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Calculation of a2 corrections to parapositronium decay
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We present details of our recent calculation ofa2 corrections to the parapositronium decay into two photons.
These corrections are rather small and our final result for the parapositronium lifetime agrees well with the
most recent measurement. Implications for orthopositronium decays are briefly discussed.
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I. INTRODUCTION

Precision measurements with nonrelativistic bound sta
provide a sensitive test of bound-state theory based on q
tum electrodynamics~QED!. Theoretical predictions gener
ally agree well with experimental results. However, there
a few observables where the agreement is not satisfac
The best-known example is the lifetime of the orthoposit
nium ~o-Ps!, where some experimental results@1,2# differ
from the theory by several standard deviations. The theo
ical prediction is not yet complete, because two-loop Q
corrections to theo-Ps decay have not been evaluated y
However, those corrections would have to be very large
reconcile the theory with experiment.

Recently, we have reported a calculation of corrections
the parapositronium~p-Ps! decay into two photons@3# in the
second order in the fine structure constanta. We argued
there that the smallness of theO(a2) corrections to thep-Ps
lifetime makes it unlikely that the analogous effects ino-Ps
could alone explain the discrepancy between theory and
periment.

The purpose of the present paper is to present a deta
description of the calculation reported in Ref.@3#. We begin
with a brief discussion of the current theoretical and exp
mental status of positronium~Ps! decays.

Theoretical predictions forp-Ps ando-Ps decay rates into
2 and 3 photons, respectively, can be expressed as ser
a:

Gp-Ps
theory5Gp
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where

Gp
(0)5

ma5

2
, Go

(0)5
2~p229!ma6

9p
~3!

are the lowest-order decay widths of thep-Ps ando-Ps, re-
spectively, and the ellipses denote unknown higher-or
terms which we will neglect in our analysis. Corrections
O(a) were calculated in Ref.@4# for p-Ps. Foro-Ps the most
accurate result was obtained in Ref.@5#, where references to
earlier works can be found. The logarithmic two-loop corre
tion was found in Ref.@6# for o-Ps and in Ref.@7# for p-Ps.
The leading logarithmic correction at three loops was co
puted in Ref.@8#. Some partial results on theO(a2) correc-
tions for bothp-Ps ando-Ps can be found in Refs.@5,9–12#.
A complete calculation ofBp has been reported recently i
Ref. @3# but the value ofBo has not been obtained so far.

Equations~1!, ~2!, and~3! give the following predictions
for the lifetimes:

Gp-Ps
theory57989.42ms211Gp

(0)BpS a

p D 2

5~7989.4210.043 Bp!ms21, ~4!

Go-Ps
theory57.0382ms211Go

(0)BoS a

p D 2

5~7.038210.3931024 Bo!ms21. ~5!

On the experimental side, the Ann Arbor group@1,2# has
found

Go-Ps
exp ~gas measurement!57.0514~14!ms21,

Go-Ps
exp ~vacuum measurement!57.0482~16!ms21, ~6!
©2000 The American Physical Society02-1
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CZARNECKI, MELNIKOV, AND YELKHOVSKY PHYSICAL REVIEW A 61 052502
which, for Bo50, differ from Eq. ~5! by 9.4s and 6.3s,
respectively. This apparent disagreement of experiment w
theory has been known as the ‘‘orthopositronium lifetim
puzzle’’ for a long time. More recently, an independent me
surement by the Tokyo group found@13#

Go-Ps
exp ~SiO2 measurement!57.0398~29!ms21, ~7!

which agrees with the theory ifBo is not too large.1 Thus, the
present experimental situation is rather unclear. If future
perimental efforts confirm the Ann Arbor results~6!, the or-
thopositronium lifetime puzzle could be solved ifBo turns
out to be unusually large, e.g.,;250 for the vacuum mea
surement. Alternatively, one might speculate that so
‘‘new physics’’ effects such aso-Ps decays involving axions
millicharged particles, etc., cause the excess of the meas
decay rate over the QED predictions. Some of those ex
scenarios seem to have already been excluded by dedic
experimental studies.~For a review and references to origin
papers see, e.g., Ref.@15#.!

p-Ps can decay into 2 photons and its lifetime is too sh
to be measured directly. For a long time its precise va
remained unknown. However, it was realized in Ref.@16#
that such a measurement would be very useful, since
calculation of the coefficientBp is much easier than that o
Bo . Therefore,p-Ps offers an easier precision test of t
bound-state QED. This observation motivated the meas
ment of thep-Ps lifetime@16#, which is 6.5 times more ac
curate than the best previous results.

