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Local kinetic-energy density of the Airy gas
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The Airy gas model is used to derive an expression for the local kinetic energy in the linear potential
approximation. The expression contains an explicit Laplacian term2

5 (\2/2m)¹m
2 (r ) that, according to jellium

surface calculations, must be a universal feature of any accurate local description. Applied to the noble gases
the expression reduces the errors by a factor of 50 over previous results obtained by the linear potential
approximation.

PACS number~s!: 31.15.Ew, 71.15.Mb
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During the last two decades density-functional theory@1#
has played a decisive role in the calculation of physical pr
erties of atoms, molecules, and solids. In this context i
important to note that all available ground-state energy d
sity functionals lead to deficient results on account of
inappropriate representation of the kinetic-energy contri
tion. This deficiency may, of course, be overcome by app
ing the approach of Kohn and Sham@2# as it is in most
density-functional calculations. The appoach, however
based on animplicit functional that requires a complete se
consistent solution to the Kohn-Sham equations. As a re
the determination of the kinetic-energy contribution becom
the time-limiting step in density-functional calculations. A
explicit kinetic-energy functional is therefore of crucial im
portance in future applications of density functional theo
Furthermore, the knowledge of a kinetic energy functio
for the noninteracting particles has become one of the
mary aims within density-functional theory as formulat
within the metageneralized gradient approximation to
exchange-correlation density functional@3#.

Starting from thehomogeneouselectron gas including
e.g., gradient corrections, there have been many attemp
develop explicit kinetic-energy functionals@4#. In general
these functionals have been developed and tested for u
atomic calculations, and they have proven to be inadeq
in the treatment of, for instance, surfaces of solids@5#. Of
particular relevance for the present purpose is the exp
kinetic-energy functional derived in the pioneering work
Baltin @6# on the basis of the Wigner-Kirkwood approach@4#
and the linear potential approximation. It has the form

ts
lin~r !5ts

TF~r ! f S u¹n~r !u1/2

n~r !2/3 D , ~1!

where ts
TF is the Thomas-Fermi kinetic-energy density, a

the functionf of the scaled gradient is tabulated in Ref.@6#.
The functional was subsequently applied in calculations
the kinetic energy of the noble gases, and it was found
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overestimate the Hartree-Fock results by as much as a fa
of 2 @7#. As a result of this failure further developments
the approach appear to have been abandoned.

Recently, Kohn and Mattson@8# put forward the concep
of the edge electron gas as an appropriate starting poin
the treatment of systems with edge regions. The simp
realization of the edge electron gas is the Airy gas mod
and in the present paper we use this model to derive
explicit expression for the kinetic-energy density. Since
Airy gas model is based on the linear potential approxim
tion, the resulting expression is equal to that obtained
Baltin @6# except for the fact that we isolate an explicit L
placian term of the form

a
\2

2m
¹2n~r !, wherea5

2

5
, ~2!

which we exclude when the functional is inverted to obta
an explicit expression for the kinetic-energy density in ter
of the scaled gradient. That is, we write the kinetic-ene
density in the form of Eq.~1!, but with a differentf, plus
Laplacian~2!. Since the contribution from the Laplacian t
the total kinetic energy of a confined system must vanish
present functional yields kinetic energies which differ co
siderably from those obtained by a functional in which a
the Laplacian is expanded in terms of the scaled gradient
a result, the error in the kinetic energy of the rare gase
reduced in the present approach by approximately a facto
50 relative to previous calculations by the linear poten
approximation@7#.

The starting point for the derivation of the Airy ga
kinetic-energy functional is the potential

ve f f~z!5H ` for z<2L

Fz for 2L,z,`,
~3!
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which is linear inz, independent ofx andy, and has a hard
wall at 2L far from the electronic edge atz50. The slope of
the effective potentialF5dVe f f /dz leads to a characteristi
length scale

l[S \2

2mFD 1/3

, ~4!

and the electron and kinetic-energy densities are then g
by

n~z!5 l 23n~z!, ~5!

ts~z!5
\2

2m
l 25t~z!, ~6!

wherez5z/ l , ts5(\2/2m)(occ(¹c)2, andc are the Kohn-
Sham orbitals. Further,

n~z!5
1

2pE0

`

Ai2~z1z8!z8dz8, ~7!

ts~z!5
1

2pE0

`F d

dz
Ai ~z1z8!G2

z8dz81
1

4p

3E
0

`

Ai2~z1z8!z82dz8. ~8!

