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Complete set of solutions of multireference coupled-cluster equations:
The state-universal formalism

Karol Kowalski and Piotr Piecuch
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

~Received 22 October 1999; published 10 April 2000!

The homotopy method is used to obtain a complete set of solutions of multireference coupled-cluster
equations within the framework of the state-universal coupled-cluster~SUCC! formalism. The solutions are
obtained for anab initio four-electron model system consisting of four hydrogen atoms in rectangular arrange-
ment. Essential information about the structure of solutions of nonlinear SUCC equations is provided and
analyzed, both numerically and analytically, in the form of two theorems. The existence of multiple solutions
of SUCC equations provides new insights into the nature of convergence problems often encountered in SUCC
calculations. The evidence for the possible association of some solutions of the SUCC equations with the
intruder-state problem is presented and briefly discussed.

PACS number~s!: 31.15.Dv, 31.15.Ar, 31.25.2v, 31.50.1w
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I. INTRODUCTION

A common feature shared by many approaches to elec
correlation in atoms and molecules is their nonlinearity. O
of the best known examples of nonlinear many-elect
theory is the single-reference coupled-cluster~CC! method
@1–4# and its multireference extensions@4–7# designed to
describe quasidegenerate and electronically excited stat
size-extensive manner.

The nonlinearity of genuine multireference CC a
proaches, which are classified as theHilbert-spaceor state-
universal methods @4,5,8–17# and the Fock-space or
valence-universalmethods@4,6,7,18,19#, is largely a conse-
quence of the nonlinear nature of the generalized Bl
equation@20#. Exponential parametrization of the wave o
erator increases the nonlinearity of multireference CC
proaches even further, and this leads to problems with
interpretation of multiple solutions and numerical attainab
ity of a desired solution@8,19#. It is not clear how many
solutions of nonlinear multireference CC equations
physically meaningful and whether we can use them to
scribe highly excited electronic states. In addition, as de
onstrated in Refs.@8,14,15,19#, the multireference CC ap
proaches are often plagued by intruder states, which ca
divergent behavior of the multireference many-body pert
bation theory~MBPT! @21–25#. The intruder-state problem
plaguing the multireference MBPT and multireference C
approaches is related to energy-level crossing between
perturbed energies anywhere in the unit circle of the comp
perturbation parameter@21,23#. The existence of intrude
states, singular@8,14,15,19#, and multiple solutions in multi-
reference CC calculations are the main reasons why th
theories are not routinely used in electronic structure ca
lations. It is usually very difficult to obtain the desired phys
cal solution of multireference CC equations, due to seri
convergence problems caused by the intruder states an
presence of close-lying multiple solutions.

It is essential to improve our understanding of conv
gence and other problems plaguing the multireference
approaches, so that better theories can be formulated in
1050-2947/2000/61~5!/052506~8!/$15.00 61 0525
on
e
n

in

h

-
e

-

e
-
-

se
-

he
x

se
-

s
the

-
C
he

future. In this paper, we analyze all solutions of nonline
multireference CC equations, obtained for thestate-universal
formulation of the multireference CC theory@4,5,8–17# with
the homotopy method@26#. We use the homotopy method t
generate a complete set of solutions of the state-universa
~SUCC! equations for anab initio four-electron system, re
ferred to as the P4 model@27#. The homotopy approach ha
recently been used to study multiple solutions of sing
reference CC equations@28#.

This study provides an insight into the structure of so
tions of nonlinear SUCC equations. In particular, we expl
~using numerical and analytic arguments! why there may ex-
ist several solutions of truncated SUCC equations that p
vide nearly exact eigenvalues of the electronic Hamiltoni
in spite of the fact that eigenstates are represented
poorly. The results of the analysis presented in this pa
provide a nonperturbative explanation of the origin of co
vergence problems encountered in multireference CC ca
lations of the SUCC type. The need for a nonperturbat
explanation of convergence problems plaguing multiref
ence CC theory stems from the fact that these problems
not have to be related to the divergent nature of the mu
reference MBPT expansion. As demonstrated in Ref.@19# in
the context of valence-universal multireference CC studie
may happen that the multireference CC solutions are v
difficult to obtain, in spite of the fact that the standard mu
tireference MBPT series converges. On the other hand
amply documented in the literature, CC methods can prov
physically meaningful solutions, despite the divergent nat
of the MBPT series.

