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Plane-wave Born treatment of projectile-electron excitation and loss
in relativistic collisions with atomic targets

A. B. Voitkiv,* N. Grün, and W. Scheid
Institut für Theoretische Physik der Universita¨t Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany

~Received 17 November 1999; published 5 April 2000!

Electron excitation and loss of relativistic ion projectiles colliding with atomic targets are studied within the
framework of the first order of the plane-wave Born approximation. General expressions are derived for the
elastic and electron-electron contributions to the electron excitation and loss cross sections. In the limit of
nonrelativistic collision velocities these expressions go over into known nonrelativistic formulas. In ultrarela-
tivistic collisions shielding effects are shown to be very important for the excitation and loss cross sections
even for collisions of highly charged projectiles with light atomic targets. Results of our calculations for the
electron loss cross sections are in reasonable agreement with available experimental data on projectile-electron
loss in relativistic collisions.

PACS number~s!: 34.10.1x, 34.50.2s, 34.50.Fa
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I. INTRODUCTION

Processes of excitation and loss of the projectile elec
in collisions with atomic targets at nonrelativistic collisio
velocities have been extensively studied during the last
decades~see @1–3# and references therein!. The result of
these studies is a rather good understanding of these
cesses, especially those which can be considered within
order perturbation theory. Some nonperturbative approac
are also available at present to treat the projectile-elec
excitation and loss in nonrelativistic collisions~see, e.g.,@4#
and references therein!.

The process of the projectile-electron loss in relativis
collisions with atomic targets was considered in several
pers of Anholt and collaborators~see@5–7# and references
therein!. In these papers electron loss cross sections w
calculated. The method used by these authors is based o
first-order perturbative treatment of ionization in relativis
collisions with structureless pointlike charges@8,9#. In order
to take into account the fundamental difference betwee
pointlike charge and a neutral atom, they employed res
for the projectile-electron loss in nonrelativistic collision
with neutral atoms and introduced some intuitive assum
tions to adapt the nonrelativistic results to relativistic co
sions. The most complete set of results for the loss proce
relativistic collisions, obtained in this way, was presented
a paper of Anholt and Becker@7#. In that paper the electron
loss cross sections were given for a variety of project
target pairs for collisions up to relativistic projectiles wi
g<1000, whereg is the Lorentz factor.

In a recent experiment@10# electron capture and loss wit
Pb ions as projectiles were investigated for several tar
~from Be to Au! at a collision energyE5160 GeV/nucleon
and a considerable difference between the theory@7# and the
experimental data was found for the projectile electron l
cross sections.

*On leave from the Arifov Institute of Electronics, 700143 Tas
kent, Uzbekistan.
1050-2947/2000/61~5!/052704~12!/$15.00 61 0527
n

w

ro-
st-
es
n

-

re
the

a
ts

-

in
n

-

ts

s

The reason for this disagreement, revealed by So”rensen
@11#, is that the loss cross section, obtained in@7#, does not
correctly describe shielding effects in ultrarelativistic col
sions. In the paper of So”rensen@11#, within the framework of
first-order perturbation theory, a simple and physically
tractive semiqualitative investigation was given for the s
called elastic~for the target!, or screening, contribution to th
electron loss process. Within this approach the elastic con
bution to the loss cross section is separated into a close
a distant collision contribution. The close-collision contrib
tion was evaluated within the binary-encounter approxim
tion for the collisions between the projectile electron and
nucleus of the neutral atom. The distant-collision contrib
tion was estimated by using the method of equivalent p
tons. The so-called electron-electron, or antiscreening, c
tribution to the loss cross section, which cannot be trea
within such an approach, was estimated by applying a r
tion between the electron-electron and elastic contributi
which follows from the free collision model of Bohr~see,
e.g.,@1,2#!. The results, calculated in@11#, are in reasonable
agreement with the experimental data@10#.

In a recent paper@12# another approach was applied
treat the elastic contribution to the projectile electron lo
cross section. In the rest frame of the projectile-ion the in
dent atom was described as a beam consisting of the nuc
and the electrons moving with a constant relativistic veloc
along straight-line classical trajectories. The scalar and v
tor potentials, created by this beam, were calculated.
quantum nature of the atomic electrons was taken into
count by averaging these potentials over the density distr
tion of the electrons ‘‘frozen’’ in the ground state of th
incident atom. The time-dependent Dirac equation for
electron of the ion, making transitions in the field of th
incident relativistic atom, was treated in the first-order of t
perturbation theory in the electron-atom interaction and
screening cross section was calculated. Since the appr
used in @12# can hardly be generalized to incorporate t
electron-electron contribution, this contribution to the lo
cross section was estimated in a similar manner as don
@11#. The results obtained in@12# agree well with the experi-
ment @10#.
©2000 The American Physical Society04-1
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A. B. VOITKIV, N. GRÜN, AND W. SCHEID PHYSICAL REVIEW A61 052704
The present paper is an attempt to give a more gen
treatment of projectile-electron excitation and loss in rela
istic collisions with atomic targets within the first order
the plane-wave Born approximation~PWBA!. Our consider-
ation is mainly restricted to projectiles carrying a single el
tron. In this case the transitions of the projectile electron
be described in the first order perturbation theory for
electron-target interaction if~i! ZA,ZI , where ZA is the
charge of the target nucleus andZI is the charge of the
nucleus of the projectile-ion, or~ii ! ZA,v, wherev is the
collision velocity. In relativistic collisions the latter cond
tion ZA,v is fulfilled for any atomic numberZA .

The present study is mainly focused in deriving gene
expressions for cross sections of the projectile-electron e
tation and loss. In addition, some calculations for the l
cross sections are also presented.

The paper is organized as follows. In Sec. II we pres
the PWBA theory for the projectile-electron excitation a
loss in relativistic collisions. In Sec. III we introduce th
approximation of a ‘‘nonrelativistic atom’’ and evaluate th
elastic and electron-electron contributions to the cross
tions within this approximation. In Sec. IV we give a com
parison of results of our numerical calculations with expe
mental data of@10# and @13# and with other theoretica
results@7,11,12#.

Atomic units are used throughout except where otherw
stated.

II. GENERAL CONSIDERATION

In order to describe electronic transitions in compos
atomic systems which are subject to the electromagnetic
teraction in the collision, we start with the transitionS-matrix
element~see, e.g.,@14#!

