions for such
systems can be constructed from individual electron wave
functions.

Equations(7) and (8) were obtained using approxima-
tions, similar to those used to get E@S) and(6). The only
essential difference between the two form fact@sand(8)
is that we consider for the atom also the possibility to make
no transitions between its intrinsic states in the collision. The
zeroth components of the idi6) and atom(8) form factors
have the familiar form of the atomic form factor appearing in
the nonrelativistic theory of projectile excitation and loss
(see, e.g.[1]). The three other components of these form
factors have no counterpart in the nonrelativistic theory.
Note also that the quantitly4/V, forms a four-vector.

In order to solve Eq(2) it is convenient to use a four-
dimensional Fourier transformation

Now we proceed to the calculation of the potential created

by the atom. First we calculate the currelif‘(x,) of the

atom in the reference framé€, where the atom is initially at
rest and obtain the potentidl’A(x,) in this frame. Here,
Xp=(Cta,Xp) is the space-time four-vector K, . In a way

similar to that used to get the ion currgi®), we obtain for

the four-current of the atom

FA(MO;P'2—P'f)
Va

Jpt(xa)=cC
Xexgi(P' =P Oxa—i(E'N=E'Dtal. (7)

In Eq. (7), P'; (P'f'=0) are the three-momenta aid}

the total energiesincluding rest energigeof the atom in the
initial and final states, respectively, am is a normaliza-
tion volume for the atom in the fram€,. The components

of the form factor of the atorﬁﬁ are determined as follows:

Na
FO(m0;Q)=Za0mo= | L1 d*ur(y,)

Na

xgl exp(iQ- &)Uo(7,),

1

A"A(Xa) = (277)2

f d*kBA(K)exp(ikxa),

c
N (Xp) = —,f d*k exp(ikx,)
VA

X 8@ (k+ PP =P "MF4(mO;—k). (9

In Eqg. (9), kx, denotes a scalar product of the two four-
dimensional vectork andxp , P’ﬁf are the four-momenta of
the atom in the fram&,, andk is the “spatial” part ofk.
Inserting Eq.(9) into O'A’R(Xa)=(—4m/c)I " (Xa) We
find the Fourier transfornB4(k) to be

(2m)26*(k+P'#=P') FA(mMO; —k)
o

Bi(k)=4
A9 k2—i0 A
(10
and obtain the four-potential
exdi(P'A=P’Mx,] F4(mO;
w o an ST P P RX FE(MOIQ)

(PP=P'H)?=i0  V,
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In Eqg. (11), the term —i0 gives a prescriptiorisee, e.g., electron energy of the atofin the frameK ,) and the ion(in
[14]) to handle the singularity. This singularity would appearthe frameK,), respectively. In Eq(13), ¢, and ¢, are the
it (P'A=P'D)2=(P'}—P'2—(E'"-E'$)?%c?=0. The electron energies of the atom in the initial (0) and fifra)
latter condition holds only if the electromagnetic interactionstates, respectively. In the second line of Etp) we have
between the colliding systems is due to an exchange of aeglected the recoil energy of the atom in the fratpe The
photon withk?=0. component$? and Pﬁ* are perpendicular and parallel to the
Let a,, be the Lorentz transformation matrix from the collision velocity v, respectively. Note that the transverse
frame K, to the frameK;. Then for the potential in the and longitudinal components of the momentum trangter
frameK, we have — P” to the atom in the framk, enter the atomic form factor
in Eqg. (12) differently, which results in important peculiari-
ties in the shielding of the atomic nucleus by atomic elec-
trons in ultrarelativistic collisions.
(12) Inserting the right hand sides of EqS) and(12) into Eq.
YWa (1) and integrating oved*x in Eq. (1) we obtain

AX(X)=alA’j (@ x)
exdi(PP=PH)x]  FA(MO;Q)
" (PA=PA2=i0 '

In Eq. (12), P{*(f) is the initial (final) four-momentum of the
atom in the frameK,, V,=V,/y is the normalization vol-
ume for the atom inK,, y=1/J1—0v?/c? is the Lorentz
factor, andv is the velocity of the incident atom i, and is  where
identical to the collision velocity.

