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Bound states of negatively charged ions induced by a magnetic field
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We analyze the bound states of negatively charged ions that were predicted to exist because of the presence
of a magnetic field by Avroret al. [Commun. Math. Phys79, 529 (1981)]. We confirm that the number of
such states is infinite in the approximation of an infinitely heavy nucleus and provide insight into the under-
lying physical picture by means of a combined adiabatic and perturbation theoretical approach. We also
calculate the corresponding binding energies that are qualitatively different for the states with vanishing and
nonvanishing angular momentum. An outlook on the case of including center-of-mass effects is presented.

PACS numbse(s): 31.10+2z, 31.50+w, 32.10-f, 32.10.Hq

[. INTRODUCTION gen atom. Besides, we analyze the importance of the non-
adiabatic coupling between the states of the external and
The behavior and properties of negative ions became duitomic(core) electrons. A general discussion and concluding
ing the past years a branch of intense research. There exiggmarks are given in Sec. IV.
an enormous interest in the electronic structure and dynamics
of negative ions, both from the theoretical as well as experi- Il. GENERAL
mental point of view(see, e.g., the reviejd] and the refer- '
ences therein According to our present knowledge about It is well-known (see, e.g., Refd.3] and [13]) that the
atomic ions it is most likely that singly charged negative ionselectron affinities for the negative ions are usually much
possess in the absence of a magnetic field only one stabsmaller than the binding energies of the corresponding neu-
ground-state configuration. For example for the idn, this  trals. This fact implies that the extra electron is weakly
state is the 1S electronic state, and a rigorous proof that thisbound to the atom and its behavior and properties strongly
is the only possible bound state was given in R&f. Also,  differ from that of internal(core electrons. For the Hion,
some atoms, like, for example, Be, N, Ne, Mg, Ar do notthe binding of the extra electron is exclusively due to corre-
possess any stable negative ion state, e.g., Ref$3] and lation between the two electrons. In the following, we will
[4]). On the other hand, one can expect that in the presencdudy the highly excited states of the negative ions that ap-
of a magnetic field a lot of new discrete energy states opear in the presence of a magnetic field and that, as we will
negative ions can appear. This expectation is based on thestimate, correspond to very small electron affinities. We
statement that for any negatively charged ion the number aherefore use the approximation of a weakly bound external
discrete energy states is infinite in the presence of a magnetaectron neglecting its exchange interaction with the core
field [5]. However, this statement was formulated as the conelectrons. To exploit such a model, it is convenient to split
clusion of a formal mathematical treatment which does nothe total Hamiltonian for a singly negatively charged ion into
provide a transparent physical picture of the appearance dhree terms,
the infinite sequence of bound states nor does it estimate the
corresponding energies. Although a wide set of works was Ho =H.+H.+W. 1)
focused on the influence of the magnetic field on low-lying o Tratt e
ion states(e.g., Refs[6-12)), there is no systematic treat- i
ment of the highly excited anions predicted in H&f. Inthe ~ Here the first term,
present paper we develop a physical approach showing trans-
parently from which quantum mechanical grounds the infi- 1 2
nite sequence of bound anion states appears in the presence HaFH 2
of a magnetic field. In Sec. Il, we first reduce the problem to ea-l
a one-particle, and then to a one-dimensional one, where to
analyze the bonding one has to consider the motion of thdescribes a neutral atom with infinitely heavy nucleus in a
external electron along the magnetic field in an effective pomagnetic fieldB with the vector potentiah,=A(r,). Sum-
tential depending on the quantum state. We confirm that, ifmation is carried out over all the atomicore electrons
the approximation of the statiinfinitely heavy nucleus, the labeled with the subscriptd,” Zis the nucleus charge num-
number of the bound states is infinite, and derive estimateser,m, and —e= —|e|<0 are the electron mass and charge.
for the corresponding binding energies valid for arbitraryThe potential energy includes the Coulomb energies of the
ions. In Sec. Ill, we apply these estimates to the ionahd interaction of the core electrons with each other and with the
verify them treating the one-dimensional motion of the ex-nucleus. % is the total spin of the atom, angug
ternal electron numerically. We also discuss the bound states efi/(2mg) is the Bohr magneton. The second term in
of an exotic ion formed by attaching the muon to the hydro-Eq. (1),
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2 Substituting the wave functiofi7) into the Schrdinger
+2ugBo, (3)  equation with the Hamiltoniafil), subsequently multiplying
from the left-hand side by and integrating over the posi-
corresponds to an extraith respect to the atojrelectron,o  tions of the core electrons we will arrive at the set of coupled