Sf i5S 2
i

cE d4xJm
I ~x!AA

m~x! D
f i

, ~1!

whereJm
I (x) is the electromagnetic four-current of the pr

jectile ion at a space-time pointx, AA
m(x) is the four-potential

of the electromagnetic field created by the target atom at
same pointx, andc is the speed of light. Here and below th
indicesI andA stand for the ion and atom, respectively.

The potential obeys the Maxwell equation

hAA
m~x!52

4p

c
JA

m~x!, ~2!

whereJA
m(x) is the four-current of the target atom and

h5D2
]2

c2]t2

is the D’Alembert operator. Below the transitionS-matrix
element~1! will be evaluated within first-order perturbatio
theory in the projectile-target interaction.

Before we proceed further, let us make two rather obvio
but important remarks, which allow us to simplify conside
ably the treatment of the problem in question. First, since
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nuclear and atomic energy scales are very different, C
lomb collisions between the ion and the atom, resulting
excitation of nuclear degrees of freedom, are of negligi
importance for cross sections of electron transitions. The
fore the atomic and ionic nuclei can be treated as point
structureless charges. Second, in a reference frame, w
the atom or the ion is initially at rest, its typical recoil velo
ity after the collision is not only nonrelativistic but als
much less than the Bohr velocityv051 a.u.~see the Appen-
dix!.

Taking into account the remarks mentioned above, a c
venient way to calculate the transition matrix element~1! is
the following. First, we evaluate the ion currentJm

I (x) in the
reference frameKI , where the ion is initially at rest. Second
we calculate the atom currentJA8

m(xA) in the reference frame
KA , where the atom is initially at rest, and obtain the pote
tial AA8

m(xA) in this frame. Then we transform the potenti
to the frameKI and calculate the transition matrix elemen
and corresponding cross sections in this frame.

Assuming that the ion carries only one electron the tr
sition four-currentJm

I of the ion in the frameKI reads

J0
I ~x!5cE d3RIE d3rC f

†~RI ,r ,t !

3@ZId
3~x2RI !2d3~x2RI2r !#C i~RI ,r ,t !,

Jl
I~x!52cE d3RIE d3rC f

†~RI ,r ,t !

3a ld
3~x2RI2r !C i~RI ,r ,t !. ~3!

In Eqs. ~3!, ZI is the atomic number of the ion,RI is the
coordinate of the ion nucleus,r is the coordinate of the elec
tron of the ion with respect to the ion nucleus,a l are the
Dirac matrixes for the electron of the ion, andd (3) is the
three-dimensional delta-function. Since in the frameKI the
three-velocity of the ion nucleus is negligible when com
pared with that of the ion electron, we have neglected in
second line in Eqs.~3! the contribution to the ion three
current due to the motion of the nucleus.

Further, in Eqs.~3! the wave functions of the initial and
final states read

C j~RI ,r ,t !5
1

AVI

exp~ iPj
I
•RI2 iE j

I t !c0,n~r !. ~4!

Here the symbolj stands for bothi and f, which refer to the
initial and final states of the ion, respectively,Pi

I andPf
I are

the total three-momenta (Pi
I50), Ei

I and Ef
I the total ener-

gies ~including the rest energies! of the ion,c0 and cn are
the relativistic Dirac bispinors for the initial and final intrin
sic states of the ion, andVI is a normalization volume for the
plane wave describing a free motion of the ion before a
after the collision. Below we will be interested only in co
lisions where the intrinsic state of the ion is changed:nÞ0.
For the process of electron excitation the final statecn is a
4-2
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PLANE-WAVE BORN TREATMENT OF PROJECTILE- . . . PHYSICAL REVIEW A 61 052704
discrete state of the ion. Otherwise the statecn is a con-
tinuum state of the ion, properly normalized, and descri
the electron loss process.

The ansatz~4! represents a common form~see, e.g.,@17#!
of a wave function for a free atomic system moving with
nonrelativistic velocity@18#, where we have neglected th
spin of the nucleus and the difference between the coordi
of the nucleus of the ion and the coordinate of the cente
mass of the ion. The justification of both approximations l
in the extremely large difference between the masses of
clei and of electrons~see, e.g., the discussion in@16# devoted
to the justification of the neglect of the spin of a heavy p
ticle in the equivalent photon method!.

Inserting Eq.~4! into Eq. ~3! and integrating overRI we
obtain fornÞ0

Jm
I ~x!5c

Fm
I ~n0;Pf

I 2Pi
I !

VI
exp@ i ~Pi

I2Pf
I !x2 i ~Ei

I2Ef
I !t#.

~5!

We denote the four-component quantityFm
I (n0;Pf

I 2Pi
I) with

components

F0
I ~n0;Pf

I 2Pi
I !52E d3rcn

†~r !exp@ i ~Pf
I 2Pi

I !r #c0~r !,

Fl
I~n0;Pf

I 2Pi
I !52E d3rcn

†~r !exp@ i ~Pf
I 2Pi

I !r #a lc0~r !,

~6!

as the inelastic form factor of the ion. It can be seen fr
Eqs.~6! that the quantityFm

I /VI forms a four-vector.
Now we proceed to the calculation of the potential crea

by the atom. First we calculate the currentJA8
m(xA) of the

atom in the reference frameKA where the atom is initially at
rest and obtain the potentialA8A

m(xA) in this frame. Here,
xA5(ctA ,xA) is the space-time four-vector inKA . In a way
similar to that used to get the ion current~5!, we obtain for
the four-current of the atom

JA8
m~xA!5c

FA
m~m0;P8f

A2P8i
A!

VA8

3exp@ i ~P8i
A2P8f

A!xA2 i ~E8 i
A2E8 f

A!tA#. ~7!

In Eq. ~7!, P8i , f
A (P8i

A50) are the three-momenta andE8 i , f
A

the total energies~including rest energies! of the atom in the
initial and final states, respectively, andVA8 is a normaliza-
tion volume for the atom in the frameKA . The components
of the form factor of the atomFm

A are determined as follows

F0
A~m0;Q!5ZAdm02E )

i 51

NA

d3jium
† ~tNA

!

3(
j 51

NA

exp~ iQ•jj !u0~tNA
!,
05270
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Fl
A~m0;Q!52E )

i 51

NA

d3jium
† ~tNA

!

3(
j 51

NA

a l ( j )exp~ iQ•jj !u0~tNA
!. ~8!

