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Bound states of negatively charged ions induced by a magnetic field

Victor G. Bezchastnov, Peter Schmelcher, and Lorenz S. Cederbaum
Theoretische Chemie, Physikalisch-Chemisches Institut, Universita¨t Heidelberg, INF 229, D-69120 Heidelberg, Germany

~Received 30 July 1999; published 14 April 2000!

We analyze the bound states of negatively charged ions that were predicted to exist because of the presence
of a magnetic field by Avronet al. @Commun. Math. Phys.79, 529 ~1981!#. We confirm that the number of
such states is infinite in the approximation of an infinitely heavy nucleus and provide insight into the under-
lying physical picture by means of a combined adiabatic and perturbation theoretical approach. We also
calculate the corresponding binding energies that are qualitatively different for the states with vanishing and
nonvanishing angular momentum. An outlook on the case of including center-of-mass effects is presented.

PACS number~s!: 31.10.1z, 31.50.1w, 32.10.2f, 32.10.Hq
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I. INTRODUCTION

The behavior and properties of negative ions became
ing the past years a branch of intense research. There e
an enormous interest in the electronic structure and dynam
of negative ions, both from the theoretical as well as exp
mental point of view~see, e.g., the review@1# and the refer-
ences therein!. According to our present knowledge abo
atomic ions it is most likely that singly charged negative io
possess in the absence of a magnetic field only one st
ground-state configuration. For example for the H2 ion, this
state is the 11S electronic state, and a rigorous proof that th
is the only possible bound state was given in Ref.@2#. Also,
some atoms, like, for example, Be, N, Ne, Mg, Ar do n
possess any stable negative ion state~see, e.g., Refs.@3# and
@4#!. On the other hand, one can expect that in the prese
of a magnetic field a lot of new discrete energy states
negative ions can appear. This expectation is based on
statement that for any negatively charged ion the numbe
discrete energy states is infinite in the presence of a magn
field @5#. However, this statement was formulated as the c
clusion of a formal mathematical treatment which does
provide a transparent physical picture of the appearanc
the infinite sequence of bound states nor does it estimate
corresponding energies. Although a wide set of works w
focused on the influence of the magnetic field on low-lyi
ion states~e.g., Refs.@6–12#!, there is no systematic trea
ment of the highly excited anions predicted in Ref.@5#. In the
present paper we develop a physical approach showing tr
parently from which quantum mechanical grounds the in
nite sequence of bound anion states appears in the pres
of a magnetic field. In Sec. II, we first reduce the problem
a one-particle, and then to a one-dimensional one, wher
analyze the bonding one has to consider the motion of
external electron along the magnetic field in an effective
tential depending on the quantum state. We confirm tha
the approximation of the static~infinitely heavy! nucleus, the
number of the bound states is infinite, and derive estima
for the corresponding binding energies valid for arbitra
ions. In Sec. III, we apply these estimates to the ion H2 and
verify them treating the one-dimensional motion of the e
ternal electron numerically. We also discuss the bound st
of an exotic ion formed by attaching the muon to the hyd
1050-2947/2000/61~5!/052512~9!/$15.00 61 0525
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gen atom. Besides, we analyze the importance of the n
adiabatic coupling between the states of the external
atomic~core! electrons. A general discussion and concludi
remarks are given in Sec. IV.

II. GENERAL

It is well-known ~see, e.g., Refs.@3# and @13#! that the
electron affinities for the negative ions are usually mu
smaller than the binding energies of the corresponding n
trals. This fact implies that the extra electron is weak
bound to the atom and its behavior and properties stron
differ from that of internal~core! electrons. For the H2 ion,
the binding of the extra electron is exclusively due to cor
lation between the two electrons. In the following, we w
study the highly excited states of the negative ions that
pear in the presence of a magnetic field and that, as we
estimate, correspond to very small electron affinities. W
therefore use the approximation of a weakly bound exter
electron neglecting its exchange interaction with the c
electrons. To exploit such a model, it is convenient to s
the total Hamiltonian for a singly negatively charged ion in
three terms,

H ion5Hat1He1W. ~1!

Here the first term,

Hat5
1

2me
(
a51

Z Fpa1
e

c
AaG2

1U12mBBS ~2!

describes a neutral atom with infinitely heavy nucleus in
magnetic fieldB with the vector potentialAa5A(ra). Sum-
mation is carried out over all the atomic~core! electrons
labeled with the subscript ‘‘a,’’ Z is the nucleus charge num
ber,me and2e52ueu,0 are the electron mass and charg
The potential energyU includes the Coulomb energies of th
interaction of the core electrons with each other and with
nucleus. S is the total spin of the atom, andmB
5e\/(2mec) is the Bohr magneton. The second term
Eq. ~1!,
©2000 The American Physical Society12-1



th

th
re
m
i

im
b

th

on
,
th
e
o

on

is

-
hi
c

th
ifi

he
in
a

fo
m

ro

-
led

he

c-
f

e
the

ited
rnal
be

ou-
a

en-

in
wo

or

size.
ited

o

BEZCHASTNOV, SCHMELCHER, AND CEDERBAUM PHYSICAL REVIEW A61 052512
He5
1

2me
Fp1

e

c
AG2

12mBBs, ~3!

corresponds to an extra~with respect to the atom! electron,s
is the electron spin. The last term,

W5 (
a51

Z
e2

ur2rau
2

Ze2

r
, ~4!

describes the Coulomb coupling of the extra electron to
atom.

