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Complete set of solutions of multireference coupled-cluster equations:
The state-universal formalism
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The homotopy method is used to obtain a complete set of solutions of multireference coupled-cluster
equations within the framework of the state-universal coupled-clySteCCO formalism. The solutions are
obtained for arab initio four-electron model system consisting of four hydrogen atoms in rectangular arrange-
ment. Essential information about the structure of solutions of nonlinear SUCC equations is provided and
analyzed, both numerically and analytically, in the form of two theorems. The existence of multiple solutions
of SUCC equations provides new insights into the nature of convergence problems often encountered in SUCC
calculations. The evidence for the possible association of some solutions of the SUCC equations with the
intruder-state problem is presented and briefly discussed.

PACS numbd(s): 31.15.Dv, 31.15.Ar, 31.25.v, 31.504+w

[. INTRODUCTION future. In this paper, we analyze all solutions of nonlinear
multireference CC equations, obtained for sate-universal

A common feature shared by many approaches to electroiermulation of the multireference CC thedr,5,8—17 with
correlation in atoms and molecules is their nonlinearity. Onéhe homotopy methof6]. We use the homotopy method to
of the best known examples of nonlinear many-electrorfe€nerate a complete set of solutions of the state-universal CC
theory is the single-reference coupled-clust@€) method (SUCQ equations for arab initio four-electron system, re-
[1-4] and its multireference extensiofié—7] designed to ferred to as the P4 modg27]. The homotopy approach has
describe quasidegenerate and electronically excited states fgcently been used to study multiple solutions of single-
size-extensive manner. reference CC equatiori28].

The nonlinearity of genuine multireference CC ap- This study provides an insight into the structure of solu-
proaches, which are classified as thiébert-spaceor state- tions of nonllr_1ear succ equations. In particular, we explain
universal methods [4,5,8—-171 and the Fock-space or _(usmg numerical and analytic argumenighy there may ex-
vaIence—universameth;Jd,s[4 6,7,18,19, is largely a conse- ist several solutions of truncated SUCC equations that pro-

. T gely a vide nearly exact eigenvalues of the electronic Hamiltonian,
guence of the nonlinear nature of the generalized Bloc

: ) o in spite of the fact that eigenstates are represented very
equation[20]. Exponential parametrization of the wave op- a1y The results of the analysis presented in this paper
erator increases the nonlinearity of multireference CC ap

: ) provide a nonperturbative explanation of the origin of con-
proaches even further, and this leads to problems with thgergence problems encountered in multireference CC calcu-
interpretation of multiple solutions and numerical attainabil-|tions of the SUCC type. The need for a nonperturbative
ity of a desired solutior{8,19]. It is not clear how many explanation of convergence problems plaguing multirefer-
solutions of nonlinear multireference CC equations areance CC theory stems from the fact that these problems do
physically meaningful and whether we can use them to denot have to be related to the divergent nature of the multi-
scribe highly excited electronic states. In addition, as demreference MBPT expansion. As demonstrated in RiEd] in
onstrated in Refs[8,14,15,19, the multireference CC ap- the context of valence-universal multireference CC studies, it
proaches are often plagued by intruder states, which causeay happen that the multireference CC solutions are very
divergent behavior of the multireference many-body perturdifficult to obtain, in spite of the fact that the standard mul-
bation theory(MBPT) [21-25. The intruder-state problem tireference MBPT series converges. On the other hand, as
plaguing the multireference MBPT and multireference CCamply documented in the literature, CC methods can provide
approaches is related to energy-level crossing between thghysically meaningful solutions, despite the divergent nature
perturbed energies anywhere in the unit circle of the complexf the MBPT series.
perturbation parametdr21,23. The existence of intruder
states, singuld8,14,15,19, and multiple solutions in multi-
reference CC calculations are the main reasons why these Il. THEORY
theories are not routinely used in electronic structure calcu-
lations. It is usually very difficult to obtain the desired physi-
cal solution of multireference CC equations, due to serious In all multireference theories, we assume that there exists
convergence problems caused by the intruder states and tRemultidimensionaimodelor reference spaceV,, spanned
presence of close-lying multiple solutions. by a suitably chosen set of configuration state functions
It is essential to improve our understanding of conver-{|d>q>}g":1, which gives a reasonable zero-order description
gence and other problems plaguing the multireference COf a target spaceM spanned byM exact electronic wave
approaches, so that better theories can be formulated in tHenctions |[¥ ), u=1,... M. The wave operatot): M,