To fully utilize that experimental result and enable t
rigorous test of bound-state QED envisioned in Ref.@16#, we
undertook a complete calculation of theO(a2) corrections to
p-Ps rate@3#. We found that the nonlogarithmic part of thos
corrections is small; the coefficientBp is

Bp51.75~30!, ~8!

and the theoretical prediction for thep-Ps lifetime becomes
@half of the logarithmica3 term in Eq.~1! is taken as an erro
estimate#

Gp-Ps
theory57989.50~2!ms21. ~9!

Comparing this number with the most recent experimen
result @16#

Gp-Ps
exp 57990.9~1.7!ms21 ~10!

we find excellent agreement between theory and experim
In the next section we explain our approach to Ps dec

with the example of the leading order calculation. In Secs.
and IV we discuss, respectively, the so-called soft and h
O(a2) contributions. The final result is presented in Sec.

1Another measurement of theo-Ps lifetime was performed earlie
in Mainz @14# with the resultGo-Ps

exp 57.031(7)ms21. This result is
consistent with the theoretical predictions but uncertainties
clearly larger. For a summary of older experimental studies see
@15#.
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II. FRAMEWORK OF THE CALCULATION

Positronium is a bound state of an electron and a posit
Its energy levels and lifetimes can be well understood wit
the framework of nonrelativistic expansion in QED. The d
cay width ofp-Ps into two photons can be written as

Gp-Ps5
1

2!4p2 (
l
E d3k1

2v1

d3k2

2v2
d~P2k12k2!

3U E d3p

~2p!3
Tr@A~l,p!CP#f~p!U2

, ~11!

where P5(M p-Ps,0) is the four-momentum of the positro
nium, k1 andk2 are photons’ momenta,f(p) is the positro-
nium nonrelativistic wave function,A(l,p) is the amplitude
of the processe1e2→2g, l denotes polarizations of th
photons, and

CP5
11g0

2A2
g5 ~12!

is the spinor part of thep-Ps wave function. The wave func
tion of thep-Ps is normalized to unity,

E d3p

~2p!3 f~p!251, ~13!

hence the usual normalization factor, 1/2M p-Ps, is absent in
Eq. ~11!. From Eq.~11! one sees thatGp-Ps is determined by
two quantities: the annihilation amplitude of the electro
positron pair into a pair of photons, and the positroniu
bound-state wave function. Since the typical velocity of ele
tron and positron in Ps isO(a), the annihilation amplitude
can be expanded both ina and in the relative momentump
of the electron and positron. Corrections to the positroni
wave function are computed using the standard tim
independent perturbation theory and Breit correction to
nonrelativistic Hamiltonian.

We begin with the calculation of the decay rate to lead
order. Since the electron and positron in Ps are nonrelati
tic, we employ noncovariant perturbation theory. Although
is not the only way, the noncovariant technique permits
easier evaluation of the soft corrections to thep-Ps decay
rate.

The on-shell amplitude of the processe1e2→gg reads

A5
8paEp

Ep1m
L2~p!~ae2!

3
L1~p2k!2L2~p2k!

Ep2k
~ae1!L1~p!

1~e2↔e1 ,k↔2k!

5
8paEp

Ep1m

L2~p!~ae2!@a~p2k!1bm#~ae1!L1~p!

Ep2k
2

1~e2↔e1 ,k↔2k!. ~14!

Here, Ep5Am21p2 is the energy of the electron~or posi-
tron!, L6(p) are the projectors on the mass shell,

re
ef.
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CALCULATION OF a2 CORRECTIONS TO PARAPOSITRONIUM DECAY PHYSICAL REVIEW A 61 052502
L6~p!5
1

2 S 16
ap1bm

Ep
D , ~15!

andk is the three momentum of the photon in the final sta
To the leading order one can neglect the dependenc

the annihilation amplitude on the momentumupu;ma,
which is small in comparison withm and uku;m. One ob-
tains the following leading order amplitude:

ALO52
4pa

m2
~ae2!~ak!~ae1!. ~16!