II. THEORY

A. The state-universal coupled-cluster theory

In all multireference theories, we assume that there ex
a multidimensionalmodelor reference spaceM0, spanned
by a suitably chosen set of configuration state functio
$uFq&%q51

M , which gives a reasonable zero-order descript
of a target spaceM spanned byM exact electronic wave
functions uCm&, m51, . . . ,M . The wave operatorU:M0
©2000 The American Physical Society06-1
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→M is defined as a one-to-one mapping betweenM0 and
M, which satisfies the relationsPU5P, UP5U, andUQ
50, whereP5(q51

M uFq&^Fqu is a projection operator onto
M0 andQ512P. The wave functionsuCm& are calculated
using the formula

uCm&5US (
q51

M

cq,muFq& D 5 (
q51

M

cq,mUuFq&, m51, . . . ,M ,

~1!

where the coefficient vectorscm5(c1,m , . . . ,cM ,m) and the
energiesEm of statesuCm& are obtained by diagonalizing th
effective Hamiltonian

Heff[Heff~U !5PHU, ~2!

where H is the N-electron Hamiltonian. The operatorU is
obtained by solving the generalized Bloch equation@20#,

HU5UHU. ~3!

SinceHeff is not Hermitian, we distinguish between the rig
and left eigenvectors ofHeff.

In the SUCC formalism, considered in this paper, t
wave operatorU is defined as follows@5#:

U5 (
q51

M

eT(q)
uFq&^Fqu. ~4!

Each cluster operatorT(q) is written asT(q)5( I
(q)t I

(q)GI ,
where (q)GI are the operators generating the excited confi
rations with respect touFq& and (q)t I are the corresponding
cluster amplitudes. For acomplete model space@5#, the clus-
ter operatorsT(q) involve only excitations fromM0 to M 0

' .
Inserting ansatz~4! into the generalized Bloch equatio

~3! and projecting the resulting equation from the left on
all configurations(p)GI uFp&PM 0

' that correspond to exci
tations included inT(p) and from the right ontouFp&, we
obtain a system of highly nonlinear equations for(p)t I ,

Q(p)HUuFp&5 (
q51

M

Q(p)UuFq&Hqp
eff~U !, p51, . . . ,M ,

~5!

whereU is given by Eq.~4! andQ(p) is a projection operato
onto the subspaceM 0

(p)5Q(p)M 0
'#M 0

' spanned by con-
figurations (p)GI uFp&. In the exact SUCC theory, in whic
all excitations up to theN-fold ones are included in eac
T(p), we haveM 0

(p)5M 0
' , for every p. In approximate

SUCC methods, the many-body expansion of eachT(p) is
truncated andM 0

(p),M 0
' .

The SUCC method works best in quasidegenerate si
tions, where each eigenstateuCm&, m51, . . . ,M , has a large
M0 component@8,10,12–15#. However, the nonlinear Eq
~5! possesses multiple solutions. Some solutions of Eq.~5!
provide excellent values of energies of highly excited el
tronic states that are poorly approximated byM0 @8,14#. The
nature of these solutions is investigated here.
05250
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B. The homotopy method

The basic idea of the homotopy approach, when app
to a system of nonlinear algebraic equationsF(x)50, is con-
sideration of a family of equations,

H~x,l!5~12l!G~x!1lF~x!50, ~6!

whereG(x) is such that all solutions ofG(x)50 are known
and l is the continuation parameter. Forl50, Eq. ~6! re-
duces toG(x)50. For l51, it reduces toF(x)50. If G(x)
is defined asGi(x)5xi

di2bi , wheredi> degFi ~deg is the
total degree of the polynomial!, and if parametersbi are
chosen randomly, then the transversality theorem@26,29#
guarantees that all solutions ofH(x,1)50 can be obtained by
continuation of all solutions ofH(x,0)50. For solving the
system of nonlinear SUCC equations, Eq.~5!, with the ho-
motopy method, we used a suite of programsHOMPACK @30#.

