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Quantum search heuristics
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An alternative quantum algorithm for combinatorial search, adjusting amplitudes based on number of con-
flicts in search states, performs well, on average, for hard random satisfiability problems near a phase transition
in search difficulty. The algorithm exploits correlations among problem properties more effectively than some
current heuristics, and improves on prior quantum algorithms that ignore these correlations.

PACS numbds): 03.67.Lx, 89.70+c, 02.70—-c

Shor’s polynomial-time factoring algorithifii,2] showed prespecified number of steps, rather than allowing them to
guantum computer$3—6] efficiently solve an important terminate early when a solution is found or continue indefi-
problem thought to require exponential time on our currenmitely looking for a local minimum. For such heuristics, am-
“classical,” machines. Can quantum computers significantlyplitude amplification 10] reduces the average cost fronp 1/
improve other apparently intractable problems? At first sighttrials to only abou{11] 1/\/p by repeatedly testing all can-
combinatorial searches, such as arise in scheduling, theoregiidates in superposition. This quadratic speedup, which can
proving, cryptography, genetics, and statistical physics, arg|so apply when constructing solutions incrementglls], is
one possibility. This is because many such searches afie pest possible for quantum methods based only on the test
“nondeterministic polynomial” (NP) problems[7], which  of \whether candidates are solutioff.
have_a rapid test of whether a candi.date solution is in fact'a The trials of many heuristics are not independéng.,
solution and an exponential growth in the number of candiyyey yse information gained from prior, unsuccessful tjals

dates with the size of the problem. Quantum computers cag, 5y jitude amplification does not apply. An example in
test all candidates in superposition with about as many opy

i lassical hi 0 test iust ne context of hill climbing is emphasizing those changes to
erations as a classical machine uses {o test just one, S‘quet%é current state that remove violations for constraints that

ing large improvements are possible. Unfortunately, the dif- ; o oo
fic%lty gof egtracting a soILE)tion from the supe?/position remained unsatisfied at the end of many prior trials. One way

appears to preclude rapid solution of at least some NP prok}p do this associates a weight with each constraint, which is

lems [8], though, as is the case classically, this remains qucremented at the end of any trial for which the constraint
open question remains unsatisfied. In each trial, the hill climbing operates

Lacking a definitive result on the power of quantum com-With respec_t to th(_e weighted sum of constraint violatipn_s
puters, a practical fallback is how well they perform fgpi- _rather than Ju§t their total number._ A more cor_nplex hepnsﬂc
cal searches encountered in practice. This distinction is iminvolves caching new constraints inferred during the trials as
portant because classical heuristics, using readily computefl so-called “truth maintenance system§13]. These addi-
problem properties to suggest candidates to test, solve maripnal constraints can improve subsequent searches, but also
NP problems much more rapidly than worst-case analyseicur additional overhead leading to additional mechanisms
predict. For instance, constraint satisfaction probld®js that erase those inferred constraints judged to be no longer
such as arise in scheduling, consist of a number of conuseful.
straints on the values various combinations of variables can Finally, some heuristics do not consist of separate trials at
take. A candidate solution for such problems can not only ball but rather involve, for any particular problem instance, an
evaluated in terms ofvhetherit satisfies all the constraints, exponentially long computation before a solution is found.
but also in terms ohow manyconstraints it violates. This Examples are methods that construct solutions incrementally
additional information is often a useful guide to finding so-and involve backtracking to prior decision points when con-
lutions, providing the basis for heuristic searches. flicts are found. Such methods have an exponentially large

Some heuristics consist of independent trials, each sucrariation in the solution time among different problem in-
ceeding with a small probabilitp. A simple example is hill  stances, so arbitrarily stopping the search after a prespecified
climbing: starting from a random initial state, small changesnumber of steps will give zero probability to obtain a solu-
are made as long as the state appears to improve, e.g., redtion for some instances, and probability 1 for others, thus
ing the number of violated constraints. This process contingiving no opportunity for improvement with amplitude am-
ues until a solution is found or the program reaches a “locablification.
minimum,” at which point none of the available changes Any possibility of achieving greater than quadratic
give any further improvement. In the latter case, another triabpeedup of independent-trial heuristics, or utilizing the capa-
is started from a new initial state. For use with quantumbilities of other heuristics with quantum computers, requires
computers, these independent trials are modified to run for asing additional problem properties directly in the quantum

algorithm. For some small or relatively easy problems such
techniques are known to have high performanftd,15.
*URL: http://www.parc.xerox.com/hogg More generally, with precise information on states’ distances
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to a solution, quantum methods perform wdlb], but such 1 (h—l)
=7 |
J J

information is not readily available for hard searches.
Heuristics often introduce complex dependencies among

successive search choices, preventing a theoretical analysis @
of their performance; instead, they are usually evaluated em- 1 (h—-1

pirically on a sample of typical problems. To be a useful test, Th:j_T J_)

this requires a class of problem instances with a high con-

centration of hard cases. Fortunately, such classes have befoi steps h=1, ..., with R(\)=Ry+R;(1—\), T()\)
identified for a variety of NP-complete search problgttisz—  =To+T1(1—\). These values are used as follows.