From Eqs.~16! and ~12! it follows that the photon polariza
tion vectors are perpendicular to each other, i.e.,e1e250.

Computing the trace in Eq.~11! and integrating overp
one obtains

U E d3p

~2p!3
Tr @ALO~l,p!CP#f~p!U2

5
32p2a2

m2
uc~0!u2,

~17!

which gives the following leading order decay width:

G05
4pa2

m2
uc~0!u25

ma5

2
. ~18!

The calculation of higher order corrections to positroniu
lifetime is performed in the framework of the nonrelativist
quantum electrodynamics~NRQED! @6#, which we regular-
ize dimensionally@17#. In this framework, all contributions
are divided into soft and hard corrections. The soft contri
tions come from the momenta region of the order ofk
;ma and thus are sensitive to the details of the bound s
dynamics. On the other hand, the hard corrections aris
contributions of the relativistic momentak;m; their effect
can be described by addingd(r)-like terms to the nonrela
tivistic Hamiltonian.

Special care in the present calculation is required beca
of a singleg5 matrix in the positronium wave function. Sinc
a consistent treatment of singleg5 is known to be a problem
in dimensional regularization, below we describe how
have dealt with it.

We use the following fact: if thep-Ps decays into two
photons with polarizationse1 and e2, then the photons are
polarized so thate1e250. Let the first photon be polarize
along thex and the second photon along they axis; the
three-momentum of the first photonk being along thez axis.
If we introduce two auxiliary vectors

jm5
Pm

m
, hm5

km

m
,

then the standard four-dimensional representation of theg5
matrix, g55 ig0gxgygz , can be written as:

g55
i

2m2
j”e” 1e” 2h” . ~19!
05250
.
of

-

te
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e

We use this equation to defineg5 in d dimensions.
With an additional trick it is possible to avoid any refe

ence to photon polarization vectors. Let us consider Eq.~11!
and use there the explicit representation for theg5 matrix,
Eq. ~19!. Then the following trace has to be computed:

Tr @j”e” 1e” 2h” Mab#e1
ae2

b . ~20!

Taking into account thate1e25e1,2k5e1,2P50, one con-
cludes that the final result can only depend one1

2 ande2
2. In

this situation, one can average Eq.~20! over directions ofe1
ande2, provided one respects the above constraints. We
rive at the following formula:

Tr @j”e” 1e” 2h” Mab#e1
ae2

b→Tr @j”gngmh” Mab#Tmn
ab , ~21!

where

Tmn
ab5

~322e!dm
adn

b2dmndab2dm
bdn

a

4~122e!~22e!~12e!
,

dmn[gmn2jmjn2hmhn . ~22!

According to the discussion of different momentum regio
contributing to the second order corrections, we divide
coefficientBp in Eq. ~4! into three parts

Bp5Bp
squared1Bp

hard1Bp
soft, ~23!

whereBp
squaredis the contribution of the one-loop amplitud

squared andBp
hard, softare the hard and soft two-loop contr

butions. The square of the one-loop amplitude is easily
tained from the one-loop result:

Bp
squared5S 5

2
2

p2

8 D 2

51.6035. ~24!

In contrast to the first order correction which arises fro
hard photon exchange only, the second order correctio
more difficult to compute, because of the appearance of
soft scale effects. In addition, hard and soft corrections
not finite separately. Below we discuss the calculation
these corrections.

III. SOFT SCALE CONTRIBUTIONS

As follows from Eq.~11!, in order to obtainBp
soft one has

to compute relativistic corrections to the annihilation amp
tude e1e2→gg and relativistic corrections to the positro
nium wave function induced by the Breit Hamiltonian. A
cordingly, the soft contribution is separated into two piec

Bp
soft5Bp

soft~AA!1Bp
soft~WF!. ~25!

A. Relativistic corrections to the amplitude

The calculation of relativistic corrections to the amplitu
is straightforward. One starts with the on-shell amplitude E
~14! and expands it up to relative orderO(p2/m2). The cal-
2-3
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CZARNECKI, MELNIKOV, AND YELKHOVSKY PHYSICAL REVIEW A 61 052502
culation of these corrections can be performed in three
mensions. To demonstrate this, let us write the correctio
the amplitude in the form:2

dA5Ai j
(2)pipj . ~26!