A. The state-universal coupled-cluster theory
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— M is defined as a one-to-one mapping betwgadg and
M, which satisfies the relatiol8U=P, UP=U, andUQ
=0, whereP=3{",|®)(d| is a projection operator onto
M,y andQ=1—P. The wave function$¥ ,) are calculated
using the formula

M M
|\I’#>:U<qzl Cq,,u|q)q>) :qzl Cq,,uU|q)q>v uw=1 ... M,
(1)

where the coefficient vectors,=(c;,, - .. ,Cyv,,) and the
energiesE , of stateg¥ ) are obtained by diagonalizing the
effective Hamiltonian
Hef=H®"(U)=PHU, (2
where H is the N-electron Hamiltonian. The operattf is
obtained by solving the generalized Bloch equafid@y,

HU=UHU. 3)

SinceH®" is not Hermitian, we distinguish between the right

and left eigenvectors dfl ",
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B. The homotopy method

The basic idea of the homotopy approach, when applied
to a system of nonlinear algebraic equatiéifg) =0, is con-
sideration of a family of equations,

H(X,\)=(1—-N)G(x)+\NF(x)=0, (6)
whereG(x) is such that all solutions d&(x) =0 are known
and \ is the continuation parameter. Far=0, Eq. (6) re-
duces toG(x)=0. For\=1, it reduces td~(x) =0. If G(X)
is defined asGi(x)zxidi—bi , Whered;= degF; (deg is the
total degree of the polynomigland if parameterd; are
chosen randomly, then the transversality theor&,29
guarantees that all solutions id{x,1)=0 can be obtained by
continuation of all solutions oH(x,0)=0. For solving the
system of nonlinear SUCC equations, E§), with the ho-
motopy method, we used a suite of prograimasiPACK [30].

IIl. COMPUTATIONAL DETAILS AND MODEL
DESCRIPTION

In order to study the solutions of SUCC equations, we
applied the orthogonally spin-adapted SUCCD metkihe

In the SUCC formalism, considered in this paper, theSUCC method with double excitation§9—13], in which

wave operatolJ is defined as follow$5]:
M
@
u:q; e D) Dy (4)

Each cluster operatoF(@ is written asT(@=3,(@, DG, ,

where (WG, are the operators generating the excited configu

rations with respect td}bq> and (9t, are the corresponding
cluster amplitudes. For @amplete model spa¢é], the clus-
ter operatord (9 involve only excitations from\1, to M7 .

each cluster operatof(® is approximated by two-body
terms, to anab initio minimum basis set P4 model system
consisting of four hydrogen atoms in rectangular arrange-
ment[27]. The geometry of the P4 model is determined by
parametera, which is defined as a distance between two
stretched H molecules {.,=2.0ay). The complete model
space consists, in this case, of two configuratiods, )
=](1)%($2)?] and|D,)=|($1)*(b3)?|, where{ g}, are

the ground-state restricted Hartree-Fock orbitals arranged ac-
cording to increasing orbital energies. For geometries near

Inserting ansat4) into the generalized Bloch equation the square onea=2.Cao), |q>1>_ and|_CI>2)_are the dominant
(3) and projecting the resulting equation from the left ontoConfigurations in the full configuration interactigfull CI)

all configurations®”G,|® ;) e My that correspond to exci-
tations included inT® and from the right ontd®,), we
obtain a system of highly nonlinear equations fbit, ,

M
Q<P>Hu|<1>p>:q§1 QPU|DHHET(U), p=1,... M,

©)

whereU is given by Eq(4) andQ® is a projection operator
onto the subspacat ’=QP M C My spanned by con-
figurations ()G |® ). In the exact SUCC theory, in which
all excitations up to theN-fold ones are included in each
T(®, we have M P’= Mg, for every p. In approximate
SUCC methods, the many-body expansion of e@fh is
truncated and\t ’C M .

