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Correlated one-electron and two-electron densities for the ground state of the lithium atom
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One- and two-electron densities are calculated for the ground state of the lithium atom starting from a highly
accurate Hylleraas-type wave function. An analytical parametrization for those densities is obtained, which
allows one to calculate both the form factor and the structure factor. Electronic correlation effects are discussed
in terms of these densities and related functions such as the Coulomb hole. The calculation of the densities has
been performed by means of the Monte Carlo method.

PACS number~s!: 31.25.Eb, 31.15.Ew, 32.10.2f
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I. INTRODUCTION

The ground state of the lithium atom has been the focu
extensive computational studies using correlated wave fu
tions. For a compilation of results, see Refs.@1,2#, and ref-
erences therein. All these investigations have been ma
focused on the calculation of accurate values for the non
ativistic ground-state energy. Other properties such as
one-and two-body densities in position space and the ela
and inelastic scattering factors have also been obtained.

These one-and two-body densities play an important
in the description and understanding of the dynamics of
oms and molecules@3–17#. Electron correlation effects hav
been studied in terms of the Coulomb hole, i.e., the diff
ence between the correlated and the Hartree-Fock intere
tronic densities, and the Hund rules have been interpre
using these densities. Also, the one-body density is the
nerstone of density functional theory. Finally, it is wor
mentioning here that the scattering factors have also b
analyzed to elucidate the effects of electronic correlation
atomic and molecular systems@18–25#.

For anN-electron system, the one-body density is defin
as

r~rW !5E uC~rW1 ,rW2 ,...,rWN!u2

^CuC& (
i

N

d~rW2rW i !drW1drW2¯drWN ~1!

and represents the probability density function for t
electron-nucleus vectorrW. The spherically averaged densi
is denoted byr(r ) and the radial charge distribution aroun
the nucleus is given by

D~r !54pr 2r~r !. ~2!

For the lithium atom, analytic expressions forD(r ) have
been obtained from both a configuration-interaction~CI!
wave function@9# and a Hylleraas-type wave function@11#,
although in this last case it is necessary to make some
strictions on the basis functions used in the Hylleraas exp
sion. Accurate values for the electron density at the nucle
r(0), and for themoments^r n& have also been calculate
starting from a CI wave function@9# and from explicitly
correlated wave functions@12,14#.
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Two-body properties can be studied in terms of both
interelectronic or intracule,I (rW12), and the center of mass o
extracule,E(RW ), densities defined as@4#

I ~rW12!5E uC~rW1 ,rW2 ,...,rWN!u2

^CuC&

3(
i , j

N

d@rW122~rW i2rW j !#drW1drW2¯drWN , ~3!

E~RW !5E uC~rW1 ,rW2 ,...,rWN!u2

^CuC&

3(
i , j

N

dS RW 2
rW i1rW j

2 DdrW1drW2¯drWN , ~4!

respectively. These functions are the probability dens
functions for the relative,rW12, and center of mass,RW , vec-
tors, respectively. Their spherical averages are denoted
h(r 12) and d(R). The corresponding radial densities a
given by

P~r 12!54pr 12
2 h~r 12!,

~5!
P~R!54pR2d~R!.

In Eqs.~1!, ~3!, and~4! summation over the spin variable
is implicit. The numerical difficulties involved in calculatin
these densities have restricted their calculation with hig
accurate wave functions to few-electron atoms. For heliu
like systems, very precise wave functions have been obta
by using the variational method. With them benchmark c
culations of the interelectronic density have been repor
since the work of Coulson and Neilson@3#. For the ground
state of the lithium atom information about these densitie
much more scarce. Accurate values for some moments o
intracule densitŷ r 12

n & can be found in@14,15#. A compact
analytical formula for the electron-electron radial distrib
tion, obtained from a Hylleraas-type wave function, has be
reported@13#. This closed form was obtained by imposin
some conditions on the basis set in order to carry out a
lytically the different integrals involved in the calculation
©2000 The American Physical Society05-1



uc
f

di
a

d
ns

e

-
-

tic

.

nc
e
la

en
i
ti

w
on
fi
tly
ll
a
m
na
er
w
e

l

ing
he
c-

on
and
rlo
pa-
his
ac-
ion

ve
of

ults
in
sed

in

ns

for

nd
iv-

rgy

rs
e
g
sis
ince
a
rk,

an
re-
of
two
ra-
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This leads to an intracule density that does not reprod
adequately the low-r 12 region in the atom. For the atoms o
the second and third row, the spherically averaged ra
electron-pair densityP(r 12) has been obtained within
configuration-interaction scheme@17#. Recently the intracule
@16,26# and extracule@27# densities have been calculate
starting from explicitly correlated wave functions by mea
of the Monte Carlo method for atoms from He to Ne.