To calculate the correction to thep-Ps lifetime induced by
dA, we have to compute the following integral:

E ddp

~2p!d
f~p!dA[

1

d
Aii

(2)E ddp

~2p!d
f~p!p2. ~27!

To this end we use the Schro¨dinger equation in the momen
tum space:

E ddp

~2p!d
f~p!p25E ddp

~2p!d

4pamp2

p22mE
E ddk

~2p!d

f~k!

~p2k!2
.

~28!

Rewriting

p2

p22mE
511

mE

p22mE
,

shifting the integration momenta in the first termp→p1k
and using the fact that the scaleless integrals vanish in
mensional regularization, we arrive at

E ddp

~2p!d
f~p!p25mEc~0!. ~29!

We see that the amplitudeAi j
(2) is needed only in thee→0

limit, where it can be easily calculated. We obtain:

dA52
2p2

3m2
ALO , ~30!

which induces the followingO(ma2) correction to thep-Ps
lifetime:

Bp
soft~AA!5

p2

3
. ~31!

Recently there has been some discussion in the litera
@11,10,18# concerning the linearly divergent integral in E
~29!. Our approach to the linear divergence is based on
mensional regularization which permits a consistent tre
ment of hard and soft corrections simultaneously. We d
similarly with linearly divergent integrals in our recent ca
culations of theO(ma6) corrections to positroniumS-wave
energy spectrum@19,20# and found agreement with earlie
results obtained in a different regularization scheme@21#.
This gives us confidence in the result given in Eq.~29!.

2A linear term in the expansion of the amplitude inp does not
contribute to the decay rate since the positronium ground-s
wave function is spherically symmetric.
05250
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B. Relativistic corrections to the wave function

Relativistic corrections to the positronium wave functio
can be computed using Breit Hamiltonian. Since we regu
ize all divergences dimensionally, we need that Hamilton
in d dimensions, as it has been derived in Ref.@20#.

Breit Hamiltonian projected on theS states reads

U~r,p!52
p4

4m3
1

d21

4m H p2

m
,C~r !J 1

dpa

m2
d~r!

2
pa

4dm2
@s i ,s j #@s i8 ,s j8#d~r!. ~32!

Here the Pauli matricess i ands i8 act on the two-componen
spinors of the nonrelativistic electron and positron, resp
tively, and

C~r !52
aG~d/221!

pd/221r d22
~33!

is thed-dimensional generalization of the Coulomb potenti
The operatorU(r,p) induces the following correction to th
p-Ps width,

dBG

GLO
5D11D2 , ~34!

where the first term is due to thed(r) part of the operatorU
and the second term is due to the remaining terms of
operator. We note also, thatGLO in the above formula stand
for the leading order decay width computed ind-dimensions,
in contrast to the three-dimensional result Eq.~18!. All nec-
essary formulas can be extracted from the calculation
scribed after Eq.~36! of Ref. @20#. One obtains:

D152
a2

8 F1

e
24 ln~ma!22G ,

D25
5a2

8 F1

e
24 ln~ma!1

31

5 G . ~35!

Thus the wave function correction contribution to the po
tronium lifetime becomes

Bp
soft~WF!12p2 ln

1

a
5

p2

2e
12p2 ln

1

ma
1

33p2

8
.

~36!

On the lhs of the above equation we have separated the l
rithm of the fine structure constant to be consistent with
vision of corrections introduced in Eq.~1!.

C. Final result for the soft contributions

The sum of the corrections to the annihilation amplitu
~31! and to the wave function~36! gives the final result for
the soft contributions,

Bp
soft5

p2

2e
22p2 ln m1

107p2

24
. ~37!te
2-4
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IV. HARD SCALE CONTRIBUTION

The second class of corrections are the hard scale co
butions. The corresponding Feynman diagrams are show
Figs. 2~VP!, 3, 4, 5. They should be computed in dime
sional regularization, with external electron and positron
rest.

Bp
hard consists of three types of contributions: vacuum p

larization insertions in the photon propagators, light-by-lig
scattering diagrams, and two-photon corrections to the a
hilation amplitude,

Bp
hard5Bp

hard~VP!1Bp
hard~LL !1Bp

hard~gg!. ~38!

