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High accuracy for atomic calculations involving logarithmic sums
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A method for the calculation of logarithmic sums that yields very high accuracy even for small basis-set
dimensions is introduced. The best values achieved are accurate to 23 significant figures without extrapolation.
The sums are performed directly on variational intermediate sets. The method automatically rejects any basis
functions that could introduce linear dependence, therefore guaranteeing high numerical stability for a wide
range of nonlinear parameters. Accurate values for the ordinary and a higher-order version of the Bethe
logarithm are presented for a range of energy states and angular momenta. Given that the intermediate basis
functions are increasingly confined to extremely small distances from the origin, a discussion of finite nuclear-
size effects is given. The contribution to the sums from states with extremely high energies, orders of magni-
tude larger than the electron rest mass, is discussed.

PACS number~s!: 31.25.2v, 31.10.1z, 31.15.Pf
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I. INTRODUCTION

The accuracy of the experimental and theoretical deter
nation of transition frequencies in atoms with more than o
electron is advancing substantially, increasingly being se
tive to higher-order effects. At the lowest- and higher-ord
QED corrections, one encounters quantities involving lo
rithmic sums that are very difficult to calculate. An examp
appearing in the lowest-order QED correction, is the Be
logarithm @atomic units~a.u.! will be used throughout the
paper#,

b15
B1

C1
, ~1!

where

B15(
n
E z^C0upuCn& z2~En2E0!lnuEn2E0u, ~2!

C15H S1 for s states

2Z4/n3 otherwise,
~3!

and

S15(
n
E z^C0upuCn& z2~En2E0! ~4!

5
1

2
^C0u¹2VuC0& ~5!

52pZ^C0ud~r !uC0& ~6!

In the case of more than one electron,p is replaced byP
5( ipi , the momentum operator for all electrons, andd(r )
by ( id(r i). The summation integration over intermedia
states includes the infinite set of discrete~bound! states as
well as the~scattering! continuum.
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A variety of nonvariational methods has been propos
for the particular case of a single electron in the Coulo
field of a point nucleus, for example, by direct application
the spectrum of eigenstates@1# or by direct application of
group theoretical techniques@2#. In the last case an accurac
with an unlimited number of digits can be obtained witho
much difficulty using algebraic computation packages. Th
methods, however, need the complete set ofexactsolutions
to the Schro¨dinger Hamiltonian and then cannot be used
calculations involving either an electron in a more comp
potential or several interacting electrons. One is then
with approximation techniques. In this paper we demonstr
the enormous power of direct variational calculations for t
family of calculations.

In a direct variational calculation of Eq.~1!, the infinite
set of intermediate states is replaced by a finite set of va
tional states. This set can be fine tuned by changing on
more variational parameters. As accuracies become hig
the need for a fast convergent and stable method for
calculation of sums of type~1! is necessary. Any method t
be applied successfully to either correlated or multiconfig
ration calculations must be such that in the one-electron c
it is able to yield easily high accuracy with high numeric
stability. Perhaps it is worth illustrating the difficulties in
volved in the calculation of logarithmic sums by performin
the sum of Eq.~1! using a standard Slater basis set for t
ground-state of hydrogen,

cnlm~r !5wnl0
S ~r !Ylm~ r̂ !, ~7!

where the Slater radial functions are given by

wnl0
S 5e2lr r l 01n, n50,1, . . . ,N. ~8!

A variation of this set that allows one to use much larg
basis dimensions without numerical dependency is a se
Slater-Laguerre radial functions:
©2000 The American Physical Society13-1



ce
u

lit
e
i-

ha

f
in
n-
on
ev

o
u
c

r-
o
e
dia

f
e

la

se
ydro-
ght

11
in

ght,
ex-

sult
ion
its

or
er-
to
can
n

s of
r.

he

hen
r-

lity
t is
le

e is
n in
ple,
le

ear

in-
ven
-
tly
of

-

S. P. GOLDMAN AND G. W. F. DRAKE PHYSICAL REVIEW A61 052513
wnl0
SL5e2lr r l 0Ln

2l 012
~r !, n50,1, . . . ,N, ~9!

where theLn
a are generalized Laguerre polynomials. Noti

that the basis sets for the intermediate states have an
physical power at the originr l 0 wherel 0 is the angular mo-
mentum of the initial stateC0. This simple artifice has the
effect of substantially increasing convergence and stabi
For example, the sum~1! for the ground state without th
multiplicative logarithm converges with just one intermed
ate function if the exponential parameter coincides with t
of the initial state (l51).