When the extra electron is weakly bound to the atom,
character of its motion differs strongly from that of the co
electrons. In particular, the external electron can be assu
to move much slower than the core ones. In this case, the
states can be successfully described in terms of a quas
lecular approach, and the problem of binding can even
reduced to a one-particle one. Below we briefly describe
approach.

A. Quasimolecular approach to the problem of binding

Let us consider the Hamiltonian

Hat8 5Hat1W. ~5!

It does not include the kinetic energy of the external electr
therefore the latter can be considered as static in space
Hat8 describes the motion of the core electrons only. Since
potential energy term ofHat8 depends parametrically on th
position r of the external electron, the energy spectrum
this Hamiltonian as well as the corresponding eigenfuncti
also depend onr. Let us denote them by

Ei8~r!5^ i uHat8 u i & ~6!

andf i(r1 ,r2 , . . . ,rZ ;r), respectively, where the indexi la-
bels the eigenstates of the HamiltonianHat8 with some choice
of r. Since at anyr the statesu i & compose a complete bas
set, an eigenfunction of the total Hamiltonian~1! can be
presented as

C~r1 ,r2 , . . . ,rZ ;r!5(
i 8

c i 8~r!f i 8~r1 ,r2 , . . . ,rZ ;r!,

~7!

with the expansion coefficientsck8(r) depending on the po
sition of the external electron. It should be noted that t
wave function is not completely antisymmetric with respe
to all the ion electrons, only its ‘‘atomic part,’’f i 8 can be
assumed to be properly antisymmetric with respect to
core electrons. Complete antisymmetrisation would sign
cantly complicate the further consideration. On the ot
hand, the main yield of such a complication would be tak
into account exchange interaction between the external
core electrons which is definitely negligible for states
which the external electron is localized far from the ato
Notice also that the form~7! of the ion wave function is
exact if another charged particle different from the elect
~like, for example, a muon! is attached to the atom.
05251
e

e

ed
on
o-
e

is

,
so
e

f
s

s
t

e
-
r

g
nd
r
.

n

Substituting the wave function~7! into the Schro¨dinger
equation with the Hamiltonian~1!, subsequently multiplying
from the left-hand side byf i* and integrating over the posi
tions of the core electrons we will arrive at the set of coup
equations

@He1Ei8~r!1hii ~r!2Etot#c i~r!52 (
i 8Þ i

hii 8c i 8~r!. ~8!

Here Etot is the total eigenenergy of the system, and t
matrix elementshii 8 are given by the following equation:

hii 85
1

2me
^f i up2f i 8&1

eB

2mec
^f i u lf i 8&1

1

me
^f i upf i 8&p,

~9!

wherel5r3p is the angular momentum of the external ele
tron. Notice that if bothi and i 8 relate to the ground state o
the atom,u0&, then the last two terms in Eq.~9! equal zero
while the first term can be transformed as follows:

h0 05
\2

2me
E dr1E dr2•••E drZU ]

]r
f~r1 ,r2 , . . . ,rZ ;r!U2

.

~10!

In the following we restrict ourself by considering th
attachment of the extra electron to the neutral atom in
ground state. In this case, the right-hand side of Eq.~8! is
associated with the coupling between the ground and exc
states of the core electrons due to the motion of the exte
electron. Assuming the ground state of the neutral atom to
energetically well separated from the excited states this c
pling can be neglected. Then Eq.~8! becomes essentially
one-particle Schro¨dinger equation,

@He1V0~r!1h00~r!2E0#c0~r!50, ~11!

where, for the sake of convenience, we have shifted the
ergies by the ground-state energy of the isolated atom,E0

(0)

5E08(r→`), and introduced

E05Etot2E0
(0) ~12!

and

V0~r!5E08~r!2E0
(0) . ~13!

Equation~11! describes the motion of the external electron
the magnetic field and the potential which consists of t
parts: the static term,V0(r), and the nonadiabatic~dynamic!
correction,h00(r). The latter, as we shall directly estimate f
the H2ion, decreases with increasingr faster thanV(r) and
can be neglected at distances exceeding the atomic
Therefore, to analyze the binding mechanism for the exc
ion states one has to solve the Schro¨dinger equation

@He1V~r!2E#c~r!50, ~14!

where for brevity we have omitted the index ‘‘0’’ related t
the ground state of the core electrons.
2-2
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BOUND STATES OF NEGATIVELY CHARGED IONS . . . PHYSICAL REVIEW A 61 052512
At distances of the extra electron from the atom stron
exceeding the atom size, one can consider the operator~4! as
a perturbation of the atom and evaluate it by the multip
expansion,

W52eS Dn

r 2
2

Qabnanb

2r 3
1••• D , ~15!

wheren5r/r is the unit vector in the direction ofr and the
indicesa andb run over the Cartesian coordinates.