III. COMPUTATIONAL DETAILS AND MODEL
DESCRIPTION

In order to study the solutions of SUCC equations,
applied the orthogonally spin-adapted SUCCD method~the
SUCC method with double excitations! @9–13#, in which
each cluster operatorT(q) is approximated by two-body
terms, to anab initio minimum basis set P4 model syste
consisting of four hydrogen atoms in rectangular arran
ment @27#. The geometry of the P4 model is determined
parametera, which is defined as a distance between tw
stretched H2 molecules (r H-H52.0a0). The complete mode
space consists, in this case, of two configurations,uF1&
5u(f1)2(f2)2u and uF2&5u(f1)2(f3)2u, where$f i% i 51

4 are
the ground-state restricted Hartree-Fock orbitals arranged
cording to increasing orbital energies. For geometries n
the square one (a.2.0a0), uF1& anduF2& are the dominant
configurations in the full configuration interaction~full CI !
expansions of the lowest two1Ag states~the dimension of
the full CI 1Ag subproblem is 8!. For example, fora
52.1a0, the coefficients atuF1& and uF2& in the full CI
expansion of the ground (11Ag) state equal 0.827 and
20.514, respectively. For the first-excited 21Ag state, these
coefficients are 0.501 and 0.813, respectively. For largea
values, only the ground state has a largeM0 component. For
example, fora56.0a0, the coefficients atuF1& and uF2& in
the full CI expansion of the ground state are 0.968 a
20.090, respectively. For the 21Ag state, they are 0.001 an
0.468, respectively. Thus, by varyinga, we can study
quasidegenerate (a.2.0a0) and nondegenerate (a→`)
situations. The orthogonally spin-adapted two-referen
SUCCD equations for the minimum basis set P4 model fo
a system of ten nonlinear algebraic equations for ten b
cited cluster amplitudes, containing, at most, quartic term

IV. RESULTS

Our homotopy calculations indicate that the SUCC
equations have 133 solutions~including the complex ones!.
This is a very large number, compared to 28 solutions for
wave operatorU given by the exact two-reference SUC
6-2
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TABLE I. The energiesDEm
SUCCD5Em

SUCCD2^F1uHuF1& ~in mhartree!, the proximitiesd between the subspacesM0 andM SUCCD, as
defined by Eq.~7!, and the contributionsSQC

(m),SUCCD from the subspaceMC to the SUCCD wave functionsuCm
SUCCD&,(m51,2), as defined

by Eq. ~9!, corresponding to all real solutions of the SUCCD equations for the minimum basis set P4 model witha52.1 and 6.0a0. A pair
of indices (k,l) at a given solution of the SUCCD equations indicates that out of all possible pairs of full CI states, the pair$uCk

FCI&,uCl
FCI&%

gives the largest proximityD with the corresponding SUCCD target spaceM SUCCD5span$uCm
SUCCD&%m51

2 @cf. Eq. ~10! for the definition of
D#. Solution~1,2! represents the physical solution of the SUCCD equations.

a52.1a0 a56.0a0

Solution number DE1
SUCCD DE2

SUCCD d SQC

(1),SUCCD SQC

(2),SUCCD Solution number DE1
SUCCD DE2

SUCCD d SQC

(1),SUCCD SQC

(2),SUCCD

1 21648.99 231.517 0.003 0.042 0.072 1 2655.325 1011.93 0.027 0.446 0.430
2 2476.513 929.900 0.032 0.615 0.273 2 2570.130 993.338 0.033 0.486 0.470
3 2446.818 944.213 0.017 0.833 0.603 3 2140.070 1009.49 0.048 0.819 0.715
4 2221.611 1636.81 0.169 0.566 0.169 4 2130.502 995.166 0.053 0.837 0.744

5~1,2! 295.806 27.956 1.860 0.042 0.093 5~1,2! 259.596 398.386 1.037 0.098 0.476
6 233.839 937.633 0.004 0.987 0.941 6~1,5! 254.045 1009.93 1.182 0.047 0.544
7 232.502 944.119 0.004 0.993 0.962 7~1,4! 254.003 993.908 1.166 0.050 0.529
8 231.195 2199.05 0.077 0.412 0.042 8 229.230 2397.41 0.843 0.121 0.233

9~1,5! 218.848 940.801 0.250 0.678 0.680 9~2,4! 462.043 995.785 0.409 0.526 0.700
10~1,4! 217.909 943.783 0.183 0.766 0.745 10~2,5! 466.052 1008.06 0.412 0.534 0.720

11 27.659 1943.46 0.570 0.016 0.068 11 910.008 1009.84 0.512 0.528 0.56
12 28.990 2239.76 0.062 0.366 0.034 12 916.177 994.205 0.455 0.529 0.56

13~2,5! 31.170 941.747 0.123 0.801 0.645 13 993.337 2909.30 0.022 0.474 0.12
14~2,4! 32.210 943.151 0.143 0.768 0.612 14 993.895 1932.20 0.297 0.512 0.09