Vacuum polarization insertions into the one-loop grap
@an example is shown in Fig. 2~VP!# were computed in Refs
@22# and @23#,

Bp
hard~VP!50.4473430~6!. ~39!

A. Light-by-light scattering contributions

One class of the second order corrections to thep-Ps life-
time arises from the photon-photon scattering, shown in F
3. These contributions are relatively small; it is interestin
however, that the positronium lifetime measurement of
creased precision may become sensitive to effects of non
ear QED.

For the diagrams shown in Fig. 3, we find that the pla
ones are equal (a5b), and so are the nonplanar ones
5d). Further, both classes remain unchanged when we c
the internal photons. Therefore, we only need to comp
two diagrams, one planar and one non-planar. We will c
them L1 and L2. The contribution of those diagrams to th
final expression for the amplitude is 4L112L2. The factor 4
arises because we have two types~a! and~b! which differ by
the orientation of the fermion loop, and both can have p
allel or crossed internal photon lines. For the typeL2 we only
have a factor 2 for the orientation of the fermion loop, b
cause crossing of the internal photon lines simply exchan
~c! and ~d!.

FIG. 1. Three-level amplitude of thep-Ps decay, higher-orde
mass counterterms, and their values.

FIG. 2. One-loop corrections top-Ps decay and an example of
vacuum polarization insertion.
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The light-by-light diagrams in Fig. 3 have an imagina
part because of the two-photon cut. This complicates a
merical integration over Feynman parameters and we us
different method to evaluate them. The idea is to~formally!
assign a large massM to the internal fermion line. The dia
gram may then be expanded in ratiom/M using the so-called
large mass expansion@24–26#. This reduces the task to th
calculation of two-loop vacuum or massless propagator in
grals. The price to be paid is that the result is a series
m/M , while we are interested in the value of the series
m/M51.

Fortunately, using symbolic manipulation programs o
can compute many terms of the series; in our calculat
about twenty terms were computed for each diagram. T
resulting series converge well, especially forL2, and the
number of computed terms is sufficient to obtain an accu
estimate of this contribution atx51. The behavior of the
series forL1 is improved if we make a change of variable
m/M5Az/(22z). The nth term of the series in variablez
decreases faster than 1/n2, and slower than 1/n3. Finally, we
find

L1520.875~25!, L250.695~38!, ~40!

FIG. 3. Light-by-light scattering contributions top-Ps decay.

FIG. 4. Two-loop photonic diagrams for thep-Ps decay.
2-5
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CZARNECKI, MELNIKOV, AND YELKHOVSKY PHYSICAL REVIEW A 61 052502
and the contribution of these diagrams to the coefficientBp
is

Bp
hard~LL !54L112L2522.11~13!. ~41!

B. Two-photon corrections

Another class of corrections is generated by the tw
photon diagrams, shown in Fig. 4. These are the most d
cult diagrams we have to compute, since in general t
diverge and a regularization is required. There arise
types of divergences: First, there are the ultraviolet~UV!
divergences; they are removed by an appropriate renor
ization. Second, there are infrared~threshold! singularities.

FIG. 5. Mass counterterms in one-loop diagrams. The num
ing conforms to Fig. 4.
in
nc

n

05250
-
-
y
o

al-

They will remain in the final result for the hard scale cont
butions and vanish only in the sum with the soft contrib
tions.

The evaluation of the hard corrections is made possible
a combination of the analytical and numerical methods. T
idea is to construct an infrared safe expression from div
gent Feynman amplitudes by subtracting appropriate co
terterms, which can be computed analytically. The constr
tion of the counterterms is based on the followin
observation: in a given Feynman diagram the infrared sin
larities appear when the loop momenta are small. In t
situation the propagator of the virtual electron in thet chan-
nel can be contracted to a point. As the result, the infra
behavior of those Feynman diagrams is identical with tha
the two-loop three point functions considered earlier in Re
@27# and @20#.

We proceed in the following way: after constructing a
infrared finite expression, we combine propagators us
Feynman parameters; perform momentum integrations a
lytically; extract ultraviolet~UV! divergences and integrat
numerically over typically 5~in some cases 6! Feynman pa-
rameters in the finite expressions. For the numerical integ
tion we use the adaptive Monte Carlo routineVEGAS @28#.