1

He:Zme

—I—eA
PT e

is the electron spin. The last term, equations
Lo zé ,
w=2> -—, (4) [Het E/ (N +hii(N=Eed¢i(N=—2 hijihis(r). (8)
a=1|r_ra| r i’ £

describes the Coulomb coupling of the extra electron to thélere Ey is the total eigenenergy of the system, and the

atom. matrix elementd;;, are given by the following equation:
When the extra electron is weakly bound to the atom, the 1 oB 1

character of its motion differs strongly from that of the core _ 2

electrons. In particular, the externalge)I/ectron can be assumed i’ = 2m_(GilP 41} + m<¢i|l¢">+ ﬁ<¢i|p¢i’>p’

to move much slower than the core ones. In this case, the ion 9

states can be successfully described in terms of a quasimo- )

lecular approach, and the problem of binding can even pwherel=rXpis the angular momentum of the external elec-

reduced to a one-particle one. Below we briefly describe thiéron. Notice that if boti andi’ relate to the ground state of
approach. the atom,|0), then the last two terms in E¢9) equal zero

while the first term can be transformed as follows:
A. Quasimolecular approach to the problem of binding

hZ 2
Let us consider the Hamiltonian ho o= ZmJ dflf dry- - f drz

J
E(ﬁ(fl,fz, Lo fzir)

, 10
H. = Hoh W. ) (10

In the following we restrict ourself by considering the

It does not include the kinetic energy of the external eleCtronattachment of the extra electron to the neutral atom in the

therefore the latter can be considered as static in space, $Q) nd state. In this case. the right-hand side of @lis

H2 describes the motion ‘?f the core electrons only. Since th§ g ciated with the coupling between the ground and excited
potential energy term ofi; depends parametrically on the states of the core electrons due to the motion of the external
positionr of the external electron, the energy spectrum Ofglectron. Assuming the ground state of the neutral atom to be
this Hamiltonian as well as the corresponding eigenfunctiongnergetically well separated from the excited states this cou-

also depend on. Let us denote them by pling can be neglected. Then E@) becomes essentially a
, i one-particle Schidinger equation,
E/ () =(i[H4i) (6) P gered
H.+V, +h —-E =0, 11
and ¢;(r1,r,, ... r7;r), respectively, where the indéxa- [He+ Vo) + oo 1)~ EoJto(r) (D

bels the eigenstates of the Hamiltonidf, with some choice  where, for the sake of convenience, we have shifted the en-

of r. Since at any the stategi) compose a complete basis ergies by the ground-state energy of the isolated aeiH,
set, an eigenfunction of the total Hamiltoniah) can be =E}(r—), and introduced

presented as
Eo=E— EY” (12
W(ry,ry, ... ,rz;r)=2 Yir(N) i (ri,ro, ... f2:1),
i’ and

(@)

with the expansion coefficients, (r) depending on the po-

sition of the external electron. It should be noted that thisequation(11) describes the motion of the external electron in
wave function is not completely antisymmetric with respectthe magnetic field and the potential which consists of two
to all the ion electrons, only its “atomic part,¢ can be  parts: the static termVq(r), and the nonadiabaticlynamio
assumed to be properly antisymmetric with respect to thgorrection hoy(r). The latter, as we shall directly estimate for
core electrons. Complete antisymmetrisation would signifithe H-jon, decreases with increasimdgaster thanv(r) and
cantly complicate the further consideration. On the othecan pe neglected at distances exceeding the atomic size.

hand, the main yield of such a complication would be takingTherefore, to analyze the binding mechanism for the excited
into account exchange interaction between the external angp states one has to solve the Safinger equation

core electrons which is definitely negligible for states for

which the external electron is localized far from the atom. [He+ V(r)—E]y(r)=0, (14)
Notice also that the forn{7) of the ion wave function is

exact if another charged particle different from the electronwhere for brevity we have omitted the index “0” related to
(like, for example, a muonis attached to the atom. the ground state of the core electrons.