Using the Lorentz transformation the three-momentum FL(nO;q)y‘laﬁF,ﬁ(mO;Q)
transfer to the atonQ=P’?—P’iA, given in the frameK,, Gri= (PA—PA2—i0
which enters Eq(12), can be rewritten as ! f

A
Si= iy, (2m*dD(PI+PI-P—PGy, (14

(15

andgq=P}— P| =P~ P} is the three-dimensional momentum
transfer to the iorfgiven in the frameK,). We recall that the
form factors FL and F,, given by Egs.(6) and (8), are
1 determined in the reference framiésandK,, respectively.
- A_pA _Y Using the standard technique in order to get cross sections
N( PiL—PlL ’;(Pf”_ P”')_E(Em_ GO)) B om kn%wn transitiorSmatrb?element$see, £é.g.[l4]) and
taking into account Eqs(13) and (15), we obtain for the
wherePLA and P"f are the transverse and longitudinal parts ofcross section of a process where the electron of the ion
the three-momentur@”® of the atom in the fram&,. In Eq.  makes the transitiogy— ¢, and those of the atom the tran-
(13) and below we use the letteks and ¢ to denote the sition ug—up,

1
o= [p-p Lee-pye Sete

4 Ef
Ug_ﬂq:;gg SEA d?q, |Gy|?
I

A | | | . - v .
_ i Ei+Ei—E; 2 2 dqu |Fﬂ(n0aqi +Amin) ¥ 1aleFA(mOa_qL a_qmin/'y_(vlcz)(fm_ 60))|2' (16)

o2 ES N [aF +qhin— (Ef—ED?/c®)?

whereE andEf =E*+E! —E} are the initial and final total because of reasons which will be discussed below. The mini-
energies of the atom given in the rest frame of the ion. Thenum momentum transfey,,=|P;| — [P/, entering Eq(16),
summation indicated in Eq16) runs over the spin degrees i§ to be determined from the energy conservation in the col-
of freedom of the electron of the ion and over those of theision:

atom. This summation implies proper spin averaging, i.e., an

average over initial and sum over final spin states of the E{+~/02PiA2+ M3 .ct=E}+ \/02p¢2+ Macct, (17
electrons participating in the process. In the above equation

the integration over the absolute value of the transverse_ pa\'i\t/hereMAi andM 4; are the rest masses of the atom being in
q, of the momentum transfer runs from 0 to some maxi-  the initial and final statesi, andu,,, respectively. Due to a
mal valueq"® which for our case can be set equal to infin- very large difference between masses of the ion and that of
ity. With the same accuracy the factef/E; in Eq.(16) can  the electron, the recoil energy of the ion in the fraijecan

be set to unity. We have omitted in E@.6) the term—i0  be neglected. Then in this frame the difference in total ener-
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gies of the ion before and after the collision can be approxiHere, neglecting the recoil energy of the atom in the frame
mated asE'f— E{%sn—so, wheree, ande,, are the energies Ka, we set Ma—M ;) c? to be equal to the difference be-
of the electron of the ion in the initial and final intrinsic tween the finalge,,, and initial, €y, energies of the electrons
statesy, and i, , respectively. Taking into account th@}  of the atom in that frame.
the change of the three-momentum of the incident atom is It is convenient also to introduce the quantity
small compared to its initial valugP?|+|Pf|~2|Pf, (ii)
the difference in the rest masses of the atom is small com- Amin © € —€n £.—s

. e min m 0 n 0
pared to its initial valueM pij+Ma~2M,;, and (ii) the Qmin=—+—2(6m— €)= + , (19
total energy of the relativistic incoming atom in the fraie Y ¢ v vy
is much larger than the difference between the final and ini-
tial energies of the ion in that fram&!*>|E{—E}|~|e,  which plays the same role for the atom as the quargity,

—¢&g|, EQ. (17) is approximately solved to yield for the ion.
) Taking into account Eq918) and(19) the cross section
_ _Sn_80+(MAf_MAi)C B 8n_80+fm— €0 (16) can be rewritten in the form which clearly shows the
Amin="] vy T vy symmetry of the quantities of the atom and of the ion in the

(18  cross section:

2
e—E& €rn— € Em— € En— €&
Fl nqul ,n—0+m—0 ,-yfla/LFV mO’_qL'_ m O_n—O
0—m 4 2 " v U'y v v Uy
oon=5 2 X | da 2 ? 9
v° s sa 5 (en—egt+ €m—€p) (en—e0)(€m—€0)
2+ V22 +2(y=1) 022

Here we have consistently neglected the recoil energy of theator in the integrands in Eq&l6) and (20) in more detail.
ion also in the denominator of the integrand in Etg), E; ~ This denominator can be equal to zero if
—Ei'%sn—so. Equations(16) and (20) are the first main (6n—t0)2
result of the present paper. qunin_“—zogo_ (21)