15 41.958 940.251 0.004 0.999 0.995 15 993.962 1938.63 0.261 0.529 0.03
16 58.445 942.867 0.001 0.999 0.999 16 995.216 1400.05 0.305 0.560 0.11
17 65.319 1936.73 0.478 0.015 0.068 17 996.803 1063.57 0.089 0.504 0.55
18 116.783 942.663 0.011 0.963 0.920 18 997.780 1930.36 0.257 0.829 0.62
19 166.963 941.562 0.034 0.793 0.739 19 1000.07 1505.20 0.068 0.856 0.21
20 347.173 2008.30 0.073 0.125 0.062 20 1001.30 1083.76 0.019 0.948 0.85
21 376.413 2035.33 0.054 0.159 0.054 21 1007.94 1085.57 0.048 0.442 0.54
22 560.929 942.032 0.075 0.584 0.806 22 1008.82 1401.63 0.303 0.573 0.10
23 562.445 943.218 0.083 0.583 0.794 23 1009.83 1938.16 0.261 0.548 0.03
24 886.697 1965.96 0.067 0.020 0.087 24 1009.88 1932.78 0.293 0.534 0.09
25 937.151 6577.44 0.011 0.425 0.007 25 1011.92 3053.97 0.018 0.433 0.10
26 938.727 1944.40 0.055 0.266 0.097
27 942.500 1221.55 0.017 0.956 0.845
28 942.991 1217.68 0.016 0.950 0.873
29 943.212 1957.33 0.050 0.356 0.083
30 943.612 5715.18 0.007 0.733 0.017
31 944.249 6047.79 0.006 0.724 0.017
ll
D

m
ith

l
ue
b

en
theory @in general, the exact SUCC theory gives (M
NC) solu-

tions, whereNC is the dimension of the corresponding fu
CI problem#. Although the number of solutions of SUCC
equations remains the same for all geometries~we confirmed
this by solving the SUCCD equations for several geo
etries!, the numbers of real and complex solutions vary w
a.

The energiesEm
SUCCD, m51,2, corresponding to all rea

solutions of SUCCD equations for two representative val
of a, are given in Table I. Each solution is characterized
the parameter

d5tr~V†V!, ~7!

where
05250
-
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Vqm5^FquCm
SUCCD&, q,m51,2, ~8!

which provides us with a measure of the proximity betwe
M0 and the corresponding target spaceM SUCCD

5span$uCm
SUCCD&%m51

2 (0<d<2) ~Ref. @31#!. We also intro-
duce useful quantities

SY
(m),X5iYuCm

X&i2, X5SUCCD, FCI, Y5P,QC ,QR ,
~9!

where QC is a projector onto the subspaceMC

5ùq51
M M 0

(q) andQR5Q2QC , which describe the impor-
tance ofM0 , MC , andMR[M 0

'2MC configurations in
6-3
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TABLE II. The energiesDEm
FCI5Em

FCI2^F1uHuF1& ~in mhartree! and the parametersSY
(m),FCI ,Y5P,QC ,QR , Eq. ~9!, characterizing the

full CI statesm1Ag[uCm
FCI& of the minimum basis set P4 model system witha52.1 and 6.0a0.

Geometry 11Ag 21Ag 31Ag 41Ag 51Ag 61Ag 71Ag 81Ag

a52.1 SP
(m),FCI 0.94860 0.91116 0.07224 0.00017 0.05072 0.01118 0.00128 0.00

SQC

(m),FCI 0.04722 0.08850 0.90261 0.99982 0.78415 0.91436 0.17359 0.08
SQR

(m),FCI 0.00418 0.00035 0.02514 0.00001 0.16513 0.07445 0.82513 0.90
DEm

FCI 295.815 27.951 644.678 942.456 1110.90 1237.28 1760.55 1839.35

a56.0 SP
(m),FCI 0.94531 0.21871 0.23397 0.36093 0.10493 0.01480 0.00655 0.11

SQC

(m),FCI 0.04695 0.62156 0.63357 0.23818 0.79848 0.86272 0.04974 0.74
SQR

(m),FCI 0.00774 0.15974 0.13246 0.40089 0.09659 0.12248 0.94371 0.13
DEm

FCI 254.840 468.891 801.027 985.964 1006.28 1076.04 1665.16 1937.30
fie
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CI expansions of the SUCCD and exact~full CI ! wave func-
tions, uCm