expansions of the lowest twi!‘JAgJ states(the dimension of
the full CI *A, subproblem is B For example, fore
=2.1a,, the coefficients at®,) and |®,) in the full Cl
expansion of the ground (Ag) state equal 0.827 and
—0.514, respectively. For the first—excitediﬁ% state, these
coefficients are 0.501 and 0.813, respectively. For larger
values, only the ground state has a larglg component. For
example, fora=6.0a,, the coefficients ad,) and|®,) in

the full Cl expansion of the ground state are 0.968 and
—0.090, respectively. For thelag state, they are 0.001 and
0.468, respectively. Thus, by varying, we can study
quasidegenerate a=2.0ag) and nondegeneratea (- x)
situations. The orthogonally spin-adapted two-reference
SUCCD equations for the minimum basis set P4 model form
a system of ten nonlinear algebraic equations for ten biex-
cited cluster amplitudes, containing, at most, quartic terms.

The SUCC method works best in quasidegenerate situa-

tions, where each eigensté‘tbp, pu=1 ... M, hasalarge
M, component{8,10,12—-1% However, the nonlinear Eq.
(5) possesses multiple solutions. Some solutions of (Ey.

IV. RESULTS
Our homotopy calculations indicate that the SUCCD

provide excellent values of energies of highly excited elecequations have 133 solutioiiscluding the complex ongs

tronic states that are poorly approximated/foty [8,14]. The
nature of these solutions is investigated here.

This is a very large number, compared to 28 solutions for the

wave operatoilJ given by the exact two-reference SUCC
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TABLE I. The energies\E"““P=ES"““°—(d,|H|®,) (in mhartreg, the proximitiesd between the subspacdd, and M SU°CP, as
defined by Eq(7), and the contrlbutlonsQ“) SUCCPfrom the subspacé . to the SUCCD wave functionjsh 5”°“%, (1=1,2), as defined
by Eq.(9), corresponding to all real solutions of the SUCCD equations for the minimum basis set P4 modekR#ith and 6.8,. A pair
of indices («,\) at a given solution of the SUCCD equations indicates that out of all possible pairs of full Cl states, & hly,| W <}
gives the largest proximity with the corresponding SUCCD target spae>V“C=sparf| ¥ 5"““%}2 _, [cf. Eq.(10) for the definition of
A]. Solution(1,2) represents the physical solution of the SUCCD equations.

a=2.1a, a=6.0ay
Solution number AEYCCP AESYCCP  d SS)'SUCCD Sg)’SUCCD Solution number AEFYCP AESYCCP d Sg)’SUCCD Sg)'SUCCD
C C C C
1 —1648.99 —-31.517 0.003 0.042 0.072 1 —655.325 1011.93 0.027 0.446 0.430
2 —476.513 929.900 0.032 0.615 0.273 2 —570.130 993.338 0.033 0.486 0.470
3 —446.818 944.213 0.017 0.833 0.603 3 —140.070 1009.49 0.048 0.819 0.715
4 —221.611 1636.81 0.169 0.566 0.169 4 —130.502 995.166 0.053 0.837 0.744
5(1,2 —95.806 27.956 1.860 0.042 0.093 (12 —59.596 398.386 1.037 0.098 0.476
6 —33.839 937.633 0.004 0.987 0.941 1/ —54.045 1009.93 1.182 0.047 0.544
7 —32.502 944.119 0.004 0.993 0.962 s —54.003 993.908 1.166 0.050 0.529
8 —31.195 2199.05 0.077 0.412 0.042 8 —29.230 2397.41 0.843 0.121 0.233
9(1,5 —18.848 940.801 0.250 0.678 0.680 (29 462.043 995.785 0.409 0.526 0.700
10(1,4 —17.909 943.783 0.183 0.766 0.745 2®) 466.052 1008.06 0.412 0.534 0.720
11 —7.659 1943.46 0.570 0.016 0.068 11 910.008 1009.84 0.512 0.528 0.562
12 28.990 2239.76 0.062 0.366 0.034 12 916.177 994.205 0.455 0.529 0.560
13(2,5 31.170 941.747 0.123 0.801 0.645 13 993.337 2909.30 0.022 0.474 0.128
14(2,4 32.210 943.151 0.143 0.768 0.612 14 993.895 1932.20 0.297 0.512 0.096
15 41.958 940.251 0.004 0.999 0.995 15 993.962 1938.63 0.261 0.529 0.038
16 58.445 942.867 0.001 0.999 0.999 16 995.216 1400.05 0.305 0.560 0.110
17 65.319 1936.73 0.478 0.015 0.068 17 996.803 1063.57 0.089 0.504 0.551
18 116.783 942.663 0.011 0.963 0.920 18 997.780 1930.36 0.257 0.829 0.624
19 166.963 941.562 0.034 0.793 0.739 19 1000.07 1505.20 0.068 0.856 0.217
20 347.173 2008.30 0.073 0.125 0.062 20 1001.30 1083.76 0.019 0.948 0.850
21 376.413 2035.33 0.054 0.159 0.054 21 1007.94 1085.57 0.048 0.442 0.545
22 560.929 942.032 0.075 0.584 0.806 22 1008.82 1401.63 0.303 0.573 0.108
23 562.445 943.218 0.083 0.583 0.794 23 1009.83 1938.16 0.261 0.548 0.038
24 886.697 1965.96 0.067 0.020 0.087 24 1009.88 1932.78 0.293 0.534 0.095
25 937.151 6577.44 0.011 0.425 0.007 25 1011.92 3053.97 0.018 0.433 0.107
26 938.727 1944.40 0.055 0.266 0.097
27 942.500 1221.55 0.017 0.956 0.845
28 942,991 1217.68 0.016 0.950 0.873
29 943.212 1957.33 0.050 0.356 0.083
30 943.612 5715.18 0.007 0.733 0.017
31 944.249 6047.79 0.006 0.724 0.017
theory[in general, the exact SUCC theory gives) solu- Vg = (PSP, qu=12, (8)

