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High accuracy for atomic calculations involving logarithmic sums
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A method for the calculation of logarithmic sums that yields very high accuracy even for small basis-set
dimensions is introduced. The best values achieved are accurate to 23 significant figures without extrapolation.
The sums are performed directly on variational intermediate sets. The method automatically rejects any basis
functions that could introduce linear dependence, therefore guaranteeing high numerical stability for a wide
range of nonlinear parameters. Accurate values for the ordinary and a higher-order version of the Bethe
logarithm are presented for a range of energy states and angular momenta. Given that the intermediate basis
functions are increasingly confined to extremely small distances from the origin, a discussion of finite nuclear-
size effects is given. The contribution to the sums from states with extremely high energies, orders of magni-
tude larger than the electron rest mass, is discussed.

PACS numbd(s): 31.25-v, 31.10:+z, 31.15.Pf

[. INTRODUCTION A variety of nonvariational methods has been proposed
for the particular case of a single electron in the Coulomb
The accuracy of the experimental and theoretical determifield of a point nucleus, for example, by direct application of
nation of transition frequencies in atoms with more than onghe spectrum of eigenstat¢$] or by direct application of
electron is advancing substantially, increasingly being sensigroup theoretical techniquég]. In the last case an accuracy
tive to higher-order effects. At the lowest- and higher-orderwith an unlimited number of digits can be obtained without
QED corrections, one encounters quantities involving logamuch difficulty using algebraic computation packages. These
rithmic sums that are very difficult to calculate. An example,methods, however, need the complete se#xactsolutions
appearing in the lowest-order QED correction, is the Bethdo the Schrdinger Hamiltonian and then cannot be used for
logarithm [atomic units(a.u) will be used throughout the calculations involving either an electron in a more complex
papel, potential or several interacting electrons. One is then left
with approximation techniques. In this paper we demonstrate
B zﬂ 1) the enormous power of direct variational calculations for this
ey family of calculations.
In a direct variational calculation of Eql), the infinite
where set of intermediate states is replaced by a finite set of varia-
tional states. This set can be fine tuned by changing one or
By=> f KW olp| W) AE,~Eo)n|E,—Eol, (2) More variational parameters. As accuracies become higher,
n the need for a fast convergent and stable method for the
calculation of sums of typél) is necessary. Any method to

_ S; for s states be applied successfully to either correlated or multiconfigu-
171 2Z%n® otherwise, 3 ration calculations must be such that in the one-electron case
it is able to yield easily high accuracy with high numerical
and stability. Perhaps it is worth illustrating the difficulties in-

volved in the calculation of logarithmic sums by performing

— 2= _ the sum of Eq(1) using a standard Slater basis set for the
Sl_; f ol Pl ) (En—Eo) “@ ground-state of hydrogen,
1 _ s -
=§<‘I’O|V2V|\PO> (5) rim(T) (Pnlo(r)Ylm(r)y (7)
=2mZ(Wo|8(r)|Wo) ©6) where the Slater radial functions are given by
- 0 0

S _ a—Arglgtn —
In the case of more than one electrgnjs replaced byP Pnp=€ TN 0L...N. ®)

=3;p;, the momentum operator for all electrons, a#(d)

by ¥,6(r;). The summation integration over intermediate A variation of this set that allows one to use much larger
states includes the infinite set of discréb®mund states as basis dimensions without numerical dependency is a set of
well as the(scattering continuum. Slater-Laguerre radial functions:
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~ TABLE I. Results for the ground-state Bethe logaritiit) us-  calculation[4] for the Rydberg states of He. Although these
ing for the intermediate states a basis set of the f¢8n The  convergences might seem excessive, in each case the hydro-
exponential parameter usedhs-1. N is the number of basis func- genic accuracy was barely sufficient to obtain the sought

