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Correlated one-electron and two-electron densities for the ground state of the lithium atom
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One- and two-electron densities are calculated for the ground state of the lithium atom starting from a highly
accurate Hylleraas-type wave function. An analytical parametrization for those densities is obtained, which
allows one to calculate both the form factor and the structure factor. Electronic correlation effects are discussed
in terms of these densities and related functions such as the Coulomb hole. The calculation of the densities has
been performed by means of the Monte Carlo method.

PACS numbgs): 31.25.Eb, 31.15.Ew, 32.16f

[. INTRODUCTION Two-body properties can be studied in terms of both the
interelectronic or intraculd,(r';,), and the center of mass or
The ground state of the lithium atom has been the focus Oéxtracule,E(ﬁ), densities defined d4]
extensive computational studies using correlated wave func-
tions. For a compilation of results, see Rdf5,2], and ref- R |W(F, a2
erences therein. All these investigations have been mainly I(F2)= (W)
focused on the calculation of accurate values for the nonrel-
ativistic ground-state energy. Other properties such as the
one-and two-body densities in position space and the elastic XD, Sl (Fi—F)]dPydiy--dfy,  (3)
and inelastic scattering factors have also been obtained. =
These one-and two-body densities play an important role

N

|‘P(F11F21'--1FN)|2

in the description and understanding of the dynamics of at- E(R)=
oms and moleculel3—17]. Electron correlation effects have (W)
been studied in terms of the Coulomb hole, i.e., the differ- N Far
ence between the correlated and the Hartree-Fock interelec- = i ge e >
X S| R— drdr,---diy, 4
tronic densities, and the Hund rules have been interpreted ;, ( 2 =z HN @

using these densities. Also, the one-body density is the cor-

nerstone of density functional theory. Finally, it is worth respectively. These functions are the probability density
mentioning here that the scattering factors have also beefinctions for the relativef;,, and center of mas®, vec-
analyzed to elucidate the effects of electronic correlations inors, respectively. Their spherical averages are denoted by

atomic and molecular systerfit8—25. h(r;») and d(R). The corresponding radial densities are
For anN-electron system, the one-body density is definedyiven by
as

W (F1, P P |2 o P(ri)=4mrh(ryy),
o rl,rz,...,rN N R N R N (5)
p(F)= T > 8(F—F)drdfy--diy (1) [(R) = 4= RG(R).

and represents the probability density function for the InEQs.(1), (3), and(4) summation over the spin variables
electron-nucleus vectat. The spherically averaged density IS implicit. The numerical difficulties involved in calculating
is denoted by (r) and the radial charge distribution around these densities have restricted their calculation with highly

the nucleus is given by accurate wave functions to few-electron atoms. For helium-
like systems, very precise wave functions have been obtained
D(r)=4mr?p(r). (2) by using the variational method. With them benchmark cal-

culations of the interelectronic density have been reported
For the lithium atom, analytic expressions @(r) have since the work of Coulson and Neils¢8]. For the ground
been obtained from both a configuration-interactie@i) state of the lithium atom information about these densities is
wave function[9] and a Hylleraas-type wave functi¢fil], =~ much more scarce. Accurate values for some moments of the
although in this last case it is necessary to make some réntracule densityr?,) can be found if{14,15. A compact
strictions on the basis functions used in the Hylleraas exparenalytical formula for the electron-electron radial distribu-
sion. Accurate values for the electron density at the nucleugion, obtained from a Hylleraas-type wave function, has been
p(0), and for themoments(r") have also been calculated reported[13]. This closed form was obtained by imposing
starting from a Cl wave function9] and from explicity = some conditions on the basis set in order to carry out ana-
correlated wave functiond 2,14]. lytically the different integrals involved in the calculation.
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This leads to an intracule density that does not reproduceestrictions are imposed on the basis set, its length being
adequately the lows, region in the atom. For the atoms of limited only by the computational time requirements in the
the second and third row, the spherically averaged radidWlonte Carlo evaluation of the densities. With the wave func-
electron-pair densityP(r1,) has been obtained within a tion used in this work more than 99.99% of the correlation
configuration-interaction schenmi&7]. Recently the intracule energy is recovered and the asymptotically correct short and
[16,26] and extraculg/27] densities have been calculated long range behaviors are reproduced. The Monte Carlo
starting from explicitly correlated wave functions by meanssingle-particle, intracule, and extracule densities are then pa-
of the Monte Carlo method for atoms from He to Ne. rametrized by means of simple analytical expressions. This
The elastic scatteringor atomic form factor F(g) and  allows one to obtain the elastic and inelastic scattering fac-
the inelastic scattering fact@(q) in the framework of the tors in a simple and closed form. Finally, electron correlation
first Born approximation can be written in terms of the one-effects on all these quantities will be examined.
and two-body densities in the forf28] The structure of this paper is as follows. In Sec. Il we give
the wave function we have worked with and some details of
o IR T the numerical methodology. In Sec. Il we present the results
F(Q)_f p(F)edr ©) obtained in this work. Fi%;\lly, we give thpe conclusions in
Sec. IV. Unless otherwise indicated, atomic units are used
and throughout.

