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Calculation of a? corrections to parapositronium decay
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We present details of our recent calculatioradfcorrections to the parapositronium decay into two photons.
These corrections are rather small and our final result for the parapositronium lifetime agrees well with the
most recent measurement. Implications for orthopositronium decays are briefly discussed.
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I. INTRODUCTION
o=y
Precision measurements with nonrelativistic bound states

provide a sensitive test of bound-state theory based on quan- 3a® 1
tum electrodynamic$QED). Theoretical predictions gener- 20 o«
ally agree well with experimental results. However, there are
a few observables where the agreement is not satisfactoryhere
The best-known example is the lifetime of the orthopositro- ma® 2(m2—9)ma®
nium (o-P9, where some experimental resultk,2] differ ro—_— rpo==% =7
from the theory by several standard deviations. The theoret- P 2 ° 9
ical prediction is not yet complete, because two-loop QED

i 0 the-Ps d h b luated tare the lowest-order decay widths of thé’s ando-Ps, re-
corrections 1o theo-Fs decay have not been evaluated ye 'spectively, and the ellipses denote unknown higher-order

. X ! Qerms which we will neglect in our analysis. Corrections of
reconcile the theory with experiment. , O(«) were calculated in Ref4] for p-Ps. Foro-Ps the most
Recently, we have reported a calculation of corrections tQccyrate result was obtained in RE], where references to
the parapositroniuni-P9 decay into two photong3] in the  earlier works can be found. The logarithmic two-loop correc-
second order in the fine structure constantWe argued tion was found in Ref[6] for o-Ps and in Ref[7] for p-Ps.
there that the smallness of tki¥ ”) corrections to th@-Ps  The leading logarithmic correction at three loops was com-
lifetime makes it unlikely that the analogous effectsoi®s  puted in Ref[8]. Some partial results on th@(«?) correc-
could alone explain the discrepancy between theory and exions for bothp-Ps ando-Ps can be found in Reff5,9-17.
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@
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periment. A complete calculation oB, has been reported recently in
The purpose of the present paper is to present a detaileRef. [3] but the value oB, has not been obtained so far.
description of the calculation reported in RES]. We begin Equations(1), (2), and(3) give the following predictions

with a brief discussion of the current theoretical and experifor the lifetimes:
mental status of positroniurfP9 decays.

2
Theoretical predictions fop-Ps ando-Ps decay rates into theory.__ 1, 1O | &
2 and 3 photons, respectively, can be expressed as series in Tpps™=7989.42us "+ 17,78y T
a:
=(7989.42-0.043 Bp),us‘l, (4)
theory._ 1+(0) e o, 1 a)? rtheon_ 7 0382, 1+ TOB, | & i
Fp—Psy:Fp 1—-|5—- T ;+2a In Z"f‘ Bp — 0-Ps o "0\
34° 1 =(7.0382+0.39x 10 * By us L. (5)
— _|n2 —t ... 1 . .
27« @ On the experimental side, the Ann Arbor group2] has
found
*Electronic address: czar@bnl.gov B4 gas measuremerit 7.0514 14) us ™+,
"Electronic address: melnikov@slac.stanford.edu exp .
*Electronic address: yelkhovsky@inp.nsk.su I'g-pd vacuum measuremert 7.048216)us™ -, (6)
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which, for B,=0, differ from Eq.(5) by 9.40 and 6.3,

respectively. This apparent disagreement of experiment with
theory has been known as the “orthopositronium IifetimeIts
puzzle” for a long time. More recently, an independent mea

surement by the Tokyo group found3]
['E6(Si0, measurement7.039829)us™ !,  (7)

which agrees with the theory B, is not too largée- Thus, the

present experimental situation is rather unclear. If future ex-

perimental efforts confirm the Ann Arbor resul®), the or-
thopositronium lifetime puzzle could be solvedBf, turns
out to be unusually large, e.gs; 250 for the vacuum mea-
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Il. FRAMEWORK OF THE CALCULATION

Positronium is a bound state of an electron and a positron.
energy levels and lifetimes can be well understood within
he framework of nonrelativistic expansion in QED. The de-

cay width ofp-Ps into two photons can be written as

1 5 fde‘kl a3k,

21472 X 2w, 20,

4

1_‘p—Ps

S(P—ky—ky)