tions. two-electron contributions.
In this section we present a method that is able to yield 11
N Emax B Sbeta= Bexact B digits accuracy in double precision and 23 digits accuracy in
20 215800 138101 quadruple precision calculations. Such accuracies might,
30 220111 8.99 102 again, look unnecessary but actually they emphasize the ex-
40 299311 6.79.10 2 cellent convergence and stability of the method. As a result
50 2 23646 545102 very go_od aC(_:uracies_ can be obtai_ned in double precisi_on
60 294542 458 102 calculations with relatively small basis sets, and therefore its

application to calculations involving more electrons or

—2
;8 ;;: 61323 2'Z§ 1872 screened or nonsphericglly.symmetr_ic potentials is now per-
% 2.26 046 3'05 10-2 fectly feasible. An appllcat_lon qf this class of methods to
' : L, accurate Bethelog calculations in two-electron systems can
100 2.26349 2.7810 5 be found in Ref.[5]. We start by summarizing the main
110 2.26 597 2.5810 characteristics of the basis set used.
120 2.26 804 229107 The radial basis set consists of a multiplet of basis sets of
the form (9), each with a different exponential parameter.
exact 2.290981 The basis set can be built in two totally equivalent ways,
2692  extrapolated  2.289981 1:000°3 i =€ Nl (10)
26918 extrapolated 2.290881 1000 4 )
i=1,2,... Nexp, M=0,1,...N;
est=eMroL20 %), n=01...N, (@

pi1,=€ ML (), (11)

where thel, are generalized Laguerre polynomials. Notice
that the basis sets for the intermediate states have an un- i=1,2,... Nexp, Nni=0,1,...N;j,
physical power at the origin'c wherel is the angular mo-
mentum of the initial statéV,. This simple artifice has the WhereNg,, is the number of exponential parameters in the
effect of substantially increasing convergence and stabilitybasis set andN; is the number of different powers ofor
For example, the suml) for the ground state without the Laguerre polynomials for each exponential parameter. When
multiplicative logarithm converges with just one intermedi- using explicitly in the calculations the orthogonality proper-
ate function if the exponential parameter coincides with thaties of the generalized Laguerre polynomihfs, the second
of the initial state {=1). form of the basis set offers a much higher numerical stability

The results with the basis s@) for the ground state of as well as avoiding numerical roundoff. In this way this set is
hydrogen are shown in Table |, for successively increasingble to allow the use of a number of functions for a single
values of the sizéN of the intermediate basis set. The con- exponential parameter much larger than the number one is
vergence is extremely slow: an extrapolation shows that onable to use by using simple powers, before a breakdown in
would need of the order of 27 000 basis functions to achievéhe calculations due to numerical dependency. For example,
a convergence only to the fourth decimal digie results basis set(8) breaks down at about 14 functions in double
follow very closely the linear fitt3=2.6924N.) Such a de- precision calculations, while basis $8) can easily accom-
mand on the size on the basis set is unrealistic. More impommodate hundreds of vectof6] (the values of Table | were
tantly the application of this method to multielectron calcu-calculated in double precision.
lations would make it impossible to obtain any convergence The two important issues to resolve are n@yvhow to

at all. choose the sequence of nonlinear parameteend (i) how
to choose the number of functions for each of the nonlinear
Il. A FAST CONVERGING METHOD parameters in the series.

The first nonlinear parametexr; is fixed at exactly the

Alternatives to the basis sef8) and(9) were proposed in  same value as that for the initial statg for reasons given
the literaturg[3,4] in order to achieve a much better conver- earlier in the paper. The rest of the parameters need to in-
gence for the sum in Eq1). The main thrust is to be able to crease very rapidly as an exponential or power series. Even
perform these sums directly using these variational eigenthough these sequences fqralready offer much better con-
states instead of the exact eigenstates for the intermediai@rgence, it was found that the series that most efficiently
states. The best values obtained in quadruple precision fajffered accurate results for either small or large numbers of
the hydrogenic ground-state Bethe logarithm had relative efexponential parameters was given by
rors of 1078 for a basis set used for a perturbation calcula- b b ]
tion [3] of the low states of He and 182 for an asymptotic Ni=hoexda(xi=x1)], 1=12,... Nexp (12