Here Q5P8f
A2P8i

A , ZA is the atomic number,NA is the
number of the electrons of the atom,a l ( i ) are the Dirac ma-
trices for thei th electron,u0,m are the wave functions de
scribing initial and final intrinsic states of the atom, an
tNA

5$j1 ,j2 , . . . ,jNA
% represents the coordinates of theNA

atomic electrons with respect to the atomic nucleus. Si
the intrinsic motion of the~inner! electrons in heavy atomic
systems is relativistic, then, in general, the wave functio
u0,m are relativistic electronic wave functions. Exact sol
tions for the Dirac equation with two and more electrons
not known; however, approximate wave functions for su
systems can be constructed from individual electron w
functions.

Equations~7! and ~8! were obtained using approxima
tions, similar to those used to get Eqs.~5! and~6!. The only
essential difference between the two form factors~6! and~8!
is that we consider for the atom also the possibility to ma
no transitions between its intrinsic states in the collision. T
zeroth components of the ion~6! and atom~8! form factors
have the familiar form of the atomic form factor appearing
the nonrelativistic theory of projectile excitation and lo
~see, e.g.,@1#!. The three other components of these fo
factors have no counterpart in the nonrelativistic theo
Note also that the quantityFA

m/VA8 forms a four-vector.
In order to solve Eq.~2! it is convenient to use a four

dimensional Fourier transformation

A8A
m~xA!5

1

~2p!2E d4kBA
m~k!exp~ ikxA!,

JA8
m~xA!5

c

VA8
E d4k exp~ ikxA!

3d (4)~k1P8 f
A2P8 i

A!FA
m~m0;2k!. ~9!

In Eq. ~9!, kxA denotes a scalar product of the two fou
dimensional vectorsk andxA , P8 i , f

A are the four-momenta o
the atom in the frameKA , andk is the ‘‘spatial’’ part ofk.
Inserting Eq. ~9! into h8A8A

m(xA)5(24p/c)JA8
m(xA) we

find the Fourier transformBA
m(k) to be

BA
m~k!54p

~2p!2d (4)~k1P8 f
A2P8 i

A!

k22 i0

FA
m~m0;2k!

VA8
~10!

and obtain the four-potential

A8A
m~xA!54p

exp@ i ~P8 i
A2P8 f

A!xA#

~P8 i
A2P8 f

A!22 i0

FA
m~m0;Q!

VA8
. ~11!
4-3
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In Eq. ~11!, the term2 i0 gives a prescription~see, e.g.,
@14#! to handle the singularity. This singularity would appe
if ( P8 i

A2P8 f
A)25(P8i

A2P8f
A)22(E8 i

A2E8 f
A)2/c250. The

latter condition holds only if the electromagnetic interacti
between the colliding systems is due to an exchange
photon withk250.

Let amn be the Lorentz transformation matrix from th
frame KA to the frameKI . Then for the potential in the
frameKI we have

AA
m~x!5an

mA8A
n ~a21x!

54p
exp@ i ~Pi

A2Pf
A!x#

~Pi
A2Pf

A!22 i0
an

m
FA

n ~m0;Q!

gVA
. ~12!

In Eq. ~12!, Pi ( f )
A is the initial ~final! four-momentum of the

atom in the frameKI , VA5VA8 /g is the normalization vol-
ume for the atom inKI , g51/A12v2/c2 is the Lorentz
factor, andv is the velocity of the incident atom inKI and is
identical to the collision velocity.

Using the Lorentz transformation the three-moment
transfer to the atomQ5P8f

A2P8i
A , given in the frameKA ,

which enters Eq.~12!, can be rewritten as

Q5S Pf'
A 2Pi'

A ,
1

g
~Pf i

A 2Pi i
A!1

v

c2
~E8 i

A2E8 f
A!D

'S Pf'
A 2Pi'

A ,
1

g
~Pf i

A 2Pi i
A!2

v

c2
~em2e0!D , ~13!

whereP'
A andPi

A are the transverse and longitudinal parts
the three-momentumPA of the atom in the frameKI . In Eq.
~13! and below we use the letterse and « to denote the
l
h
s
th
, a
th
tio
pa
-
n-
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electron energy of the atom~in the frameKA) and the ion~in
the frameKI), respectively. In Eq.~13!, e0 and em are the
electron energies of the atom in the initial (0) and final~m!
states, respectively. In the second line of Eq.~13! we have
neglected the recoil energy of the atom in the frameKA . The
componentsP'

A andPi
A are perpendicular and parallel to th

collision velocity v, respectively. Note that the transver
and longitudinal components of the momentum transferPf

A

2Pi
A to the atom in the frameKI enter the atomic form facto

in Eq. ~12! differently, which results in important peculiari
ties in the shielding of the atomic nucleus by atomic ele
trons in ultrarelativistic collisions.

Inserting the right hand sides of Eqs.~5! and~12! into Eq.
~1! and integrating overd4x in Eq. ~1! we obtain

Sf i52 i
4p

VIVA
~2p!4d (4)~Pi

I1Pi
A2Pf

I 2Pf
A!Gf i , ~14!

where

Gf i5
Fm

I ~n0;q!g21an
mFA

n ~m0;Q!

~Pi
A2Pf

A!22 i0
~15!

andq5Pf
I 2Pi

I5Pi
A2Pf

A is the three-dimensional momentu
transfer to the ion~given in the frameKI). We recall that the
form factors Fm

I and FA
n , given by Eqs.~6! and ~8!, are

determined in the reference framesKI andKA , respectively.
Using the standard technique in order to get cross sect

from known transitionS-matrix elements~see, e.g.,@14#! and
taking into account Eqs.~13! and ~15!, we obtain for the
cross section of a process where the electron of the
makes the transitionc0→cn and those of the atom the tran
sition u0→um
s0→n
0→m5