If the atom and the ion are initially in their ground states, c
it follows from Eq. (20) that the singularity in the integrand o ) ]
in Egs. (16) and (20) does not appear. From the physical To be definite, let us assume t_hat the ion ge_ts excitgd (
point of view it means that for collisions of composite —€0>0) and the atom is deexcited@{— €,<0) in the col-
atomic systems, which are initially in the ground states, thdiSion- Then, taking into account E¢L8), we obtain that the
restrictions imposed by the momentum-energy conservatiofft€duality (21) holds if
in the collision do not permit an electromagnetic interaction pra— e
between the systems to occur via an exchange of a real pho- l€m— €0l \/ ——=<&n—20=|€m— €0| \ [— (22
ton with the energy-momentum relatiéi=0. We consider ctv C-v
below only such collisions and omit the termiO in Egs.

(16) and (20). photons in the atomic fram&, (in all directiong with a

Before we proceed further,_hovyever, it is worthwhile to fixed frequencyw, results in a photon spectrum in the ion
say a few words about the situation when one of the t\NqrameKI with the frequencies:

collision partners is initially in the ground state while the

other one is in an excited state and when the collision leads [c—b c+v

to the excitation of the first particle and the deexcitation of g C+Uswswo p— (23

the second one. The analysis of the denominator in(Eg).

shows that the electromagnetic interaction between the Cobomparing Eqs(22) and (23) we see that the interaction
liding composite systems can occur via an exchange of etween the atom and the ion in the collision process occurs

photon with the energy-momentum relatigh=0 which is  yia the emission of a photon with the energy=|e,— €|

inherent to a real photoi9]. In this case the corresponding py the atom in the frami , and the absorption of the same
cross section calculated within the present formalism is infiphoton, but with the energw=¢,— ¢, by the ion in the

nite, which reflects the breakdown of the first-order treatmenframe K, . Thus, the collision process in this case is a reso-
in such a case even for finite[20]. In order to get a deeper nant process which cannot be treated within the first order.
insight into the reason which undermines the validity of the Now we return to the consideration of relativistic colli-

first-order treatment in this case, let us consider the denomsions between atomic systems which are initially in the

Because of the relativistic Doppler effect, the emission of
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ground states. Using the explicit form of the Lorentz trans-the coupling between the space components of the corre-
formation matrixa” (see, e.g.[2]) the relativistic coupling sponding form factors in E¢(24). In the limit c—o both
of the form factors in Eqs(16)—(20) can be written in the types of relativistic effects vanish and EQO) recovers the

following symmetrical form: form of the corresponding nonrelativistic cross section.
If a final intrinsic state of the atom is not observed, one
o L v\ e v s FiFA has to sum over all possible states of the atom. Equatién
Fuy "ayFa=|{Fo~ cFs|| Fa= cFal* ¥ then gives
FiFA+FLF2 4
ey R D DOl
v° s m
Compared to the known form of the nonrelativistic cross | _ oppw _ )

section (see, e.g.[1,3] and references thergirEgs. (16), XlFM(nO,qL Gmin) ¥~ 84 FA(MO; — 0, , — Qumin)|
(20), and (24) contain two types of relativistic effects. The [02 + 02— (en—&0)%/c?]? '
first type is connected with the collision velocityand dis-
appears whem/c<<1. This type includes the retardation ef- (29

fect, described by the ternE{—E!)%/c?~(e,—£0)?/c? in

the denominator in Eq.16), and the different dependences The summation over the atomic states in E2p) includes

of the form factors of the atom and ion on the transitionalso the summation over all spin degrees of freedom of the
energies §,—¢&,) and (e,,— €9) and also the coupling be- atomic electrons. The cross secti@b) can be split into the
tween the zeroth and third components of the form factors irelastic (n=0) and electron-electrofall m+0) contribu-
Eqg. (24). The second type is due to relativistic effects in thetions to the total cross section for the transition-@ of the
inner motion of the electron of the ion and the electrons ofelectron of the ion. Taking Eq18) into account we obtain
the atom, and it does not disappear whéo<1. It includes for the elastic part

| . — v . 2
el 4 Z fdzqi|FM(nquL!qmin)’y lal;FA(OOa_qu_qmin/')/N '

Oo—n=— "5 2 (26)
" 2 S q2+(8n_80)2
L vz,yz
Correspondingly for the electron-electron contribution we have
e-e :i 2 E d2 |Fl,t(n0,qi :Qmin) 771al:FZ(mO;_qL a_Qmin)l2 2
UO*}n 2 qJ_ 2 2" ( 7)
v° s m#0 »  (en—&0T €m— &) (en—€0)(€m— €o)
Lt 2.2 +2(y=1) 2.2
vy vy
|
ll. APPROXIMATION OF A “NONRELATIVISTIC” not too heavy atoms one hag<c for all atomic electrons

ATOM and one can neglect all three compondﬁﬂ;$m0;Q) in Eq.