SUCCD& and uCm
FCI&, respectively~see Tables I and

II !.
Some solutions of the SUCCD equations can be identi

by pairs of indices (k, l), referring to these particular full C
statesuCk

FCI& anduCl
FCI&, which give the largest overlap with

the SUCCD statesuC1
SUCCD& and uC2

SUCCD& or the largest
proximity D between the SUCCD and full CI target space
M SUCCD and Mk,l

FCI5span$uCk
FCI&,uCl

FCI&%, respectively, at
a56.0a0. In general, the proximityD between the SUCCD
and full CI target spaces,M SUCCDandMk,l

FCI , is defined in a
very similar way as the proximityd, i.e., @cf. Eqs. ~7! and
~8!#

D5tr~Z†Z!, ~10!

where

Z5S ^C1
SUCCDuCk

FCI& ^C1
SUCCDuCl

FCI&

^C2
SUCCDuCk

FCI& ^C2
SUCCDuCl

FCI&
D . ~11!

For example, the target spaceM SUCCD corresponding to the
SUCCD solution labeled as~1,2! has the largest overlapD,
Eq. ~10!, at a56.0a0, with the full CI target spaceM1,2

FCI

spanned by the first and second full CI states of the1Ag

symmetry, uC1
FCI&511Ag and uC2

FCI&521Ag , respectively.
Solution ~1,2! is referred to as the physical solution. On t
other hand, the target spaceM SUCCD characterizing the so
lution labeled as~2,4! has the largest overlapD, Eq. ~10!, at
a56.0a0, with the full CI target space M2,4

FCI

5span$uC2
FCI&,uC4

FCI&%.
For a52.1a0, the only solution that has large proximit

with the model spaceM0, or large value ofd, Eq. ~7!, is a
physical solution ~1,2! ~in this case,d51.860). For a
56.0a0, the proximityd characterizing solution~1,2! drops
down to ;1.0. This is related to a poor description of th
21Ag state byM0 and has consequences in the poor desc
tion of this state by the SUCCD method~cf. Tables I and II!.

The results in Table I indicate that, fora52.1a0, there
are many solutions of the SUCCD equations@e.g.,~1,4! and
~2,4!#, which very accurately approximate the energy of t
41Ag state, in spite of the fact thatuC4

FCI& is practically or-
05250
d
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thogonal toM0 ~belongs toMC). This surprising observa
tion is a consequence of the following theorems.

Theorem I. If uCm& is an exact solution of the Schro¨dinger
equation andEm is its energy and if, for a given solutionU of
the Bloch equation~3!, not all components of the vectorxm

5(xm,1 , . . . ,xm,M), xm,p5^CmuUFp&, equal zero, thenEm

is an eigenvalue andxm is the left eigenvector of the effectiv
HamiltonianHeff(U).

Theorem II. If uCm& is an exact solution of the Schro¨-
dinger equation andEm is its energy and, in addition
QCuCm&5uCm&, and if, for a given solutionU of the pro-
jected Bloch equation~5!, not all components of the vecto
xm5(xm,1 , . . . ,xm,M), xm,p5^CmuUFp&, equal zero, then
Em is an eigenvalue andxm is the left eigenvector of the
effective HamiltonianHeff(U).

In order to prove Theorem I, we project Eq.~3! from the
left onto uCm& and from the right ontouFp&, use the fact that
^CmuH5Em^Cmu and thatUP5U, and use the definition o
Heff(U), Eq.~2!. The proof of Theorem II is almost identica
The only difference is that we use Eq.~5! instead of Eq.~3!
and employ the relationship̂CmuQ(p)5^Cmu, which is true
for everyp if QCuCm&5uCm&.

In principle, Theorem I assumes thatU is exact@sinceU
satisfies the Bloch equation~3!#, in which case the SUCC
theory @each of the (M

NC) solutions of the exact SUCC equa
tions# yieldsM exact eigenstates ofH. However, on the basis
of Theorem I, we can expect that, ifU is one of numerous
approximate solutions of the Bloch equation, obtained,
example, by solving the SUCCD equations, the diagonal
tion of the corresponding effective Hamiltonian may produ
a nearly exact eigenvalueEm of H, in spite of the fact that
none of the wave functions provided by thisU approximates
the exact eigenstateuCm&. The only condition that needs t
be satisfied, for this situation to occur, is that not all comp
nents ofxm vanish for this particularU and uCm&. Although
these conditions are satisfied by the physical solution
scribing M lowest eigenstates ofH, such as solution~1,2!
obtained here~in this case, the left eigenvectorsxm and the
right eigenvectorscm , m51, . . . ,M , should form biorthogo-
nal sets; departure from biorthogonality of$xm%m51