4

v2

Ef
A

Ei
A (

sI
(
sA

E d2q'uGf i u2

5
4

v2

Ei
A1Ei

I2Ef
I

Ei
A (

sI
(
sA

E d2q'

uFm
I ~n0;q' ,qmin!g

21an
mFA

n
„m0;2q' ,2qmin /g2~v/c2!~em2e0!…u2

@q'
2 1qmin

2 2~Ef
I 2Ei

I !2/c2#2
, ~16!
ini-

ol-

in

t of

er-
whereEi
A andEf

A5Ei
A1Ei

I2Ef
I are the initial and final tota

energies of the atom given in the rest frame of the ion. T
summation indicated in Eq.~16! runs over the spin degree
of freedom of the electron of the ion and over those of
atom. This summation implies proper spin averaging, i.e.
average over initial and sum over final spin states of
electrons participating in the process. In the above equa
the integration over the absolute value of the transverse
q' of the momentum transferq runs from 0 to some maxi
mal valueq'

max which for our case can be set equal to infi
ity. With the same accuracy the factorEf

A/Ei
A in Eq. ~16! can

be set to unity. We have omitted in Eq.~16! the term2 i0
e

e
n
e
n
rt

because of reasons which will be discussed below. The m
mum momentum transferqmin5uPi u2uPf u, entering Eq.~16!,
is to be determined from the energy conservation in the c
lision:

Ei
I1Ac2Pi

A2
1MAi

2 c45Ef
I 1Ac2Pf

A2
1MA f

2 c4, ~17!

whereMAi andMA f are the rest masses of the atom being
the initial and final states,u0 andum , respectively. Due to a
very large difference between masses of the ion and tha
the electron, the recoil energy of the ion in the frameKI can
be neglected. Then in this frame the difference in total en
4-4



x

ic

om

in

me
-
s

e
he

PLANE-WAVE BORN TREATMENT OF PROJECTILE- . . . PHYSICAL REVIEW A 61 052704
gies of the ion before and after the collision can be appro
mated asEf

I 2Ei
I'«n2«0, where«0 and«n are the energies

of the electron of the ion in the initial and final intrins
statesc0 andcn , respectively. Taking into account that~i!
the change of the three-momentum of the incident atom
small compared to its initial value,uPi

Au1uPf
Au'2uPi

Au, ~ii !
the difference in the rest masses of the atom is small c
pared to its initial value,MAi1MA f'2MAi , and ~iii ! the
total energy of the relativistic incoming atom in the frameKI
is much larger than the difference between the final and
tial energies of the ion in that frame,Ei

A@uEf
I 2Ei

I u'u«n

2«0u, Eq. ~17! is approximately solved to yield

qmin5
«n2«0

v
1

~MA f2MAi!c
2

vg
5

«n2«0

v
1

em2e0

vg
.

~18!
th

s
d
a
te
th
tio
ion
ph

to
w
e
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o
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f

g
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Here, neglecting the recoil energy of the atom in the fra
KA , we set (MA f2MAi)c

2 to be equal to the difference be
tween the final,em , and initial,e0, energies of the electron
of the atom in that frame.

It is convenient also to introduce the quantity

Qmin5
qmin

g
1

v

c2
~em2e0!5

em2e0

v
1

«n2«0

vg
, ~19!

which plays the same role for the atom as the quantityqmin
for the ion.

Taking into account Eqs.~18! and ~19! the cross section
~16! can be rewritten in the form which clearly shows th
symmetry of the quantities of the atom and of the ion in t
cross section:
s0→n
0→m5

4

v2 (
sI

(
sA

E d2q'

UFm
I S n0;q' ,

«n2«0

v
1

em2e0

vg Dg21an
mFA

n S m0;2q' ,2
em2e0

v
2

«n2«0

vg D U2

S q'
2 1

~«n2«01em2e0!2

v2g2
12~g21!

~«n2«0!~em2e0!

v2g2 D 2 . ~20!
(

of

n

n
urs

e

so-
er.
i-
he
Here we have consistently neglected the recoil energy of
ion also in the denominator of the integrand in Eq.~16!, Ef

I

2Ei
I'«n2«0. Equations~16! and ~20! are the first main

result of the present paper.
If the atom and the ion are initially in their ground state

it follows from Eq. ~20! that the singularity in the integran
in Eqs. ~16! and ~20! does not appear. From the physic
point of view it means that for collisions of composi
atomic systems, which are initially in the ground states,
restrictions imposed by the momentum-energy conserva
in the collision do not permit an electromagnetic interact
between the systems to occur via an exchange of a real
ton with the energy-momentum relationk250. We consider
below only such collisions and omit the term2 i0 in Eqs.
~16! and ~20!.

Before we proceed further, however, it is worthwhile
say a few words about the situation when one of the t
collision partners is initially in the ground state while th
other one is in an excited state and when the collision le
to the excitation of the first particle and the deexcitation
the second one. The analysis of the denominator in Eq.~20!
shows that the electromagnetic interaction between the
liding composite systems can occur via an exchange o
photon with the energy-momentum relationk250 which is
inherent to a real photon@19#. In this case the correspondin
cross section calculated within the present formalism is i
nite, which reflects the breakdown of the first-order treatm
in such a case even for finiteg @20#. In order to get a deepe
insight into the reason which undermines the validity of t
first-order treatment in this case, let us consider the deno
e

,

l
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o
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f
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-
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nator in the integrands in Eqs.~16! and ~20! in more detail.
This denominator can be equal to zero if

qmin
2 2

~«n2«0!2

c2
<0. ~21!

To be definite, let us assume that the ion gets excited«n
2«0.0) and the atom is deexcited (em2e0,0) in the col-
lision. Then, taking into account Eq.~18!, we obtain that the
inequality ~21! holds if

uem2e0uAc2v
c1v

<«n2«0<uem2e0uAc1v
c2v

. ~22!

Because of the relativistic Doppler effect, the emission
photons in the atomic frameKA ~in all directions! with a
fixed frequencyv0 results in a photon spectrum in the io
frameKI with the frequenciesv:

v0Ac2v
c1v

<v<v0Ac1v
c2v

. ~23!

Comparing Eqs.~22! and ~23! we see that the interactio
between the atom and the ion in the collision process occ
via the emission of a photon with the energyv05uem2e0u
by the atom in the frameKA and the absorption of the sam
photon, but with the energyv5«n2«0, by the ion in the
frameKI . Thus, the collision process in this case is a re
nant process which cannot be treated within the first ord

Now we return to the consideration of relativistic coll
sions between atomic systems which are initially in t
4-5
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ground states. Using the explicit form of the Lorentz tran
formation matrixan

m ~see, e.g.,@2#! the relativistic coupling
of the form factors in Eqs.~16!–~20! can be written in the
following symmetrical form:

Fm
I g21an

mFA
n 5S F0

I 2
v
c

F3
I D S FA

02
v
c

FA
3 D1

F3
I FA

3

g2

1
F1

I FA
11F2

I FA
2

g
. ~24!