(8) compared tdzﬁ(mO;Q). In heavy atoms the very inner
The coupling(24) between the form factors of the ion and electrons can have relativistic velocities. However, because
atom is rather complicated. In order to get more tractablédhe number of these electrons is relatively small compared to
equations for the electron loss cross sections we introducé® total number of atomic electrons, they are not expected to
the following approximation: we neglect the space compo/Ncréase considerably the absolute value.ﬁit(mo;.Q)..
nents of the atomic form factor. Below some semiqualitative! Nerefore, the neglect dt,(m0;Q) is approximately justi-
arguments are given in its favor. fied also for heavy atoms.

Let us consider the atomic form fact¢8) in more detail. We will refer to this approximation as to the nonrelativ-

0 i . . istic atom (NRA) approximation. The NRA approximation
The comp_onenFA(mO,Q) OT the atomic fqrm factor is con- e aks the symmetry in which the form factors of the ion and
nected with the charge distribution inside the atom. The&y ihe atom enter Eq$16) and(20)—(27). Therefore, in gen-
components=,(m0;Q) are connected with the current, cre- eral, one can expect that this approximation fits better to the
ated by the motion of the electrons inside the atom in the resicreening mode. In this mode the electron of the ion makes a
frame of the atom. One can estimate roughly the magnitudéransition while those of the atom do not, and the symmetry
of FL(m0;Q) asFL(m0;Q)~ (ve/c)F2(m0;Q) wherev.is  between the ion and atom is already broken to some extent.

a characteristic velocity of the atomic electrons. For light andndeed the analysis of the elastic atomic form factor shows
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that for the screening mode the NRA approximation can behe antiscreening mode is not expected to give a noticeable
used for all possible collision energies and colliding partnerscontribution to the total electron excitation or loss.

The situation becomes more complicated when we use the We also note that in order to provide a reasonable asymp-
NRA approximation for the antiscreening mode. In the argu-+otical limit for the electron-electron contribution to the cross
mentation given above we considered typical electron velocisection, which fory—c should bey independent, it is suf-
ties in the atom ground state. In collisions with heavy pro-ficient to take the first termiF)— (v/c)F5][F2— (v/c)F3]
jectile ions the minimum momentum transf€.,;,= (e, of the full coupling of the form factors in Edq24).

—&o)/vy+ (en—€p)/v can be large compared to the typical ~ Keeping in mind that the arguments given above are

electron momenta in the atom. In the antiscreening mode Afualitative rather than quantitative we use below the NRA

such collisions the atomic electrons can acquire velocitieapproximation for our calculations.

which are considerably higher than the typical electron ve- Neglectinng(mO;Q) we obtain for the elastic cross sec-

locities in the ground state of the atom. Since we have asjon (26)

sumed that the atomic electrons are nonrelativistic in the

collisions, it means that the conditio®,,,<m.C, where ol 4 S s

m.=1 is the electron rest mass, should be fulfilled. If we  %0-n="3 ; fd 01 Z4 ert(Qo)

approximates,— g by Z,z, then we obtain the limitatiory v

>Z72[vc for the use of the NRA approximation in relativistic v )

collisions. The latter condition is certainly met for collisions (1) (1— Eaz)exlil%' r

with, say,y>4 for any heavy ion. X 2\ 2
( 2+(8n_80) )

2

¢o(r)>

There is another important limitation for the use of the
NRA approximation for the antiscreening mode. Our analy- +
sis of the properties of the inelastic atomic form factor in the
limit of small momentum transfers shows that the condition (28)