052513-2



HIGH ACCURACY FOR ATOMIC CALCULATIONS. .. PHYSICAL REVIEW A 61 052513

where thex; are the zeros of a Laguerre polynomial of order 5

Nexp- Notice that, as required, for=1 we recover the pa- 31:; j (ol Zr /3| W ) (Wl p| Vo), (18)

rameter\y of the initial state.a andb are arbitrary param-

eters that can be used to optimize the variational calcula-

tions. It was found thab=0.5 was an optimal value farfor ~ B1= >, f (WolZr/r3[W )Wyl p|Wo)in

the full set of calculations performed and was left fixed at "

that value. The value of was optimized for different values

Of Nexp- The different gauges were used to monitor the calcula-
The maximum number of functions allowed per param-tions. For very large basis sets, relative to the numerical ma-

eter was dependent on the values of the parameters themhine precision, the best convergence is obtained in the ac-

selves: celeration gaugg3]. Otherwise the three gauges agree with

the pa-gauge being the best at avoiding roundoff efeor

(WolZr/r®| W)
<\Pn|p|\l,0>

(19

NMax= 2% Ei (13)  rigorous discussion of this property is given[#.)
i dp
1 A. The Bethe logarithm
N = 5 N1 (14) The convergence of the results obtained for the ground

state with the basis s€t1) and(12) is presented in Table Il

I,for the full range of values of the number of exponential
parameters: fronNg,,=1 to Ng,,=20. For each case we
double precision value of 2:310" 18, present the value of the largest exponential parameter used

In order to avoid the onset of numerical dependency, iftmax=Mn,,,; the smallest is by construction,. For the best
particular given the wide range of values of the exponentiaFonvergence obtained, the largest exponential parameter has
parameters, an additional condition was imposed on the basgsremarkable value of 20 a.u. We shall dwell on this in the
set. Only the basis functions with a minimum overlap with following section. We present also the value of the energy
the initial state were kept, i.e., those satisfying for the intermediate state with the largest energy. For our

best value this value is a remarkable 8B a.u. This is
(15 10* times the rest mass of the electrang= 1/a?, in a.u) In
other words an accurate calculation requires intermediate
states with extremely high energy peaked extremely close to
Notice that, by construction, far=1 the ¢; are orthogonal the origin. The values are compared to the group-theoretical
to the ¢,. By the use of Eqs(13) and (15) the size of the result by Huff[2]. This comparison verifies the convergence
basis set is dynamically allocated according to the propertiefh the table to 23 significant digits. Fdt,,,> 20 the controls
of the basis sets as well as the precis{both machine de- built in the program do not allow the calculations to collapse
pendent and program dependeint which the calculations due to numerical dependence. The basis set is allowed to
are performed. Conditioril5) is actually very restrictive, grow very marginally and the convergence remains at the
placing a limit on the number of exponential parameters asame(bes} value.
well as the overall number of basis functions allowed in the The negative contribution to the suBy from the bound
calculation. For example, iN;=0 thenA; is not included. states and the continuum states wiEj—E,<1 (a.u. are
As a consequence, this constraint will not allow us to in-used throughoutis canceled by the lowest continuum states
crease the dimension of the intermediate basis set after somgth E,—E,>1. The main contribution td3; will then
tolerated maximum value. Notice that this value will changecome from the higher continuum states. What differentiates
dynamically when the nonlinear parameters are changed. the sumsB; andS; from other sum rules involving lower

Lastly, the calculations were performed also in two otherpowers of E,—E, is the very large contribution of states
gauges. One is the acceleration gauge in which the dipolgith very high energy, i.e., states wily,— E,>mc?. This is
operator is taken from the velocity formto the acceleration presented in Fig. 1 for which the logarithmic sy is writ-

wheree is the smallest difference between two numbers fo
the precision and machine being used, is a standard

f @igor?dr>e, 1=2,3,... Neyp.