2
: (12)

d3p Tr[AN,p)¥ )
Sy APV Pl d(p

surement. Alternatively, one might speculate that som&/hereP=(My.ps,0) is the four-momentum of the positro-

“new physics” effects such as-Ps decays involving axions,

millicharged patrticles, etc., cause the excess of the measur
decay rate over the QED predictions. Some of those exotif
scenarios seem to have already been excluded by dedicatB

experimental studiegFor a review and references to original
papers see, e.g., Réfl5].)

p-Ps can decay into 2 photons and its lifetime is too short

to be measured directly. For a long time its precise valu
remained unknown. However, it was realized in Rgf6]

that such a measurement would be very useful, since the

calculation of the coefficienB,, is much easier than that of

B,. Therefore,p-Ps offers an easier precision test of the

nium, k; andk, are photons’ momentap(p) is the positro-
ium nonrelativistic wave functiorA(\,p) is the amplitude

the procese™e”—2v, N\ denotes polarizations of the
Hotons, and

1+,

‘l’Pzﬁ% (12

§s the spinor part of the-Ps wave function. The wave func-

tion of thep-Ps is normalized to unity,

d3p )
J Wd)(p) =1, (13

bound-state QED. This observation motivated the measure-

ment of thep-Ps lifetime[16], which is 6.5 times more ac-
curate than the best previous results.

hence the usual normalization factor, Wg.p, is absent in
Eq. (11). From Eq.(11) one sees thdl,.psIs determined by

To fully utilize that experimental result and enable thetwo quantities: the annihilation amplitude of the electron-

rigorous test of bound-state QED envisioned in R&6], we
undertook a complete calculation of t6¥«?) corrections to
p-Ps ratd 3]. We found that the nonlogarithmic part of those
corrections is small; the coefficies, is

B,=1.7530), (8)
and the theoretical prediction for thePs lifetime becomes
[half of the logarithmicx® term in Eq.(1) is taken as an error
estimaté

Ftheory:

theon - 7989.502) us L.

9)

positron pair into a pair of photons, and the positronium
bound-state wave function. Since the typical velocity of elec-
tron and positron in Ps i®(«), the annihilation amplitude
can be expanded both i and in the relative momentum

of the electron and positron. Corrections to the positronium
wave function are computed using the standard time-
independent perturbation theory and Breit correction to the
nonrelativistic Hamiltonian.

We begin with the calculation of the decay rate to leading
order. Since the electron and positron in Ps are nonrelativis-
tic, we employ noncovariant perturbation theory. Although it
is not the only way, the noncovariant technique permits an
easier evaluation of the soft corrections to s decay

Comparing this number with the most recent experimentafate.

result[16]

exe =

oB=7990.91.7)us™* (10

we find excellent agreement between theory and experiment.

In the next section we explain our approach to Ps decays
with the example of the leading order calculation. In Secs. llI
and IV we discuss, respectively, the so-called soft and hard

The on-shell amplitude of the proces$e™ — yy reads

_877'aEpA
AT E T m -(p)(aey)
A (p—K)—A_(p—k
TP RTW
p—k

+ (e ke —K)

O(a?) contributions. The final result is presented in Sec. V.

_ 8maEy A_(p)(agy)[ a(p—K)+Bm](ae)) A, (p)
B Eptm Elza—k

IAnother measurement of thePs lifetime was performed earlier
in Mainz [14] with the resultl' £8~=7.031(7)us *. This result is
consistent with the theoretical predictions but uncertainties are
clearly larger. For a summary of older experimental studies see Reflere, E,= Jm?+p? is the energy of the electrofor posi-
[15]. tron), A .(p) are the projectors on the mass shell,

+(e—e ke —k). (14
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We use this equation to defing in d dimensions.
) (15 With an additional trick it is possible to avoid any refer-
ence to photon polarization vectors. Let us consider(E®).

andk is the three momentum of the photon in the final state@nd use there the explicit representation for Mematri?(,
To the leading order one can neglect the dependence &9 (19). Then the following trace has to be computed:

the annihilation amplitude on the momentufp|~me, .