Vo(r)=Eg(r) —E. (13)
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At distances of the extra electron from the atom stronglywhere is the angle between andB and the coefficienk
exceeding the atom size, one can consider the opegtas  can be expressed in terms of the mean values of the squares
a perturbation of the atom and evaluate it by the multipoleof the longitudinal and transverse coordinates of the core

expansion, electrons of the unperturbed atom,
z
Dn Qggn,n
W=—el - =2, (15) N= 2 [2(Z)—(ri)). (20
r 2r a=1

wheren=r/r is the unit vector in the direction afand the

- - . B. Binding in a magnetic field as
indicesa and B run over the Cartesian coordinates. g g

one-dimensional(1D) problem

z The Hamiltonian that determines the one-particle Schro
D= —egl fa (16)  dinger Eq.(14) explicitly reads
d p2 7TJ2_
an =z 4y L
i Heff 2me+2me+v(rl1z)a (21)
Qup=—€2, (r28,5—3XauXap) (17)  where
a=1
e
are the operators of the dipole and quadrupole momenta of @ =p, + szrl (22

the atom, respectivelys,, andx,z denote the components

Of ra, ra=(Xa1,Xa2,Xa3). Then the potential in Eq14) can s the transverse kinetic momentum of the electron. We have
be approximated as introduced the symmetric gauge of the vector potental,
) =(1/2)BXr, being the most appropriate one because of the
e(D)n N &(Qap)NaNs  €°KapNaNg (19 axial symmetry of the potentil. We also have omitted the
r2 2r3 2r4 ' spin part of the Hamiltonian, which determines the trivial
shift of the ion energy spectrum and does not affect the bind-
where(D) and(Q,;) are the mean values of the dipole anding energies.
guadrupole momenta, respectively, of the unperturbed atom Since the potential in the Hamiltonid@1) decreases rap-
described by the Hamiltoniai2), and 4 is the polarizabil-  idly with increasing distance of the extra electron from the
ity of the atom in an electric field. The first two terms in Eg. atom, even quite a weak magnetic field can influence the
(18) represent the first-order perturbation corrections. Thdransverse motion of the extra electron to a much larger ex-
last term in Eq(18) is the second-order correction, it corre- tent than the atomic potential. In this case, the eigenfunction
sponds to the dipole term in E(L5) treated as the perturba- of the Hamiltonian(21) can be efficiently expanded in terms
tion of the atom by the electric fiel&=—en/r?. of the the Landau state§;, |n,s), of the motion of the elec-
Expression(18) can be further simplified if we take into tron across the magnetic field. These states are the common
account that the potentiél3) has its symmetry axes directed eigenstates of the operatorg andl,, wherel=rXp is the
along the magnetic field. A simple argumentation of thiselectron angular momentum, and labeled with the two quan-
statement is the following. In the presence of the magneticum numbersn ands, that determine the corresponding ei-
field it is natural to assume that the axis of quantization forgenvalues,
the atom is directed alorig. Then the potentiall3) depends

V(r)=-—

parametrically on the two vectorB, andr. Since the poten- 7t =(hlay)*(2n+1), n=012...,
tial is scalar it must depend only on scalars which can be
constructed from these vectors. These scalar84rer? and l,;=—#s, s=-n—n+1l-n+2,..., (23

Br. This means that iB is directed along the axes, then
V(r)=V(r, ,z). As a result the non-zero components of th
mean dipole and quadrupole momenta of the neutral ato

p8m= \/cﬁ/(eB) is the magnetic length. The first eigenvalue
rﬂetermlnes the Landau energy spectrum

can only be(D,), (Qy)=(Qyy), and(Q,,, respectively. 7 heB 1
Also, the polarizability takes the diagonal form with the ErL]ar‘:_: +_)_ (24)
componentsq,, = ky,= «, and x,,= x| . Furthermore, since 2Me ML 2

I/Ck?ezn F;ﬁgtyaor]; t::ceJt C%rﬁu?llggrgnsﬂ:z ;[:tz rlgtt:figaalwci)tfh Tﬁ;'%r)'(_Hence,n is called the electron Landau level number.
y P B y Because of the axial symmetry of the atomic potential the
:ggglofrlsgg%ns’ f\(’)\’lfoxs}/éDZ>_o' Then, Eq.(18) can be longitudinal component of the electron angular momentum is
' an integral of motion for the Hamiltoniaf2l), [1,,Hesx]