S(ﬁ)=f f [(Fy, 7o)€ (f1-f2d 7 di,— |F(G) |2+ N, Il. WAVE FUNCTION AND MONTE CARLO
) CALCULATIONS

The wave function employed in this work is expanded in

respectively. Herel'(r,,f,) denotes the two-electron den- terms of Hylleraas-type basis functions

sity normalized toN(N—1), andq is the momentum trans-

fer vector whose magnitudg depends on the wavelengih M
of the radiation and the scattering angle &cording toq \1/(1,2,3):/12 CLdu(F1,F2.73) X, (10)
=(4m/\)siné. In addition, the spherically averaged elastic u=1

and inelastic form factors; (q) andS(q), may be expressed

in terms ofD(r) andP(ry,) as where A is the three-electron antisymmetrizé2, are the

variationally determined expansion coefficients, dhés the
o _ number of basis functions employed. The basis functions
F(Q)=f0 D(r)jo(gr)dr @) ¢,(F1,2,73) are of the form
[

wropreple (11)

> 2 2N a—alrgtry)—yrgpiuprlupK
and bu(F1,Fo,Fa) =€ “Tari2lmyiar frofr e far o5

% ) 5 and y,, denotes the possible spin eigenfunctions, which for
S(Q)szo P(ripio(ariddri—[F(@)|*+N, (9  the doublet states can be one of the two

wherejo(x) is the spherical Bessel function of zero order. x=a(1)B(2)a(3)~ (1) a(2)(3) (12

For the lithium atom, correlated valuesBtq) andS(q)

have been calculated using different variational wave funcpr

tions[18,20,22,23,2F The inelastic scattering factor is more x=2a(1)a(2)B(3)—B(1)B(2) a(3). (13)
sensitive to the effect of electronic correlations than the elas-

tic form factor. We shall use the parametrization proposed by King and

High-quality Hylleraas-type wave functions have beenShoup[30], a 352-term expansion that provides a nonrelativ-
used previously to obtain different properties of the atomidistic ground-state energy of-7.478058, which is zh
lithium ground state, such as the energy and the expectaticiibove the most precise calculation, i.e., a correlation energy
values(X;8(r)), (Xi=;8(ri;)), (r"), and(rjy, which are  of 99.995%. The numerical values of the exponents are
related to the single-particle and intracule densities. How=2.76 and y=0.65, and the 352 values of the integers
ever, some other quantities, such as the corresponding onfi-,,j,..K,.l,,m,,n,} which determine the basis set have
and two-body densities at any point of their interval of defi-been taken fronp30]. This basis set was chosen by requiring
nition, or even the inelastic form factor, cannot be directlythe optimal energy with the fewest possible number of basis
evaluated. The aim of this work is to calculate sphericallyfunctions. More precise expansions have been reported since
averaged one- and two-body densities in position space andee, e.g.[14]) in which the number of basis functions is a
both the elastic and inelastic scattering factors for the atomi€actor 5 bigger than in the wave function used in this work,
lithium ground state starting from a very accurate variationaland only one spin basis set is used. The use of such an
Hylleraas-type wave function. The calculations are per-expansion is prohibitive for our present computational re-
formed by means of the Monte Carlo method, which allowssources. Finally, it is worth mentioning that an advantage of
one to evaluate expectati on values of any operator betweehe basis set employed here is that it makes use of the two
wave functions of any kind29]. Therefore no analytical possible spin eigenfunctions for the ground-state configura-
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TABLE I. Monte Carlo(MC) and parametrizedA) values ofp(0) and(r") for the ground state of the
lithium atom as compared with the corresponding Hartree-Fl&h values, and with other correlated values
obtained directly from the wave functiofHN [30] and Exact[12,14,19) and from other parametrized
single-particle density calculatiof&D) [11]. In parentheses we give the statistical error of the MC calcu-