D52e(
a51

Z

ra ~16!

and

Qab52e(
a51

Z

~r a
2dab23xaaxab! ~17!

are the operators of the dipole and quadrupole moment
the atom, respectively,xaa and xab denote the component
of ra , ra5(xa1 ,xa2 ,xa3). Then the potential in Eq.~14! can
be approximated as

V~r!52
e^D&n

r 2
1

e^Qab&nanb

2r 3
2

e2kabnanb

2r 4
, ~18!

where^D& and^Qab& are the mean values of the dipole a
quadrupole momenta, respectively, of the unperturbed a
described by the Hamiltonian~2!, andkab is the polarizabil-
ity of the atom in an electric field. The first two terms in E
~18! represent the first-order perturbation corrections. T
last term in Eq.~18! is the second-order correction, it corr
sponds to the dipole term in Eq.~15! treated as the perturba
tion of the atom by the electric fieldE52en/r 2.

Expression~18! can be further simplified if we take into
account that the potential~13! has its symmetry axes directe
along the magnetic field. A simple argumentation of th
statement is the following. In the presence of the magn
field it is natural to assume that the axis of quantization
the atom is directed alongB. Then the potential~13! depends
parametrically on the two vectors,B andr. Since the poten-
tial is scalar it must depend only on scalars which can
constructed from these vectors. These scalars areB2, r 2 and
Br. This means that ifB is directed along thez axes, then
V(r)5V(r' ,z). As a result the non-zero components of t
mean dipole and quadrupole momenta of the neutral a
can only be^Dz&, ^Qxx&5^Qyy&, and ^Qzz&, respectively.
Also, the polarizability takes the diagonal form with th
componentskxx5kyy5k' andkzz5k i . Furthermore, since
the z parity of the core electrons is the integral of motio
when they are not perturbed by the interaction with the
ternal electron, we havêDz&50. Then, Eq.~18! can be
transformed as follows:

V~r' ,z!5
e2l~2z22r'

2 !

2r 5
2~k'sin2q1k i cos2q!

e2

2r 4
,

~19!
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whereq is the angle betweenn andB and the coefficientl
can be expressed in terms of the mean values of the squ
of the longitudinal and transverse coordinates of the c
electrons of the unperturbed atom,

l5 (
a51

Z

@2^za
2&2^r a'

2 &#. ~20!

B. Binding in a magnetic field as
one-dimensional„1D… problem

The Hamiltonian that determines the one-particle Sch¨-
dinger Eq.~14! explicitly reads

Heff5
pz

2

2me
1

p'
2

2me
1V~r' ,z!, ~21!

where

p'5p'1
e

2c
B3r' ~22!

is the transverse kinetic momentum of the electron. We h
introduced the symmetric gauge of the vector potentialA
5(1/2)B3r, being the most appropriate one because of
axial symmetry of the potentialV. We also have omitted the
spin part of the Hamiltonian, which determines the triv
shift of the ion energy spectrum and does not affect the bi
ing energies.

Since the potential in the Hamiltonian~21! decreases rap
idly with increasing distance of the extra electron from t
atom, even quite a weak magnetic field can influence
transverse motion of the extra electron to a much larger
tent than the atomic potential. In this case, the eigenfunc
of the Hamiltonian~21! can be efficiently expanded in term
of the the Landau states,^r'un,s&, of the motion of the elec-
tron across the magnetic field. These states are the com
eigenstates of the operatorsp'

2 and l z , wherel5r3p is the
electron angular momentum, and labeled with the two qu
tum numbers,n and s, that determine the corresponding e
genvalues,

p'
2 5~\/am!2~2n11!, n50,1,2, . . . ,

l z52\s, s52n,2n11,2n12, . . . , ~23!

am5Ac\/(eB) is the magnetic length. The first eigenvalu
determines the Landau energy spectrum

En
Lan5

p'
2

2me
5

\eB

mec
S n1

1

2D . ~24!

Hence,n is called the electron Landau level number.
Because of the axial symmetry of the atomic potential

longitudinal component of the electron angular momentum
an integral of motion for the Hamiltonian~21!, @ l z ,Heff#
50, and the quantum numbers can be used to label th
eigenstates ofHeff , i.e.,E5Es . The expansion of the corre
sponding eigenfunctions over the Landau states thus invo
only different Landau level numbers and reads
2-3
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cs~r!5(
n

gns~z!^r'un,s&. ~25!