which is small in comparison witm and|k|~m. One ob- TrL£6.6,7M ople7€5 . (20)

tains the following leading order amplitude:

1 ap+ Bm
A+(P):§(1iE—

p

Taking into account thae,e,=e; k=e; ,P=0, one con-
dra cludes that the final result can only dependejrande3. In
Ao=—— (ae,)(ak)(aey). (16) this situation, one can average Eg0) over directions ok,
m ande,, provided one respects the above constraints. We ar-

_ _ rive at the following formula:
From Egs.(16) and(12) it follows that the photon polariza-

tion vector; are perpend_icular to each _other, é_@zzo. Tr[félézfl'\/'a;s]efegHTf[fv”V”f}Mag]TZf. (21)
Computing the trace in Eq11) and integrating ovep
one obtains where
d%p ? 327%a? (3—2€)d%d?—d,,,d*F— d’d"
_ 2 af_ u-v [add u-v
J’ (27T)3Tr[ALO()\1p)\PP]¢(p) mz |¢(O)| ’ T,u,V 4(1_26)(2_6)(1_6) ’
17
. . . . . d,uVEg,uv_g,ué:v_ Ny - (22)
which gives the following leading order decay width:
According to the discussion of different momentum regions
41ra? ) ma® contributing to the second order corrections, we divide the
Fo= m2 | 4(0)]*= 2 (18 coefficientB, in Eq. (4) into three parts
B.= Bsquareq‘_ Bhard+ Bsoft (23
The calculation of higher order corrections to positronium P "p p p

lifetime is performed in the framework of the nonrelativistic here Bsduaredc buti £ th | litud
quantum electrodynamic®RQED) [6], which we regular- WN€ré gr(} Seoftcontn ution of the one-loop amplitu ©
ize dimensionally{17]. In this framework, all contributions Sduared andd ;™™ *"are the hard and soft two-loop contri-
are divided into soft and hard corrections. The soft contribuPutions. The square of the ong-loop amplitude is easily ob-
tions come from the momenta region of the orderkof t@ined from the one-loop result:
~ma and thus are sensitive to the details of the bound state o2
dynamics. On the other hand, the hard corrections arise as squared_ [ 2 _ T | _
N o ) By 1.6035. (24)

contributions of the relativistic momenta~m; their effect 2 8
can be described by adding(r)-like terms to the nonrela- . _ _ _
tivistic Hamiltonian. In contrast to the first order correction which arises from

Special care in the present calculation is required becaudgard photon exchange only, the second order correction is
of a singleys matrix in the positronium wave function. Since more difficult to compute, because of the appearance of the
a consistent treatment of Sing-l% is known to be a pr0b|em soft scale effects. In addition, hard and soft corrections are

in dimensional regularization, below we describe how wenot finite separately. Below we discuss the calculation of

have dealt with it. these corrections.
We use the following fact: if thg-Ps decays into two
photons with polarizationg; and e,, then the photons are [ll. SOFT SCALE CONTRIBUTIONS
polarized so thae;e,=0. Let the first photon be polarized . - soft
along thex and the second photon along tlyeaxis; the As follows from Eq.(11), in order to obtairB," one has
three-momentum of the first photérbeing along the axis. to compute relativistic cor.rgct}ons to the annihilation ampll—
If we introduce two auxiliary vectors tudeee” — yy and relativistic corrections to the positro-
nium wave function induced by the Breit Hamiltonian. Ac-
; P, K, cordingly, the soft contribution is separated into two pieces:
H ! H '
m m B3°"= BN AA) + BX(WF). (25)

then the standard four-dimensional representation ofthe
matrix, ys=1ivyo¥x¥yYz, can be written as: A. Relativistic corrections to the amplitude

. The calculation of relativistic corrections to the amplitude
o= : £b.6,4. (19 is straightforward. One starts with the on-shell amplitude Eq.
2m? (14) and expands it up to relative ordéXp?m?). The cal-
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culation of these corrections can be performed in three di- B. Relativistic corrections to the wave function
mensions. To demonstrate this, let us write the correction to