tions, whereN¢ is the dimension of the corresponding full
ClI probleml. Although the number of solutions of SUCCD

equations remains the same for all geometfves confirme

this by solving the SUCCD equations for several geom

etrie, the numbers of real and complex solutions vary with =SPa

a.

and

the corresponding

r{|\IfSUCCD>}2

duce useful guantities

The energie€,”"““", n=1,2, corresponding to all real

solutions of SUCCD equations for two representative values

of «, are given in Table I. Each solution is characterized by

the parameter

where

d=tr(VTV),

()

tance of My, M¢, and Mg=Mg—
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SY =l YIwDI,

where Qc

is a projector

X=SUCCD, FClI,

Y: PIQC lQR:
9

d Which provides us with a measure of the proximity between
target spacg SUCCP
1 (0=d=2) (Ref.[31]). We also intro-

onto the subspaceVc
=N M andQr=Q—Qc, which describe the impor-

M configurations in
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TABLE II. The energies\EF®'= Ef'—(d,|H|®;) (in mhartre¢ and the paramete&/”"F ', Y=P,Q¢,Qg, Eq.(9), characterizing the
full Cl states*Aq=|W") of the minimum basis set P4 model system witk 2.1 and 6.@,.

Geometry A, 2'A, 3'A, 4'A, 5'A 6'Aq 7'Aq 8'A,
a=2.1 Sy-Fet 0.94860 0.91116 0.07224 0.00017 0.05072 0.01118 0.00128 0.00464
(1), FCI 0.04722 0.08850 0.90261 0.99982 0.78415 0.91436 0.17359 0.08975
sngC' 0.00418 0.00035 0.02514 0.00001 0.16513 0.07445 0.82513 0.90561
AEL®  -95.815 27.951 644.678 942.456 1110.90 1237.28 1760.55 1839.35
@=6.0 Sy-Fel 0.94531 0.21871 0.23397 0.36093 0.10493 0.01480 0.00655 0.11479
(1), FCI 0.04695 0.62156 0.63357 0.23818 0.79848 0.86272 0.04974 0.74880
sgéfc' 0.00774 0.15974 0.13246 0.40089 0.09659 0.12248 0.94371 0.13640
AEE®  —54.840 468.891 801.027 985.964 1006.28 1076.04 1665.16 1937.30