The expansion coefficientsgns(z) and the energyE can be
found by solving the system of coupled equations,

F pz
2

2me
1Vnn

(s)~z!1En
Lan2EsGgns~z!

52 (
n8Þn

Vnn8
(s)

~z!gn8s~z!, n50,1,2, . . . ,

~26!

where

Vnn8
(s)

~z!5^n,suV~r' ,z!un8,s& ~27!

are the effective longitudinal potentials obtained as the m
trix elements of the atomic potentialV(r' ,z) within the
space of the Landau states of the external electron.

The quantityE0
Lan5\vB/2, wherevB5eB/(mec) is the

electron cyclotron frequency, determines the continu
threshold for the states of the external electron. The state
this electron belong to different manifolds associated w
the different Landau energiesEn

Lan,n50,1,2, . . . . Thebound
states can be classified by the numbers (s,n,n) where n
equals the number of nodes of the functiongns(z) for the
leading term in the expansion~25! - such a classification is
similar to that used in treating hydrogenlike atoms in
strong magnetic field, see, e.g., Ref@14#.

We can expect~and our results for the ion H2 confirm
this!, that the binding energies for the ionic states induced
the presence of the magnetic field are small compared to
electron cyclotron energy,\vB . Therefore, all such state
associated with the manifoldsn51,2, . . . lie in thecon-
tinuum, i.e., are not bound. We thus will focus on the sta
related to the ground Landau manifold,n50. While treating
them we can further neglect the coupling of the ground L
dau manifold to the higher ones, e.g., omit the sum on
right-hand side of Eq.~26!. This approach yields the 1D
Schrödinger equation,

F pz
2

2me
1Vs~z!2«sGgs~z!50, ~28!

which describes the motion of the external electron along
magnetic field. In this equation, we have shifted the ene
by the zero-point Landau energy,

«s5Es2E0
Lan. ~29!

Then, when«s is negative, the value of2«s is the binding
energy of the external electron. Also, for brevity we ha
omitted the indexn50 and define the effective longitudina
potential byVs(z)5V00

(s)(z). In order to get an idea of the
binding properties of this potential one can use the w
coupling one-dimensional theory~see, e.g., Ref.@15#!. This
theory says that if the potential vanishes atuzu→` and the
integral
05251
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I s5E
2`

`

Vs~z!dz ~30!

is negative than there is at least one bound state of fi
longitudinal motion, and the estimate of the correspond
binding energy for that state is

2«s5meI s
2/~2\2!. ~31!

As we shall see, the conditionI s,0 holds for infinitely many
possible quantum numberss and thus the number of boun
states associated with different values ofs is infinite, in ac-
cordance with the conclusion of Ref.@5#. For eachs, the
estimate~31! gives the binding energy for the state for whic
the longitudinal part of the wave function of the extern
electron has no nodes, e.g.,n50.

To exploit the latter analytical approach let us introdu
the transverse probability density for the states related to
ground Landau manifold

rs~r'!5E
0

2p

dw z^r'un50,s& z2

5
1

s!am
2 S r'

2

2am
2 D s

expS 2
r'

2

2am
2 D , ~32!

where the integration is done over the electron azimut
angle. In terms of the density~32! and the atomic potentia
V(r' ,z) we have

I s5E
0

`

r'dr'rs~r'!E
2`

`

dzV~r' ,z!. ~33!

Let us now adopt an approximation of the atomic poten
given by Eq.~19! for large distances. It is easy to check th
at anyr'Þ0

E
0

`~2z22r'
2 !dz

~r'
2 1z2!5/2

50 ~34!

and thus the first, quadrupole, term in Eq.~19! does not
contribute intoI s . This implies that the polarization part o
the atomic potential plays a key role in binding the exter
electron. Let us further assume that the influence of the m
netic field on the atomic polarizability is negligible. As it i
known @16#, in the absence of the magnetic field an atom
the ground state of the zero total angular momentum ha
isotropic polarizability,k, i.e., we assumek''k i'k. Then
the polarization term in Eq.~19! is net attractive and the
condition I s,0 is fulfilled. Straightforward integration in
Eq. ~33! and use of the relation~31! gives

2«s5
p2k2

27~s! !2
G2S s2

1

2DRg3, ~35!

whereG is the complete gamma function.R5mee
4/(2\2) is

the Rydberg energy andg5a0
2/am

2 5B/B0, where a0

5\2/(mee
2) is the Bohr radius andB052.353105 T. This
2-4
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estimate is not appropriate fors50 because of the diver
gence of the integrations at the originr'5z50 for the po-
tential ~19!. However, fors.0 above value of the binding
energy is a good approximation forg!1 ~laboratory mag-
netic fields! since the main contribution to the integral com
from distances sufficiently larger thana0, the natural mea-
sure of the size of the neutral atom. Using atomic units~2R
for the energy andB0 for the magnetic field strength! we
rewrite Eq.~35! in a recurrent way,

2«s50.1211k2B3ds
2 , s51,2, . . . , ~36!

where

d151,

ds5@12~1.5/s!#ds21 , s52,3, . . . . ~37!