- ; Relativistic corrections to the positronium wave function
the amplitude in the form:

can be computed using Breit Hamiltonian. Since we regular-

SA=APp.p (26) ize all divergences dimensionally, we need that Hamiltonian
R in d dimensiqns, as it hgs been derived in ReD.
To calculate the correction to th@Ps lifetime induced by Breit Hamiltonian projected on th states reads
SA, we have to compute the following integral: ot d-1(p dra
ddp 1 ddp U(r,p)=——4m3+—4m E,C(r) +—m2 o(r)
SA= — AP f — 2. (27
f (27 #(p) dN) 2 d(p)p -

. oL L - Laillol ,ai18(r). 32
To this end we use the Sclilimger equation in the momen- 4dm2[0' 7ille UJ] (0 (32
tum space:

Here the Pauli matrices; ando act on the two-component
f d ¢(p)p2—f di% 4mamp? [ d%  &(k) spir}ors o; the nonrelativistic electron and positron, respec-
- : tively, an
(2m)* (2m? pP-mEJ (2m)? (p—k)? ’
(28) iy a1 s
Rewriting (N= d2=1pd-2 (33)
p? mE is thed-dimensional generalization of the Coulomb potential.
pz—mE:1+ ?—mE’ The operatoiJ(r,p) induces the following correction to the
p-Ps width,
shifting_ the integration momenta in th_e first tefr-p+ k_ _ PR\
and using the fact that the scaleless integrals vanish in di- F—=Al+ Ay, (34
LO

mensional regularization, we arrive at

q where the first term is due to th¥r) part of the operatod
f dp S(p)p?=mEy(0). (29) and the second term is due to the remaining terms of that
(2m)d operator. We note also, thB}{ 5 in the above formula stands
for the leading order decay width computeddialimensions,
We see that the amplitud@ff) is needed only in the—0 in contrast to the three-dimensional result Etf). All nec-
limit, where it can be easily calculated. We obtain: essary formulas can be extracted from the calculation de-
scribed after Eq(36) of Ref.[20]. One obtains:

2p?

SA=——ALo, (30) a?[1
3m?’ O Al=——[——4ln(ma)—2},
8 |e
which induces the following)(ma?) correction to thep-Ps 5021 31
lifetime: = |Z— =
A, 5 |< 4 In(ma) + |- (35
2
Bf,O“(AA)z .. (31)  Thus the wave function correction contribution to the posi-
3 tronium lifetime becomes
Recently there has been some discussion in the literature 1 72 1 3372
[11,10,18 concerning the linearly divergent integral in Eq. BY'(WF)+272In —= o= +27%In — + .
. ) . . a 2e M 8
(29). Our approach to the linear divergence is based on di- (36)

mensional regularization which permits a consistent treat-

ment of hard and soft corrections simultaneously. We deal®n the Ihs of the above equation we have separated the loga-
similarly with linearly divergent integrals in our recent cal- rithm of the fine structure constant to be consistent with di-
culations of the®(ma®) corrections to positroniurB-wave  vision of corrections introduced in E¢).

energy spectruni19,20 and found agreement with earlier

results obtained in a different regularization schel@g]. C. Final result for the soft contributions

This gives us confidence in the result given in E2p). The sum of the corrections to the annihilation amplitude

(31) and to the wave functiof36) gives the final result for
the soft contributions,
2A linear term in the expansion of the amplitude pndoes not
contribute to the decay rate since the positronium ground-state gsoft—
wave function is spherically symmetric. p

a2 b2 +1o7772
2_6 oinm 22

(37
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N nv A —_—
AV VLY.V V.V Y
oy, Vv B . InAAANNANANA B
By=1/8 B =-1/8 By =1/16 (2) (b)
. . VV/ — AN
FIG. 1. Three-level amplitude of thp-Ps decay, higher-order
mass counterterms, and their values. A VB A
\\/ —_—V
IV. HARD SCALE CONTRIBUTION
(c) (d)

The second class of corrections are the hard scale contri-
butions. The corresponding Feynman diagrams are shown in