The elastic scattering~or atomic form! factor F(qW ) and
the inelastic scattering factorS(qW ) in the framework of the
first Born approximation can be written in terms of the on
and two-body densities in the form@28#

F~qW !5E r~rW !eiqW •rWdrW ~6!

and

S~qW !5E E G~rW1 ,rW2!eiqW •~rW12rW2!drW1drW22uF~qW !u21N,

~7!

respectively. Here,G(rW1 ,rW2) denotes the two-electron den
sity normalized toN(N21), andqW is the momentum trans
fer vector whose magnitudeq depends on the wavelengthl
of the radiation and the scattering angle 2u according toq
5(4p/l)sinu. In addition, the spherically averaged elas
and inelastic form factors,F(q) andS(q), may be expressed
in terms ofD(r ) andP(r 12) as

F~q!5E
0

`

D~r ! j 0~qr !dr ~8!

and

S~q!52E
0

`

P~r 12! j 0~qr12!dr122uF~q!u21N, ~9!

where j 0(x) is the spherical Bessel function of zero order
For the lithium atom, correlated values ofF(q) andS(q)

have been calculated using different variational wave fu
tions @18,20,22,23,25#. The inelastic scattering factor is mor
sensitive to the effect of electronic correlations than the e
tic form factor.

High-quality Hylleraas-type wave functions have be
used previously to obtain different properties of the atom
lithium ground state, such as the energy and the expecta
values^S id(r i)&, ^S i . jd(r i j )&, ^r n&, and ^r 12

n &, which are
related to the single-particle and intracule densities. Ho
ever, some other quantities, such as the corresponding
and two-body densities at any point of their interval of de
nition, or even the inelastic form factor, cannot be direc
evaluated. The aim of this work is to calculate spherica
averaged one- and two-body densities in position space
both the elastic and inelastic scattering factors for the ato
lithium ground state starting from a very accurate variatio
Hylleraas-type wave function. The calculations are p
formed by means of the Monte Carlo method, which allo
one to evaluate expectati on values of any operator betw
wave functions of any kind@29#. Therefore no analytica
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restrictions are imposed on the basis set, its length be
limited only by the computational time requirements in t
Monte Carlo evaluation of the densities. With the wave fun
tion used in this work more than 99.99% of the correlati
energy is recovered and the asymptotically correct short
long range behaviors are reproduced. The Monte Ca
single-particle, intracule, and extracule densities are then
rametrized by means of simple analytical expressions. T
allows one to obtain the elastic and inelastic scattering f
tors in a simple and closed form. Finally, electron correlat
effects on all these quantities will be examined.

The structure of this paper is as follows. In Sec. II we gi
the wave function we have worked with and some details
the numerical methodology. In Sec. III we present the res
obtained in this work. Finally, we give the conclusions
Sec. IV. Unless otherwise indicated, atomic units are u
throughout.

II. WAVE FUNCTION AND MONTE CARLO
CALCULATIONS

The wave function employed in this work is expanded
terms of Hylleraas-type basis functions

C~1,2,3!5A(
m51

M

Cmfm~rW1 ,rW2 ,rW3!xm , ~10!

whereA is the three-electron antisymmetrizer,Cm are the
variationally determined expansion coefficients, andM is the
number of basis functions employed. The basis functio
fm(rW1 ,rW2 ,rW3) are of the form

fm~rW1 ,rW2 ,rW3!5e2a~r 11r 2!2gr 3r 1
i mr 2

j mr 3
kmr 23

l mr 31
mmr 12

nm ~11!

and xm denotes the possible spin eigenfunctions, which
the doublet states can be one of the two

x5a~1!b~2!a~3!2b~1!a~2!a~3! ~12!

or

x52a~1!a~2!b~3!2b~1!b~2!a~3!. ~13!