One should notice that the scaling behavior of the bind
energies with the magnetic field strength,2«s}B3, coin-
cides with that predicted in Ref.@5#. Also, at larges we have
ds's23/2 and thus obtain the behavior of the binding en
gies for larges,2«s}s23. Such a sharp decrease of th
binding energy with the quantum number reflects the f
that in the plane perpendicular to the magnetic field the
ternal electron follows the Landau orbit with the expectat
value for the radius squared^r'

2 &52(s11)am
2 , and at larges

the transverse probability density~32! becomes a peake
function of r'

2 centered aroundr'
2 5^r'

2 &. Therefore, ass
increases the external electron is bound to the atom at
gressively larger distances from it.

We can also establish the behavior of the binding ene
with the magnetic-field strength for the states50. In this
case, contrary to the limit of larges, the transverse probabil
ity density varies very slowly withr' and the scale on which
it reduces significantly from its maximal value atr'50 is
the magnetic length,am, which strongly exceeds the atom
potential scale,a0. Therefore, when calculating the integr
~33! we can replace the transverse probability density by
maximal value,rs(0)51/am

2 . In this way we obtain

2«05
1

2 F E
0

`

r'dr'E
2`

1`

dzV~r' ,z!G2

B2, ~38!

where we have used atomic units again as in the remai
part of our work. We remark that the domain of the neut
atomic core contributes quite significantly to the integratio
in Eq. ~38! and thus the use of the quasimolecular~adiabatic!
picture to describe the motion of the extra electron becom
a crude approximation. However, a more accurate treatm
is expected to change only the numerical coefficient in
~38!. The scaling behavior of the binding energy with resp
to the field strength is expected to be the same, i.e.,2«0
}B2.

III. BINDING ENERGIES OF THE H À AND H µÀ IONS

The approach developed in the previous section can
directly applied to the H2 ion. With a good accuracy we ca
neglect the influence of the magnetic field on the grou
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state of the core electron, and use the well-known value~see,
e.g., Ref.@17#!, k59/2, for the polarizability of such a con
figuration. Then, the estimate~36! gives

2«s52.453B3ds
2 . ~39!

More reliable results for the binding energies for t
states of the electron attached to the hydrogen atom, w
are induced by the presence of the magnetic field, includ
the states50, can be obtained if one knows the atom
potentialV. When the influence of the magnetic field on th
hydrogen atom is neglected this potential is spherically sy
metric,V5V(r ), and can be found in the literature. We u
the results of Walles, Herman, and Milnes@18# who rigor-
ously calculated the energy levels of an electron moving
the field of two fixed, at distancer from each other, charge
1e and2e using the separability of the problem in confoc
elliptic coordinates. Their electronic ground-state ener
EWHM , is directly related to our potentialV(r ),

V~r !5EWHM~r !2
1

r
10.5, ~40!

when adding the Coulomb interaction energy between
two static charges and the hydrogenic ground-state bind
energy@cf. Eq. ~13!#. The energyEWHM was tabulated in the
wide range ofr, 0.840 380,r ,30.0. In Fig. 1, we show the
corresponding values ofV by dots and use the spline inte
polation to determine the value of the potential between th
~solid line!. At larger r the potential can be evaluated by i
polarization tail,

V~r !52
2.25

r 4
, ~41!

while at the lowerr one can putEWHM50 in Eq. ~40! and
get

V~r !52
1

r
10.5. ~42!

As Fig. 1 demonstrates, these extrapolations match v
good the data from Ref.@18#.

With the well-defined potentialV(r ) we can find the
value of the coefficient in the estimate of the binding ene
for the states50. Numerical integration of the potential i
Eq. ~38!, with the natural replacement 2pr'dr'dz
→4pr 2dr, yields

2«056.31B2. ~43!

To verify the estimates~39! and~43! we have also solved
numerically the Schro¨dinger Eq.~28!, calculating the effec-
tive potentialsVs(z) numerically from the potentialV(r )
presented in Fig. 1. First of all, we were searching for t
states with no nodes of the longitudinal wave function of t
external electron (n50 states!. The results for the corre
sponding binding energies, for different numbers ofs and
field strengths, are shown in Fig. 2 by open circles. So
lines represent the estimates~39! and ~43!, and we can con-
2-5
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clude that they are in fairly good agreement with the num
cal results. We have also performed the search for the bo
states with higher longitudinal excitations,n51,2, . . . , but
found no one, for the magnetic field strengths 1026,B
,1024. This indicates that the effective potentialVs(z) is so
weak that for eachs it can bind the external electron only i
the n50 state.