Let us illustrate the basic steps of the calculation by c
sidering as an example the nonplanar box diagramD1 shown
in Fig. 4. A power counting shows that this diagram is U
finite but IR divergent. To demonstrate how the IR count
term is constructed we consider a symbolic expression
this diagram~after taking the trace over Dirac matrices!:

r-
D1;E dDl 1

~2p!D

dDl 2

~2p!D

f (0)1 f (1)1 f (2)1•••

l 1
2l 2

2~ l 1
212pl1!~ l 2

222pl2!~ l 3
212pl3!~ l 3

222l 3p!~ l 3
212p1l 312m2!

. ~42!

Here,p5(m,0) is the four momentum of the incoming electron or positron,l 35 l 11 l 2 is the sum of the loop momental 1,2,
andp15p2q, whereq is the four momentum of the outgoing photon. The quantitiesf ( i ) in the numerator denote the uniform
functions of the loop momenta:

f ( i )~l l 1 ,l l 2!5l i f ( i )~ l 1 ,l 2!. ~43!

Only terms withf (0) and f (1) diverge in IR. We use the following identity:

D1[D1
( i>2)1~D1

( i 50,1)2@D1
( i 50,1)#ct!1@D1

( i 50,1)#ct ~44!

where the counterterm@D1
( i 50,1)#ct is obtained by expanding the propagator of the electron in thet-channel in Taylor series in

small loop momenta,

@D1
( i 50,1)#ct;

1

2m2E dDl 1

~2p!D

dDl 2

~2p!D

f (0)1 f (1)

l 1
2l 2

2~ l 1
212pl1!~ l 2

222pl2!~ l 3
212pl3!~ l 3

222l 3p!
S 12

l 3
212p1l 3

2m2 D . ~45!
int,
als

rm
Examining Eq.~44! one recognizes that the first two terms
that equation are finite, both in the UV and the IR, and he
can be evaluated numerically. The last term,@D1

( i 50,1)#ct , is
divergent. Since thet-channel propagator has been co
e

-

tracted to a point, this term corresponds to a three-po
rather than four-point Feynman amplitude. Such integr
were computed in a previous study@27# ~see also Ref.@20#!.
Using those results one can obtain the counterte
2-6
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TABLE I. Values of one-loop diagrams.

Diagram e21 e0 e1

S1
1
4 2

1
2 11

5
2 ln 21

p2

48

S2
1
4

p2

16
2 ln 2 22 ln 21ln2 21

p2

16
1

7
8 z3

S3 2
1
2 2

3
4 1 ln 2 2

3
2 1

3
2 ln 22ln2 21

p2

24

Total 0 2
5
4 1

p2

16
2

1
2 12 ln 21

p2

8
1

7
8 z3
in
a-
t
ts

W

re

n

to

es

ss

or-
as
f

he
@D1
( i 50,1)#ct analytically:

@D1
( i 50,1)#ct;

1

e
~2p224!148112p2 ln 216p2142z3 .

~46!

Similar procedure was applied to evaluate the remain
Feynman diagramsDi . In some cases, like, e.g., for the pl
nar box diagramD2, the overall subtraction is not sufficien
and a more sophisticated approach is required. The resul
the calculation are summarized in Table III.

Finally, we have to consider the one-loop diagrams.
need the results including termsO(e), because they will be
multiplied by divergent renormalization constants. The
sults are summarized in Table I.

For the renormalization one needs the electron wave fu
tion renormalization constant,dZe[Ze21, and the mass
countertermdm computed in dimensional regularization
O(a2). These results can be found in Ref.@29#. For com-
pleteness, we collect here the relevant formulas:

dZe5a dZe
(1)1a2 dZe

(2)

~47!
dm

m
5a

dm(1)

m
1a2

dm(2)

m
,

where

a5
e2

~4p!D/2
m(22e),

dZe
(1)5

dm(1)

m
52

3

e
242eS p2

4
18D ,

~48!

dZe
(2)5

9

2e2
1

51

4e
2

49p2

4
116p2 ln 2224z31

433

8
,

dm(2)

m
5

9

2e2
1

45

4e
2

17p2

4
18p2 ln 2212z31

199

8
.