M and
$cm%m51

M may be viewed as yet another measure of accur
of truncated SUCC theory!, they may also be satisfied b
6-4
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COMPLETE SET OF SOLUTIONS OF MULTIREFERENCE . . . PHYSICAL REVIEW A 61 052506
many other solutions of truncated SUCC equations, which
not describe the eigenstates ofH, while providing at least
one nearly exact eigenvalueEm . Theorem II implies that
some solutions of truncated SUCC equations may lead
effective Hamiltonians, whose diagonalization gives nea
exact energies of states that are orthogonal toM0. The real
solutions~1,4! and ~2,4! @shown in Figs. 1~a! and 1~b! and
Table I# belong to this category. Fora'2.0a0, they give
virtually exact energies of the 41Ag state, which practically
belongs toMC ~cf. Table II!, although none of the SUCCD
wave functions corresponding to solutions~1,4! and ~2,4!
describes the 41Ag state@cf. Fig. 1~c!#.

We claim that solutions of this type, which yield one
more energies of states that have small overlaps withM0 in
the quasidegenerate region, are responsible for the em
gence of problems with converging the desired physical
lution [(1,2) in our case] in the nondegenerate region.It is,

FIG. 1. Dependence of SUCCD energiesDEm
SUCCD5Em

SUCCD

2^F1uHuF1& @~a! and~b!# and overlaps between the SUCCD sta
uFm

SUCCD&, m51,2, and the relevant full CI statesn1Ag ~c! for se-
lected solutions of the SUCCD equations. The real solutions~1,2!
@shown in~a! and~b!#, ~1,4! @shown in~a!#, and~2,4! @shown in~b!#
are marked by (s,d), (h,j), and (n,m), respectively. The as
terisks (*) represent complex solutions@~1,3! in ~a! and ~2,4! in
~b!#. The complex solution~2,4! shown in~b! bifurcates into a pair
of real solutions~marked byL) at a52.32a0. Solid and dashed-
dotted lines correspond to real and complex solutions, respectiv
Dotted lines represent full CI states of1Ag symmetry.
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therefore, likely that at least some solutions that have sm
overlaps withM0 in the quasidegenerate region can be
sociated with intruder states that plague multireference
and multireference MBPT calculations for the P4 model
largera values@8,23#.

Indeed, let us consider real solutions~1,4! and ~2,4!. So-
lution ~2,4! provides virtually exact energies of the 21Ag and
41Ag states for the whole range ofa values, but it describes
the corresponding wave functions only for large values oa
@see Fig. 1~c!#. A similar observation holds for solution~1,4!,
although, in this case, description of the ground-state ene
is good only fora*3.5a0 ~description of the energy of the
41Ag state remains excellent for alla ’s!. The overlaps be-
tween the SUCCD statesuCm

SUCCD&, m51,2, corresponding
to solution~2,4!, and the full CI states 21Ag and 41Ag , i.e.,

the quantities @cf. Eq. ~11!# ^C1
SUCCDuC2

FCI& and
^C2

SUCCDuC4
FCI&, increase from 0.383 and 0.773, respe

tively, at a52.1a0 to 0.919 and 0.850, respectively, ata
56.0a0. The overlaps between the SUCCD states cor
sponding to solution~1,4! and the full CI states 11Ag and
41Ag , i.e., ^C1

SUCCDuC1
FCI& and ^C2

SUCCDuC4
FCI&, increase

from 0.537 and 0.572, respectively, ata52.1a0 to 0.998 and
0.916, respectively, ata56.0a0. Thus, ata56.0a0, solution
~1,4! provides a better description of the ground state th
the physical solution~1,2!. The latter solution gives 0.982 fo
the corresponding overlap of SUCCD and full CI wave fun
tions. Description of the 21Ag state by solution~2,4! is a lot
better than description of this state provided by solut
~1,2!, which gives only 0.623 for the corresponding overl
of SUCCD and full CI states. This is why, for large values
a, we experience problems with converging the physical
lution ~1,2! with standard numerical algorithms, such as t
Newton-Raphson or reduced linear equation procedures@8#.
In this region, solutions~1,4! and ~2,4! provide a better de-
scription of the lowest two states than solution~1,2!. The
existence of solutions~1,4! and ~2,4! does not cause an
problems in obtaining the physical solution~1,2! for a
'2.0a0, since, in this region, solutions~1,4! and ~2,4! no
longer describe the eigenstates ofH, and the proximityd, Eq.
~7!, betweenM0 andM SUCCD characterizing solutions~1,4!
and ~2,4! drops almost to zero asa approaches 2.0a0.