lation.

p(0) (r2) (r (r) (r?) (r®) (r*)
HF 13.83408 30.21654 5.715475 5.019761 18.63129 94.75963 567.0927
MC 30.31) 5.71917) 4.98996) 18.3596) 92.636) 550.46)
HN 13.84150 5.718107 4,989579 18.35514 92.60858 550.2030
Exact 13.84254 30.24097 5.718111 4,989523 18.35462 92.60364 550.0736
A 13.8466 30.2516 5.71855 498971 18.3573 92.6229 550.217
KD 13.84170 30.24071 5.718087 4,989765 18.35707 92.62792 550.4163

tion. Therefore the spatial components need to be computeaf high quality. Also, the MC method provides quite accurate
only once and they require no additional computation time.results for these expectation values. In the worst case),

The one- and two-body densities can be computed witlihe relative error is 0.2%.
the Monte Carlo method as the expectation values of the To parametrize the Monte Carlo radial density function
different & operators, such as are shown in Ed3, (3), and  D(r) we have used the same analytical form as that obtained
(4). We have also calculated the different one- and two-bodyy King and Dressel by using a different Hylleraas basis set

expectation valueét"), wheret stands for, r1,, andR. [11]:
The elastic and inelastic form factors may also be calcu- ;
lated by using the Monte Carlo method. This requires evalu- _S e & n
ation of the expectation value in the variational wave func- D(r)=2 e & A (19
tion of the following local operators:
with the restrictions
S singry)
f(QiFy,.. . )= > e CHERRY) ! !
k=1 Qry > a0=0; > (a1~ w@ye) =0. (16)
k=1 k=1

N

_y Sndra) sin(qr) 14

& aqrg (14) The numerical values of the parametagsanda, , are given

in Table II.

: . . . The values op(0) and(r") calculated with this adjusted
A major drawback of using these expressions is that, foyye ity are also shown in Table(fow A), where they are
large g, their highly oscillatory behavior requires very large 554 compared with those obtained from the analytical ex-
computing time in order to obtain accurate values for thepression of King and DressgL1] (row KD). In general the

corresponding form factors. An alternative way to obtaing eement between the parametrized values and the rest is
them is to use an analytical expression for both the smglequ ite good.

particle and the intracule densities and then to perform their
corresponding Fourier transforms. As we shall see below,

there is good agreement between the factors calculated in B. Intracule density

this way and the ones obtained directly. In Table Il we show the values of some radial moments
of the intracule density(r?,), and its value at the coales-
Il RESULTS cence pointh(0). The r_10tation used hgre for the _different
rows is the same as in Table I. Again the quality of the
A. Single-particle density results provided by the Monte Carlo method is apparent.