Cl expanssdggs of the SF%FCD and exafutll Cl) wave func-  thogonal toM, (belongs toMc). This surprising observa-
tions, |¥5"°“%) and | W), respectively(see Tables | and tion is a consequence of the following theorems.
). _ _ ~_ TheoremllIf |¥ ) is an exact solution of the Schtimger
Some solutions of the SUCCD equations can be identifie@quation an , is its energy and if, for a given solutidsh of
by pairs of indices &, \), referring to these particular full Cl  the Bloch equatior(3), not all components of the vectar,
stateg W ") and| W "), which give the largest overlap with =(Xpu1r - Xum)s X p={(¥,|UD,), equal zero, thei,
the SUCCD state$¥$V°)) and [W3Y°D) or the largest s an eigenvaliue anx, is the left eigenvector of the effective
proximity A between the SUCCD and full Cl target spaces,HamiltonianHef(U).
MBUEED and M= sparf| W) [ W)}, respectively, at  Theorem Il If |W,) is an exact solution of the Schro
=6.0a,. In general, the proximitA between the SUCCD  dinger equation ancE, is its energy and, in addition,
and full Cl target spacesyt >~="and M, .y, is defined ina g |¢ )=|w ), and if, for a given solutiorJ of the pro-
very similar way as the proximityl, i.e., [cf. Egs.(7) and  jected Bloch equatioiis), not all components of the vector
(8] EM:-(X“'L . ,XM"\('), XM'g[:{\PMr!U??t), equal zero, ]Ehin
ot . is an eigenvalue and, is the left eigenvector of the
A=u(Z'2), 10 effective HamiltoniarH®f(U).
In order to prove Theorem |, we project E@) from the

where left onto| ¥ ) and from the right ont¢d ), use the fact that

SUCCD y, FCI SUCCD y, FCI (¥,|H=E,(¥,| and thatUP=U, and use the definition of

= VW) (P _ (12) Hef/fl(U), EQ.(2). The proof of Theorem Il is almost identical.
(WSVCWICY (P 3Vl el The only difference is that we use E@) instead of Eq(3)

and employ the relationship¥ ,|Q®=(W |, which is true

For example, the target spage SY°“P corresponding to the ~ for everyp if Qc|W,)=|¥ ).
SUCCD solution labeled a4,2) has the largest overlaf, In principle, Theorem | assumes thatis exact[sinceU
Eq. (10), at @=6.0a,, with the full CI target spaceV[3  satisfies the Bloch equatiofd)], in which case the SUCC
spanned by the first and second full Cl states of ﬂ#% theory[each of the ',UC) solutions of the exact SUCC equa-
symmetry, | W) =1'A; and [W5<)=2%A,, respectively. tions] yieldsM exact eigenstates &f. However, on the basis
Solution(1,2) is referred to as the physical solution. On the of Theorem |, we can expect that, if is one of numerous
other hand, the target spage SV°P characterizing the so- approximate solutions of the Bloch equation, obtained, for
lution labeled ag2,4) has the largest overlap, Eq.(10), at  example, by solving the SUCCD equations, the diagonaliza-
a=6.0ay, with the full CI target space /\/lgﬁ' tion of the corresponding effective Hamiltonian may produce
=sparf| W5, | wEh]. a nearly exact eigenvalug, of H, in spite of the fact that

For a=2.1a,, the only solution that has large proximity none of the wave functions provided by thisapproximates
with the model spacéM,, or large value ofd, Eq. (7), is a  the exact eigenstateV' ,). The only condition that needs to
physical solution(1,2) (in this case,d=1.860). For « be satisfied, for this situation to occur, is that not all compo-
=6.0a,, the proximityd characterizing solutioii1,2) drops  nents ofx,, vanish for this particulat) and|¥ ,). Although
down to ~1.0. This is related to a poor description of the these conditions are satisfied by the physical solution de-
2'A, state byM, and has consequences in the poor descripscribing M lowest eigenstates dfi, such as solutiori1,2)
tion of this state by the SUCCD methdcf. Tables | and I). obtained herdin this case, the left eigenvectoxg and the

The results in Table | indicate that, far=2.1a,, there  right eigenvectorg,, u=1, ... M, should form biorthogo-
are many solutions of the SUCCD equatigesy.,(1,4 and nal sets; departure from biorthogonality {)k,u},'zl:l and
(2,41, which very accurately approximate the energy of the{cﬂ}l'\f':l may be viewed as yet another measure of accuracy
41Ag state, in spite of the fact tha® ") is practically or-  of truncated SUCC theoyythey may also be satisfied by
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el ' ' therefore, likely that at least some solutions that have small

900.0 ™ s A overlaps withM, in the quasidegenerate region can be as-
sociated with intruder states that plague multireference CC
and multireference MBPT calculations for the P4 model for
larger « values[8,23].