(sn—so)/y%(em— €o) should _also_ be met _for all transitions Here qy=(q, ,dmin). Q5=(d, ,Gmin/¥), and we use Dirac’s
of the atomic electrons contributing considerably to the annotation for the vectors of electronic states. The effective

ticreening part of the loss cross section. This condition im-harge of the incident atom in the ground statgsiee Eq.
poses an upper limit on the collision energies which can bgg)]

considered within the NRA approximation. However, since

we are interested mainly in the description of electron loss

from very heavy ions, this condition does not seem to beZA,eff(Q(S)):ZA_<UO(TNA) >, exp(—iQs- &) Uo(TNA)>-
very restrictive for collisions with light atoms when the an- )= 29
tiscreening mode is relatively important. On the other hand,

for collisions with heavy atoms, where the NRA approxima- In the same way the electron-electron contributi@)
tion may not be well justified for ultrarelativistic collisions, can be written as

02')’2

Na

Na 2

,-Zl exp(—iQ3- &)

UO(TNA)>

2

4
o523 [

v° sy m#0

< Um( 1'NA)

‘<wn<r) (1—%011 l/’o(r)>

2

(en—e0+ €m—€0)? (en—&0)(€em— &)

gy 2y 1) ——— "
vy vy

exp(ido-r)

(30

Wherngz (9., Qmin)-

According to Eq.(11) the approximatiorF'A(mO;Q)~0, used to obtain Eq$28) and (30), in fact means that we have
neglected the vector potential, created by the atom in the fil@mecompared to its scalar potential in this frame. Then the
scalar potentiaf® and the vector potentisi of the atom in the fram&, are connected by the simple relatién= (v/c)A°,
and Eqgs(25) and(27) are reduced to Eq$28) and(30). The latter equations are the second main result of the present paper.

For ions carryingN, electrons ,>1) the cross section®8) and(30) can be generalized to yield

N, v 2
4 <lﬂn(PN|) ;1 (1—Eaz(i))exm%'ri) ¢O(PN|)>
Ugl_»n:;; deQLZi,eff(Qg) (e—0)? 2 (31
| (qf+ :)2720 )
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and

4
553 S [ e

s m#

< um(TNA)

2

Na
2, exp(-iQ5-§)

2
(en—eot+ €em—€)
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2

$ et

=1

Uo(7n,) > < ¥a(pn,)

X exp(ido-ri) q’+

'//o(PN|)>

In Egs.(31) and(32), lez{rl,rz, ..

0272

.In,t are the coordi-

-2
(sn—80><em—eO>) . @

+2(y—1) >

1)2’)’

Here w,g=¢,—&g. The above equation is exactly the same

nates of theN, electrons of the ion with respect to the ion as that obtained ifi12].

nucleus, andv, is the Dirac matrix for theth electron.

For an atom without any electrons, i.e., a bare nucleus, we

Below we restrict our consideration to ions carrying only set in Eq.(36) all «; equal to zero and recover the well-

one (active electron.

A. Elastic contribution (screening

In this subsection we consider the elastic contributs)
to the total cross section in more detail.
The effective charg€29) can be rewritten as

ZA,eff(Q(S)):ZA_J dépe(Hexp(—iQg-£), (33

where pe((€) is the charge density of the electrons in the
incident atom in rest frame of the atom. In a paper of Salva
et al. [22] analytical Dirac-Hartree-Fock-Slater screening
functions are given for neutral atoms with atomic number

Z,=1-92. The density is written as

7 3
peil)= 477’;2 2, Akt expl— ki), (34)

S

known form for cross sections for collisions with bare nuclei
(see, e.g.[2]). In collisions with bare nuclei the main con-
tribution to the cross section stems from the range of small
values ofq, , 0=<q, <wp/vy, resulting in a logarithmic
growth of the cross section with: oo, ~ In y (see, e.g2]).

For collisions with neutral atoms E¢§36) shows an im-
portant general feature of the shielding in relativistic colli-
sions which is not present in nonrelativistic ones. If the ion is
a highly charged ion4,>1) and the atom is a light atom
with all screening constants; of the order of unity, the
fc,hielding is not important in nonrelativistic collisions be-
cause the termwZ,/v?~Z}/v? dominates over alk? in the
denominator of the integrand on the right hand side of Eq.
(36). However, the situation changes drastically for ultrarela-
tivistic collisions, wherey>1. In this case the termg’ can
be larger than the term?,/v2y?~Z{1v?y?. This results in a
reduction of the cross section. Our numerical calculations
(see below confirm that, in contrast to nonrelativistic colli-

Here, A; and «; are constants for a given atom which are Sions, in ultrarelativistic collisions the shielding is important

tabulated for all atomic elements|ia2]. Using Eqs(33) and
(34) the effective charg@, .1 Q3) is obtained to be

8 A k2
Zpei(Q)=2Zal 1- 2, ————
i ot
=zA<q2+q2~n/y’-’>§ A
B W o

(39

For obtaining the second line on the right hand side of Eq.