In Table | we present different results for the moments of Once we obtained the Monte Carlo interelectronic radial
the single-particle density and f@(0). In thefirst row we densityP(r,5), we parametrized it by means of the expres-
show the values obtained within the Hartree-FagkF) sion
framework. The results provided by the wave function used
in this work are shown in the rows MC and HN. The former Pa(rip)=>, e 12> b rl, (17)
indicates the results calculated using the Monte Carlo k=1 n=1
method while in the latter the integrals are evaluated numeri-
cally [30]. In the row labeled as Exact we give the mostwith the condltlonE —1b1,=0. This expression was ob-
accurate values for those properties given in the literaturéained by Dressel and Kind 3] from a Hylleraas-type wave
[12,14,18. It can be concluded that the wave function usedfunction in which some restrictions on the powers pfwere
in this work provides a description of the one-body densityimposed. This leads to a significant loss of precision in the
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TABLE Il. Coefficientsay, ay ., bxn, andcy , for the parametrized single-particle, intracule and extra-

cule densities.

;=130  @,=341 @3=552 @,—=6.82 «as=8.93 a;=11.04 «,—12.34
a0 32.61914 —577.6960 1604.013-4917.567 24949.70  169330.7 —190421.8
s —22.66042  541.4168 378.1069 1037.909 1232.70446844.17 —240527.4
s 5.101153 —228.4099 —81858.94 —103422.5
s —0.158814 —15470.30
s 0.112840
;=130  @,=3.41 a3=5.52 ;=130  @,=341 ;=552
byt ~11998.32 —113864.6 125863.0c, ; —30559.20  349362.7 —318803.5
by 5577.773  253035.4 32281.08,, 30577.75 —1074826. —172065.4
by 3 ~1051.250 —196043.1 Cis ~12395.65 2268595,
bya 100.5064  133710.7 Cha 2549.599 —2300853.
by —4.819898 —50206.25 Cus —262.4857  2174966.
by 0.093133  18353.06 Cus 10.88710 —1207237.
by.7 —4059.999 C7 622938.7
bys 851.1032 Cus —179760.2
bio —94.84240 Cho 42657.53
by 10 8.983948 Ch .10 —2202.909

low-r 1, region. This is not the case for the wave function and With the adjusted intracule density we have calculated
for the parametrization of the intracule density obtained hereseveral functions related to it. First, in Fig. 1, we plot the

In Table Il we give the numerical values of the parametersCoulomb hole defined asAP(r,)=P(r)—Pur(r1o),

by, and in Table Ill (row A) we show the values of the where the subscriptsand HF mean correlated and Hartree-
Fock, respectively. The Coulomb hole takes negative values

intracule density at the origimy(0), and of themoments

(r}, calculated with the parametrization of this work asfrom the origin up to a given value of,, then it shows two

compared with the values obtained from the parametrizatiopositive maxima, and, finally, it goes through zero and takes
of Dressel and Kindg13] (row DK). The great improvement negative values. The first minimum and maximum account

made in the description of the low-, region is apparent. In for the redistribution of the two electrons in thes Shell

addition, these results are in good agreement with those comvhile the second maximum and minimum correspond to a
sidered exact. An additional test of the quality of the densitypair 1s-2s. Thus the effect of electronic correlations is to
is given by means of the cusp condition, i.e., the value of theseparate the d pair and to concentrate the relative charge at

ratio h’(0)/h(0), which should be equal to 1. For our den- intermediate interelectronic distances.

sity this ratio is 0.989.

We have also calculated the functidr{r,,) —h'(rq,),

TABLE IIl. Monte Carlo (MC) and parametrizedA) values forh(0),{(r",), d(0), and(R") for the
ground state of the lithium atom as compared with the corresponding HartreedfBghkalues, and with
other correlated values for the intracule density obtained directly from the wave fuiefibf80] and Exact
[15,14]) and from other parametrized single-particle density calculatibikg [13]. The value ofd(0) in the
MC row was obtained by carrying out the integrals numerically. In parentheses we give the statistical error

of the MC calculation.

h(0) (rif (riz) (r2) G (3 (riy
HF 0.7842886 5.03229 2.280921 8.689089 37.26414 195.8344
MC 4.391) 2.19982) 8.6691) 36.851) 192.21) 11561)
HN 0.54461 2.198208 8.668507 36.84889 192.10037 1156.022
Exact 0.544329 4.3812 2.1982120 8.6683968 36.847838
A 0.5461 4.3901 2.1996 8.6693 36.863 192.27 1158.4
DK 0.6354 4.50 2.204 8.680 36.95 192.8 1161

d(0) (R7?) (R (R) (R?) (R3) (R%

HF 6.274309 20.129172 4561842 4.344543 9.316035 24.479298 74.19288
MC 6.17243 20.20) 4.60133)  4.29966)  9.1453) 23.861) 71.837)
A 6.146 20.223 4.6012 4.300 9.149 23.896 71.662
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AP(r12) (a.u.)
AII(R) (a.u.)