Compared to the known form of the nonrelativistic cro
section ~see, e.g.,@1,3# and references therein! Eqs. ~16!,
~20!, and ~24! contain two types of relativistic effects. Th
first type is connected with the collision velocityv and dis-
appears whenv/c!1. This type includes the retardation e
fect, described by the term (Ef

I 2Ei
I)2/c2'(«n2«0)2/c2 in

the denominator in Eq.~16!, and the different dependence
of the form factors of the atom and ion on the transiti
energies («n2«0) and (em2e0) and also the coupling be
tween the zeroth and third components of the form factor
Eq. ~24!. The second type is due to relativistic effects in t
inner motion of the electron of the ion and the electrons
the atom, and it does not disappear whenv/c!1. It includes
d
b
u

po
iv

-
h

e-
re
ud

n

05270
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the coupling between the space components of the co
sponding form factors in Eq.~24!. In the limit c→` both
types of relativistic effects vanish and Eq.~20! recovers the
form of the corresponding nonrelativistic cross section.

If a final intrinsic state of the atom is not observed, o
has to sum over all possible states of the atom. Equation~16!
then gives

s0→n5
4

v2 (
sI

(
m

E d2q'

3
uFm

I ~n0;q' ,qmin!g
21an

mFA
n ~m0;2q' ,2Qmin!u2

@q'
2 1qmin

2 2~«n2«0!2/c2#2
.

~25!

The summation over the atomic states in Eq.~25! includes
also the summation over all spin degrees of freedom of
atomic electrons. The cross section~25! can be split into the
elastic (m50) and electron-electron~all mÞ0) contribu-
tions to the total cross section for the transition 0→n of the
electron of the ion. Taking Eq.~18! into account we obtain
for the elastic part
s0→n
el 5

4

v2 (
sI

E d2q'

uFm
I ~n0;q',qmin!g

21an
mFA

n ~00;2q' ,2qmin/g!u2

S q'
2 1

~«n2«0!2

v2g2 D 2 . ~26!

Correspondingly for the electron-electron contribution we have

s0→n
e-e 5

4

v2 (
sI

(
mÞ0

E d2q'

uFm
I ~n0;q' ,qmin!g

21an
mFA

n ~m0;2q' ,2Qmin!u2

S q'
2 1

~«n2«01em2e0!2

v2g2
12~g21!

~«n2«0!~em2e0!

v2g2 D 2 . ~27!
r
use
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III. APPROXIMATION OF A ‘‘NONRELATIVISTIC’’
ATOM

The coupling~24! between the form factors of the ion an
atom is rather complicated. In order to get more tracta
equations for the electron loss cross sections we introd
the following approximation: we neglect the space com
nents of the atomic form factor. Below some semiqualitat
arguments are given in its favor.

Let us consider the atomic form factor~8! in more detail.
The componentFA

0(m0;Q) of the atomic form factor is con
nected with the charge distribution inside the atom. T
componentsFA

l (m0;Q) are connected with the current, cr
ated by the motion of the electrons inside the atom in the
frame of the atom. One can estimate roughly the magnit
of FA

l (m0;Q) asFA
l (m0;Q);(ve /c)FA

0(m0;Q) whereve is
a characteristic velocity of the atomic electrons. For light a
le
ce
-
e

e

st
e

d

not too heavy atoms one hasve!c for all atomic electrons
and one can neglect all three componentsFA

l (m0;Q) in Eq.
~8! compared toFA

0(m0;Q). In heavy atoms the very inne
electrons can have relativistic velocities. However, beca
the number of these electrons is relatively small compare
the total number of atomic electrons, they are not expecte
increase considerably the absolute value ofFA

l (m0;Q).
Therefore, the neglect ofFA

l (m0;Q) is approximately justi-
fied also for heavy atoms.

We will refer to this approximation as to the nonrelati
istic atom ~NRA! approximation. The NRA approximation
breaks the symmetry in which the form factors of the ion a
of the atom enter Eqs.~16! and~20!–~27!. Therefore, in gen-
eral, one can expect that this approximation fits better to
screening mode. In this mode the electron of the ion make
transition while those of the atom do not, and the symme
between the ion and atom is already broken to some ext
Indeed the analysis of the elastic atomic form factor sho
4-6
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that for the screening mode the NRA approximation can
used for all possible collision energies and colliding partne

The situation becomes more complicated when we use
NRA approximation for the antiscreening mode. In the arg
mentation given above we considered typical electron vel
ties in the atom ground state. In collisions with heavy p
jectile ions the minimum momentum transferQmin5(«n
2«0)/vg1(em2e0)/v can be large compared to the typic
electron momenta in the atom. In the antiscreening mod
such collisions the atomic electrons can acquire veloci
which are considerably higher than the typical electron
locities in the ground state of the atom. Since we have
sumed that the atomic electrons are nonrelativistic in
collisions, it means that the conditionQmin!mec, where
me51 is the electron rest mass, should be fulfilled. If w
approximate«n2«0 by ZI

2 , then we obtain the limitationg
@ZI

2/vc for the use of the NRA approximation in relativist
collisions. The latter condition is certainly met for collision
with, say,g.4 for any heavy ion.

There is another important limitation for the use of t
NRA approximation for the antiscreening mode. Our ana
sis of the properties of the inelastic atomic form factor in t
limit of small momentum transfers shows that the condit
(«n2«0)/g@(em2e0) should also be met for all transition
of the atomic electrons contributing considerably to the
ticreening part of the loss cross section. This condition
poses an upper limit on the collision energies which can
considered within the NRA approximation. However, sin
we are interested mainly in the description of electron l
from very heavy ions, this condition does not seem to
very restrictive for collisions with light atoms when the a
tiscreening mode is relatively important. On the other ha
for collisions with heavy atoms, where the NRA approxim
tion may not be well justified for ultrarelativistic collisions
05270
e
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he
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e
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the antiscreening mode is not expected to give a notice
contribution to the total electron excitation or loss.

We also note that in order to provide a reasonable asy
totical limit for the electron-electron contribution to the cro
section, which forg→` should beg independent, it is suf-
ficient to take the first term@F0

I 2(v/c)F3
I #@FA

02(v/c)FA
3 #

of the full coupling of the form factors in Eq.~24!.
Keeping in mind that the arguments given above

qualitative rather than quantitative we use below the NR
approximation for our calculations.