19]. In particular, these classes correspond to problems with Superpositions are described by a vector with an ampli-
an intermediate number of constraints, while those withtude for each assignment. Starting with an equal superposi-
fewer or more constraints tend to be fairly easy. Signifi-tion of all 2" assignments, i.ey{”=2"""2 the superposition
cantly, such classes of hard problems, associated with abrugt”? afterj steps is

“ph.ase transition_s” in behavi.or: are four_1d to be particularly N =yOpi)...y®pR) O )
difficult for a variety of heuristics, making them good test ‘

cases for evaluating new methods. Hence a particularly goog,e algorithm involves two types of matrices: the diagonal
indication of the practical utility of quantum computers for phase adjustmen®", depending on the particular problem
search is to study their capabilities for precisely these classgfstance being solved, and the matti™, mixing ampli-

of problems that are difficult for a wide range of heuristic tydes from different states without regard to the particular
methods. problem.

Toward this end, we present an alternative quantum algo- Specifically, P is diagonal Withpg;):eiﬂphc(s) where
rithm that performs well, on average, for hdtdatisfiability  ¢(s) is the number of conflicts in assignmentSincec(s)
(k-SAT) problems, which consist af Boolean variables and itself is efficiently evaluatedby comparing the state with
m clauses. A clause is a logicaR of k variables, each of each of them clausef and has onlym+1=0(n) possible
which may be negated. A solution is an assignment, i.e., &alues, Q... ,m, this matrix operation can be implemented
value, true or false, for each variable, that satisfies all thefficiently on quantum computef82] as a generalization of
clauses. An assignment is said to conflict with any clause ithe technique used for amplitude amplification. To see this,
does not satisfy. An example 2-SAT problem with three vari-let C be the operator reversibly evaluatigs) that takes
ables and two clausesds OR (NOT v,) andv, ORv3, which  |s,a) to |s,a®c(s)) where® denotes the bitwise exclusive-
has four solutions, e.gu;=false, v,=false, andvz=true. ~ OR Operation andx is an additional register capable of rep-
Fork=3, k-SAT is NP-complet¢7], i.e., is among the most resenting integers up ton. Let P(" be the m+1)X(m
difficult of NP problems. +1) diagonal matrix with entrieg' ™n° for ¢ from 0 tom.

A well-studied class of such problems is rand&BAT,  Starting with the superposition of statEsi|s,0), applying
in which them clauses are selected uniformly at random.C gives Sg4/s,c(s)). We then apply|®P™, giving
Specifically, for each clause, a setlof/ariables is selected =y ™n°()[s,c(s)). This operation involves only the

randomly from among the) possibilities. Then each of the polynomial-sized diagonal matri®(™ acting on the extra
selected variables is negated with probability 1/2 to produceegister, and so can itself be implemented efficiently. A sec-
the clause. Thus each of time clauses is selected, with re- ond application of then disentangles the additional register,
placement, uniformly from among thf)@* possible clauses. 3 y.e'™h%)|s,0), which is the required operation involving
The difficulty of solving such randomly generated problemsthe exponentially large matriR(M.
varies greatly from one instance to the next. This class has a Viewing assignments as strings whits, the mixing ma-
high concentration of hard instances whesm/n is near a  trix is defined adJ " =WT"w, whereT™ is diagonal with
phase transition in search difficulfyii7—19. For random T{?=e'"sl, |s| denotes the number of 1-bits nandW is
3-SAT this transition is nege=4.25, the value used for the the Walsh transformw, =2""2(—1)"s/, where|rs| is
results presented here as well as extensive prior studies g1 number of 1's the two assignments have in common.
classical heuristics for SAT. When is at least somewhat Thusuﬁg):2‘“2te'7ffhlt\(_1)\rDt|+\sDt|_ Each 1-bit oft con-
smaller or larger than this value, the problems are typicallytributes 0, 1, or 2 tdrCit[+[sCt| when the corresponding
much easier for both classical and quantum methods, includ?ositions ofr ands are both 0, have exactly a single 1-bit, or
ing the quantum algorithm presented here. Thus as witire both 1, respectively. Thus-)/"™*Is™ = (—1)? where
evaluating classical heuristics, testing quantum algorithmg is the number of 1-bits i that are in exactly one afand
using a value ofu near the transition gives a particularly S: such bits oft can be selected only from positions where
stringent test on their average effectiveness. and s have different values. The number of such positions
The quantum algorithm consists of a series of steps, wittequalsd(r,s), the Hamming distance betweenand s or,
amplitude adjustments varying linearly with the step and theequivalently, the number of variables assigned different val-
number of conflict§14], a property commonly used in clas- ues inr ands. This givesU () =2""%e'""ltl(—1)2 Among
sical heuristics. Specifically, four real-valued “phase param+the statest with x 1-bits, there are 9(7-%) with a given
eters” Ry, Ry, Ty, andT, define value ofz, so the sum can be written as
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FIG. 1. Search behavior for a randomly generated 3-SAT prob-
lem withn=20 andu=4.25. For each stelp, the figure shows the
probability p™(c) in assignments with each number of conflicts.
Shading is based on the relative deviations of the amplitudes, de 12 12 16 18 20 32