Figs. 2VP), 3, 4, 5. They should be computed in dimen-  Thg |ight-by-light diagrams in Fig. 3 have an imaginary
sional regularization, with external electron and positron abart because of the two-photon cut. This complicates a nu-
rest.har § _ o merical integration over Feynman parameters and we used a
By consists of three types of contributions: vacuum po-gjfferent method to evaluate them. The idea igftomally)
larization insertions in the photon propagators, light-by-lightassign a large masd to the internal fermion line. The dia-
scattering diagrams, and two-photon corrections to the anngram may then be expanded in ratidM using the so-called
hilation amplitude, large mass expansid@4—26. This reduces the task to the
calculation of two-loop vacuum or massless propagator inte-
Bp=Bp*(VP)+ By (LL) + B} v). (38)  grals. The price to be paid is that the result is a series in
m/M, while we are interested in the value of the series at
Vacuum polarization insertions into the one-loop graphsm/M=1.

FIG. 3. Light-by-light scattering contributions f®Ps decay.

[an example is shown in Fig(ZP)] were computed in Refs.  Fortunately, using symbolic manipulation programs one
[22] and[23], can compute many terms of the series; in our calculation
about twenty terms were computed for each diagram. The

Bgard(VP)=O.44734306). (39 resulting series converge well, especially fos, and the

number of computed terms is sufficient to obtain an accurate
estimate of this contribution at=1. The behavior of the
series forL, is improved if we make a change of variables
One class of the second order corrections tops life-  m/M = \z/(2—2). The nth term of the series in variabte

time arises from the photon-photon scattering, shown in Figdecreases faster tham#/ and slower than 1. Finally, we
3. These contributions are relatively small; it is interesting,find

however, that the positronium lifetime measurement of in-

A. Light-by-light scattering contributions

creased precision may become sensitive to effects of nonlin- L,=-0.87525), L,=0.695398), (40)
ear QED.

For the diagrams shown in Fig. 3, we find that the planar — -
ones are equal (b), and so are the nonplanar ones (c ERM
=d). Further, both classes remain unchanged when we cros
the internal photons. Therefore, we only need to compute
two diagrams, one planar and one non-planar. We will call 2 D, Dy D, Ds
themL, andL,. The contribution of those diagrams to the i}
final expression for the amplitude id.4+2L,. The factor 4 1%1%” 2&% % \i{
arises because we have two tygasand(b) which differ by {:
the orientation of the fermion loop, and both can have par
allel or crossed internal photon lines. For the typewve only De D, Ds D, Dio
have a factor 2 for the orientation of the fermion loop, be- .,
cause crossing of the internal photon lines simply exchange: %‘nww 7]
(c) and(d). \\ \ig } 4

21% {: Dy Dy Dys Dy Dis
S
4 @ A ™4
51 Sa Ss VP
. Dre Dyz Dys Do

FIG. 2. One-loop corrections {@Ps decay and an example of a

vacuum polarization insertion. FIG. 4. Two-loop photonic diagrams for thePs decay.
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They will remain in the final result for the hard scale contri-
E"m,w butions and vanish only in the sum with the soft contribu-

tions.

FIG. 5. Mass counterterms in one-loop diagrams. The number;
ing conforms to Fig. 4.

and the contribution of these diagrams to the coefficignt
is

The evaluation of the hard corrections is made possible by
a combination of the analytical and numerical methods. The
Cs Cq Cu Crz idea is to construct an infrared safe expression from diver-
2 gent Feynman amplitudes by subtracting appropriate coun-
72[5% terterms, which can be computed analytically. The construc-
X tion of the counterterms is based on the following
observation: in a given Feynman diagram the infrared singu-
larities appear when the loop momenta are small. In this
Cis Cir Cro situation the propagator of the virtual electron in thehan-
nel can be contracted to a point. As the result, the infrared
behavior of those Feynman diagrams is identical with that of
the two-loop three point functions considered earlier in Refs.
[27] and[20].
We proceed in the following way: after constructing an
infrared finite expression, we combine propagators using
Bga“’(LL)=4L1+ 2L,=—2.11(13). (41  Feynman parameters; perform momentum integrations ana-
lytically; extract ultraviolet(UV) divergences and integrate
) numerically over typically 5in some cases)@eynman pa-
B. Two-photon corrections rameters in the finite expressions. For the numerical integra-
Another class of corrections is generated by the twodion we use the adaptive Monte Carlo routivieGAs [28].
photon diagrams, shown in Fig. 4. These are the most diffi- Let us illustrate the basic steps of the calculation by con-
cult diagrams we have to compute, since in general thegidering as an example the nonplanar box diagtanshown
diverge and a regularization is required. There arise twan Fig. 4. A power counting shows that this diagram is UV
types of divergences: First, there are the ultravigldV)  finite but IR divergent. To demonstrate how the IR counter-
divergences; they are removed by an appropriate renormalerm is constructed we consider a symbolic expression for
ization. Second, there are infraréthreshold singularities.  this diagram(after taking the trace over Dirac matriges