NeglectingFA
l (m0;Q) we obtain for the elastic cross se

tion ~26!

s0→n
el 5

4

v2 (
sI

E d2q'ZA,e f f
2 ~Q0

s!

3

U K cn~r !US 12
v
c

azDexp~ iq0•r !Uc0~r !L U2

S q'
2 1

~«n2«0!2

v2g2 D 2 .

~28!

Hereq05(q' ,qmin), Q0
s5(q' ,qmin /g), and we use Dirac’s

notation for the vectors of electronic states. The effect
charge of the incident atom in the ground state is@see Eq.
~8!#

ZA,e f f~Q0
s!5ZA2K u0~tNA

!U(
j 51

NA

exp~2 iQ0
s
•jj !Uu0~tNA

!L .

~29!

In the same way the electron-electron contribution~27!
can be written as
e
the

aper.
s0→n
e-e 5

4

v2 (
sI

(
mÞ0

E d2q'U K um~tNA
!U(

j 51

NA

exp~2 iQ0
a
•jj !Uu0~tNA

!L U2

3

U K cn~r !US 12
v
c

azDexp~ iq0•r !Uc0~r !L U2

S q'
2 1

~«n2«01em2e0!2

v2g2
12~g21!

~«n2«0!~em2e0!

v2g2 D 2 , ~30!

whereQ0
a5(q' ,Qmin).

According to Eq.~11! the approximationFA
l (m0;Q)'0, used to obtain Eqs.~28! and ~30!, in fact means that we hav

neglected the vector potential, created by the atom in the frameKA , compared to its scalar potential in this frame. Then
scalar potentialA0 and the vector potentialA of the atom in the frameKI are connected by the simple relationA5(v/c)A0,
and Eqs.~25! and~27! are reduced to Eqs.~28! and~30!. The latter equations are the second main result of the present p

For ions carryingNI electrons (NI.1) the cross sections~28! and ~30! can be generalized to yield

s0→n
el 5

4

v2 (
sI

E d2q'ZA,e f f
2 ~Q0

s!

U K cn~rNI
!U(

i 51

NI S 12
v
c

az( i )Dexp~ iq0•r i !Uc0~rNI
!L U2

S q'
2 1

~«n2«0!2

v2g2 D 2 ~31!
4-7
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and

s0→n
e2e 5

4

v2 (
sI

(
mÞ0

E d2q'U K um(tNA
)U(

j 51

NA

exp(2 iQ0
a
•jj )Uu0(tNA

)L U2U K cn(rNI
)U(

i 51

NI S 12
v
c

az( i )D
3exp(iq0•r i)Uc0(rNI

)L U2S q'
2 1

~«n2«01em2e0!2

v2g2
12(g21)

~«n2«0!~em2e0!

v2g2 D 22

. ~32!
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In Eqs.~31! and ~32!, rNI
5$r1 ,r2 , . . . ,rNI

% are the coordi-
nates of theNI electrons of the ion with respect to the io
nucleus, andaz( i ) is the Dirac matrix for thei th electron.

Below we restrict our consideration to ions carrying on
one ~active! electron.

A. Elastic contribution „screening…

In this subsection we consider the elastic contribution~28!
to the total cross section in more detail.

The effective charge~29! can be rewritten as

ZA,e f f~Q0
s!5ZA2E djrel~j!exp~2 iQ0

s
•j!, ~33!

where rel(j) is the charge density of the electrons in t
incident atom in rest frame of the atom. In a paper of Sal
et al. @22# analytical Dirac-Hartree-Fock-Slater screeni
functions are given for neutral atoms with atomic numb
Z251 –92. The density is written as

rel~j!5
ZA

4pj2 (
i 51

3

Aik i
2 exp~2k ij!. ~34!

Here, Ai and k i are constants for a given atom which a
tabulated for all atomic elements in@22#. Using Eqs.~33! and
~34! the effective chargeZA e f f(Q0

s) is obtained to be

ZA,e f f~Q0
s!5ZAS 12(

i 51

3 Aik i
2

k i
21q'

2 1qmin
2 /g2D

5ZA~q'
2 1qmin

2 /g2!(
i 51

3
Ai

k i
21q'

2 1qmin
2 /g2

.

~35!

For obtaining the second line on the right hand side of
~35! the condition( iAi51 ~see@22#! was used.

Inserting Eq.~35! into Eq. ~28! we get

s0→n
el 5

4ZA
2

v2 (
sI

(
i , j

AiAjE d2q'

3

U K cn~r !US 12
v
c

azDexp~ iq0•r !Uc0~r !L U2

S q'
2 1

vn0
2

v2g2
1k i

2D S q'
2 1

vn0
2

v2g2
1k j

2D .

~36!
05270
t

s
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Herevn05«n2«0. The above equation is exactly the sam
as that obtained in@12#.

For an atom without any electrons, i.e., a bare nucleus,
set in Eq.~36! all k i equal to zero and recover the wel
known form for cross sections for collisions with bare nuc
~see, e.g.,@2#!. In collisions with bare nuclei the main con
tribution to the cross section stems from the range of sm
values ofq' , 0<q'&vn0 /vg, resulting in a logarithmic
growth of the cross section withg: s0n; ln g ~see, e.g.,@2#!.

For collisions with neutral atoms Eq.~36! shows an im-
portant general feature of the shielding in relativistic co
sions which is not present in nonrelativistic ones. If the ion
a highly charged ion (ZI@1) and the atom is a light atom
with all screening constantsk i of the order of unity, the
shielding is not important in nonrelativistic collisions b
cause the termvn0

2 /v2;ZI
4/v2 dominates over allk i

2 in the
denominator of the integrand on the right hand side of E
~36!. However, the situation changes drastically for ultrare
tivistic collisions, whereg@1. In this case the termsk i

2 can
be larger than the termvn0

2 /v2g2;ZI
4/v2g2. This results in a

reduction of the cross section. Our numerical calculatio
~see below! confirm that, in contrast to nonrelativistic colli
sions, in ultrarelativistic collisions the shielding is importa
even for collision partners consisting of a heavy ion and
light atom. It is worthwhile to emphasize that this importa
feature follows directly from Eq.~13! and, hence, it is inde-
pendent of the particular model~34!, taken to describe the
shielding.