A similar analysis applies to some other real solutio
such as~1,5! and ~2,5! ~cf. Table I!, and to several complex
solutions, including~1,3! and~2,4! ~see Fig. 1!. Each of these
additional solutions is characterized by very small proxim
with M0 ~small d) in the quasidegenerate region and larg
d values for largera ’s.

It is interesting to note~see Fig. 2! that the proximityD
~defined below! between the physical solution~1,2! and so-
lutions~1,3! ~complex!, ~1,4! ~real!, and~1,5! ~real! increases
significantly in the region where the intruder-state proble
appears in the multireference MBPT calculationsa
'3.0a0 @23#!. In complete analogy to the proximity betwee
the SUCCD and full CI target spaces, we define the prox
ity between solutions A and B as the proximity between
corresponding SUCCD target spaces,M SUCCD(A)
5span$uCm

SUCCD(A) &%m51
2 and M SUCCD(B)

5span$uCm
SUCCD(B)&%m51

2 , respectively, i.e.,

ly.
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D5tr~W†W!, ~12!

where

Wmn5^Cm
SUCCD~A!uCn

SUCCD~B!&, m,n51,2. ~13!

Although we cannot, at this point, provide a rigorous pro
it seems to us that solution~1,3! and the intruder state stud
ied for the minimum basis set P4 model in Ref.@23# ~also,
reported earlier in Refs.@8,25#! are related. The intruder stat
causing the divergent behavior of the multireference MB
expansion ata.3.0a0 is related to energy-level crossing o
perturbed energies corresponding to states 21Ag and 31Ag
inside the unit circle of the complex perturbation parame
@23#. At the same time, thea.3.0a0 region is precisely the
region, where the proximityD, Eq. ~12!, between solutions
~1,2! and ~1,3! sharply increases from small values fora
,3.0a0 to a large value of 0.85 ata53.0a0 ~the maximum
value of the proximity between solutions~1,2! and ~1,3! for
a→` is 0.97; cf. Fig. 2!.

Although the relationship between multiple solutions
the SUCC equations and intruder states observed in the
tireference MBPT calculations needs to be examined furt
convergence problems encountered in the SUCC calculat
employing standard numerical procedures@8,14,15# can be
even more severe than one might expect just by analy
the crossings of perturbed energy levels. The SUCCD eq
tions for the minimum basis set P4 model have many ot
solutions, such as the real solutions~1,4!, ~1,5!, ~2,4!, and
~2,5! shown in Figs. 1 and 2 and Table I, and several co
plex solutions that are characterized by the large ove
@large proximityD, Eq. ~12!# with the physical solution~1,2!
for largea and the small proximityD with solution~1,2! in
the quasidegenerate region~cf. Fig. 2!. All these additional
solutions contribute to convergence problems encountere
the SUCCD calculations in the nondegenerate region~large
a), in spite of the fact that there may not always be a cl
relationship between the intruder states of multirefere
MBPT approach and multiple solutions of the SUCC eq
tions. One might even propose a new term,the intruder-

FIG. 2. The proximitiesD, Eq. ~12!, between the physical solu
tion ~1,2! and selected other solutions of the SUCCD equations
the minimum basis set P4 model as functions of the parametera ~in
a0) ~cf. text for details!. The complex solution~1,3! is marked by
s. The real solutions~1,4!, ~1,5!, ~2,4!, and~2,5! are marked byh,
L, ,, andn, respectively.
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solution problemor intruder solutions, to describe all these
solutions of truncated SUCC equations that are character
by small proximities withM0 and small proximities with the
standard physical solution in the quasidegenerate region
large proximities withM0 and the physical solution in othe
regions. The intruder solutions may cause problems w
converging the physical solution of SUCC equations w
standard numerical procedures in the same way the intru
states cause divergent behavior of the multireference MB
expansions. Other solutions of the SUCC equations, wh
have relatively small proximities withM0 over the entire
region of nuclear geometries, do not have large overlaps w
the physical solution. For the minimum basis set P4 mod
we verified this statement by calculating the proximityD,
Eq. ~12!, between the physical solution~1,2! and all other
solutions of the SUCCD system of equations.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we used the homotopy method to obtai
complete set of solutions of the SUCCD equations for
four-electronab initio model system, referred to as the min
mum basis set P4 model. We demonstrated that the num
of solutions of the SUCCD equations~133! exceeds, by far,
the number of the exact solutions of the Bloch equation~28!.
The existence of multiple solutions of the SUCC equation
related to~i! the nonlinearity of the Bloch equation and~ii !
the nonlinear parametrization of the wave operator in
Jeziorski-Monkhorst formalism.