dDIl le2 T ACONTE JC DI ¢ RN
1~f (42

(2m)® (2m)P 1215013+ 2ply) (13— 2pl,) (134 2pl3) (15— 21 3p) (15+ 2Pyl 3+ 2m?)

Here,p=(m,0) is the four momentum of the incoming electron or positigr; |, +1, is the sum of the loop momenta,,
andp;=p—q, whereq is the four momentum of the outgoing photon. The quantiti8sin the numerator denote the uniform
functions of the loop momenta:

FON L) =NTO 1), (43)
Only terms withf(® and f(*) diverge in IR. We use the following identity:
D,=D{~?+(D{~"Y—[D{~*V]e) +[DI V] (44)

where the counterterv[rD(li:‘)'l)]Ct is obtained by expanding the propagator of the electron in-t@nnel in Taylor series in
small loop momenta,

[D{ =M~

1 d®l, dPI FO 4+ §(1) 12+ 2p,l
j 1 A 12 fPils) (45)

2m?) (2m)P (2m)P 1215(15+2ply) (15— 2pl,) (13+ 2pla) (15— 21 3p) 2m?

Examining Eq.44) one recognizes that the first two terms in tracted to a point, this term corresponds to a three-point,
that equation are finite, both in the UV and the IR, and henceather than four-point Feynman amplitude. Such integrals
can be evaluated numerically. The last tefild{'=°"],, is  were computed in a previous stuf§7] (see also Ref.20)).

divergent. Since thd-channel propagator has been con-Using those results one can obtain the counterterm

052502-6
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TABLE I. Values of one-loop diagrams.

Diagram el €° e
71,2
1 _1 5 =z
St a ; 1+ §In2+ 25
2 e
S, i 152 ~21In2+IN?2+ 15+ § &3
772
S, -1 —24In2 -3+ 3In2-In?2+ 5
24
2 e
Total 0 —§+717—6 —i+2in2em+ s
_ The final result is obtained by putting the many pieces
[D§ "], analytically: together:
. 1 (2) (1)) 2
=0,1 om om
[Df )]Ct~;(2772—4)+48+ 1272 In 2+ 672+ 424;. MBI yy) = 67PBy+ —B,+| ) B,
(46)
1 5m(1)
Similar procedure was applied to evaluate the remaining +0Z8| S+ S, + Syt m 51)
Feynman diagramB; . In some cases, like, e.g., for the pla-
nar box diagranD,, the overall subtraction is not sufficient sm®) 19
and a more sophisticated approach is required. The results of + m ( A gci +Z D;
the calculation are summarized in Table Ill. =S5 7 =1
Finally, we have to consider the one-loop diagrams. We T2
need the results including ternd¥(e), because they will be =- 2—421&27)- (49

multiplied by divergent renormalization constants. The re-
sults are summarized in Table I. ) _