Indeed, let us consider real solutiofis4) and(2,4). So-
lution (2,4) provides virtually exact energies of tht‘-':A?g and
41Ag states for the whole range eof values, but it describes
the corresponding wave functions only for large values of
[see Fig. 1c)]. A similar observation holds for solutigi,4),

900.0 ™ e L although, in this case, description of the ground-state energy
[ERURERR———— is good only fora=3.5a, (description of the energy of the
. 41Ag state remains excellent for all’s). The overlaps be-
tween the SUCCD statd®¥ 5"““%), 1=1,2, corresponding
to solution(2,4), and the full Cl states 123\9 and 41Ag, ie.,
the quantities [cf. Eq. (1] (¥;Y°CRwEY)  and
(W3UCCOWICY increase from 0.383 and 0.773, respec-
tively, at «=2.1ay to 0.919 and 0.850, respectively, at
=6.0ay. The overlaps between the SUCCD states corre-
sponding to solution(1,4) and the full Cl states 11Ag and
4rAy, e, (VWIS and (USYCAWECY, increase
from 0.537 and 0.572, respectively,at 2.1a, to 0.998 and
0.916, respectively, at=6.0ay. Thus, ata=6.0a,, solution
(1,4 provides a better description of the ground state than
the physical solutioril,2). The latter solution gives 0.982 for
the corresponding overlap of SUCCD and full Cl wave func-
0.2 . . . tions. Description of the 12Ag state by solution(2,4) is a lot
20 3.0 4.0 50 6.0 better than description of this state provided by solution
o (bohr) ) ) .
(1,2, which gives only 0.623 for the corresponding overlap

FIG. 1. Dependence of SUCCD energiagSUCCP= gSUCCD of SUCCD and full Cl states. This is why, for large values of
—(®,|H|®,) [(a) and(b)] and overlaps between the SUCCD states @, We experience problems with converging the physical so-
|q>lSLUCCD>, ©=1,2, and the relevant full Cl stategA, (c) for se- lution (1,2) with standard numerical algorithms, such as the
lected solutions of the SUCCD equations. The real solutidr®d  Newton-Raphson or reduced linear equation proced@es
[shown in(a) and(b)], (1,4 [shown in(a)], and(2,4) [shown in(b)] In this region, solutiong1,4) and(2,4) provide a better de-
are marked by ©,®), (O,H), and (A,A), respectively. The as- scription of the lowest two states than solutigh2). The
terisks (*) represent complex solutiof€l,3) in (a) and (2,4) in existence of solution$l,4) and (2,4 does not cause any
(b)]. The complex solutiori2,4) shown in(b) bifurcates into a pair  problems in obtaining the physical solutioil,2) for «
of real solutiongmarked by <) at «=2.32a,. Solid and dashed- ~2.0a,, since, in this region, solution&l,4) and (2,4 no
dotted lines correspond to real and complex solutions, respectivelyonger describe the eigenstatedhfand the proximityd, Eq.
Dotted lines represent full Cl states bAg symmetry. (7), betweenM, and M succb characterizing solutionél,4)

and(2,4) drops almost to zero ag approaches 2.
many other solutions of truncated SUCC equations, which do A similar analysis applies to some other real solutions,
not describe the eigenstates tdf while providing at least such ag1,5 and(2,5) (cf. Table ), and to several complex
one nearly exact eigenvalug,. Theorem Il implies that ~solutions, includind1,3) and(2,4) (see Fig. 1. Each of these
some solutions of truncated SUCC equations may lead t@dditional solutions is characterized by very small proximity
effective Hamiltonians, whose diagonalization gives nearlywith Mg (smalld) in the quasidegenerate region and larger
exact energies of states that are orthogonaltg. The real  d values for largew’s.
solutions(1,4) and (2,4) [shown in Figs. (a) and Xb) and It is interesting to notésee Fig. 2 that the proximityD
Table 1] belong to this category. For~2.0a,, they give (defined below between the physical solutiaid,2) and so-
virtually exact energies of the'd, state, which practically Iutions(1,3) (comple, (1,4 (rea), and(1,5) (rea) increases
belongs toM. (cf. Table I), although none of the SUCCD significantly in the region where the intruder-state problem
wave functions corresponding to solutiofis4) and (2,4 ~ appears in the multireference MBPT calculations (
describes the 14\9 state[cf. Fig. 1(c)]. ~3.08 [23]). In complete analogy to the proximity between