We demonstrated that there exist many solutions of
SUCCD equations, whose proximities with the model spa
and with the standard solution~1,2! are small in the quaside
generate region of the P4 model system and large in
nondegenerate region. These solutions contribute to ser
problems with converging the physical solution in the no
degenerate region with standard numerical procedures.

It is possible that some solutions of the SUCC equatio
that cause convergence problems in the SUCC calculat
are related to intruder states of the multireference MB
method. On the other hand, the number of multiple solutio
identified in this paper as causing convergence problem
the SUCC calculations seems larger than the number of
turbed energy-level crossings causing divergence of the m
tireference MBPT series. We believe that the complica
nonlinear nature of the SUCC formalism~including the non-
linear nature of the Bloch equation itself! and the compli-
cated structure of solutions of the SUCC equations repo
in this work are the primary reasons of problems plagu
this theory. Although the SUCC and multireference MBP
methods are strongly related, the nature of solutions of
SUCC equations can be a lot more complicated than
standard perturbative analysis~cf. Ref. @5#! suggests. As
demonstrated in the past, problems with multiple solutions
the alternative class of genuine multireference CC form
isms, referred to as the valence-universal CC theo
@4,6,7,18,19#, can be substantially more severe than tho
encountered in the SUCC calculations@19#.

We believe that findings reported in this work apply
SUCC calculations of electronic potential energy surfaces

r
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larger molecular systems employing larger basis sets. S
tions of truncated SUCC equations that have small proxi
ties withM0 in one region of nuclear geometries may evol
into solutions that strongly interact withM0 in another re-
gion, causing difficulties in obtaining a desired physical s
lution with standard numerical procedures and the em
gence of intruder states. Although the homotopy calculati
for larger many-electron systems and larger basis sets ar
possible at this point, the main observations obtained fo
small model, such as P4, are usually transferable to la
scale calculations, as we and others demonstrated m
times in the past.

The results of the present analysis indicate that, in or
to eliminate convergence problems from SUCC calculati
~and, perhaps, the intruder-state problem!, we should modify
the SUCC equations~including the form of the wave opera
tor!, so that the solutions that strongly interact withM0 and
with the physical solution disappear or become, at the v
least, clearly separated from the physical solution. We h
already started to explore one such modified SUCC pro
dure, in which the number of cluster amplitudes is sign
cantly reduced by assuming that the core-virtual amplitu
are no longer labeled with the reference labelp ~so that a
single set of these amplitudes is used!. Our preliminary ho-
motopy calculations, which we plan to report elsewhe
,

le

s

.

e

s
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show that at least some solutions causing problems in
SUCCD calculations for the minimum basis set P4 mod
such as the real solutions~2,4! and ~2,5!, are significantly
shifted to a complex plane and that they are so significa
deformed that their interaction with the physical soluti
~1,2! is smaller. At the same time, the accuracy of t
SUCCD results for the lowest two, totally symmetric, sing
eigenstates of the Hamiltonian practically does not chang
both quasidegenerate and nondegenerate regions. This
cates that changing the algebraic structure of solutions
multireference CC equations by, for example, eliminati
certain classes of cluster amplitudes from the formalism
modifying the equations accordingly might lead to bet
genuine multireference CC theories, which will be free fro
drawbacks of the existing formalisms. This issue requir
however, further and detailed studies.
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and I. Shavitt, Phys. Rev. A5, 50 ~1972!.

@2# R. J. Bartlett, Annu. Rev. Phys. Chem.32, 359~1981!; J. Phys.
Chem. 93, 1697 ~1989!; in Modern Electronic Structure
Theory, edited by D. R. Yarkony~World Scientific, Singapore
1995!, Part I, pp. 1047–1131.

@3# J. Paldus, inNew Horizons of Quantum Chemistry, edited by
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