€2\ (222—12) o2 =_0, and the quantum numbercan be uged to label the
L (k,SiPO+ K| cOS9) —, eigenstates ofi.;, i.e., E=E;. The expansion of the corre-

2rd 2r sponding eigenfunctions over the Landau states thus involves
(19 only different Landau level numbers and reads

V(rj_ !Z):
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lﬂs(r):; gns(z)<rl|n1s>- (29 Is= JO:OVS(Z)dZ (30

The expansion coefficients,s(z) and the energf can be is negative than there is at least one bound state of finite
found by solving the system of coupled equations, longitudinal motion, and the estimate of the corresponding
) binding energy for that state is

Pz (s) Lan

Z_me+Vnn(Z)+En _Es gns(z) _gs:melgl(Zﬁz)' (31)

_ ) B As we shall see, the conditidg<<O holds for infinitely many
= E Vo (2Gns(2), n=012..., possible quantum numbessand thus the number of bound
men states associated with different valuessa$ infinite, in ac-

(260 cordance with the conclusion of Rgb]. For eachs, the
estimateg31) gives the binding energy for the state for which
the longitudinal part of the wave function of the external

(2)=(n,s|V(r, ,2)|n",s) 27) electron hag no nodes, e.g.,=Q. _

To exploit the latter analytical approach let us introduce
are the effective longitudinal potentials obtained as the mathe transverse probability density for the states related to the
trix elements of the atomic potential(r, ,z) within the — ground Landau manifold
space of the Landau states of the external electron.

where

V(S)

nn’

The quantityE;?"=% wg/2, wherewg=eB/(mcc) is the ps(r,)= fZﬁd<p|(ri|n=0,s)|2
electron cyclotron frequency, determines the continuum 0
threshold for the states of the external electron. The states of 5 \'s 2
this electron belong to different manifolds associated with _ L I oL 32)
the different Landau energi&-*",n=0,1,2 . . . . Thebound sla? | 2a? a2, '

states can be classified by the numbes:(v) where v
equals the number of nodes of the functigg(z) for the  where the integration is done over the electron azimuthal
leading term in the expansid25) - such a classification is angle. In terms of the densi{382) and the atomic potential
similar to that used in treating hydrogenlike atoms in aV(r, ,z) we have
strong magnetic field, see, e.g., R&#|.

We can expectand our results for the ion H confirm _ [~ *
this), that the binding energies for the ionic states induced by 's fo rodr.ps(r.) fﬁwsz(rl 2). 33
the presence of the magnetic field are small compared to the
electron cyclotron energyiwg. Therefore, all such states Let us now adopt an approximation of the atomic potential
associated with the manifolds=1,2, ... lie in thecon-  given by Eq.(19) for large distances. It is easy to check that
tinuum, i.e., are not bound. We thus will focus on the stategt anyr, #0
related to the ground Landau manifolt=0. While treating
them we can further neglect the coupling of the ground Lan- =(22°—r)dz
dau manifold to the higher ones, e.g., omit the sum on the fo m:
right-hand side of Eq(26). This approach yields the 1D +

Schralinger equation, and thus the first, quadrupole, term in E49) does not
2 contribute intol ;. This implies that the polarization part of
Pz 94(2)=0 (29) the atomic potential plays a key role in binding the external
2me s ’ electron. Let us further assume that the influence of the mag-
, ) , netic field on the atomic polarizability is negligible. As it is
which describes the motion of the external electron along the,5n [16], in the absence of the magnetic field an atom in
magnetic field. In this equation, we have shifted the energyne ground state of the zero total angular momentum has an
by the zero-point Landau energy, isotropic polarizability «, i.e., we assume, ~ k;~ «. Then
e=E Eléan- (29) the pqlarization-term .in Eq(19).is net attragtive aqd the
condition 1,<0 is fulfilled. Straightforward integration in

Then, whene. is negative, the value of e, is the binding Ed- (33 and use of the relatio(81) gives
energy of the external electron. Also, for brevity we have 5 2
omitted the index1=0 and define the effective longitudinal Ce— ™K 2
potential byV¢(z)=V{)(2). In order to get an idea of the ® 27(s1)?
binding properties of this potential one can use the weak

coupling one-dimensional theofgee, e.g., Ref15]). This  wherel is the complete gamma functioR.=me*/ (242) is
theory says that if the potential vanishes|at-«~ and the the Rydberg energy andy= aé/a,znz B/By, where ag
integral =#2/(m,e?) is the Bohr radius an@,=2.35<10° T. This