The properties of the Airy function and its derivatives m
be used to transform the kinetic energy density function~8!
into

ts~z!52
3

5
zn~z!1

2

5
n9~z!, ~9!

which upon application of the scalings of thei th derivative

n( i )~z!5 l 2 i 23n( i )~z!, i 50,1,2, . . . , ~10!

characteristic of the Airy gas model, leads to the local A
gas ~LAG! expression for the kinetic-energy density of t
real electron gas:

ts
LAG~z!52

3

5
n~z!F \2

2m

z

l 3G1
2

5

\2

2m
n9~z!. ~11!

According to Eq.~3! and ~4!, the term in the square bracke
on the right-hand side of Eq.~11! is equal tove f f(z), and the
kinetic-energy density then reads

ts
LAG~z!52

3

5
n~z!ve f f~z!1

2

5

\2

2m
n9~z!. ~12!

Alternatively, one may insert the Thomas-Fermi kinet
energy density

ts
TF~z!5

3

5

\2

2m
~3p2!2/3n5/3~z! ~13!

into the first term of Eq.~11! to obtain
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ts
LAG~z!5ts

TF~z!P„s~z!…1
2

5

\2

2m
n9~z!, ~14!

where the scaled gradient

s@n~z!#[
u¹n~z!u

2~3p2!1/3n~z!4/3
5

n8~z!

2~3p2!1/3n~z!4/3
[s~z!,

~15!

on account of scaling relations~10!, is conserved when going
from the real electron gas to the Airy gas. Finally, we ha
used the properties of the Airy function to derive an expli
expression forz/ l 3 in terms of the density and its derivative
We thereby find the expression

ts~z!5
3

5

\2

2m
n~z!

n-~z!

4n9~z!

3n~z!n-~z!22n8~z!n9~z!

2@n8~z!#223n~z!n9~z!

1
2

5

\2

2m
n9~z!. ~16!

for the kinetic-energy density of the Airy gas which avoi
the numerical inversion of the scaling function. Howev
this explicit expression is only useful in cases where the r
potential is close to the linear form assumed in the Airy g
model. Note that, for an Airy gas, the three expressions~12!,
~14!, and ~16! are, of course, equivalent. However, in th
application to real systems Eq.~12! is the most accurate an
Eq. ~16! the least accurate of the three forms.

The scaling functionP(s) which appears in Eq.~14! may
be calculated in the Airy gas model from

P~z!5
2z

~3p2!2/3n~z!2/3
~17!

and s(z) defined in Eq.~15!. In Fig. 1 we have plotted
„P(z),s(z)… and this function provides the connection b
tween the real system and the Airy gas through the lo
scaled gradients5s@n(z)# which is conserved in the trans
formation to the Airy gas model. The inversion procedure
the same as that used by Baltin@6#, except that here it is
applied only to the first termts

TF(z)P„s(z)… in the kinetic-

FIG. 1. The scaling functionP(s) of Eq. ~14! obtained for the
Airy gas and the second-order gradient expansions.
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LOCAL KINETIC-ENERGY DENSITY OF THE AIRY GAS PHYSICAL REVIEW A61 052511
energy density expression while the Laplacian term is k
unchanged. Below we shall justify this approach.

A comparison of the kinetic energy functionals availab
in the literature shows that in most cases a Laplacian term
the form of Eq.~2! with varying prefactorsa is included;
see, e.g., Ref.@4#. @Here we do not refer to12 (\2/2m)¹2n(r ),
which is the trivial difference between the two natural de
nitions of the local kinetic-energy density.# In want of a the-
oretical principle by which a unique value of the prefac
may be found, we have used the jellium model of a me
surface@9# for which accurate numerical solutions may
found to determinea. That is, we have calculated the loc
difference between the exact Kohn-Sham kinetic-energy d
sity ts

KS(z)5(\2/2m)(occ(¹c)2 for a jellium surface of in-
termediate densityr s53.0, and that obtained by a number
kinetic-energy functionals including Laplacian terms with
range of prefactors, i.e.,

d~a!5
1

gs
E Uts

a~z!1a
\2

2m
n9~z!2ts

KS~z!Udz, ~18!

where ts
a(z) is the ‘‘Thomas-Fermi part’’ of the actua

kinetic-energy density, e.g.,ts
TF(z)P„s(z)…, andgs the total

Kohn-Sham surface kinetic energy.
The results of the jellium calculations shown in Fig.