For the renormalization one needs the electron wave fund-€reB; are the tree-level diagranibig. 1), S; are one-loop
tion renormalization constan$Z.=Z,—1, and the mass diagrams(Table ), C; are the one-loop diagrams with mass
countertermdm computed in dimensional regularization to insertions (Table 1)), and D; are the two-loop diagrams
O(a?). These results can be found in RE29]. For com-  (Table li). .
pleteness, we collect here the relevant formulas: For the complete hard correction we add E@9), (41),

and (49) and find

6Z,=a 6z +a? sz ,

4 T
sm 5m(1) , 5m(2) ( 7) Bzard: - Z + 2772 In m—43.85(30). (50)
—=a +a ,
m m m
where V. FINAL RESULT
The final result for the second order nonlogarithmic cor-
B e? (—20) rection to thep-Ps decay rate into two photons is obtained as
- (4,”_)D/2m ' a sum of the soft37) and hard’50) pieces, and the square of
one-loop correctiong24). Adding them one finds
<1>_5m(1)__3_4_ ™ g B,=1.7530 51
e E € T ’ p— + E‘( )! ( )
(48) and the theoretical prediction for tlpePs lifetimes becomes
2. 9 51 494 ) 433 A
028 = 5t ge— g T16mIn2=24ist [ ppe’=7989.502) us *. (52)
€
In this equation we have not included the contribution of the
(2) 2
om :i+ 45 _ 1w +872IN2— 1204+ 1_99 decay modegp-Ps—4vy. This decay channel increasks§.ps
m 2¢2 4e 4 8 by approximately 0.0Ls * [30,31).
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TABLE Il. Values of counterterm diagrams.

0

1

Diagram el € €
Cs i ~%1+3n2 314 3472+ $in2- 122
Cs -1 3+3In2 —1— g 7+ In2— 3In?2
Cn 0 - & 7*=In2 3— & 7= In2+In?2- § ¢,
Ci 0 —1+ %7°—In2 —3— 7+ 3 In2+In?2+ 54,
5 3
Cis B a-In2 3 — 57— 2In2+In?2
Cuy -1 -342In2 ~ 3+ a2+ In2-2In?2
Cio -3 — g2+ 3In2 — sz 2+ 3In2—3In?2— { ¢,
1 1 m 1 19 w? 1.2 7
Total -3 sttt 2 In2 B3t In2—35In“2+ §{3=2.2519
TABLE lll. Values of two-photon diagrams in Fig. 4.
Diagram €? el e°
7.‘_2

Dy 0 —3+ T 37.3510)
D, 1 1 —43.69(20)
Ds 0 0 —0.074(2)

1 , 37
D, L -3 —65.90(3)
Ds _1 -1+3In2 57.91820)

) 7

Ds 2 ~1-2In2+ 4 9.6615)
D, -1 3+4Iin2 —10.20(1)

1
Dsg 3 5 —1In 2+ 75 —0.324

772
Do 5 % —1In 2+ 16 1.475(50)
Dyo 0 -1 3.488(2)
1 45 ?
71_2

Dip -1 - 5—g+7—2ln2 1.69(12)
Dis i ? —0.12(1)

8 % + E —In2
Dia 0 0 —0.804(2)

1772 27In2
D1s & —5ln2+ ¥ P g5~ —5— +9In?2~2.9689
Dig -3 2In2-3 —1.885(4)
Di7 -1 5In2-2 —1.175(1)
2 S 7In2 7¢
a o n
D 1 R r.o% - _ 2 153
18 5 5 n2 16" 12~ 2 N2 +2In*2+-5°=0.2940
2 2
s T ., 28w 19|n2i772|n2_17|ﬂ22 74,
D1o 1 s- 4 t3In2 3-—gt—5 t > >
=-6.0148

3 w°

Total 16 -5~ 5t 32 —19.14(27)
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TABLE IV. Comparison of available results f@rPs ando-Ps. For the various coefficienBswe use the notation introduced in the text.
B"” describes multiphoton processpsPs— 4y ando-Ps— 5y, andB"{LL) is due to effects of non-linear QED?* y* — yy for p-Ps and
v*—3y for 0-Ps.T" o denotes the lowest order decay width of a given state.

p-Ps o-Ps
O(a): coefficients of ;)F Lo —2.5325989 [4] —10.286606(10) (5]
o 2
O(a?): coefficients of —| Two
psauared 1.60351 28.86(2) [5]
B4 vP) 0.44734306) [23] 0.9649604) [23]
B"qLL) -2.11(13) [this work] 0.76599) (23,32
2
B" () - % —42.19(27) [this work] ?2?
77_2
gsoft 52 +44.002 [this work] s
€
gtow@l 1.7530) ?2?
B 0.2741) [30,31] 0.18711) [30,31]
VI. CONCLUSION the scheme-independent results, E@Y), (31), (39), and

We have described the numerical and analytical methodgA'l)’ which are all of orde several unitpx (a/)".