(35) the conditionZ;A;=1 (see[22]) was used.
Inserting Eq.(35) into Eq. (28) we get

> > AiAjf d?g,

S| I,]

el

474
g =
0—n
UZ

2

<¢n<r> (1—%az)exp<iqo'r> wo(r>>

X 2

2
w w
2 n0 2 2 n0 2
(qL_l— > 2+Ki)<qL+ > 2+KJ'
vy vy

(36)

even for collision partners consisting of a heavy ion and a
light atom. It is worthwhile to emphasize that this important
feature follows directly from Eq(13) and, hence, it is inde-
pendent of the particular modéB4), taken to describe the
shielding.

In conclusion of this subsection we note that the analysis
of Eq. (36) shows that, in collisions with neutral atoms, the
cross sectionrg' | is independent ofy in the limit of very
high values ofy.

B. Electron-electron contribution (antiscreening

Equation(30) can be considerably simplified by making
use of the closure methddee[3] and references thergirn

its simplest form the same average enefgyis assigned to

all possible transitions of the atomic electrons. This approxi-
mation is known to give good results in nonrelativistic col-
lisions at velocities well above the energy threshold for the
ionization of the ion by a beam of free electrons. This ap-
proximation is used below in order to get a simpler and more
tractable form for the part of the cross section due to the
electron-electron contributiof80) . Using the analogy with
nonrelativistic collisions, one can expect that the closure ap-
proximation gives reasonable results also for collisions at
~ ¢ when the kinetic energy of an equivelocity free elec-
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tron is much larger than the binding energy of the electron of
the ion: T=m.c?(y—1)>|gy|. This condition is well ful- aoﬁn—— 2 d%q,
filled for any heavy ion starting with, say=3-4 which is
quite close to the lower limit imposed by the use of the NRA
approximation.

Under this approximation one can apply the closure rela- «
tion for the electronic states of the atom,

2

<z//n<r> (1—3az)exp(iqo-r> llfo(r)>

2
wnotAe wnoA e
qi-f—( n02 ) +2(7 1) n0 )

v 7 7

% |um><um|:|v (37)

2). (41)

. o _ X| Za= 2 [(Salexa—iQ5- )] )
in order to perform the summation in E@®O) over the final A
states of the atom. It yields

Anholt [5] has pointed out that

0-0~>r|_— 2 dqu

v 2 E (drlexp(—iQ- )| 4))

n(r) __az explido-r)| o(r) A
X 2 2 _ .

qf+%+z(rl)wnf;> =3 U lexp-1Q- o)

vy vy
1 ] 2
“ <uo S ex-i1Q36-£)] uo> =712 (hlem-iQ oo . 42
—‘<Uo > exp(—iQg) u0> 2>, (389  He made calculationfs7] using both replacements
]

where we redefine®g asQj=(q, ,Ae/v+(en—eo)/vy). If ) )
a range of largéon the atomic scajemomentum transfers 2;4 |<¢A|EXD(—'Q'§)|¢A>|2—>; (orlexp—iQ- §)|d))
Qj contributes most to the integral on the right hand side of
Eq. (38), only the diagonal termis=j in the double sum in
Eq. (38) give nonvanishing contributions. The double sumgnd
and the last sum in Ed38) are reduced simply to the num-
ber of the atomic electrons and the cross sectifii, de-
scribes transitions of the electron of the ion due to an inco- .
herent electromagnetic interaction with free electrons. ; ((drlexp(—iQ-§)l4y)I*
In general, Eq(38) can be further simplified if the anti-
symmetrization of the ground state of the atom is ignored .
and the wave function of the ground state is expressed as Hz_A ; (drlexp(—iQ-§)[ )

and has found that the difference between the results of these
calculations is very small. Therefore, we simply set
whereg, (£) are the single electron orbitals. It was shown in

[5] (see alsd23]) that under these conditions one has

. Zp— 2 [(drlexp(—iQF- &) ¢,)|2
<U0 2] exd —iQf(&—&)] U0> X
uo> 2

e

=Zy= 2 [(¢alexn—iQG-§lenl® (40

uo=1] IXENE (39)