The results with the basis set~9! for the ground state o
hydrogen are shown in Table I, for successively increas
values of the sizeN of the intermediate basis set. The co
vergence is extremely slow: an extrapolation shows that
would need of the order of 27 000 basis functions to achi
a convergence only to the fourth decimal digit~the results
follow very closely the linear fitdb52.6924/N.! Such a de-
mand on the size on the basis set is unrealistic. More imp
tantly the application of this method to multielectron calc
lations would make it impossible to obtain any convergen
at all.

II. A FAST CONVERGING METHOD

Alternatives to the basis sets~8! and~9! were proposed in
the literature@3,4# in order to achieve a much better conve
gence for the sum in Eq.~1!. The main thrust is to be able t
perform these sums directly using these variational eig
states instead of the exact eigenstates for the interme
states. The best values obtained in quadruple precision
the hydrogenic ground-state Bethe logarithm had relative
rors of 1028 for a basis set used for a perturbation calcu
tion @3# of the low states of He and 10212 for an asymptotic

TABLE I. Results for the ground-state Bethe logarithm~1! us-
ing for the intermediate states a basis set of the form~9!. The
exponential parameter used isl51. N is the number of basis func
tions.

N Emax b dbeta5bexact2b

20 2.15 800 1.3331021

30 2.20 111 8.9931022

40 2.22 311 6.7931022

50 2.23 646 5.4531022

60 2.24 542 4.5631022

70 2.25 185 3.9131022

80 2.25 669 3.4331022

90 2.26 046 3.0531022

100 2.26 349 2.7531022

110 2.26 597 2.5031022

120 2.26 804 2.2931022

exact 2.290981

2692 extrapolated 2.289981 1.0031023

26 918 extrapolated 2.290881 1.0031024
05251
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calculation@4# for the Rydberg states of He. Although the
convergences might seem excessive, in each case the h
genic accuracy was barely sufficient to obtain the sou
two-electron contributions.

In this section we present a method that is able to yield
digits accuracy in double precision and 23 digits accuracy
quadruple precision calculations. Such accuracies mi
again, look unnecessary but actually they emphasize the
cellent convergence and stability of the method. As a re
very good accuracies can be obtained in double precis
calculations with relatively small basis sets, and therefore
application to calculations involving more electrons
screened or nonspherically symmetric potentials is now p
fectly feasible. An application of this class of methods
accurate Bethelog calculations in two-electron systems
be found in Ref.@5#. We start by summarizing the mai
characteristics of the basis set used.

The radial basis set consists of a multiplet of basis set
the form ~9!, each with a different exponential paramete
The basis set can be built in two totally equivalent ways,

w i ,l 0
5e2l i r r l 01ni, ~10!

i 51,2, . . . ,Nexp, ni50,1, . . . ,Ni

or

w i ,l 0
5e2l i r r l 0Lni

2l 012
~r !, ~11!

i 51,2, . . . ,Nexp, ni50,1, . . . ,Ni ,

whereNexp is the number of exponential parameters in t
basis set andNi is the number of different powers ofr or
Laguerre polynomials for each exponential parameter. W
using explicitly in the calculations the orthogonality prope
ties of the generalized Laguerre polynomialsLi

a , the second
form of the basis set offers a much higher numerical stabi
as well as avoiding numerical roundoff. In this way this se
able to allow the use of a number of functions for a sing
exponential parameter much larger than the number on
able to use by using simple powers, before a breakdow
the calculations due to numerical dependency. For exam
basis set~8! breaks down at about 14 functions in doub
precision calculations, while basis set~9! can easily accom-
modate hundreds of vectors@6# ~the values of Table I were
calculated in double precision.!