-0.01 |- .

-0.08 L L 1 1 -0.02 1 1 1 1
0 2 4 6 10 0 1 2 3 4 5

r12 (a.u.) R (a.u.)

w

FIG. 1. Coulomb holeAP(r,) for the ground state of the FIG. 3. Difference functiom\II(R) for the ground state of the
lithium atom calculated with the parametrization of E#j7). lithium atom calculated with the parametrization of E49).

i.e., the difference between the intracule density and its first37]. The correlated values of boti{0) and the radial mo-
derivative. This function is the electron-electron cusp Condiments of negative order were b|gger than the Corresponding
tion spatially extended, similar to the one studied for thepartree-Fock values while the moments of positive order

single-particle densitj31]. This function has been shown to \vere smaller. A study of the difference function
be positive for two-electron systeni82]. With the wave

function used in this work we have concluded that this prop- ATI(R)=II.(R) —TI4(R), (18

erty also holds for the ground state of the lithium atom, as

can be seen in Fig. 2, where we compare the correlated funée., the equivalent to the Coulomb hole for this density,
tion with the Hartree-Fock one. The property(ri,) showed that this function is positive for small valuesPof
—h’(r15)=0 allowed many inequalities involving(0) and  and negative otherwise. That was interpreted by assuming
the radial momentér’,) to be obtained for two-electron sys- that the electrons seek for a position in which they are on
tems[33,34], which now are also available for the lithium opposite sides of the atom when electronic correlations are
atom. The main effect of electronic correlations is to dimin-considered. This was found to be consistent with the fact
ish the strength oh(r,,) —h’(ry,), which leads to sharper that, on average, electronic correlations make the lithium

inequalities amongn(0) and(r{,) than in the Hartree-Fock atom smaller and at the same time they reduce the moments
framework. of negative order of the interelectronic density. This can be

seen by comparing the correlated and the Hartree-Fock val-
ues of the moments of both the radial charge distribution and
the intracule density.

The values of the extracule density at the origif0), This picture is confirmed when the more accurate
and of the momentéR") have been obtained both within the Hylleraas-type wave function is used to calculate the extra-
Hartree-Fock framework35,36 and by using27] the gen-  cule density and its radial moments. In Table Ill we compare
eralized Jastrow wave functions of Schmidt and Moskowitzihe correlated values ¢R") with the Hartree-Fock values.

In Fig. 3 we plot the difference functioAII(R). This func-
tion presents almost the same behavior here 427%h The

C. Extracule density

1.8 LAt T T T T T T T

g 16 . Hgll?l ————— 7 only difference is that for the Hylleraas wave function the
~ 14/ - value ofd(0), which is the probability of finding two elec-
SN ; i trons exactly at mirror positions with respect to the nucleus,
= ; is 6.17243, and therefore smaller than the noncorrelated
= tr 1 value. Also, there is a tiny region for smaf values for
/L 08 1 7 which the correlated extracule density is smaller than the
3 g6 f - Hartree-Fock densitysee Fig. 3. This behavior is similar to
\E/ 04 ] that found for the helium atorf27]. It is worth mentioning
0s ) here a recent calculation d{0) for different atoms and ions

using large Cl wave functior{88]. In that work it was found
that electronic correlations tend to diminist{0) with re-
spect to the HF value; however, the numerical value reported
there is different from the one obtained here.