form a=[H,p] to obtain ten in the form
2
Zr _ B,= f 5B 20
sfgf <~Por—3 ~1f> (En-Eo) % (19 =2 | 9B, 29
5 with
Zr In|[E,—E
8.=3 [ |[ w2 v, nfEq— Eol 5Bo= (W olp|W ) P(Ey—EoN[Ey—Egl. (2D
n r3 (En—Eo)
(17) The plot in Fig. 1 was built with the data obtained for the

largest set used in Table Il. The relative contribution of the
The other gauge we call the pa-gauge which is a hybrid oEnergy states appearing in the plot has converged already for
the velocity and acceleration gauges that avoids the explicémaller basis sets and does not vary much as the basis di-
inclusion of the energies of the intermediate states, mensions are increased. The oscillations are an artifact of the
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TABLE II. Convergence of the results for the ground-state Bethe logar@hitl) using the intermediate
states proposed in this papél,,, is the number of exponential parameters in the intermediatéNsstthe
number of basis functions;,,.x is the value of the largest exponential parameter in the seEgpdis the
largest value in the energy spectrum of the gkt....iS the group-theoretical value by Huff. The digits in

italics did not converge. All values are given in a.u.

Nexp N )\max Emax Bl Bexact_ﬁ

1 25 1.00< 10° 5.34x 107 2.18 1.0%x10°?!
2 38 1.75 107 4.87x10° 2.2806 1.37x10°3
3 54 1.1 10* 4.14x10° 2.29095 3.61x10°°
4 73 7.94<10° 6.18< 10  2.29098069 6.81x 1077
5 92 3.60x 10 1.20x 10 2.29098138 1.72x10°8
6 111 9.4x10°  9.30x10Y*  2.29098 137 61 5.91x 10 10
7 124  1.76¢10° 2.04x10? 2.29098 137580 457x10° 11
8 142 2.2X10"%  4.07x10%* 2.29098 137 5208 2.77x 10712
9 160 2.8x10%2  7.74x<10°®  2.29098 137 52035 2.03x 10713
10 178  3.2x10%® 1.02x10°  2.29098 137 520 555 1.73x10°
11 196  3.0x10%* 9.32x10°°  2.29098 137 520 5536 1.68x10°1°
12 225 54X10® 3.65<10°%  2.29098 137 52055522 8.05x 1017
13 232  3.2%10%  1.04x10°®  2.29098 13752055577 2.40x 10 Y7
14 263  3.8K10Y  1.43x10°7  2.29098 137 520 555 2312 1.16x10 18
15 282 29610 8.64x10°®  2.29098 137520555 2309 1.50x 10 1°
16 301 1.6%10Y° 2.76x10°  2.29098 137520555 23023 2.19x10°%°
17 320 1.8x10° 3.28<10%  2.29098 137520555 230133 3.48x10° %
18 339  8.1&10° 6.57x10®  2.29098 137 520555 230 1342 5.30x 10~ %2
19 358  6.3%x10°% 3.98<10%®  2.29098 137520555 230 1342 9.83x 102
20 377 1810 3.52x10%  2.29098 137520555230 13425 3.15x10° %

exact 2.29098 137 520 555 230 134 254 496 86

finiteness of the basis set and decrease in amplitude withpplies toS;. A corroboration of the high contribution of
basis set size. The remarkable feature of this plot is the verjiighly energetic states is obtained by performing the &m
large contribution of intermediate states with very large en4ully relativistically, using the eigenstates of the Dirac
ergy. We see that states with energies of the order of the resfamiltonian with positive energy eigenvalues, i.e., discard-

mass of the electronn{c®=1/a’~10* a.u.) contribute at
most to the second significant digit By. On the other hand,

ing the negative-energfor positron states. The value thus
obtained forS; is 1.7608 rather than the nonrelativistic result

a convergence to 1 ppm will involve states with energies obf 2. This is consistent with the results in Fig. 1 that predict

the order of 1&* a.u.(=~10"%mc?!). Given that the logarithm
is a slow varying function ofE,—E,, the same argument