We shall use the parametrization proposed by King a
Shoup@30#, a 352-term expansion that provides a nonrelat
istic ground-state energy of27.478 058, which is 2mh
above the most precise calculation, i.e., a correlation ene
of 99.995%. The numerical values of the exponents area
52.76 andg50.65, and the 352 values of the intege
$ i m , j m ,km ,l m ,mm ,nm% which determine the basis set hav
been taken from@30#. This basis set was chosen by requirin
the optimal energy with the fewest possible number of ba
functions. More precise expansions have been reported s
~see, e.g.,@14#! in which the number of basis functions is
factor 5 bigger than in the wave function used in this wo
and only one spin basis set is used. The use of such
expansion is prohibitive for our present computational
sources. Finally, it is worth mentioning that an advantage
the basis set employed here is that it makes use of the
possible spin eigenfunctions for the ground-state configu
5-2
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TABLE I. Monte Carlo ~MC! and parametrized~A! values ofr~0! and ^r n& for the ground state of the
lithium atom as compared with the corresponding Hartree-Fock~HF! values, and with other correlated value
obtained directly from the wave function~HN @30# and Exact@12,14,15#! and from other parametrized
single-particle density calculations~KD! @11#. In parentheses we give the statistical error of the MC cal
lation.

r~0! ^r 22& ^r 21& ^r & ^r 2& ^r 3& ^r 4&

HF 13.83408 30.21654 5.715475 5.019761 18.63129 94.75963 567.092
MC 30.3~1! 5.7191~7! 4.9899~6! 18.359~6! 92.63~6! 550.2~6!

HN 13.84150 5.718107 4.989579 18.35514 92.60858 550.203
Exact 13.84254 30.24097 5.718111 4.989523 18.35462 92.60364 550.07
A 13.8466 30.2516 5.71855 4.98971 18.3573 92.6229 550.217
KD 13.84170 30.24071 5.718087 4.989765 18.35707 92.62792 550.416
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tion. Therefore the spatial components need to be comp
only once and they require no additional computation tim

The one- and two-body densities can be computed w
the Monte Carlo method as the expectation values of
differentd operators, such as are shown in Eqs.~1!, ~3!, and
~4!. We have also calculated the different one- and two-bo
expectation valueŝtn&, wheret stands forr, r 12, andR.

The elastic and inelastic form factors may also be cal
lated by using the Monte Carlo method. This requires eva
ation of the expectation value in the variational wave fun
tion of the following local operators:

f ~q;rW1 ,...,rWN!5 (
k51

N
sin~qrk!

qrk
, s~q;rW1 ,...,rWN!

5(
k, l

N
sin~qrkl!

qrkl
. ~14!

A major drawback of using these expressions is that,
largeq, their highly oscillatory behavior requires very larg
computing time in order to obtain accurate values for
corresponding form factors. An alternative way to obta
them is to use an analytical expression for both the sin
particle and the intracule densities and then to perform t
corresponding Fourier transforms. As we shall see bel
there is good agreement between the factors calculate
this way and the ones obtained directly.

III. RESULTS

A. Single-particle density

In Table I we present different results for the moments
the single-particle density and forr(0). In thefirst row we
show the values obtained within the Hartree-Fock~HF!
framework. The results provided by the wave function us
in this work are shown in the rows MC and HN. The form
indicates the results calculated using the Monte Ca
method while in the latter the integrals are evaluated num
cally @30#. In the row labeled as Exact we give the mo
accurate values for those properties given in the litera
@12,14,15#. It can be concluded that the wave function us
in this work provides a description of the one-body dens
05250
ed
.
h
e

y

-
-
-

r

e

-
ir
,
in

f

d

o
i-
t
re
d
y

of high quality. Also, the MC method provides quite accura
results for these expectation values. In the worst case,^r 22&,
the relative error is 0.2%.

To parametrize the Monte Carlo radial density functi
D(r ) we have used the same analytical form as that obtai
by King and Dressel by using a different Hylleraas basis
@11#:

D~r !5 (
k51

7

e2akr (
n50

gk

ak,nr n ~15!

with the restrictions

(
k51

7

ak,050; (
k51

7

~ak,12akak,0!50. ~16!