Finally, to control the validity of the quasimolecular a
proach, we have calculated the quantityh(r )5h00(r ), the
nonadiabatic correction to the potentialV(r ), determined by
Eq. ~10!. For this purpose, the wave functions of the electr
moving in the field of two fixed charges were computed
a numerical two-dimensional grid method, which was
vented by Ivanov~for details of the method as well as th
description of the corresponding codeATMOLMESH we refer
the reader to Ref.@19#!. The corresponding results are show
in Fig. 1 by open circles. To confirm that the numeric
results reproduce correctly the scaling behavior ofh with r,
we also give the perturbation estimate,

h~r !5
8

r 6
, ~44!

whose derivation is outlined in the Appendix. With increa
ing distances exceeding the size of the neutral hydro

FIG. 1. The one-particle potential of interaction between
static charge2e and the hydrogen atom~solid line! and the non-
adiabatic correction to this potential for the cases when the ch
is associated with the electron~long-dashed line! and with the muon
~shot-dashed line!. Dots show the reference data for the potent
obtained from Ref.@18#. The part of the solid line connecting th
dots is obtained by the spline interpolation, at lowerr the solid line
corresponds to Eq.~42! while at larger it corresponds to Eq.~41!.
Open circles show the non-adiabatic corrections obtained num
cally, and dashed lines correspond to the perturbation estimate
05251
i-
nd

n

-

l

-
n

atom, the nonadiabatic correction becomes smaller
smaller compared touV(r )u. One should notice that at sma
r the nonadiabatic correction exceeds the value ofuV(r )u.
This implies that the nonadiabatic coupling effects are qu
significant for the states50. However, since the correspond
ing binding energy obtained neglecting these effects is v
small, we believe that a more accurate approach would o
change the numerical coefficient in Eq.~43! but not the scal-
ing low, 2«0}B2.

The approach developed in this paper can also be dire
applied to the analysis of highly excited exotic anions,
example to the ion formed by attaching the muon to
hydrogen atom. Due to the fact that the shell of the Hm2 ion
is formed by two different particles~the electron and muon!
there is no need for antisymmetrization~exchange! and the
ansatz~7! for the wave function of the ion becomes exa
Moreover, since the muon is much heavier than the elec
~the muon-to-electron mass ratio ismm /me'207), the bind-
ing energies for the muonic ion are larger. Replacemen
the electron mass by the muon mass in Eq.~31! leads to the
following estimates

2«051306B2, s50,

2«s5508B3ds
2 , s51,2, . . . . ~45!

In Fig. 2, the corresponding energies are plotted as das
lines. Evidently, the non-adiabatic correction to the on
particle potential for the Hm2 ion is mm /me times smaller

e

ge

l

ri-
.

FIG. 2. Binding energies for the statess50,1,2,3,4~in meV! as
functions of the magnetic field strength~in Tesla!. The conversion
rate used is: 1 a.u.52.353105 T. Solid lines show the estimate
for the ion H2 given by Eqs.~43! and ~39!, and dots represent th
results of our numerical treatment. Dashed lines show the co
sponding energies for the muonic ion, Hm2.
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than that for the ion H2 ~see Fig. 1!, which makes the esti
mate fors50 more reliable in the case of the Hm2 ion.

IV. SUMMARY AND OUTLOOK

In this paper, we have studied the states of the nega
atomic ions which are induced by the presence of a magn
field. Apart from the neglect of the exchange interaction
tween the external and atomic~core! electrons the equation
we start with are exact. Performing an analysis of the wea
bound states of the external electron, it is possible to red
the problem to an effective one-particle by neglecting
nonadiabatic coupling terms. In the presence of the magn
field that determines the transverse motion of the exte
electron further simplifications are possible, which redu
the question of the binding mechanism to a one-dimensio
Schrödinger equation for the motion of the external electr
along the field.

We can conclude that in the approximation of the in
nitely heavy nucleus the number of the ionic bound state
infinite, in accordance with the general theorem of Ref.@5#.
A quite simple and appealing physical picture of the appe
ance of such states is that the external electron can be
tached to the atom with different values of its angular m
mentum along the magnetic field. The number of su
possible definite values is infinite and for each value a
ferent 1D effective potential appears. This potential de
mines the motion of the external electron along the field a
can bind the electron in at least one quantum state. We h
labeled these states by the integer numbers50,1,2, . . .
~negative of the magnetic quantum number of the exte
electron!, and obtained general estimates of the binding
ergies of negatively charged ions. These estimates esta
both the dependence of the binding energies on the mag
field strength and on the quantum numbers: for s50 the
binding energy scales withB as B2 and for s51,2, . . . the
scaling low is2«s}B3; at larges the binding energies be
have as2«s}s23. To apply the estimates fors.0 to a
specific ion one needs only to know the polarizability of t
corresponding neutral atom in an external electric fie
while the estimate fors50 involves the whole atomic po
tential acting on a static external electron.