The two important issues to resolve are now~i! how to
choose the sequence of nonlinear parametersl i and~ii ! how
to choose the number of functions for each of the nonlin
parameters in the series.

The first nonlinear parameterl1 is fixed at exactly the
same value as that for the initial statel0 for reasons given
earlier in the paper. The rest of the parameters need to
crease very rapidly as an exponential or power series. E
though these sequences forl i already offer much better con
vergence, it was found that the series that most efficien
offered accurate results for either small or large numbers
exponential parameters was given by

l i5l0exp@a~xi
b2x1

b!#, i 51,2, . . . ,Nexp ~12!
3-2
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HIGH ACCURACY FOR ATOMIC CALCULATIONS . . . PHYSICAL REVIEW A 61 052513
where thexi are the zeros of a Laguerre polynomial of ord
Nexp. Notice that, as required, fori 51 we recover the pa
rameterl0 of the initial state.a and b are arbitrary param-
eters that can be used to optimize the variational calc
tions. It was found thatb50.5 was an optimal value forb for
the full set of calculations performed and was left fixed
that value. The value ofa was optimized for different value
of Nexp.

The maximum number of functions allowed per para
eter was dependent on the values of the parameters th
selves:

Ni
max52

l i 11

l i

e

edp
, ~13!

NNexp

max5
1

2
NNexp21

max , ~14!

wheree is the smallest difference between two numbers
the precision and machine being used.edp is a standard
double precision value of 2.3310216.

In order to avoid the onset of numerical dependency
particular given the wide range of values of the exponen
parameters, an additional condition was imposed on the b
set. Only the basis functions with a minimum overlap w
the initial state were kept, i.e., those satisfying

E w iw0r 2dr.e, i 52,3, . . . ,Nexp. ~15!

Notice that, by construction, fori 51 thew i are orthogonal
to the w0. By the use of Eqs.~13! and ~15! the size of the
basis set is dynamically allocated according to the proper
of the basis sets as well as the precision~both machine de-
pendent and program dependent! in which the calculations
are performed. Condition~15! is actually very restrictive,
placing a limit on the number of exponential parameters
well as the overall number of basis functions allowed in
calculation. For example, ifNi50 thenl i is not included.
As a consequence, this constraint will not allow us to
crease the dimension of the intermediate basis set after s
tolerated maximum value. Notice that this value will chan
dynamically when the nonlinear parameters are changed

Lastly, the calculations were performed also in two oth
gauges. One is the acceleration gauge in which the dip
operator is taken from the velocity formp to the acceleration
form a5@H,p# to obtain

S15(
n
E ZK C0UZr

r 3 UCnL Z2~En2E0!21, ~16!

B15(
n
E ZK C0UZr

r 3 UCnL Z2lnuEn2E0u
~En2E0!

.

~17!

The other gauge we call the pa-gauge which is a hybrid
the velocity and acceleration gauges that avoids the exp
inclusion of the energies of the intermediate states,
05251
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S15(
n
E ^C0uZr /r 3uCn&^CnupuC0&, ~18!

B15(
n
E ^C0uZr /r 3uCn&^CnupuC0& lnU^C0uZr /r 3uCn&

^CnupuC0&
U.

~19!

The different gauges were used to monitor the calcu
tions. For very large basis sets, relative to the numerical
chine precision, the best convergence is obtained in the
celeration gauge@3#. Otherwise the three gauges agree w
the pa-gauge being the best at avoiding roundoff error~a
rigorous discussion of this property is given in@4#.!

A. The Bethe logarithm

The convergence of the results obtained for the grou
state with the basis set~11! and~12! is presented in Table II
for the full range of values of the number of exponent
parameters: fromNexp51 to Nexp520. For each case we
present the value of the largest exponential parameter u
lmax5lNexp

; the smallest is by constructionl0. For the best
convergence obtained, the largest exponential paramete
a remarkable value of 1022 a.u. We shall dwell on this in the
following section. We present also the value of the ene
for the intermediate state with the largest energy. For
best value this value is a remarkable 3.531046 a.u. This is
1042 times the rest mass of the electron (me51/a f s

2 in a.u.! In
other words an accurate calculation requires intermed
states with extremely high energy peaked extremely clos
the origin. The values are compared to the group-theoret
result by Huff@2#. This comparison verifies the convergen
in the table to 23 significant digits. ForNexp.20 the controls
built in the program do not allow the calculations to collap
due to numerical dependence. The basis set is allowe
grow very marginally and the convergence remains at
same~best! value.