The numerical values of the parametersak andak,n are given
in Table II.

The values ofr(0) and^r n& calculated with this adjusted
density are also shown in Table I~row A!, where they are
also compared with those obtained from the analytical
pression of King and Dressel@11# ~row KD!. In general the
agreement between the parametrized values and the re
quite good.

B. Intracule density

In Table III we show the values of some radial momen
of the intracule density,̂r 12

n &, and its value at the coales
cence point,h(0). Thenotation used here for the differen
rows is the same as in Table I. Again the quality of t
results provided by the Monte Carlo method is apparent.

Once we obtained the Monte Carlo interelectronic rad
densityP(r 12), we parametrized it by means of the expre
sion

Pa~r 12!5 (
k51

3

e2akr 12(
n51

r k

bk,nr 12
n ~17!

with the condition(n51
3 b1,n50. This expression was ob

tained by Dressel and King@13# from a Hylleraas-type wave
function in which some restrictions on the powers ofr i j were
imposed. This leads to a significant loss of precision in
5-3
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TABLE II. Coefficientsak , ak,n , bk,n , andck,n for the parametrized single-particle, intracule and ext
cule densities.

a151.30 a253.41 a355.52 a456.82 a558.93 a6511.04 a7512.34

ak,0 32.61914 2577.6960 1604.01324917.567 24949.70 169330.7 2190421.8
ak,1 222.66042 541.4168 378.1069 1037.909 1232.701246844.17 2240527.4
ak,2 5.101153 2228.4099 281858.94 2103422.5
ak,3 20.158814 215470.30
ak,4 0.112840

a151.30 a253.41 a355.52 a151.30 a253.41 a355.52

bk,1 211998.32 2113864.6 125863.0ck,1 230559.20 349362.7 2318803.5
bk,2 5577.773 253035.4 32281.02ck,2 30577.75 21074826. 2172065.4
bk,3 21051.250 2196043.1 ck,3 212395.65 2268595.
bk,4 100.5064 133710.7 ck,4 2549.599 22300853.
bk,5 24.819898 250206.25 ck,5 2262.4857 2174966.
bk,6 0.093133 18353.06 ck,6 10.88710 21207237.
bk,7 24059.999 ck,7 622938.7
bk,8 851.1032 ck,8 2179760.2
bk,9 294.84240 ck,9 42657.53
bk,10 8.983948 ck,10 22202.909
n
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low-r 12 region. This is not the case for the wave function a
for the parametrization of the intracule density obtained he
In Table II we give the numerical values of the paramet
bk,n and in Table III ~row A! we show the values of the
intracule density at the origin,h(0), and of themoments
^r 12

n & calculated with the parametrization of this work
compared with the values obtained from the parametriza
of Dressel and King@13# ~row DK!. The great improvemen
made in the description of the low-r 12 region is apparent. In
addition, these results are in good agreement with those
sidered exact. An additional test of the quality of the dens
is given by means of the cusp condition, i.e., the value of
ratio h8(0)/h(0), which should be equal to 1. For our de
sity this ratio is 0.989.
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With the adjusted intracule density we have calcula
several functions related to it. First, in Fig. 1, we plot t
Coulomb hole defined asDP(r 12)5Pc(r 12)2PHF(r 12),
where the subscriptsc and HF mean correlated and Hartre
Fock, respectively. The Coulomb hole takes negative val
from the origin up to a given value ofr 12, then it shows two
positive maxima, and, finally, it goes through zero and ta
negative values. The first minimum and maximum acco
for the redistribution of the two electrons in the 1s shell
while the second maximum and minimum correspond to
pair 1s-2s. Thus the effect of electronic correlations is
separate the 1s pair and to concentrate the relative charge
intermediate interelectronic distances.

We have also calculated the functionh(r 12)2h8(r 12),
l error

2

88
TABLE III. Monte Carlo ~MC! and parametrized(A) values forh(0), ^r 12
n &, d(0), and ^Rn& for the

ground state of the lithium atom as compared with the corresponding Hartree-Fock~HF! values, and with
other correlated values for the intracule density obtained directly from the wave function~HN @30# and Exact
@15,14#! and from other parametrized single-particle density calculations~DK! @13#. The value ofd(0) in the
MC row was obtained by carrying out the integrals numerically. In parentheses we give the statistica
of the MC calculation.

h(0) ^r 12
22& ^r 12

21& ^r 12& ^r 12
2 & ^r 12

3 & ^r 12
4 &

HF 0.7842886 5.03229 2.280921 8.689089 37.26414 195.8344
MC 4.39~1! 2.1998~2! 8.669~1! 36.85~1! 192.2~1! 1156~1!