We claim that solutions of this type, which yield one orthe SUCCD and full Cl target spaces, we define the proxim-
more energies of states that have small overlaps within ity between solutions A and B as the proximity between the
the quasidegenerate region, are responsible for the emercorresponding  SUCCD  target —spacespM SU°CY(A)

400.0

Energy (mhartree)

-100.0

400.0

Energy (mhartree)

-100.0
10

08

>l

z 0.6

SUCCD,,;, FCI
¥

0.4

I<‘PH

gence of problems with converging the desired physical so= Spal'{I‘I’zUCCD(A»};:l and M SUcehB)
lution [(1,2) in our case] in the nondegenerate regidnis, = sparf|W>"““Y(B))}5_, , respectively, i.e.,
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10 solution problemor intruder solutions to describe all these

solutions of truncated SUCC equations that are characterized
by small proximities withMy and small proximities with the
standard physical solution in the quasidegenerate region and
large proximities withMg and the physical solution in other
regions. The intruder solutions may cause problems with
converging the physical solution of SUCC equations with
standard numerical procedures in the same way the intruder
states cause divergent behavior of the multireference MBPT
expansions. Other solutions of the SUCC equations, which
00, m 5 =5 5o have relatively small proximities witb\, over the entire
o (bohr) region of nuclear geometries, do not have large overlaps with
the physical solution. For the minimum basis set P4 model,
FIG. 2. The proximitieD, Eq.(12), between the physical solu- \ye verified this statement by calculating the proximidy

tion (1,2 and selected other solutions of the SUCCD equations forEq_ (12), between the physical solutioi,2 and all other
the minimum basis s_et P4 model as functlo_nS of the parametier solutions of the SUCCD system of equations.
ay) (cf. text for detail$. The complex solutiorf1,3) is marked by

O. The real solution$1,4), (1,5, (2,4), and(2,5 are marked by,

08

06

0.4

0.2

O, V,andA, respectively. V. SUMMARY AND CONCLUDING REMARKS
D =tr(W'W) (12) In this paper, we used the homotopy method to obtain a
complete set of solutions of the SUCCD equations for the
where four-electronab initio model system, referred to as the mini-

mum basis set P4 model. We demonstrated that the number
W, = (WS A)[WIVRB)), w,»=1,2. (13)  of solutions of the SUCCD equatiori$33 exceeds, by far,

the number of the exact solutions of the Bloch equa(i).
Although we cannot, at this point, provide a rigorous proof, The existence of multiple solutions of the SUCC equations is
it seems to us that solutiofl,3) and the intruder state stud- related to(i) the nonlinearity of the Bloch equation afid)
ied for the minimum basis set P4 model in REZ3] (also,  the nonlinear parametrization of the wave operator in the
reported earlier in Ref$8,25]) are related. The intruder state Jeziorski-Monkhorst formalism.
causing the divergent behavior of the multireference MBPT We demonstrated that there exist many solutions of the
expansion at=3.0a, is related to energy-level crossing of SUCCD equations, whose proximities with the model space
perturbed energies corresponding to statésg2and 3A;  and with the standard solutig,2) are small in the quaside-
inside the unit circle of the complex perturbation parametegenerate region of the P4 model system and large in the
[23]. At the same time, the=3.0a, region is precisely the nondegenerate region. These solutions contribute to serious
region, where the proximitD, Eq. (12), between solutions problems with converging the physical solution in the non-
(1,2 and (1,3 sharply increases from small values far  degenerate region with standard numerical procedures.