The negative contribution to the sumB1 from the bound
states and the continuum states withEn2E0,1 ~a.u. are
used throughout! is canceled by the lowest continuum stat
with En2E0.1. The main contribution toB1 will then
come from the higher continuum states. What differentia
the sumsB1 and S1 from other sum rules involving lowe
powers ofEn2E0 is the very large contribution of state
with very high energy, i.e., states withEn2E0@mc2. This is
presented in Fig. 1 for which the logarithmic sumB1 is writ-
ten in the form

B15(
n
E dBn ~20!

with

dBn5 z^C0upuCn& z2~En2E0!lnuEn2E0u. ~21!

The plot in Fig. 1 was built with the data obtained for th
largest set used in Table II. The relative contribution of t
energy states appearing in the plot has converged alread
smaller basis sets and does not vary much as the basi
mensions are increased. The oscillations are an artifact o
3-3
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TABLE II. Convergence of the results for the ground-state Bethe logarithmb1 ~1! using the intermediate
states proposed in this paper.Nexp is the number of exponential parameters in the intermediate set;N is the
number of basis functions;lmax is the value of the largest exponential parameter in the set andEmax is the
largest value in the energy spectrum of the set.bexact is the group-theoretical value by Huff. The digits
italics did not converge. All values are given in a.u.

Nexp N lmax Emax b1 bexact2b

1 25 1.003100 5.343102 2.18 1.0731021

2 38 1.753102 4.873106 2.2896 1.3731023

3 54 1.133104 4.143109 2.29 094 5 3.6131025

4 73 7.943105 6.1831013 2.29 098069 6.8131027

5 92 3.603107 1.2031017 2.29 098 135 8 1.7231028

6 111 9.403108 9.3031019 2.29 098 137 461 5.91310210

7 124 1.7631010 2.0431022 2.29 098 137 516 0 4.57310211

8 142 2.2231011 4.0731024 2.29 098 137 52028 2.77310212

9 160 2.8031012 7.7431026 2.29 098 137 520 535 2.03310213

10 178 3.2231013 1.0231029 2.29 098 137 520 553 5 1.73310214

11 196 3.0731014 9.3231030 2.29 098 137 520 55506 1.68310215

12 225 5.4231015 3.6531033 2.29 098 137 520 555 222 8.05310217

13 232 3.2531016 1.0431035 2.29 098 137 520 555 227 7 2.40310217

14 263 3.8131017 1.4331037 2.29 098 137 520 555 23002 1.16310218

15 282 2.9631018 8.6431038 2.29 098 137 520 555 230 119 1.50310219

16 301 1.6731019 2.7631040 2.29 098 137 520 555 230 132 1 2.19310220

17 320 1.8231020 3.2831042 2.29 098 137 520 555 230 13391 3.48310221

18 339 8.1431020 6.5731043 2.29 098 137 520 555 230 134 202 5.30310222

19 358 6.3331021 3.9831045 2.29 098 137 520 555 230 134 245 9.83310223

20 377 1.8831022 3.5231046 2.29 098 137 520 555 230 134 251 4 3.15310223

exact 2.29 098 137 520 555 230 134 254 496 86
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finiteness of the basis set and decrease in amplitude
basis set size. The remarkable feature of this plot is the v
large contribution of intermediate states with very large
ergy. We see that states with energies of the order of the
mass of the electron (mc251/a f s

2 '104 a.u.) contribute at
most to the second significant digit inB1. On the other hand
a convergence to 1 ppm will involve states with energies
the order of 1014 a.u.('1010mc2!). Given that the logarithm
is a slow varying function ofEn2E0, the same argumen