HN 0.54461 2.198208 8.668507 36.84889 192.10037 1156.02
Exact 0.544329 4.3812 2.1982120 8.6683968 36.847838
A 0.5461 4.3901 2.1996 8.6693 36.863 192.27 1158.4
DK 0.6354 4.50 2.204 8.680 36.95 192.8 1161

d(0) ^R22& ^R21& ^R& ^R2& ^R3& ^R4&

HF 6.274309 20.129172 4.561842 4.344543 9.316035 24.479298 74.192
MC 6.17243 20.21~3! 4.6013~3! 4.2996~6! 9.145~3! 23.86~1! 71.83~7!

A 6.146 20.223 4.6012 4.300 9.149 23.896 71.662
5-4
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i.e., the difference between the intracule density and its
derivative. This function is the electron-electron cusp con
tion spatially extended, similar to the one studied for t
single-particle density@31#. This function has been shown t
be positive for two-electron systems@32#. With the wave
function used in this work we have concluded that this pr
erty also holds for the ground state of the lithium atom,
can be seen in Fig. 2, where we compare the correlated f
tion with the Hartree-Fock one. The propertyh(r 12)
2h8(r 12)>0 allowed many inequalities involvingh(0) and
the radial momentŝr 12

n & to be obtained for two-electron sys
tems @33,34#, which now are also available for the lithium
atom. The main effect of electronic correlations is to dim
ish the strength ofh(r 12)2h8(r 12), which leads to sharpe
inequalities amongh(0) and^r 12

n & than in the Hartree-Fock
framework.

C. Extracule density

The values of the extracule density at the origin,d(0),
and of the momentŝRn& have been obtained both within th
Hartree-Fock framework@35,36# and by using@27# the gen-
eralized Jastrow wave functions of Schmidt and Moskow

FIG. 1. Coulomb holeDP(r 12) for the ground state of the
lithium atom calculated with the parametrization of Eq.~17!.

FIG. 2. Cusp condition spatially extended for the intracule d
sity of the ground state of the lithium atom calculated with t
parametrization of Eq.~17! as compared with the Hartree-Foc
value.
05250
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@37#. The correlated values of bothd(0) and the radial mo-
ments of negative order were bigger than the correspond
Hartree-Fock values while the moments of positive ord
were smaller. A study of the difference function

DP~R!5Pc~R!2PHF~R!, ~18!

i.e., the equivalent to the Coulomb hole for this densi
showed that this function is positive for small values ofR
and negative otherwise. That was interpreted by assum
that the electrons seek for a position in which they are
opposite sides of the atom when electronic correlations
considered. This was found to be consistent with the f
that, on average, electronic correlations make the lithi
atom smaller and at the same time they reduce the mom
of negative order of the interelectronic density. This can
seen by comparing the correlated and the Hartree-Fock
ues of the moments of both the radial charge distribution
the intracule density.

This picture is confirmed when the more accura
Hylleraas-type wave function is used to calculate the ex
cule density and its radial moments. In Table III we compa
the correlated values of^Rn& with the Hartree-Fock values
In Fig. 3 we plot the difference functionDP(R). This func-
tion presents almost the same behavior here as in@27#. The
only difference is that for the Hylleraas wave function t
value ofd(0), which is the probability of finding two elec
trons exactly at mirror positions with respect to the nucle
is 6.172 43, and therefore smaller than the noncorrela
value. Also, there is a tiny region for smallR values for
which the correlated extracule density is smaller than
Hartree-Fock density~see Fig. 3!. This behavior is similar to
that found for the helium atom@27#. It is worth mentioning
here a recent calculation ofd(0) for different atoms and ions
using large CI wave functions@38#. In that work it was found
that electronic correlations tend to diminishd(0) with re-
spect to the HF value; however, the numerical value repo
there is different from the one obtained here.