In conclusion of this subsection we note that the analy
of Eq. ~36! shows that, in collisions with neutral atoms, th
cross sections0→n

el is independent ofg in the limit of very
high values ofg.

B. Electron-electron contribution „antiscreening…

Equation~30! can be considerably simplified by makin
use of the closure method~see@3# and references therein!. In
its simplest form the same average energyDe is assigned to
all possible transitions of the atomic electrons. This appro
mation is known to give good results in nonrelativistic co
lisions at velocities well above the energy threshold for
ionization of the ion by a beam of free electrons. This a
proximation is used below in order to get a simpler and m
tractable form for the part of the cross section due to
electron-electron contribution~30! . Using the analogy with
nonrelativistic collisions, one can expect that the closure
proximation gives reasonable results also for collisions av
'c when the kinetic energyT of an equivelocity free elec-
4-8
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tron is much larger than the binding energy of the electron
the ion: T5mec

2(g21)@u«0u. This condition is well ful-
filled for any heavy ion starting with, say,g>3 –4 which is
quite close to the lower limit imposed by the use of the NR
approximation.

Under this approximation one can apply the closure re
tion for the electronic states of the atom,

(
m

uum&^umu5I , ~37!

in order to perform the summation in Eq.~30! over the final
states of the atom. It yields

s0→n
e-e 5

4

v2 (
sI

E d2q'

3

U K cn~r !US 12
v
c

azDexp~ iq0•r !Uc0~r !L U2

S q'
2 1

~vn01De!2

v2g2
12~g21!

vn0De

v2g2 D 2

3S K u0U(
i , j

exp@2 iQ0
a~jj2ji !#Uu0L

2U K u0U(
j

exp~2 iQ0
ajj !Uu0L U2D , ~38!

where we redefinedQ0
a asQ0

a5„q' ,De/v1(«n2«0)/vg…. If
a range of large~on the atomic scale! momentum transfers
Q0

a contributes most to the integral on the right hand side
Eq. ~38!, only the diagonal termsi 5 j in the double sum in
Eq. ~38! give nonvanishing contributions. The double su
and the last sum in Eq.~38! are reduced simply to the num
ber of the atomic electrons and the cross sections0→n

e-e de-
scribes transitions of the electron of the ion due to an in
herent electromagnetic interaction withZA free electrons.

In general, Eq.~38! can be further simplified if the anti
symmetrization of the ground state of the atom is igno
and the wave function of the ground state is expressed a

u05)
l

fl~jl!, ~39!

wherefl(j) are the single electron orbitals. It was shown
@5# ~see also@23#! that under these conditions one has

K u0U(
i , j

exp@2 iQ0
a~jj2ji !#Uu0L

2U K u0U(
j

exp~2 iQ0
ajj !Uu0L U2

5ZA2(
l

u^fluexp~2 iQ0
a
•j!ufl&u2. ~40!

Inserting the right hand side of Eq.~40! into Eq. ~38! we
obtain
05270
f
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s0→n
e-e 5

4

v2 (
sI

E d2q'

3

U K cn~r !US 12
v
c

azDexp~ iq0•r !Uc0~r !L U2

S q'
2 1

~vn01De!2

v2g2
12~g21!

vn0De

v2g2 D 2

3S ZA2(
l

U^fluexp~2 iQ0
a
•j!ufl&U2D . ~41!

Anholt @5# has pointed out that

(
l

^fluexp~2 iQ•j!ufl&

<(
l

u^fluexp~2 iQ•j!ufl&u2

<
1

ZA
U(

l
^fluexp~2 iQ•j!ufl&U2

. ~42!

He made calculations@7# using both replacements

(
l

u^fluexp~2 iQ•j!ufl&u2→(
l

^fluexp~2 iQ•j!ufl&

and

(
l

u^fluexp~2 iQ•j!ufl&u2

→ 1

ZA
U(

l
^fluexp~2 iQ•j!ufl&U2

and has found that the difference between the results of th
calculations is very small. Therefore, we simply set

ZA2(
l

u^fluexp~2 iQ0
a
•j!ufl&u2

→ZA2(
l

^fluexp~2 iQ0
a
•j!ufl&

5ZA,e f f~Q0
a!, ~43!

whereZA,e f f(Q0
a) is determined by Eq.~33! with an evident

replacementQ0
s→Q0

a . Then for the electron-electron contr
bution we finally have
4-9
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s0→n
e-e 5

4

v2 (
sI

E d2q'ZA,e f f~Q0
a!

3

U K cn~r !US 12
v
c

azDexp~ iq0•r !Uc0~r !L U2

S q'
2 1

~vn01De!2

v2g2
12~g21!

vn0De

v2g2 D 2 .

~44!

It is important to note that the relativistic peculiarities in t
antiscreening mode are not affected by all the approxim
tions used to obtain Eq.~44!.

IV. RESULTS AND DISCUSSION

Table I shows a comparison between the experime
data of Claytoret al. @13# and theoretical results of Anho
and Becker@7#, of So”rensen@11#, and our calculations. In the
experiment@13# the loss cross sections for Au781 ions pen-
etrating different solid targets were measured at a collis
energy of 10.8 GeV/nucleon corresponding tog512.6. Our
numerical calculations are based on Eqs.~36! and~44! where
the final states of the electron of the ion are now the c
tinuum states of the ion and where the integration over
continuum states is carried out. In order to describe the e
tronic states we took the same approximations for the w
functions for the bound and continuum states as those w
were taken in@24#, @9#, and@12#. These approximations wer
proved to give good results even forK-shell ionization of
heavy elements like gold and lead~see, e.g.,@8,9,24#!. Both

TABLE I. Experimental and theoretical cross sections~in kb!
for the ionization of 10.8 GeV/nucleon Au781 penetrating various
solid targets. The ion is initially in its ground state.