FIG. 1. ContributiondBn of each intermediate state with energ
En to the logarithmic sumB1.
05251
ith
ry
-
st

f

applies toS1. A corroboration of the high contribution o
highly energetic states is obtained by performing the sumS1

fully relativistically, using the eigenstates of the Dira
Hamiltonian with positive energy eigenvalues, i.e., disca
ing the negative-energy~or positron! states. The value thu
obtained forS3 is 1.7608 rather than the nonrelativistic resu
of 2. This is consistent with the results in Fig. 1 that pred
such a change for relativistic energies of ordermc2 or
higher. Relativistic effects are treated separately in the n
relativistic expansion of the QED calculation of the Lam
shift and the sum over intermediate states has to be seen
sum over a complete set of intermediate sets. A delic
problem arises, however, when perturbations of the nuc
potential are introduced in a small region of space around
origin. This will be discussed later in the paper.

The very high convergence of the calculations is pres
for excited states as well. In Table III we present the resu
for several excited states with different angular momenta.
emphasize the number of digits for which convergence w
achieved, in each case we present the values for the four
sets of exponential parameters, except for very high ang
momenta for which only three exponential parameters
necessary for full convergence. The calculations were mo
tored also by checking the accuracy of the calculation ofS1
@Eq. ~4!#. This was done by comparing the variational su
with the exact expression; their difference appears in
third column of Table III. The extremely high accuracy
3-4
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TABLE III. Convergence of the results for the Bethe logarith
~1! of excited states using the intermediate states proposed in
paper.Nexp is the number of exponential parameters;dS1 is the
numerical error inS1 ~4!. The digits initalics did not converge.

Nexp logudS1u b

2s 17 -25.1 2.11 862 271 256 061 820 57957
18 -25.2 2.11 862 271 256 061 820 58014
19 -24.1 2.11 862 271 256 061 820 580 234
20 -25.3 2.11 862 271 256 061 820 580 233 8

3s 17 -26.1 2.07 451 643 193 187 588 488 2
18 -26.0 2.07 451 643 193 187 588 48910
19 -26.1 2.07 451 643 193 187 588 489 242
20 -25.2 2.07 451 643 193 187 588 489 261 2

2p 6 -27.2 20.03 001 670 863 021 290 244 389
7 -26.4 20.03 001 670 863 021 290 244 36768
8 -25.6 20.03 001 670 863 021 290 244 367 605
9 -26.5 20.03 001 670 863 021 290 244 367 600 2

3p 6 -27.3 20.03 819 022 938 531 244 77019
7 -27.6 20.03 819 022 938 531 244 770 108 2
8 -26.5 20.03 819 022 938 531 244 770 11600
9 -26.2 20.03 819 022 938 531 244 770 116 206

4p 6 -28.2 20.04 195 489 459 808 554 86726
7 -25.8 20.04 195 489 459 808 554 867 106
8 -25.5 20.04 195 489 459 808 554 867 10374
9 -26.8 20.04 195 489 459 808 554 867 103 921

3d 2 -34.1 20.00 523 214 814 092 0
3 -31.2 20.00 523 214 814 088 30085
4 -29.7 20.00 523 214 814 088 300 807 799 927
5 -27.3 20.00 523 214 814 088 300 807 799 861 539

4d 2 -34.2 20.00 674 093 887 722
3 -30.4 20.00 674 093 887 697 490 2
4 -28.8 20.00 674 093 887 697 489 896 146 3
5 -27.1 20.00 674 093 887 697 489 896 140 372 5

5d 2 -34.9 20.00 760 075 12590
3 -30.3 20.00 760 075 125 794 657 6
4 -28.3 20.00 760 075 125 794 656 517 374
5 -27.3 20.00 760 075 125 794 656 517 349 331 0

4 f 1 -35.0 20.00 173 366 159
2 -34.1 20.00 173 366 148 212 578 4
3 -30.1 20.00 173 366 148 212 577 599 491 2
4 -29.1 20.00 173 366 148 212 577 599 490 624 1

5 f 1 -36.2 20.00 220 21694
2 -34.3 20.00 220 216 838 148 613 9
3 -29.2 20.00 220 216 838 148 606 695 231
4 -28.3 20.00 220 216 838 148 606 695 225 380 1