(34)

+Vy(2)— &g

RY?, (35

1
572
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estimate is not appropriate f@=0 because of the diver- state of the core electron, and use the well-known védee,
gence of the integrations at the origin=z=0 for the po- e.g., Ref[17]), k=9/2, for the polarizability of such a con-
tential (19). However, fors>0 above value of the binding figuration. Then, the estimat86) gives

energy is a good approximation far<1 (laboratory mag-

netic fields since the main contribution to the integral comes —£4=2.458B%. (39
from distances sufficiently larger tham, the natural mea-
sure of the size of the neutral atom. Using atomic u(g2®
for the energy and, for the magnetic field strengthwe
rewrite Eqg.(35) in a recurrent way,

More reliable results for the binding energies for the
states of the electron attached to the hydrogen atom, which
are induced by the presence of the magnetic field, including
the states=0, can be obtained if one knows the atomic

—£4=0.121k%B35%, s=1.2,..., (36)  potentialV. When the influence of the magnetic field on the
hydrogen atom is neglected this potential is spherically sym-
where metric, V=V(r), and can be found in the literature. We use
the results of Walles, Herman, and Milngk8] who rigor-
61=1, ously calculated the energy levels of an electron moving in
the field of two fixed, at distancefrom each other, charges
0s=[1-(1.58)]8s-1, $=23,.... @7 teand—e using the separability of the problem in confocal
elliptic coordinates. Their electronic ground-state energy,

One should notice that the scaling behavior of the bindingE is directly related to our potentiai(r)
WHM » ’

energies with the magnetic field strengthe B3, coin-
cides with that predicted in Ref5]. Also, at larges we have 1
5s~s %2 and thus obtain the behavior of the binding ener- V(r)=Ewuw(r)— = +0.5, (40)
gies for larges,—e.*xs™ 3. Such a sharp decrease of the r

binding energy with the quantum number reflects the factynen adding the Coulomb interaction energy between the
that in the plane perpendicular to the magnetic field the exqyo static charges and the hydrogenic ground-state binding
ternal electron follows the Landau orbit with the expectationenergy[cf_ Eq.(13)]. The energyEuy Was tabulated in the
value for the radius squared?) =2(s+1)a7,, and atlarges  \ide range ofr, 0.840 386 < 30.0. In Fig. 1, we show the
the transverse probability densiti32) becomes a peaked corresponding values of by dots and use the spline inter-
function of rf centered around?=(r?). Therefore, ass  polation to determine the value of the potential between them
increases the external electron is bound to the atom at pr@solid line). At largerr the potential can be evaluated by its

gressively larger distances from it. polarization tail,
We can also establish the behavior of the binding energy
with the magnetic-field strength for the stage 0. In this 2.25
case, contrary to the limit of large the transverse probabil- V(r)=— T (41)

ity density varies very slowly witlh, and the scale on which

it reduces s_|gn|f|cantly from its maximal value at=0 is _ while at the lowerr one can puEy,=0 in Eq. (40) and
the magnetic lengthg,,,, which strongly exceeds the atomic

potential scalea,. Therefore, when calculating the integral

(33) we can replace the transverse probability density by its

maximal valuep(0)=1/a2. In this way we obtain V(r)=—-—+05. (42)
o —+ oo 2 . .
.= rodr f dzV(r, .z)| B, 38 As Fig. 1 demonstrates, these extrapolations match very
f073 fo udry J_ dzMr..2) 38 good the data from Ref18].

With the well-defined potentiaV(r) we can find the
where we have used atomic units again as in the remainingalue of the coefficient in the estimate of the binding energy
part of our work. We remark that the domain of the neutralfor the states=0. Numerical integration of the potential in
atomic core contributes quite significantly to the integrationseq. (38), with the natural replacement 72, dr, dz
in Eq. (38) and thus the use of the quasimolecukdiabatic . 47r2dr, yields
picture to describe the motion of the extra electron becomes
a crude approximation. However, a more accurate treatment —£0=6.31B2 (43
is expected to change only the numerical coefficient in Eq.