To parametrize the extracule density we have taken
account that within the Hartree-Fock framework and for t
atoms helium to beryllium the relationd(R)58h(2R) is ful-
filled @36#. Although this relation does not necessarily ho

-

FIG. 3. Difference functionDP(R) for the ground state of the
lithium atom calculated with the parametrization of Eq.~19!.
5-5
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F. J. GÁLVEZ, E. BUENDÍA, AND A. SARSA PHYSICAL REVIEW A 61 052505
in general, it allows one to select a particular form for t
extracule density. The quality of this parametrization will
determined in terms of the results that are obtained with
We have

Pa~R!5 (
k51

3

e22akR(
n51

r k

ck,nRn ~19!

with the condition(n51
3 c1,n50. The numerical values of th

parametersck,n are given in Table II. The momentŝRn&
calculated with the Monte Carlo method and those obtai
by using the analytical parametrization given by Eq.~19! are
reported in Table III, where they are compared with the c
responding Hartree-Fock moments. Both sets of correla
values agree within the statistical error of the MC calcu
tion. Finally, let us mention that the moments^Rn& obtained
from a generalized Jastrow-type wave function@27# are in
good agreement with the values obtained here from
Hylleraas-type wave function.

D. Elastic and inelastic form factors

Both the elastic and the inelastic form factors can be co
puted directly by means of the MC method by calculating
mean value of the functions of Eq.~14!. Due to the oscillat-
ing behavior of these functions, this method allowsF(q) and
S(q) to be obtained with a given precision up to aqmax,
from where they take less precise values.

Both the elastic and the inelastic form factors can be
tained, once the single-particle and intracule densities
parametrized, by calculating their corresponding Fou
transforms. In this case the expressions for both form fac
are

Fa~q!5
1

q (
k51

7

(
n51

gk

ak,n~n21!! S ak

q21ak
2D n

3 (
0<2 j <n21

~21! j S n
2 j 11D S q

ak
D 2 j 11

1
1

q (
k51

7

ak,0 tan21S q

ak
D ~20!

and

Sa~q!5
2

q (
k51

3

(
n51

r k

bk,n~n21!! S ak

q21ak
2D n

3 (
0<2 j <n21

~21! j S n
2 j 11D S q

ak
D 2 j 11

2uFa~q!u21N. ~21!

We have checked that these form factors calculated a
lytically agree perfectly with the ones obtained by using
MC method directly in that region ofq where the MC
method provides reliable results within the statistical er
employed in this work.

The elastic and inelastic form factors obtained from E
~20! and ~21! present an excellent agreement with the
05250
t.

d

-
d

-

e

-
e

-
re
r
rs

a-
e

r

.
I

results of Meyeret al. @22,23#. In Fig. 4 we plot the differ-
ence functionDS(q)5Sc(q)2SHF(q) obtained from Eq.
~21! as compared with the difference function obtained
@23#. It is apparent that the two curves are practically sup
imposed. However, the asymptotic behavior of the inela
form factor is different in the two calculations because, as
known, a wave function such as a CI one that does not
isfy the electron-electron cusp condition can never satisfy
correct asymptotic behavior of the inelastic form factor@19#.
The results reported here differ slightly from those of Ale
anderet al. @25# especially at small values ofq. As discussed
in that paper, this might be due to the fact that the gene
ized Jastrow wave function employed in that work is ins
ficiently flexible to describe properly the scattering cross s
tion in that region ofq. In fact, in previous work@26# it was
found that the wave function used in@25# for the lithium
atom provides single-particle and intracule densities that
overestimated for high values of the corresponding varia

IV. CONCLUSIONS

The single-particle and both the intracule and extrac
electron densities have been calculated for the ground s
of the lithium atom starting from a highly accura
Hylleraas-type wave function that provides more th
99.99% of the correlation energy. The calculations have b
performed by means of the Monte Carlo method. Sim
analytical parametrizations have been obtained for those
sities. With them the elastic and inelastic form factors ha
been calculated. The effects of electronic correlation on th
quantities and on other functions such as the spatially
tended cusp condition have been analyzed.
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FIG. 4. Comparison between the difference functionDS(q) ob-
tained from the parametrized single-particle and intracule dens
of this work and from the CI wave function of@23#.
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