6 f 1 -35.7 20.00 250 21850
2 -35.8 20.00 250 217 976 027 891
3 -30.1 20.00 250 217 976 027 851 33603
4 -28.1 20.00 250 217 976 027 851 335 996 344

5g 1 -34.9 20.00 077 209 89024
2 -33.9 20.00 077 209 890 153 656 483 3
3 -29.9 20.00 077 209 890 153 656 482 663 28450

6g 1 -35.6 20.00 096 279 743 6
2 -32.9 20.00 096 279 742 484 105 137
3 -29.4 20.00 096 279 742 484 105 129 398 904 1

7g 1 -35.1 20.00 109 447 281
2 -27.1 20.00 109 447 273 936 994 156
3 -25.7 20.00 109 447 273 936 994 103 475 418 1
05251
the calculation ofS1 ~sometimes full quadruple precision! is
due to the inclusion ofr l 0 in the intermediate basis set whic
makes this calculation exact, in principle independently
the size of the intermediate basis set.d(S1) is then a good
check of the onset of numerical dependence in the basis
The number of basis functions in the intermediate basis
can be obtained from Table II for the corresponding setNexp
of exponential parameters.

B. Higher-order logarithmic sums

Logarithmic sums of higher order inDEn appear in
higher-order QED corrections to the energy of states witl
.0 @7# ~for states withl 50 these sums diverge.! In this
section we calculate the logarithmic sum

B25(
n
E z^C0upuCn& z2~En2E0!2lnuEn2E0u ~22!

for several states withl .0. The basis set used is the same
the one used for the Bethe logarithm in Sec. II A. In th
case, a subsidiary check on convergence and numerica
rors is provided by the sum

S25(
n
E z^C0upuCn& z2~En2E0!2 ~23!

which, using commutator algebra, reduces to

S25Z2K C0U 1

r 4UC0L . ~24!

In the case of hydrogenic functions~point nucleus! this re-
sults in

S25Z4
3n22 l ~ l 11!

16n5l ~ l 11!~2l 21!~2l 11!~2l 13!
. ~25!

Numerical convergence and/or numerical roundoff can
checked by comparingS2 of Eq. ~23! with its exact value of
Eq. ~25!.

The results obtained are presented in Table IV, where
a selection of states a few results for different sets of ex
nential parameters are shown to display the convergenc
the results.duS2u is the magnitude of the difference betwee
the sumS2 and its exact value from Eq.~25!.

III. FINITE NUCELAR RADIUS EFFECTS

As we saw in the calculations ofB1, a very high accuracy
is obtained when very large exponential parameters are
cluded in the intermediate basis set. In fact, the digit affec
by a certain basis set is roughly given bylmax

21 for that basis
set. Then for hydrogen, for example, any accuracy inB1
better than 1025 a.u. ~10 ppm! requires intermediate wav
functions that would peak inside the volume occupied by
proton if a finite nuclear radius was introduced. In fact f
our best accuracies, intermediate basis functions that pea
10222 a.u. from the origin are used. This is 17 orders
magnitude smaller than the radius of the proton.

is
3-5
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Should we then consider a finite nuclear radius for
proton? Although the finite nuclear radius correction for t
energy is very small, roughly of the order of 1
310210 a.u., we can expect the corrections toS1 and toB1

TABLE IV. Convergence of the results for the logarithmic su
of Eq. ~22! for a variety of excited states using the intermedia
states proposed in this paper.Nexp is the number of exponentia
parameters;dS2 is the numerical error inS2 @Eqs. ~23! and ~25!#.
The digits initalics did not converge.