Atom ZA Experiment Anholt and Becker So”rensen
Present
work

C 6 0.31 0.31 0.27 0.31
Al 13 1.18 1.28 1.15 1.24
Cu 29 5.26 5.8 5.37 5.65
Ag 47 16.2 14.4 13.7 14.7
Au 79 38.2 38.8 38 38.5
05270
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electron transitions with and without spin flip were taken in
account. In order to calculate the cross section~44! we need
to know a value of the averaged excitation energy of
atom De. To our knowledge, there is no strict and simp
prescription to choose this parameter for multielectron ato
@1,3#. In our calculations we have setDe5DeSP, where
DeSP is the mean excitation energy, which is used in calc
lations of the stopping power. Values ofDeSP are tabulated
for a variety of atoms~see, e.g.,@25#, p.25!. Note that in fact
the accuracy ofDe is not crucial for the present calculation
For the electron loss from the highly charged ions, li
Au781 and Pb811, in collisions with light targets like Be, C
and Al considered here, the terms withDe in Eq. ~44! are of
negligible importance for both ultrarelativistic cases stud
experimentally in@13,10#. The latter collision is considered
below ~Table II!. For collisions of Au781 and Pb811 with
heavier targets~Cu, etc.; see Tables I and II! the electron-
electron contribution to the total loss cross section is alre
only a very small correction, less than 3–4 %, to the ela
contribution@26#. Therefore there is no need in the prese
calculations to use more exact values for the parameterDe.

It follows from Table I that there is no significant differ
ence between the experimental data and all the calculat
as well as between different calculations at an incident
ergy of 10.8 GeV/nucleon.

The situation is changed noticeably for the higher-ene
case studied experimentally in@10#. In this experiment the
loss cross sections for Pb811 ions were measured at a coll
sion energy of 160 GeV/nucleon. In this caseg5168 is al-
ready very high and the shielding becomes important. Ta
II gives a comparison between the experimental data
Krauseet al. @10# and different theoretical results. We hav
added a few more columns than in Table I. Calculations
So”rensen@11# are now given in two columns showing h
results for the loss cross sections in collisions with a b
atomic nucleus and a neutral atom, respectively. Our ca
lations are also given in two columns. The first of the tw
columns presents the results for the electron loss cross
tions in collisions with a bare atomic nucleus, when there
no screening effect and no electron-electron contribution
when the cross section is proportional toZA

2 . The second
column is for collisions with a neutral atom calculated wi
Eqs. ~36! and ~44! where both the screening effect of th
atomic electrons in the elastic contribution, which reduce
loss cross section, and the electron-electron contribution
TABLE II. Experimental and theoretical cross sections~in kb! for ionization of 160 GeV/nucleon Pb811

penetrating different solid targets. The ion is initially in its ground state.

Atom ZA Experiment

Anholt and Becker So”rensen Present work

Atom Bare nucleus Atom Bare nucleus Atom

Be 4 0.14–0.15 0.24 0.15 0.14 0.2 0.17
C 6 0.31 0.49 0.33 0.28 0.45 0.35
Al 13 1.3–1.4 2.0 1.6 1.1 2.14 1.42
Cu 29 6.9–8.0 9.0 7.8 5.2 10.6 6.5
Sn 50 15–21 25 23 15 31.5 17.6
Au 79 42–53 60 58 35 78.7 40.1
4-10
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creasing the loss, are included.
Our results for the cross sections in collisions with ato

are considerably less than those of@7# and are in a fairly
good agreement with the experimental data. Compare
calculations of@11# our results are somewhat larger, esp
cially for collisions with a bare atomic nucleus where t
difference reaches about 30%. Our results practically co
cide with those obtained in@12#.

A rather small difference between our results for the el
tron loss in collisions with neutral Be and Be41 is due to the
electron-electron contribution to the total cross section.
collisions with few-electron targets the antiscreening mo
gives a relatively large contribution. This contributio
reaches about 20% of the total electron loss in collisio
with Be. Our calculations show that for 160 GeV/nucle
collisions the shielding effects in the elastic and electr
electron@27# contributions to the cross sections reduce
total electron loss cross section by a factor of 1.4
Pb811-Be collisions and by a factor of 2 for Pb811-Au col-
lisions.

In conclusion of this section we note that the general go
agreement with the experiment at quite different values og,
obtained in our calculations, gives some additional indir
justifiction for the use of the NRA approximation in relativ
istic collisions.

V. SUMMARY

In this paper we have considered projectile electron e
tation and loss in relativistic collisions with atomic targe
Our treatment of the processes is based on the first-o
relativistic perturbation theory for the electromagnetic int
action of the four-current of the projectile with the fou
current of the target. General expressions have been de
for the cross sections for the excitation and loss. In the li
c→` these expressions go over into known nonrelativis
formulas for the corresponding cross sections. In ultrarela
istic collisions these expressions describe an important
culiarity in the shielding of the atomic nucleus by the atom
electrons. Results of our numerical calculations are in r
sonable agreement with available experimental data.
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APPENDIX

In this section we prove that in a reference frame, wh
the atom or the ion is initially at rest, its typical recoil velo
ity after the collision is not only nonrelativistic but als
much less than the Bohr velocityv051 a.u. Let us conside
a Coulomb collision between two bare nuclei with charg
Z1 and Z2, respectively. The nucleus with chargeZ1 and
massM1 is initially at rest and the second nucleus mov
with relativistic velocityv along a classical straight-line tra
jectory. The energy, transferred to the first nucleus in
collision, can be estimated as~see, e.g.,@15#!

DE15
2Z1

2Z2
2

b2v2M1

, ~A1!

whereb is the impact parameter of the collision. Correspon
ingly the recoil velocity of the first nucleus after the collisio
is

v rec5A2DE1

M1
5

2Z1Z2

bvM1
. ~A2!

It follows from Eq. ~A2! that for fixed b and v the recoil
velocity v rec reaches the highest value in the collision, whe
the second nucleus has the largest possible charge an
first nuleus has the highest possible ratioZ1 /M1. Choosing
an uranium nucleus as the projectile and a proton as
target, forbmin5a11a2 (a1;1 fm5231025 a.u. is the di-
mension of the proton anda2'1.531024 a.u. is that for the
uranium nucleus! and puttingv'c5137 we havev rec,max
'4v0. Impact parameters, contributing most to cross s
tions for transitions of the projectile electron in relativist
collisions, can be estimated asb;q'

21;min(vg/vn0 ;1/k i)
~see Sec. II A!, where vn0 is the electron transition fre
quency,k i are the atomic screening constants. Since s
impact parameters are at least two orders of magnitude la
than;1024 a.u., one can conclude that the recoil velocity
the ion or the atom in a reference frame, where the ion or
atom is initially at rest, is negligible compared to the Bo
velocity v0.
o,
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