109+10(38 )

0 2 4 6 8 10 12 14 16 18
10g1o(E -E o)

FIG. 1. ContributiondB,, of each intermediate state with energy
E, to the logarithmic sunB;.

such a change for relativistic energies of ordac® or
higher. Relativistic effects are treated separately in the non-
relativistic expansion of the QED calculation of the Lamb
shift and the sum over intermediate states has to be seen as a
sum over a complete set of intermediate sets. A delicate
problem arises, however, when perturbations of the nuclear
potential are introduced in a small region of space around the
origin. This will be discussed later in the paper.

The very high convergence of the calculations is present
for excited states as well. In Table Il we present the results
for several excited states with different angular momenta. To
emphasize the number of digits for which convergence was
achieved, in each case we present the values for the four best
sets of exponential parameters, except for very high angular
momenta for which only three exponential parameters are
necessary for full convergence. The calculations were moni-
tored also by checking the accuracy of the calculatio®,of
[Eqg. (4)]. This was done by comparing the variational sum
with the exact expression; their difference appears in the
third column of Table Ill. The extremely high accuracy in

052513-4



HIGH ACCURACY FOR ATOMIC CALCULATIONS. ..

PHYSICAL REVIEW A 61 052513

TABLE lIl. Convergence of the results for the Bethe logarithm the calculation ofS, (sometimes full quadruple precisipis

(1) of excited states using the intermediate states proposed in thigue to the inclusion of'o in the intermediate basis set which
paper.Ne,, is the number of exponential parameteds; is the

numerical error inS; (4). The digits initalics did not converge.