<3.0ay to a large value of 0.85 at=3.0a, (the maximum It is possible that some solutions of the SUCC equations
value of the proximity between solutiori$,2) and (1,3 for  that cause convergence problems in the SUCC calculations
a—» is 0.97; cf. Fig. 2. are related to intruder states of the multireference MBPT

Although the relationship between multiple solutions of method. On the other hand, the number of multiple solutions
the SUCC equations and intruder states observed in the muldentified in this paper as causing convergence problems in
tireference MBPT calculations needs to be examined furthethe SUCC calculations seems larger than the number of per-
convergence problems encountered in the SUCC calculatiortarbed energy-level crossings causing divergence of the mul-
employing standard numerical proceduf8s14,15 can be tireference MBPT series. We believe that the complicated
even more severe than one might expect just by analyzingonlinear nature of the SUCC formalisiimcluding the non-
the crossings of perturbed energy levels. The SUCCD equdinear nature of the Bloch equation itsekind the compli-
tions for the minimum basis set P4 model have many othetated structure of solutions of the SUCC equations reported
solutions, such as the real solutiofis4), (1,5, (2,4), and in this work are the primary reasons of problems plaguing
(2,5 shown in Figs. 1 and 2 and Table I, and several com+his theory. Although the SUCC and multireference MBPT
plex solutions that are characterized by the large overlapnethods are strongly related, the nature of solutions of the
[large proximityD, Eq. (12)] with the physical solutior(1,2) SUCC equations can be a lot more complicated than the
for large & and the small proximityD with solution(1,2) in  standard perturbative analysisf. Ref. [5]) suggests. As
the quasidegenerate regigef. Fig. 2. All these additional demonstrated in the past, problems with multiple solutions in
solutions contribute to convergence problems encountered ithe alternative class of genuine multireference CC formal-
the SUCCD calculations in the nondegenerate regiarge isms, referred to as the valence-universal CC theories
a), in spite of the fact that there may not always be a cleaf4,6,7,18,19, can be substantially more severe than those
relationship between the intruder states of multireferencencountered in the SUCC calculatigri9].

MBPT approach and multiple solutions of the SUCC equa- We believe that findings reported in this work apply to
tions. One might even propose a new terfme intruder-  SUCC calculations of electronic potential energy surfaces for
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larger molecular systems employing larger basis sets. Solshow that at least some solutions causing problems in the
tions of truncated SUCC equations that have small proximiSUCCD calculations for the minimum basis set P4 model,
ties with .M, in one region of nuclear geometries may evolvesuch as the real solution®,4) and (2,5, are significantly
into solutions that strongly interact with1, in another re- shifted to a complex plane and that they are so significantly
gion, causing difficulties in obtaining a desired physical so-deformed that their interaction with the physical solution
lution with standard numerical procedures and the emertl,2) is smaller. At the same time, the accuracy of the
gence of intruder states. Although the homotopy calculationSUCCD results for the lowest two, totally symmetric, singlet
for larger many-electron systems and larger basis sets are neigenstates of the Hamiltonian practically does not change in
possible at this point, the main observations obtained for #oth quasidegenerate and nondegenerate regions. This indi-
small model, such as P4, are usually transferable to largesates that changing the algebraic structure of solutions of
scale calculations, as we and others demonstrated mamgultireference CC equations by, for example, eliminating
times in the past. certain classes of cluster amplitudes from the formalism and
The results of the present analysis indicate that, in ordemodifying the equations accordingly might lead to better
to eliminate convergence problems from SUCC calculationgienuine multireference CC theories, which will be free from
(and, perhaps, the intruder-state problewe should modify  drawbacks of the existing formalisms. This issue requires,
the SUCC equation8ncluding the form of the wave opera- however, further and detailed studies.
tor), so that the solutions that strongly interact with, and
with the physical solution disappear or become, at the very
least, clearly separated from the physical solution. We have
already started to explore one such modified SUCC proce- This work has been supported by the startup funds pro-
dure, in which the number of cluster amplitudes is signifi-vided to one of us(P.P) by Michigan State University
cantly reduced by assuming that the core-virtual amplitude$MSU) and, in part, by the MSU Intramural Research Grant
are no longer labeled with the reference lapelso that a Program(P.P). Useful discussions with Professor K. Jan-
single set of these amplitudes is use@ur preliminary ho-  kowski, Professor H. Monkhorst, and Professor J. Paldus are
motopy calculations, which we plan to report elsewheregreatly appreciated.
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