point to a50.4 as a unique value, where the asympto

FIG. 2. The integrated local errors@Eq. ~18!#, of the kinetic-
energy densities for a self-consistent jellium surface (r s53) as
functions of the prefactora of the Laplacian term. In the figure
GEA(2) refers to the second order gradient expansion functionats

a

5tTF1(\2/2m) 1
9 tW , where tW is the von Weizsa¨cker functional,

LAG~a! refers tots
a52

3
5 nve f f @cf. Eq. ~12!#, and LAG~b! refers to

ts
a(z)5ts

lin ,a(z), wherets
lin ,a(z) reduces to Eq.~1! for a50.0 and to

ts
TF(z)P(s) of Eq. ~14! for a50.4. In the inset the integrated loca

errors of LAG~b! for physically interesting density ranger s52 –6
are shown.
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linear behavior of all three functionals included in the figu
extrapolate to zero error. It is further seen that ata50.4 the
Airy gas functional~12! provides the best overall descriptio
of the kinetic-energy density while Baltin’s functional, i.e
a50, leads to a considerable error in the local descripti
Sincea50.4 is also the value found in the real-space de
vation of the Airy gas functional we suggest that a Laplac
with the prefactor25 must be a universal feature of any loc
kinetic energy functional. Note that there is noa priori rea-
son why the kinetic-energy density calculated from t
Kohn-Sham orbitals for a jellium surface should correspo
exactly to the prefactor25 for the Laplacian term.

The accuracy of the Airy gas functional~12! is demon-
strated in Fig. 3, where we show the kinetic-energy den

TABLE I. The difference~in percent! in the atomic kinetic en-
ergies evaluated from the self-consistent LDA@11# Kohn-Sham
densities relative to the exact Kohn-Sham results. GEA(0), GEA(2),
LAG, and LLP label results obtained using the Thomas-Fermi
proximation, the second-order gradient expansion@4#, the Local
Airy gas approximation,@10# and the locally linear potential ap
proximation@6,7#.

Atom GEA(0) GEA(2) LAG LLP

Ne 28.6 20.8 22.3 68.3
Ar 26.8 20.4 21.2 53.8
Kr 25.1 0.2 20.1 38.9
Xe 23.3 1.6 1.4 31.9

FIG. 3. The kinetic-energy densities for a self-consistent jelliu
surface (r s53) as a function of the distance from the surface~in
units of Bohr radius,a0) obtained from the Airy gas expressio
@Eq. ~12!# compared to the exact Kohn-sham results. It is seen
the airy gas expression@Eq. ~12!# is almost exact forx,23 and
x.0. In the inset are shown errors in percent for the zer
~Thomas-Fermi!, the second-order gradient expansion, and the
gradient limit of Eq.~14!.
1-3



p-
ir
en
o
a
th
a
a
ra

he
ki
o
t

.
un
fo
g
c
ci
h
he
ha

the
le I.

e of
us

iry
tion
ng
gy

s-
to

eir
ish

nda-
his
A

en-
the

VITOS, JOHANSSON, KOLLAR, AND SKRIVER PHYSICAL REVIEW A61 052511
of the jellium surface model calculated in four different a
proaches. The only significant deviation between the A
gas functional~12!, and the exact Kohn-Sham result is se
to occur just below the jellium edge where the effective p
tential has a large positive curvature which cannot be c
tured by the linear potential approximation. In contrast,
Thomas-Fermi and second-order gradient functionals h
significant errors even far from the jellium edge. It is cle
that an accurate local description also leads to an accu
total kinetic energy. In fact, the Airy gas functional and t
second-order gradient expansion functional yield total
netic energies for the jellium surface which, however, are
the same order of magnitude because the oscillations in
local gradient expansion lead to a cancellations of errors

Since the contribution from a Laplacian term on acco
of Green’s theorem vanishes for a confined system, it
lows that only the Thomas-Fermi part of the kinetic-ener
density~14! is important in calculations of the total kineti
energy. Consequently, one should not expand the Lapla
of the density in terms of the scaled gradient because suc
expansion will lead to a nonvanishing contribution to t
total kinetic energy from the expanded Laplacian term. T
e

.
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this is in fact the case is clearly shown by the results of
atomic calculations for the noble gases presented in Tab
Here we find that the Airy gas functional@10# has the accu-
racy of the second-order gradient expansion, as in the cas
the jellium surface calculations, in contrast to the previo
calculations by the linear potential approximation@6,7#
which show significant errors. We conclude, that the A
gas model and the equivalent linear potential approxima
may in fact form an appropriate and well-defined starti
point for density-functional theories of the kinetic ener
density of the inhomogeneous electron gas.
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