FIG. 2. Cusp condition spatially extended for the intracule den- 1O parametrize the extracule density we have taken into
sity of the ground state of the lithium atom calculated with the account that within the Hartree-Fock framework and for the
parametrization of Eq(17) as compared with the Hartree-Fock atoms helium to beryllium the relatiaf( R) =8h(2R) is ful-
value. filled [36]. Although this relation does not necessarily hold

0
0 02 04 06 08 1 1.2 14 16 18 2

r12 (a.u.)
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in general, it allows one to select a particular form for the 0.01 T T T T
extracule density. The quality of this parametrization will be
determined in terms of the results that are obtained with it.
We have

T
Hyll —

Ik

3 =
ML(R)= X, e 247> o ,R" 19 Z -
k=1 n=1

with the condition=3_,c, ,=0. The numerical values of the
parameters , are given in Table Il. The momentR")
calculated with the Monte Carlo method and those obtainec
by using the analytical parametrization given by E) are
reported in Table 1ll, where they are compared with the cor-
responding Hartree-Fock moments. Both sets of correlatec
values agree within the statistical error of the MC calcula-
tion. Finally, let us mention that the momerR") obtained FIG. 4. Comparison between the difference functdd®(q) ob-
from a generalized Jastrow-type wave functi@Y] are in  tained from the parametrized single-particle and intracule densities
good agreement with the values obtained here from thef this work and from the CI wave function ¢23].

Hylleraas-type wave function.

results of Meyeret al. [22,23. In Fig. 4 we plot the differ-
D. Elastic and inelastic form factors ence functionAS(q)=S.(q) —Syr(q) obtained from Egqg.

Both the elastic and the inelastic form factors can be com£21) as compared with the difference function obtained in

puted directly by means of the MC method by calculating the.[23]' It is apparent that the two curves are practically super-
mean value of the functions of E6L4). Due to the oscillat- imposed. However, the asymptotic behavior of the inelastic

ing behavior of these functions, this method alldw(]) and Lorm factor is dlf;‘ere?t in ther;[wo calé:lulatmr;ﬁ l::edcause, ?S 'St
S(q) to be obtained with a given precision up toga ay, nown, a wave function such as a one that does not sat-

from where they take less precise values. isfy the electron-electron cusp condition can never satisfy the
Both the elastic and the inelastic form factors can be obSOeCt asymptotic behawor_of the_lnelastlc form fadit].

tained, once the single-particle and intracule densities arghe results reported here differ slightly from tho_se of Alex-

parametrized, by calculating their corresponding Fourietf"mder(at al.[25] especially at small values of As discussed

transforms. In this case the expressions for both form factors! that paper, this mlght.be due to the .fact that the'ggneral-
ized Jastrow wave function employed in that work is insuf-

are ficiently flexible to describe properly the scattering cross sec-
1.7 % a \" tion in that region ofg. In fact, in previous work26] it was
Fa@==2> > ag(h—-1!|—5—— found that the wave function used [25] for the lithium
Gk=1n=1 Q"+ ai atom provides single-particle and intracule densities that are
_ q |2+t overestimated for high values of the corresponding variable.
—1)] —
XOszjzs:nfl (=1 (2j+1 ak)
L 7 IV. CONCLUSIONS
+= > atan | — (20 The single-particle and both the intracule and extracule
dk=1 « electron densities have been calculated for the ground state
and of the lithium atom starting from a highly accurate
Hylleraas-type wave function that provides more than
23 a \" 99.99% of the correlation energy. The calculations have been
Saa)==2> > bn-D! 55— performed by means of the Monte Carlo method. Simple
Ok=1n=1 "~ q°+ai analytical parametrizations have been obtained for those den-
n q\2i+1 sities. With them the elastic and inelastic form factors have
% E (— 1)1‘( . ) = been calculated. The effects of electronic correlation on these
0<2j<n-1 2]+ 1) a quantities and on other functions such as the spatially ex-
CIFa(q)2N. 21) tended cusp condition have been analyzed.
We have checked that these form factors calculated ana- ACKNOWLEDGMENTS

lytically agree perfectly with the ones obtained by using the
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