Nexp |09|551| B

2s 17 -25.1 2.11862 271256 061 820 5B

18 -25.2 2.11862 271256 061 820 5BO

19 -24.1 2.11862 271256 061 820 58842

20 -25.3 2.11862 271256 061 820 58BE3
3s 17 -26.1 2.07 451643193 187 588343

18 -26.0 2.07451643 193 187 588 489

19 -26.1 2.07451643 193 187 588 4892

20 -25.2 2.07451643 193 187 588 489426
2p 6 -27.2 —0.03001670863021 29024483

7 -26.4 —0.03001670863021 290 244 368

8 -25.6 —0.03001670863021 290 244 360%

9 -26.5 —0.03001670863021 290 244 36706D
3p 6 -27.3 —0.03819022938 531244710

7 -27.6  —0.03819022938 531244 77080

8 -26.5 —0.03819022 938531 244 770 106

9 -26.2 —0.03819022938531244770116&
4p 6 -28.2 —0.04 195489 459 808 554 8@B

7 -25.8 —0.04 195489459 808 554 86106

8 -25.5 —0.04 195489 459 808 554 867 103

9 -26.8 —0.04 195489 459 808 554 867 103D
3d 2 -34.1 —0.00523 214814 (B0

3 -31.2 —0.00523214 814088 3Bb

4 -29.7 —0.00523214814 088 300807 792®

5 -27.3 —0.00523 214814088 300 807 799 863%
4d 2 -34.2 —0.0067409388722

3 -30.4 —0.00674093 887697 42

4 -28.8 —0.00674 093887697 489 89643

5 -27.1 —0.00674 093 887 697 489 896 142
5d 2 -34.9 —0.007600751250

3 -30.3 —0.00760075125794 6%

4 -28.3 —0.00760075125794 6565173

5 -27.3 —0.00760075 125794 656 517 349133
4f 1 -35.0 —0.00173366 59

2 -34.1 —0.00173 36614821284

3 -30.1 —0.00173 366148212577 59949

4 -29.1 —0.00173 366148212 577 599 490462
5f 1 -36.2 —0.0022021®4

2 -34.3 —0.00220216 838 148 B19

3 -29.2 —0.00220216 838 148 606 6932

4 -28.3 —0.00220216 838 148 606 695 2258B
6f 1 -35.7 —0.00250218%0

2 -35.8 —0.00250217976 0273

3 -30.1 —0.00250217976027 851 388

4 -28.1 —0.00250217976 027 851 3359968
50 1 -34.9 —0.00077 209 8904

2 -33.9 —0.00077 209890 15365633

3 -29.9 —0.00077 209890 153 656 482 663 Z5g#
69 1 -35.6 —0.00096 279 736

2 -32.9 —0.00096 279 742 484 1033Y

3 -29.4 —0.00096 279 742 484 105 129 39849D
79 1 -35.1 —0.00109447831

2 -27.1 —0.00109447 273 936 99466

3 -25.7 —0.00109447 273936994 103 475341

makes this calculation exact, in principle independently of
the size of the intermediate basis s&{S;) is then a good
check of the onset of numerical dependence in the basis set.
The number of basis functions in the intermediate basis set
can be obtained from Table Il for the correspondinghgg,

of exponential parameters.

B. Higher-order logarithmic sums

Logarithmic sums of higher order iAE, appear in
higher-order QED corrections to the energy of states Wwith
>0 [7] (for states withl =0 these sums divergeln this
section we calculate the logarithmic sum

52:; f|<‘lf0|p|‘lfn)|2(En—EO)ZIn|En—E0| (22

for several states with>0. The basis set used is the same as
the one used for the Bethe logarithm in Sec. Il A. In this
case, a subsidiary check on convergence and numerical er-
rors is provided by the sum

=3 [IvdplvaPE-E? @3

which, using commutator algebra, reduces to

1
sz=zz< v, —4’~1f0>. (24)
r
In the case of hydrogenic functioripoint nucleus this re-
sults in

_ 3n2—1(1+1) 29
2= 16n%1(1+1)(21 —1)(21 + 1) (21 +3)

Numerical convergence and/or numerical roundoff can be
checked by comparing, of Eq. (23) with its exact value of
Eq. (25).

The results obtained are presented in Table 1V, where for
a selection of states a few results for different sets of expo-
nential parameters are shown to display the convergence of
the results§|S,| is the magnitude of the difference between
the sumS, and its exact value from Eq25).

IIl. FINITE NUCELAR RADIUS EFFECTS

As we saw in the calculations &, a very high accuracy
is obtained when very large exponential parameters are in-
cluded in the intermediate basis set. In fact, the digit affected
by a certain basis set is roughly given b{ﬁ;x for that basis
set. Then for hydrogen, for example, any accuracyBin
better than 10° a.u. (10 ppm requires intermediate wave
functions that would peak inside the volume occupied by the
proton if a finite nuclear radius was introduced. In fact for
our best accuracies, intermediate basis functions that peak at
1022 a.u. from the origin are used. This is 17 orders of
magnitude smaller than the radius of the proton.
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TABLE IV. Convergence of the results for the logarithmic sum to be much larger. This is because while most of the contri-
of Eq. (22) for a variety of excited states using the intermediate pution to(H) comes from the region of space in which the

states proposed in this papede,, is the number of exponential \wave function is largestaround 1 a.u. for the ground state
parametersyS, is the numerical error irs, [Egs. (23) and (25)].
The digits initalics did not converge.