(38). The scaling behavior of the binding energy with respect  To verify the estimate$39) and(43) we have also solved
to the field Strength is expected to be the same, iT@O numerica”y the SChr(dinger Eq(28), Ca|Cu|ating the effec-
«B2. tive potentialsVg(z) numerically from the potentiaV/(r)

presented in Fig. 1. First of all, we were searching for the
states with no nodes of the longitudinal wave function of the
external electron =0 stateg The results for the corre-
The approach developed in the previous section can bsponding binding energies, for different numberssofnd
directly applied to the H ion. With a good accuracy we can field strengths, are shown in Fig. 2 by open circles. Solid
neglect the influence of the magnetic field on the groundines represent the estimaté9) and(43), and we can con-

Ill. BINDING ENERGIES OF THEH ~ AND H p~ IONS
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FIG. 2. Binding energies for the states 0,1,2,3,4(in meV) as

FIG. 1. The one-particle potential of interaction between thefunctions of the magnetic field strengtim Tesla. The conversion
static charge— e and the hydrogen atorfsolid line) and the non-  rate used is: 1 a.&.2.35x10° T. Solid lines show the estimates
adiabatic correction to this potential for the cases when the charg®r the ion H given by Eqs(43) and(39), and dots represent the
is associated with the electrgiong-dashed lineand with the muon  results of our numerical treatment. Dashed lines show the corre-
(shot-dashed line Dots show the reference data for the potential sponding energies for the muonic ionuH.
obtained from Ref[18]. The part of the solid line connecting the

dots is obtained by the spline interpolation, at low¢hne solid line  5tom  the nonadiabatic correction becomes smaller and

corresponds to Eq42) while at larger it corresponds to Eq41). smaller compared t/(r)|. One should notice that at small
Open circles show the non-adiabatic corrections obtained numer'F the nonadiabatic correction exceeds the valud\if)|
cally, and dashed lines correspond to the perturbation estimates. '

This implies that the nonadiabatic coupling effects are quite
- significant for the state=0. However, since the correspond-

clude that they are in fairly good agreement with the numeri- S . lecti h p .
cal results. We have also performed the search for the bound? binding energy obtained neglecting these effects is very

X ) e o small, we believe that a more accurate approach would only
states with higher longitudinal excitations=1,2, ..., but . N
o , change the numerical coefficient in E¢3) but not the scal-

found no one, for the magnetic field strengths 4@B N0 low. — &no B2
<10 *. This indicates that the effective potenti&l(z) is so gTh L 0 h.d loped in thi Iso be direct]
weak that for eacls it can bind the external electron only in he approach developed in this paper can aiso be directly
the =0 state applied to the analysis of highly excited exotic anions, for

FI;n_aIIy to c;ontrol the validity of the quasimolecular ap- example to the ion formed by attaching the muon to the
oroach, we have calculated the quantitgr)=hog(r), the hydrogen atom. Due to the fact that the shell of the Hon

. i ) : : is formed by two different particleghe electron and mugn
EOn?f('))ablfgftﬁgrefrt'%géo tr:ve:\t/eenf?rggi,oﬂgtsfrﬂgeeolle?:)t/ronthere is no need for antisymmetrizatiéexchangg and the
mqo‘ i .'n the f'eIF()j oFf)t o’f. ed charges were comouted .aansatz(7) for the wave function of the ion becomes exact.

ving 11 1€ld or two Tix harges w mputed vi Moreover, since the muon is much heavier than the electron
a numerical two-dimensional grid method, which was in-

X (the muon-to-electron mass ratiors, /mg~207), the bind-

;igf}? t?gnl\c/)?rt]r?(\a(?orrrdeestagi d?; thsoz:lne(;[gaaéi Y/vvee”r:fse:he ing energies for the muonic ion are larger. Replacement of

P P g . the electron mass by the muon mass in 84) leads to the
the reader to Ref19]). The corresponding results are shown . .
S ; ) . following estimates
in Fig. 1 by open circles. To confirm that the numerical
results reproduce correctly the scaling behaviohefith r, _ 130632 ~0
we also give the perturbation estimate, T80T v S=U