We have applied the estimates obtained to the H2 ion,
exploiting the known polarizability of the hydrogen ato
and the potential for the static two-charge Coulomb probl
@18#. We also have verified that these estimates are in c
plete agreement with results of the numerical integration
the Schro¨dinger equation for the motion of the external ele
tron along the magnetic field.

The binding energies for the H2 ion that we have ob-
tained are indeed very small compared to the binding ene
of the hydrogen atom. At the largest magnetic fields av
able at laboratories now,B;30 T, the binding energy for
the H2 ion is approximately 2.831023 meV for the state
with the zero angular momentum of the external electr
and it is '1.431027 meV for the state withs51. The
magnetically induced bound states of the exotic muon i
possess a much larger binding energy. For the same valu
the magnetic field strength, the muon affinity to the hydrog
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atom is 0.58 meV for the states50 and 2.931025 meV for
the states51.

It also looks quite challenging to detect the excited an
states for heavier atoms which have polarizabilities sign
cantly larger than the hydrogen atom. For example, the
larizability of Cs is, with 2% accuracy,k5403 @17#. The
resulting electron affinity to this atom for the states51 at
B530 T is '231024 meV. Another challenging exampl
is the anion of Ba, which does not exist atB50. The polar-
izability of Ba, with 8% accuracy, isk5268 @17#, and the
binding energy of its excited anion, for the external electr
state withs51 at B530 T is '1.831025 meV. The cor-
responding states of the exotic ions, Csm2 and Bam2, pos-
sess the binding energies of'431022 meV and '4
31023 meV, respectively.

Although we cannot directly apply the estimate~38! for
the binding energy of the external electron with zero angu
momentum to heavier ions, in order to have an idea ab
their order of magnitude we can speculate that these bind
energies differ from the result~43! by the factor of (k/4.5)2,
wherek is the polarizability of an atom and 4.5 is the n
merical value of the polarizability of the hydrogen atom.
this way, we can evaluate the binding energy for the stas
50 of the external electron of the ion of Cs2, at B530 T,
as2«0;20 meV. For the same state of the ion of Ba2 we
obtain, at the same field strength,2«0;10 meV. As we
see, the magnetically induced anion bound states for at
with large polarizabilities can very well be detectable
laboratories.

Because of the large extension of the wave function of
loosely bound electron our results may also apply to m
ecules and clusters although in a less quantitative manne
molecules and clusters can exhibit large polarizabilities@17#
we expect that magnetically induced bound states exist
them and possess considerable binding energies.

One important issue that was not addressed in this pa
are the finite nucleus mass effects that can affect the
states significantly. The underlying physical picture of t
finite nuclear motion for charged systems was discusse
detail in, e.g., Ref.@20#. Here, we only mention that the
electron states are affected by an oscillating electric fi
introduced in the internal~electronic! system of the ion due
to the rotation of the ion as a whole over a Landau-like orb
For a crude estimate, we may assume that due to the
motion the ion’s states get the oscillator-like energy exc
\VN, where V5eB/(Mc), M is the ion mass andN
50,1,2, . . . . Since in the presence of the magnetic field t
internal ~electronic! degrees of freedom are inherent
coupled to the center of mass ones@20#, we can expect tha
similar to the case of the positive He1 ion @21# the minimal
possible value ofN for stable states coincides withs. In this
case, ans state of the external electron is still bound i
2«s.\Vs, or

B

1 T
.

1.583104

A1/2k

s1/2

ds
, ~46!

whereA is the mass number of the ion. According to th
2-7
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criterion, for the H2 ion the magnetic field strength, whic
stabilizes the states51 against the motional Stark effect, i
large, B'3.53103 T, and cannot be achieved in laborat
ries. However, for heavier ions, the magnetic field which c
stabilize them in excited states are smaller. For example,
the Cs2 ion, such a field is'3.4s1/2ds

21 T, so the external
electron can be bound in a fews states at the magnetic field
available at laboratories. We must remark that these e
mates of the center-of-mass effects on the ion bound st
are very preliminary and based on the intuitive picture of t
inclusion of the oscillatorlike energies associated with t
ion motion across the magnetic field in the total energy sp
trum. We plan to perform the corresponding analysis ac
rately in order to see how the nuclear motion influences
induced bound states in the magnetic field. But already n
we can speculate that the finite nuclear mass effects mak
least the highly exciteds states unbound, which means th
in reality the actual number of bound ion states is finite a
not infinite.
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APPENDIX

According to Eq.~10!, the nonadiabatic correction to th
potential of interaction between the hydrogen atom and
extra electron reads

h00~r!5
\2

2me
E dr1U ]

]r
f0~r1 ,r!U2

. ~A1!

Here, integration is performed over the positionr1 of the
core electron and the wave functionf0 describes the ground
state of the atom perturbed by the interaction with the sta
external electron. When the interaction is weak, this wa
function can be evaluated by the first-order perturbat
theory,

f0~r1 ,r!5f0
(0)~r1!1(

f Þ0

Wf 0~r!