. —Zp— 2 (ylexp—iQ3- &) b))
> exp—iQ5§) X

J

=Zpet(QQ). (43

whereZ ¢+ Qp) is determined by Eq(33) with an evident
Inserting the right hand side of E@40) into Eq. (38) we  replacemenQi— Q§. Then for the electron-electron contri-
obtain bution we finally have
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TABLE I. Experimental and theoretical cross sectiditskb)  electron transitions with and without spin flip were taken into
for the ionization of 10.8 GeV/nucleon A% penetrating various account. In order to calculate the cross sectidh we need
solid targets. The ion is initially in its ground state. to know a value of the averaged excitation energy of the
atom Ae. To our knowledge, there is no strict and simple

_ Present  prescription to choose this parameter for multielectron atoms
Atom Z, Experiment Anholt and Becker /8&nsen work [1,3]. In our calculations we have séte=Aegp, where

c 6 0.31 0.31 0.27 031 Aespisthe mean excitation energy, which is used in calcu-
Al 13 118 1.28 1.15 1.24 lations of the stopping power. Values Afesp are tabulated
Cu 29 596 58 537 565 for avariety of atomgsee, e.g.[25], p.29. Note that in fact
Ag 47 16.2 14.4 13.7 147  the accuracy ol\e is not crucial for the present calculations.
Au 79 38.2 38.8 38 385 For the electron loss from the highly charged ions, like

Au’® and PB", in collisions with light targets like Be, C,
and Al considered here, the terms wille in Eq. (44) are of
4 negligible importance for both ultrarelativistic cases studied
0% =— f d2g. Z a experimentally in[13,10. The latter collision is considered
0=n 2 ;, A Za e Qo) below (Table 1l). For collisions of Ad®" and PB'" with
heavier target$Cu, etc.; see Tables | and) Ithe electron-
v - lectron contribution to the total loss cross section is already
Ni|{1l1-—-a,le -r r € . X
<l’/,“( ) ( C aZ) XPido- 1)) ol )> only a very small correction, less than 3—4 %, to the elastic
2 2 contribution[26]. Therefore there is no need in the present
(wpotAe) Wno )

2

X

qf+T+2(7— D—- calculations to use more exact values for the parameter
vy vy It follows from Table | that there is no significant differ-
(44) ence between the experimental data and all the calculations
as well as between different calculations at an incident en-

It is important to note that the relativistic peculiarities in the €rgy of 10.8 GeV/nucleon.

antiscreening mode are not affected by all the approxima- The situation is changed noticeably for the higher-energy
tions used to obtain Eq44). case studied experimentally [d0]. In this experiment the

loss cross sections for P ions were measured at a colli-
sion energy of 160 GeV/nucleon. In this cage 168 is al-
ready very high and the shielding becomes important. Table
Table | shows a comparison between the experimentdl gives a comparison between the experimental data of
data of Claytoret al. [13] and theoretical results of Anholt Krauseet al. [10] and different theoretical results. We have
and Beckef7], of Strenser{11], and our calculations. In the added a few more columns than in Table I. Calculations of
experiment13] the loss cross sections for A ions pen-  Sfrensen[11] are now given in two columns showing his
etrating different solid targets were measured at a collisioiesults for the loss cross sections in collisions with a bare
energy of 10.8 GeV/nucleon correspondingyte 12.6. Our  atomic nucleus and a neutral atom, respectively. Our calcu-
numerical calculations are based on E&$) and(44) where lations are also given in two columns. The first of the two
the final states of the electron of the ion are now the concolumns presents the results for the electron loss cross sec-
tinuum states of the ion and where the integration over thdions in collisions with a bare atomic nucleus, when there is
continuum states is carried out. In order to describe the eledio screening effect and no electron-electron contribution and
tronic states we took the same approximations for the wavavhen the cross section is proportional Z§. The second
functions for the bound and continuum states as those whicbolumn is for collisions with a neutral atom calculated with
were taken irf24], [9], and[12]. These approximations were Egs. (36) and (44) where both the screening effect of the
proved to give good results even fershell ionization of  atomic electrons in the elastic contribution, which reduce the
heavy elements like gold and legske, e.9.[8,9,24)). Both  loss cross section, and the electron-electron contribution, in-

IV. RESULTS AND DISCUSSION

TABLE Il. Experimental and theoretical cross sectidgimskb) for ionization of 160 GeV/nucleon Bb
penetrating different solid targets. The ion is initially in its ground state.