05250
g

of

e

-

c-

The final result is obtained by putting the many piec
together:

m4eBp
hard~gg!5dZe

(2)B01
dm(2)

m
B11S dm(1)

m D 2

B2

1dZe
(1)S S11S21S31

dm(1)

m
B1D

1
dm(1)

m S (
i 55,7,11,12,15,17,19

Ci D 1(
i 51

19

Di

52
p2

2e
242.19~27!. ~49!

HereBi are the tree-level diagrams~Fig. 1!, Si are one-loop
diagrams~Table I!, Ci are the one-loop diagrams with ma
insertions ~Table II!, and Di are the two-loop diagrams
~Table III!.

For the complete hard correction we add Eqs.~39!, ~41!,
and ~49! and find

Bp
hard52

p2

2e
12p2 ln m243.85~30!. ~50!

V. FINAL RESULT

The final result for the second order nonlogarithmic c
rection to thep-Ps decay rate into two photons is obtained
a sum of the soft~37! and hard~50! pieces, and the square o
one-loop corrections~24!. Adding them one finds

Bp51.75~30!, ~51!

and the theoretical prediction for thep-Ps lifetimes becomes

Gp-Ps
theory57989.50~2!ms21. ~52!

In this equation we have not included the contribution of t
decay modep-Ps→4g. This decay channel increasesGp-Ps
by approximately 0.01ms21 @30,31#.
2-7
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TABLE II. Values of counterterm diagrams.

Diagram e21 e0 e1

C5
1
4 2

1
3 1

1
2 ln 2 37

18 1
3
8 p21

1
2 ln 22

1
2 ln2 2

C7 2
1
4

1
2 1

1
2 ln 2 212

7
24 p21

5
2 ln 22

1
2 ln2 2

C11 0 12
1

16 p22 ln 2 32
7

48 p22
5
2 ln 21ln2 22

7
8 z3

C12 0 211
3

16p22 ln 2 232
1

48 p21
1
2 ln 21ln2 21

21
8 z3

C15
5
8

3
4 2 ln 2 3

2 2
1

32 p22
3
2 ln 21ln2 2

C17 2
1
2 2

3
4 12 ln 2 2

3
2 1

1
8 p21 ln 222 ln2 2

C19 2
1
4 2

1
16 p21

1
2 ln 2 2

1
24 p21

1
2 ln 22

1
2 ln2 22

7
8 z3

Total 2
1
8

1
6 1

p2

16
1

1
2 ln 2 19

18 2
p2

32
1 ln 22

1
2 ln2 21

7
8z3.2.2519

TABLE III. Values of two-photon diagrams in Fig. 4.

Diagram e22 e21 e0

D1 0 2
1
2 1

p2

4
37.35~10!

D2 1 1 243.69(20)
D3 0 0 20.074(2)

D4
1
4 2

1
2 2

3p2

4
265.90(3)

D5 2
1
4

211
3
2 ln 2 57.918~20!

D6
1
2 2122 ln 21

p2

8
9.661~5!

D7 21 1
2 1

7
2 ln 2 210.20(1)

D8
1
8

3
16 2 ln 21

p2

16
20.324

D9
1
8

5
16 2 ln 21

p2

16
1.475(50)

D10 0 2
1
2 3.488(2)

D11 2
1
8

45
16 2

p2

4
22 ln 2 23.80(3)

D12 2
1
8

2
51
16 1

p2

2
22 ln 2 1.69(12)

D13
1
8 3

16 1
p2

16
2 ln 2

20.12(1)

D14 0 0 20.804(2)

D15
23
16 25 ln 21

15
4

39
4 2

17p2

96
2

27 ln 2
2

19 ln2 2.2.9689

D16 2
1
2 2 ln 22

3
4

21.885(4)

D17 2
1
2 5 ln 22

9
4

21.175(1)

D18
1
8

p2

16
2 ln 2

p2

16
1

p4

128
22 ln 22

p2 ln 2
4

12 ln2 21
7z3

8
.0.2940

D19 21 2
3
2 2

p2

4
1

9
2 ln 2 232

23p2

48
1

19 ln 2
2

1
p2 ln 2

2
2

17 ln2 2
2

2
7z3

2
.26.0148

Total 3
16 2

39
16 2

p2

8
1

3
2 ln 2 219.14(27)
052502-8
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TABLE IV. Comparison of available results forp-Ps ando-Ps. For the various coefficientsB we use the notation introduced in the tex
Bng describes multiphoton processes,p-Ps→4g ando-Ps→5g, andBhard(LL) is due to effects of non-linear QED:g* g* →gg for p-Ps and
g* →3g for o-Ps.GLO denotes the lowest order decay width of a given state.