E0
(0)2Ef

(0)
f f

(0)~r1!, ~A2!
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wheref0
(0) and f f

(0) are the wave functions of the groun
and excited states of the non-perturbed atom, respectiv
E0

(0) andEf
(0) are the corresponding eigenenergies and

Wf 0~r!5^f f
(0)uW~r1 ,r!uf0

(0)& ~A3!

are the matrix elements of the perturbation operator

W~r1 ,r!5
e2

ur12ru
2

e2

r
. ~A4!

Substituting Eq.~A2! into Eq. ~A1! and integrating overr1
yields, due to the orthogonality of the hydrogenic wave fun
tions,

h005
\2

2me
(
f Þ0

uSf 0u2

~E0
(0)2Ef

(0)!2
, ~A5!

where S5]W/]r. To simplify the latter expression, let u
approximate the energy difference in the denominator by
quantity2R. Then, using the completeness property of t
hydrogenic wave functions, we obtain

h005
\2

2meR2
@~S2!002~S00!

2#, ~A6!

where (S2)00 andS00 are the mean values of the operatorsS2

andS, respectively, for the ground state of the non-perturb
hydrogen atom. To calculate them, it is most convenien
specify the internal atomic coordinates with the quantizat
axis alongr. In these coordinates, assumingr @r 1, we can
replace the operator~A4! by the first, dipole, term of its
multipole expansion@cf. Eq ~15!#, W5(e2/r 2)z1. Then we
haveS52(2e2/r 3)z1. For the latter operator, because of t
z2parity of the hydrogenic state, one hasS0050 and Eq.
~A6! reduces to

h005
2\2e4~z1

2!00

meR 2r 6
. ~A7!

Substituting there the known value (z1
2)005a0

2 and introduc-
ing atomic units, we obtain the estimate of the nonadiab
correction given by Eq.~44!, h00(r )58/r 6.
m,

s.
@1# M.K. Scheller, R.N. Compton, and L.S. Cederbaum, Scienc
270, 1160~1995!.

@2# R.N. Hill, Phys. Rev. Lett.38, 643 ~1977!.
@3# B.M. Smirnov, Negative Ions ~McGraw-Hill, New York,

1982!.
@4# T. Andersen, H.K. Haugen, and H. Hotop, J. Phys. Chem. Re

Data ~to be published!.
@5# J.E. Avron, I.W. Herbst, and B. Simon, Commun. Math. Phys
e

f.

.

79, 529 ~1981!.
@6# R.J.W. Henry, R.F. O’Connell, E.R. Smith, G. Chanmuga

and A.K. Rajagopal, Phys. Rev. D9, 329 ~1974!.
@7# G.L. Surmelian, R.J.W. Henry, and R.F. O’Connell, Phy

Lett. 49A, 431 ~1974!.
@8# D.M. Larsen, Phys. Rev. B20, 5217~1979!; Phys. Rev. Lett.

42, 742 ~1979!; Phys. Rev. B23, 4076~1981!.
@9# C.-H. Park and A.F. Starace, Phys. Rev. A29, 442 ~1984!.
2-8



-
sc.

. A

BOUND STATES OF NEGATIVELY CHARGED IONS . . . PHYSICAL REVIEW A 61 052512
@10# M. Vincke and D. Baye, J. Phys. B22, 2089~1989!.
@11# D.M. Larsen and S.Y. McCann, Phys. Rev. B46, 3966~1992!;

47, 13 175~1993!.
@12# M. Bylicki, S. Themelis, and C.A. Nicolaides, J. Phys. B27,

2741 ~1994!.
@13# H. Massey,Negative Ions~Cambridge University Press, Cam

bridge, 1976!.
@14# H. Ruder, G. Wunner, H. Herold, and F. Geyer,Atoms in

Strong Magnetic Fields~Springer-Verlag, Berlin, 1994!.
@15# B. Simon, Ann. Phys.~N.Y.! 97, 279 ~1976!.
@16# K.D. Bonin and V.V. Kresin,Electric-Dipole Polarizabilities

of Atoms, Molecules and Clusters~World Scientific Publish-
05251
ing, Singapore, 1997!.
@17# T.M. Miller, Atomic and Molecular Polarizabilities, in CRC

Handbook of Chemistry and Physics, 76th ed.~CRC Press,
Boca Raton, FL, 1996!.

@18# R.F. Walles, R. Herman, and H.W. Milnes, J. Mol. Spectro
4, 51 ~1960!.

@19# M.V. Ivanov, J. Phys. B31, 2833~1998!.
@20# P. Schmelcher and L.S. Cederbaum, Phys. Rev. A43, 287

~1991!.
@21# V.G. Bezchastnov, G.G. Pavlov, and J. Ventura, Phys. Rev

58, 180 ~1998!.
2-9