Anholt and Becker Bensen Present work
Atom Z,  Experiment Atom Bare nucleus  Atom  Bare nucleus  Atom
Be 4 0.14-0.15 0.24 0.15 0.14 0.2 0.17
C 6 0.31 0.49 0.33 0.28 0.45 0.35
Al 13 1.3-1.4 2.0 1.6 11 2.14 1.42
Cu 29 6.9-8.0 9.0 7.8 5.2 10.6 6.5
Sn 50 15-21 25 23 15 31.5 17.6
Au 79 42-53 60 58 35 78.7 40.1
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creasing the loss, are included. APPENDIX
Our results for the cross sections in collisions with atoms

are considerably less than those[@] and are in a fairly

good agreement with the experimental data. Compared t

Iculation 11 r results ar mewhat larger - . .
calculations off 11] our results are somewhat larger, espe much less than the Bohr velocityy=1 a.u. Let us consider

cially for collisions with a bare atomic nucleus where thea Coulomb collision between two bare nuclei with charaes
difference reaches about 30%. Our results practically coin—Z nd Z. respectively. The nucl with char ndg
cide with those obtained ifiL2]. 18 2, respe y. The nucleus chargy a

A rather small difference between our results for the elec™aSSMa i |r_1|t|ally at rest and the se_cond nL_cheu'_s moves
tron loss in collisions with neutral Be and Beis due to the with relativistic velocityv along a classical straight-line tra-

electron-electron contribution to the total cross section. FolS¢OrY- The energy, transferred to the first nucleus in the
collisions with few-electron targets the antiscreening modecolhsmn, can be estimated &see, €.9.[15])

gives a relatively large contribution. This contribution
reaches about 20% of the total electron loss in collisions

In this section we prove that in a reference frame, where
e atom or the ion is initially at rest, its typical recoil veloc-
ity after the collision is not only nonrelativistic but also

with Be. Our calculations show that for 160 GeV/nucleon _ 22173 (A1)

collisions the shielding effects in the elastic and electron- ! bzszl'

electron[27] contributions to the cross sections reduce the

total electron loss cross section by a factor of 1.4 for

PEP*-Be collisions and by a factor of 2 for B-Au col-  whereb is the impact parameter of the collision. Correspond-

lisions. ingly the recoil velocity of the first nucleus after the collision
In conclusion of this section we note that the general goods

agreement with the experiment at quite different valueg,of

obtained in our calculations, gives some additional indirect

justifiction for the use of the NRA approximation in relativ- 2AE, 27.Z,

istic collisions. Uree™ N "M, boMy (A2)

V. SUMMARY

In this paper we have considered projectile electron exci!t follows from Eq. (A2) that for fixedb anduv the recoil

tation and loss in relativistic collisions with atomic targets.veloc"[yvrec reaches the highest value in the collision, where

Our treatment of the processes is based on the first-ord the second nucleus has the largest possible charge and the

Iy . : ; .
relativistic perturbation theory for the electromagnetic inter-(;fIrSt nule_us has the highest poss_lble_ rafiyM,. Choosing
an uranium nucleus as the projectile and a proton as the

action of the four-current of the projectile with the four- é%rget, forby=a, +a, (a;~1 fm=2Xx10"5 a.u. is the di-

current of the target. General expressions have been deriv ; ~ :
for the cross secgons for the echi)tation and loss. In the limif'€nSion of the proton angizml.fx_lo *a.u.is that for the
c— these expressions go over into known nonrelativistic! & UM nucleysand puttlngv~c_— 137 we Navey e max
formulas for the corresponding cross sections. In ultrarelativ-, 4vo. Impact_parameters, Co.”t”*?““”g most _to Cross sec-
istic collisions these expressions describe an important pep_on.s.for transitions O.f the pI’OJeCtI_|(:=[' elep tron in relativistic
culiarity in the shielding of the atomic nucleus by the atomicCOlliSions, can be estimated &s-q, “~min(v y/ wno; 1/ki)
electrons. Results of our numerical calculations are in rea(Se€ Sec. 1A where oy, is the electron transition fre-
sonable agreement with available experimental data. quency, ; are the atomic screening constants. Since such
impact parameters are at least two orders of magnitude larger

than~10 # a.u., one can conclude that the recoil velocity of
the ion or the atom in a reference frame, where the ion or the

One of the authorgA.B.V.) acknowledges with thanks atom is initially at rest, is negligible compared to the Bohr
the support from the Alexander von Humboldt Stiftung. velocity v .
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