Nexp logudS2u B2 (1025 a.u)

2p 17 -22.5 5577.37 835 685 436 949 471
18 -23.1 5577.37 835 685 436 949 482 9
19 -24.1 5577.378 356 854 369 494 836 5
20 -24.6 5577.37 835 685 436 949 483 813

3p 17 -22.7 2068.97 480 882 502 351 956 3
18 -23.4 2068.97 480 882 502 351 96206
19 -24.4 2068.97 480 882 502 351 96216
20 -24.4 2068.97 480 882 502 351 962 299

4p 17 -22.7 933.02 752 794 440 696 935 1
18 -23.7 933.02 752 794 440 696 93787
19 -24.6 933.02 752 794 440 696 938 216
20 -25.0 933.02 752 794 440 696 938 221 5

3d 5 -31.2 2102.19 687 960 985 532 604 7
6 -29.5 2102.19 687 960 985 532 607 539 8
7 -28.7 2102.19 687 960 985 532 607 547 172
8 -28.3 2102.19 687 960 985 532 607 547 191 0

4d 5 -31.2 242.75 477 133 686 967 849 7
6 -29.2 242.75 477 133 686 967 854 647
7 -29.5 242.75 477 133 686 967 854 66121
8 -27.4 242.75 477 133 686 967 854 661 212

5d 5 -31.3 221.85 340 066 518 583 312
6 -29.1 221.85 340 066 518 583 320 248
7 -29.2 221.85 340 066 518 583 320 27204
8 -28.0 221.85 340 066 518 583 320 272 115 2

4 f 2 -35.9 212.00 662 565 019 8
3 -32.2 212.00 662 565 020 193 891
4 -30.1 212.00 662 565 020 193 895 02163
5 -29.3 212.00 662 565 020 193 895 021 69880

5 f 2 -35.4 26.40 070 950 05294
3 -32.5 26.40 070 950 053 977 752
4 -30.0 26.40 070 950 053 977 765 12463
5 -29.1 26.40 070 950 053 977 765 124 863 6

6 f 2 -35.7 23.78 858 598 908 7
3 -32.2 23.78 858 598 910 76603
4 -30.4 23.78 858 598 910 766 051 729 8
5 -29.1 23.78 858 598 910 766 051 730 37438
05251
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to be much larger. This is because while most of the con
bution to ^H& comes from the region of space in which th
wave function is largest~around 1 a.u. for the ground state!,
as we saw earlier in the paper, forS1 or B1 it comes from
regions very close to the origin, so that they will be ve
sensitive to the changes in the wave function in those
gions.

Consider now the inclusion of a finite nuclear size in t
calculations. The sum~4! no longer involves a Diracd func-
tion but has to be written as

S15(
n
E z^C0upuCn& z2~En2E0! ~26!

5
1

2
^C0u¹2VuC0&. ~27!

For the purpose of these calculations we model
nucleus as a sphere with a homogeneous charge distribu
and a radiusR5(5/3)1/2^r 2&1/2, where ^r 2&1/2 is the root-
mean square radius of the charge distribution. The res
obtained are quite stunning. Consider the case of hydro
with ^r 2&1/251.6331025 a.u. The values obtained for th
ground state are S151.999 913 415 95 and b1
52.290 106 937 0 while for the 2s state are S1
50.249 989 177 05 andb152.117 740 812 5. Further accu
racy is not relevant given the uncertainty in the radius a
shape of the nuclear charge distribution. These values
volve a change of about 43 ppm forS1 for both states, and
for b1 about 380 ppm for the 1s state and 416 ppm for the
2s state. The change inb would bring the theory more than
an order of magnitude away from agreement with expe
ment. An estimate of the finite nuclear size correction to
Lamb shift due to the changes inS1 andb1 was first calcu-
lated by Borie@8#. That work, however, estimates incorrect
the change in the Lamb shift to be of the same order
agreement between theory and experiment. The reason is
in @8# it is assumed that the finite-size contribution com
mostly from the change inS1 ~the estimate of change inS1 in
that work is 38 ppm! while the change inb1 is estimated to
be negligible, while as we see from our results, the chang
much larger than that inS1. When the correct values for th
finite nuclear size correction are taken into account the ef
is, however, excessively large. An argument for the unphy
cal nature of this correction within the nonrelativistic expa
sion of the Lamb shift was given by Lepage, Erickson, a
Yennie @9# on the basis that the small length scales of
order of the nuclear size imply very large momenta for t
electron so that a nonrelativistic treatment of QED brea
down. The~previously unknown! large size of the correction
to b1 seems to further strengthen an argument for the in
propriateness of this correction.
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