2 . .
employed in our calculation of the second order QED Cor'inttla?(;[gt(ianabt'soer(]j(i:s,ecﬁfs: \(/:v%rgf lgltﬁ :zzﬂ:;(?p%g :girﬁipisét] 'T
rections to the-Ps lifetime. Our final result, the nonlogarith- g 9 Py

. ) . - for the o-Ps lifetime puzzle. Although nothing can be said
27,2

T'C correct'lon O(a’/m7) with the —coefficient I.Bp rigorously, we believe that our result indicates that no dra-

_1'75(,310) Increases the de_cay ratg .by _apprOX|mateI¥natiC enhancement in th€(a?) effects ino-Ps decay is

0.1 ps. Th? resultm_g theoretical prediction is in excellent possible. In Table IV we have summarized available results

agreement with experiment. y

The framework of this calculation is the nonrelativistic o the second order effects for bogPs ando-Ps decays

QED with dimensional regularization. The dimensional regu_(we have not included the partial results for the soft correc-

larization facilitates the separation of scales, the cornersto lions ino-Ps since they are scheme-depenjidhbe can see
P ' n[%at, with the exception oBS3'@"®d g|| radiative corrections

of the effective theory. Its main technical advantage is tha
o . are comparable fap-Ps andp-Ps decays. On the other hand,
no additional scales, such as a photon mass, are introduced_ ... squared
o ) . ignificantly larger value oB for o-Ps can be traced
by the regularization, so that only single scale integrals nee ;
ack to a larger value of the one-loop correctionotd’s

to be computed. Unfortunately, these integrals are still too 3+ rate. The relation of the one-loop corrections FoPs
complicated to be evaluated analytically. We computed themﬁdyp d h ' ; h P | si ! h'ﬁ@P b
numerically by subtracting IR counterterms. Those werea? 0-F's decay, however, '? rar: er r!a‘“fal since the number
constructed using simpler integrals which are known analyti—O diagrams is approximately three times larger delPs de-

cally, as we explained in Sec. IV. The multidimensional fi- C&Y- Thus, apart from the factor related to _the_ _numbe_r of
. d:eynman diagrams, there seems to be no significant differ-

integration routineVeGas [28]. ence in the structure of radiative correction®tBs andp-Ps

; L . decays.
The approach described in this paper can be also apphe%e L e . .
to the calculation of thé)(«?) corrections to the-Ps decay Therefore, it is difficult to imagine that a complete calcu-

. 2 . " . .
into three photons. In particular, the IR counterterms can béatlon of theO(a”) correction too-Ps decay will result in a

constructed in a similar manner. However, the larger numbegramatmally large number, necessary to resolvetRs life-

of diagrams and two additional integrations over the three:“me. pu_zzle. We .bel|eve that .th's puzzle will be solved by
ontinuing experimental studies and we look forward to

gﬂf?éﬂﬂ phase space make this problem significantly mor 2arning their results,

Somewhat surprising is the smallness of the second-order
corrections found in this paper. It resulted from a very strong
cancellation between soft and hard pieces computed in di- This research was supported in part by the U.S. Depart-
mensional regularization. We would like to stress that thement of Energy under Grant Nos. DE-AC02-98CH10886
soft and hard pieces are not separately finite and depend @md DE-ACO03-76SF00515, by BMBF under Grant No.
the regularization (in this sense they are ‘“scheme- BMBF-057KA92P, by Graduiertenkolleg “Teilchenphysik”
dependent). For this reason, large constants accompanyingt the University of Karlsruhe, by the Russian Foundation for
divergent pieces in Eqg50) and (37) may have no direct Basic Research under Grant No. 99-02-17135, and by the
physical meaning. Unambiguous information is provided byRussian Ministry of Higher Education.
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