8 —£s=508B%8%, s=12,.... (45)
h(r)= et (44

In Fig. 2, the corresponding energies are plotted as dashed
whose derivation is outlined in the Appendix. With increas-lines. Evidently, the non-adiabatic correction to the one-

ing distances exceeding the size of the neutral hydrogeparticle potential for the |4~ ion is m,/m, times smaller
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than that for the ion H (see Fig. 1, which makes the esti- atom is 0.58 meV for the state=0 and 2.% 10 ° meV for

mate fors=0 more reliable in the case of theuH ion. the states=1.
It also looks quite challenging to detect the excited anion
IV. SUMMARY AND OUTLOOK states for heavier atoms which have polarizabilities signifi-

. _ _ cantly larger than the hydrogen atom. For example, the po-
In this paper, we have studied the states of the negativRirizability of Cs is, with 2% accuracyx=403 [17]. The
atomic ions which are induced by the presence of a magneti@sulting electron affinity to this atom for the state1 at
field. Apart from the neglect of the exchange interaction beB=30 T is~2x10 % meV. Another challenging example
tween the external and atomicore electrons the equations s the anion of Ba, which does not existB= 0. The polar-
we start with are exact. Performing an analysis of the weaklyzapility of Ba, with 8% accuracy, is=268[17], and the
bound states of the external electron, it is possible to reducginding energy of its excited anion, for the external electron
the problem to an effective one-particle by neglecting thestate withs=1 atB=30 T is~1.8x10"° meV. The cor-

nonadiabatic coupling terms. In the presence of the magnetigsponding states of the exotic ions,uCsand Baw~, pos-
field that determines the transverse motion of the externaless the binding energies e£4x10°2 meV and ~4

electron further simplifications are possible, which reducex 103 mev, respectively.
the q_ugstion of thg binding mech.anism to a one-dimensional  a|though we cannot directly apply the estim4®&8) for
Schralinger equation for the motion of the external electronthe pinding energy of the external electron with zero angular
along the field. _ o ~_momentum to heavier ions, in order to have an idea about
~We can conclude that in the approximation of the infi- their order of magnitude we can speculate that these binding
nitely heavy nucleus the number of the ionic bound states ignergies differ from the resultid) by the factor of (/4.5)?,
infinite, in accordance with the general theorem of RBf.  \here « is the polarizability of an atom and 4.5 is the nu-
A quite simple and appealing physical picture of the appearmerical value of the polarizability of the hydrogen atom. In
ance of such states is that the external electron can be gkjs way, we can evaluate the binding energy for the state
tached to the atom with different values of its angular mo-_  of the external electron of the ion of CsatB=30 T,

mentum along the magnetic field. The number of SUChas—sO~20 meV. For the same state of the ion of Bae
possible definite values is infinite and for each value a dif'obtain, at the same field strength,s,~10 meV. As we
ferent 1D effective potential appears. This potential deter—see, the magnetically induced anion bound states for atoms
mines the motion of the external electron along the field and;i, large polarizabilities can very well be detectable in
can bind the electron in at least one quantum state. We haygyoratories.

labeled these states by the integer number0,1,2 ... Because of the large extension of the wave function of the
(negative of the magnetic quantum number of the externalgsely hound electron our results may also apply to mol-
electror), and obtained general estimates of the binding €ng jes and clusters although in a less quantitative manner. As

ergies of negatively charged _ion_s;. These _estimates eStab"?ﬂolecules and clusters can exhibit large polarizabilifted
both the dependence of the binding energies on the magnetigs expect that magnetically induced bound states exist for

field strength and on the quantum numiserfor s=0 the  them and possess considerable binding energies.
binding energy scales witB asB* and fors=1,2, ... the One important issue that was not addressed in this paper
scaling low Is—ss*B% at larges the binding energies be- 4e the finite nucleus mass effects that can affect the ion
have as—esxs . To apply the estimates fs>0 10 @  states significantly. The underlying physical picture of the
specific ion one needs only to know the polarizability of thefinite nuclear motion for charged systems was discussed in
corresponding neutral atom in an external electric fieldgetajl in, e.g., Ref[20]. Here, we only mention that the
while the estimate fos=0 involves the whole atomic po- electron states are affected by an oscillating electric field
tential acting on a static external electron. . introduced in the internalelectronid system of the ion due
We have applied the estimates obtained to theibh,  tg the rotation of the ion as a whole over a Landau-like orbit.
exploiting the _known polari_zability of the hydrogen atom for a crude estimate, we may assume that due to the ion
and the potential for the static two-charge Coulomb problenmotion the ion’s states get the oscillator-like energy excess
[18]. We also have verified that these estimates are in CONMy; ON, where Q=eB/(Mc), M is the ion mass andN
plete agreement with results of the numerical integration 0.0 1 2 . Since in the presence of the magnetic field the
the Schrdinger equatiqn f_or the motion of the external elec-jnternal (electronio degrees of freedom are inherently
tron along the magnetic field. _ coupled to the center of mass orf@§)], we can expect that
The binding energies for the Hion that we have ob-  gjmjlar to the case of the positive Héon [21] the minimal
tained are indeed very small compared to the binding energynssible value oN for stable states coincides with In this