Nexp |09|5%| BZ (1075 a.u)
2p 17 -22.5 5577.37 835 685 436 9491
18 -23.1 5577.37 835 685 436 94948
19 -24.1 5577.378 356 854 369 494633
20 -24.6 5577.37 835 685 436 949 48B3
3p 17 -22.7 2068.97 480 882 502 35185
18 -23.4 2068.97 480 882 502 351 962
19 -24.4 2068.97 480 882 502 351 9652
20 -24.4 2068.97 480 882 502 351 9622
4p 17 -22.7 933.02 752 794 440 69638
18 -23.7 933.02 752 794 440 696 9B7
19 -24.6 933.02 752 794 440 696 938&2
20 -25.0 933.02 752 794 440 696 93812
3d 5 -31.2 —102.19 687 960 985 532 80
6 -29.5 —102.19 687 960 985532 607%8
7 -28.7  —102.19 687 960 985532 607 54724
8 -28.3  —102.19 687 960 985 532 607 547119
4d 5 -31.2 —42.75477 133 686 967 84
6 -29.2 —42.75477 133 686 967 85418
7 -29.5 —42.75477 133686 967 854 681
8 -27.4 —42.75477 133686 967 854 6612
5d 5 -31.3 —21.85340066 518 58312
6 -29.1 —21.85340066 518 583 32013
7 -29.2 —21.85340 066 518 583 320 202
8 -28.0 —21.85340 066518583 320 272392
4f 2 -35.9 —12.00662 565028
3 -32.2 —12.00662 565 020 1934
4 -30.1 —12.00662 565 020 193 895 083
5 -29.3 —12.00 662 565 020 193 895 021 688
5f 2 -35.4 —6.40070950 0524
3 -32.5 —6.40070 950053 97752
4 -30.0 —6.40070950 053977 765 188
5 -29.1 —6.40070950 053 977 765 124386
6f 2 -35.7 —3.78858598 987
3 -32.2 —3.78 858598 910 7663
4 -30.4 —3.78 858598910766 051 93
5 -29.1 —3.78 858598 910 766 051 730 338

as we saw earlier in the paper, 8 or B; it comes from
regions very close to the origin, so that they will be very
sensitive to the changes in the wave function in those re-
gions.

Consider now the inclusion of a finite nuclear size in the
calculations. The sur®) no longer involves a Dirad func-
tion but has to be written as

s=3 [IvdelvarE-g) @0
1
:§<‘I’0|V2V|‘I’o>- (27)

For the purpose of these calculations we model the
nucleus as a sphere with a homogeneous charge distribution
and a radiusR= (5/3)Y%r?)2, where (r?)2 is the root-
mean square radius of the charge distribution. The results
obtained are quite stunning. Consider the case of hydrogen
with (r?)¥2=1.63x10"° a.u. The values obtained for the
ground state are $;=1.99991341595 and B;
=2.2901069370 while for the £ state are S;
=0.24998917705 an@;=2.1177408125. Further accu-
racy is not relevant given the uncertainty in the radius and
shape of the nuclear charge distribution. These values in-
volve a change of about 43 ppm f&8; for both states, and
for B, about 380 ppm for the d state and 416 ppm for the
2s state. The change i@ would bring the theory more than
an order of magnitude away from agreement with experi-
ment. An estimate of the finite nuclear size correction to the
Lamb shift due to the changes 8 and 8, was first calcu-
lated by Borig8]. That work, however, estimates incorrectly
the change in the Lamb shift to be of the same order as
agreement between theory and experiment. The reason is that
in [8] it is assumed that the finite-size contribution comes
mostly from the change i8; (the estimate of change B in
that work is 38 ppmwhile the change iB; is estimated to
be negligible, while as we see from our results, the change is
much larger than that i,. When the correct values for the
finite nuclear size correction are taken into account the effect
is, however, excessively large. An argument for the unphysi-
cal nature of this correction within the nonrelativistic expan-
sion of the Lamb shift was given by Lepage, Erickson, and
Yennie [9] on the basis that the small length scales of the
order of the nuclear size imply very large momenta for the
electron so that a nonrelativistic treatment of QED breaks
down. The(previously unknowhlarge size of the correction
to B; seems to further strengthen an argument for the inap-
propriateness of this correction.
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