p-Ps o-Ps

O~a!: coefficients of S a

p DGLO 22.5325989 @4# 210.286606(10) @5#

O~a2!: coefficients of S a

p D 2

GLO

Bsquared 1.60351 28.860~2! @5#

Bhard(VP) 0.4473430~6! @23# 0.964960~4! @23#

Bhard(LL) 22.11(13) @this work# 0.7659~9! @23,32#

Bhard(gg) 2
p2

2e
242.19(27) @this work# ??

Bsoft p2

2e
144.002 @this work# ??

Btotal 1.75~30! ??
Bng 0.274~1! @30,31# 0.187~11! @30,31#
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VI. CONCLUSION

We have described the numerical and analytical meth
employed in our calculation of the second order QED c
rections to thep-Ps lifetime. Our final result, the nonlogarith
mic correction O(a2/p2) with the coefficient Bp
51.75(30) increases the decay rate by approxima
0.1 ms21. The resulting theoretical prediction is in excelle
agreement with experiment.

The framework of this calculation is the nonrelativist
QED with dimensional regularization. The dimensional reg
larization facilitates the separation of scales, the corners
of the effective theory. Its main technical advantage is t
no additional scales, such as a photon mass, are introd
by the regularization, so that only single scale integrals n
to be computed. Unfortunately, these integrals are still
complicated to be evaluated analytically. We computed th
numerically by subtracting IR counterterms. Those w
constructed using simpler integrals which are known anal
cally, as we explained in Sec. IV. The multidimensional
nite integrals were computed using adaptive Monte Ca
integration routineVEGAS @28#.

The approach described in this paper can be also app
to the calculation of theO(a2) corrections to theo-Ps decay
into three photons. In particular, the IR counterterms can
constructed in a similar manner. However, the larger num
of diagrams and two additional integrations over the thr
photon phase space make this problem significantly m
difficult.

Somewhat surprising is the smallness of the second-o
corrections found in this paper. It resulted from a very stro
cancellation between soft and hard pieces computed in
mensional regularization. We would like to stress that
soft and hard pieces are not separately finite and depen
the regularization ~in this sense they are ‘‘scheme
dependent’’!. For this reason, large constants accompany
divergent pieces in Eqs.~50! and ~37! may have no direct
physical meaning. Unambiguous information is provided
05250
s
-

ly

-
ne
t
ed
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m
e
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o

ed

e
er
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re

er
g
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e
on

g

y

the scheme-independent results, Eqs.~24!, ~31!, ~39!, and
~41!, which are all of order@several units#3(a/p)2.

In the absence of a complete result onO(a2) to Go-Ps it is
interesting to discuss what our result forp-Ps might imply
for the o-Ps lifetime puzzle. Although nothing can be sa
rigorously, we believe that our result indicates that no d
matic enhancement in theO(a2) effects in o-Ps decay is
possible. In Table IV we have summarized available res
on the second order effects for bothp-Ps ando-Ps decays
~we have not included the partial results for the soft corr
tions ino-Ps since they are scheme-dependent!. One can see
that, with the exception ofBsquared, all radiative corrections
are comparable foro-Ps andp-Ps decays. On the other han
significantly larger value ofBsquaredfor o-Ps can be traced
back to a larger value of the one-loop correction too-Ps
→3g rate. The relation of the one-loop corrections forp-Ps
ando-Ps decay, however, is rather natural since the num
of diagrams is approximately three times larger foro-Ps de-
cay. Thus, apart from the factor related to the number
Feynman diagrams, there seems to be no significant dif
ence in the structure of radiative corrections too-Ps andp-Ps
decays.

Therefore, it is difficult to imagine that a complete calc
lation of theO(a2) correction too-Ps decay will result in a
dramatically large number, necessary to resolve theo-Ps life-
time puzzle. We believe that this puzzle will be solved
continuing experimental studies and we look forward
learning their results.
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