of the hydrogen atom. At the largest magnetic fields availcase, ans state of the external electron is still bound if
able at laboratories nowB~30 T, the binding energy for —es>hQs, or

the H™ ion is approximately 2.810 % meV for the state
with the zero angular momentum of the external electron, B 15810 s12
and it is ~1.4x10° 7 meV for the state withs=1. The it
magnetically induced bound states of the exotic muon ions 1T A2 6
possess a much larger binding energy. For the same value of

the magnetic field strength, the muon affinity to the hydrogerwhere A is the mass number of the ion. According to this

(46)
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criterion, for the H ion the magnetic field strength, which where ¢§* and ¢{*) are the wave functions of the ground
stabilizes the state=1 against the motional Stark effect, is and excited states of the non-perturbed atom, respectively,
large, B~3.5x10° T, and cannot be achieved in laborato- E{”) andE{?) are the corresponding eigenenergies and

ries. However, for heavier ions, the magnetic field which can

stabiliz_e_them in exci_ted states algze §r1naller. For example, for Wio(r) =(OIW(ry,r)| 62 (A3)

the Cs ion, such a field is=3.457<5; = T, so the external

electron can be bound in a fes\states at the magnetic fields : ;

available at laboratories. We must remark that these estere the matrix elements of the perturbation operator
mates of the center-of-mass effects on the ion bound states

are very preliminary and based on the intuitive picture of the _
. . . . . . . W(rlir)
inclusion of the oscillatorlike energies associated with the

ion motion across the magnetic field in the total energy spec-

trum. We plan to perform the corresponding analysis accusybstituting Eq(A2) into Eq. (A1) and integrating over,

rately in order to see how the nuclear motion influences thgjields, due to the orthogonality of the hydrogenic wave func-
induced bound states in the magnetic field. But already nowons,

we can speculate that the finite nuclear mass effects make at
least the highly excited states unbound, which means that

—_— © A4
PG A4

2 2
in reality the actual number of bound ion states is finite and hoo= h |Stol (A5)
not infinite. 2m, /70 (Ego)— Ego))Z’
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APPENDIX where &?) o, andSy, are the mean values of the operatBfs

andS respectively, for the ground state of the non-perturbed
According to Eq.(10), the nonadiabatic correction to the hydrogen atom. To calculate them, it is most convenient to
potential of interaction between the hydrogen atom and agpecify the internal atomic coordinates with the quantization
extra electron reads axis alongr. In these coordinates, assumingr,, we can
replace the operatofA4) by the first, dipole, term of its
(A1)  Multipole expansioricf. Eq (15)], W=(e?/r?)z,. Then we
haveS= — (2e%/r%)z,. For the latter operator, because of the

_ . . z—parity of the hydrogenic state, one h8s=0 and Eq.
Here, integration is performed over the positionof the (A6) reduces to

core electron and the wave functigr describes the ground
state of the atom perturbed by the interaction with the static

J 2
E(ﬁo(rl!r) .

ﬁZ
hoo(r):—Zm f dry
e

) e \ 2,452
external electron. When the interaction is weak, this wave _Zﬁ e"(Z1) 00
function can be evaluated by the first-order perturbation mgR 2r®
theory,
Substituting there the known valueZj,,=a3 and introduc-
0 WfO(r) 0 - . . . h . .
bo(r1,)=O(r)+ > qug )ry), (A2) ing atomic units, we obtain the estimate of the nonadiabatic
#0 By’ — Ef correction given by Eq(44), ho(r)=8/r®.
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