scribed in the text. The small contributions for assignments with n
>15 are not included in the figure.
(n—d
X—2z 2n steps(circle). For eacm, the same 1000 soluble random 3-SAT
) ) problems withu =4.25 were solved with each meth@ekcept only
=2""(1—-e"Mm)d(1+e' "4, (3) 500 samples fon=24). For thosen not divisible by 4, half the
samples hadn=|4.25| and half hadm larger by one. Error bars
ThusU? is [20], up to an overall phase and normalization show the 95% confidence interval§40], p. 124. The curves show
constant, Civp)%"9, wherev,=tan(m7,/2). exponential fits to the quantum heuristgolid) and amplitude am-
With these definitions, Eq2) can be evaluated efficiently Plification (dashed
by a quantum computgri0,21,23. Observing the final su-
perposition gives an assignment havingpnflicts with prob-  lems. The exponential fit gives the cost growingeds®.
ability p(i)(c)=ES|C(S):C|¢§”|2, with the sum over all as- The observations for this range of variables are also close to
signments withc conflicts. a power-law fit, growing as-’.
The best choices for the phase parameters and number of Provided the number of solutiot®is known, the cost for
steps depend on the problem instance. In practice, these withe simplest amplitude amplification {R1] (w=/4)2"/S,
not be known. Instead, we select parameters that work welllso shown in Fig. 2. The values grow e&°”. In practice,
on average for random 3-SAT with a given valueafFor  Sis not knowna priori, but even so the expected cost is less
n=4.25, the approximate analysis given below predictsghan four times larg€efi21], so it does not affect the exponen-
good average performancejigrows at least as fast agfor  tial growth rate.
definiteness we takej=n) and Ry=4.86376, R;= Average costs for even the best known classical heuristics
—4.18118,Ty=1.2, andT,=3.1. Figure 1 shows the behav- also grow exponentially, though more slowly. For instance,
ior for one problem instance: each step shifts the peak in thEig. 2 shows that a good classical heuristic, GSEB],
probability distribution toward assignments with fewer con-grows somewhat faster than this quantum heuristic. The
flicts, until a large probability builds up in the solutions. This GSAT algorithm starts from a random assignment and, for
shift is also seen for other problem instandes well as each step, examines the number of conflicts in the assign-
when averaged over many sampldsut with differing final  ment’s neighborgi.e., assignments obtained by changing the
probabilities. This behavior contrasts with amplitude ampli-value for a single variabjeand moves to a neighbor with the
fication where the probability in solutions increases but allfewest conflicts. If a solution is not found after a prespecified
other amplitudes decrease uniformly. number of steps, e.g., because the current assignment is a
In this algorithm, amplitudes depend on the problem’slocal minimum, the search is tried again from a new random
conflict distribution, precluding an exact analytic evaluationassignment. The most significant comparison between GSAT
of the algorithm’s asymptotic behavior. Instead, as for mostind the quantum heuristic is the relative growth rates in the
classical heuristics, one must rely on empirical evaluation osearch costs, as measured by the number of steps. This is
approximate analyses. Figure 2 shows the growth of théecause actual search times will depend on detailed imple-
search cost, measured by the expected number of step®entations of the steps. Although the number of elementary
j/p1(0), based on collections of randomly generated prob-computational steps involving evaluating the number of con-

24

FIG. 2. Log plot of median search cost wasfor the quantum
heuristic(diamond, amplitude amplificatiorassuming the number

d of solutions is knowittriangle, and GSAT[23] with restarts after
z

U 52) — 2—n2 ei wth( _ 1)2(
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flicts in an assignmer(and, in the case of GSAT, its neigh- Im
borg is similar for both techniques, differences in the extent
to which operations can be optimized aw@yg., as is pos-
sible in some cases for NMR-based quantum implementa:
tions[35]) and the relative clock rates of classical and quan-
tum machines remain to be seen. At any rate, Fig. 2 show:
that including the number of conflicts in the phase adjust-
ments reduces, on average, the number of steps required fc
the quantum algorithm below that required for GSAT. This
is true even though GSAT in fact makes use of somewhat
more problem structure than this quantum algorithm, namely
the difference in numbers of conflicts between a state and it—
neighbors. Because the trials are independent, both the qual
tum heuristic introduced here and GSAT can be quadrati-
cally improved with amplitude amplificatiofi1]. FIG. 3. Schematic illustration of amplitude clustering for an
As another comparison, a good classical backtracking alintermediate step of the algorithm. The lines represent amplitudes
gorithm scaleg24] as 2195=¢e%03®  This technique uses as vectors in the complex plane. The groups are for assignments
additional problem structure, namely conflicts in partial as-with c=0, i.e., solutiongdashed c=1 (gray), andc=2 (solid).
signments, and more complicated processing at each stdjpe arrows show the average valubg” . Values forc>2 are not
precluding a simple cost comparison for the small problenfhown.
sizes accessible to classical simulation of the quantum heu-
ristic. Moreover, unlike GSAT and the quantum heuristic, mean-field approximation forb(c'?) by replacing »(r;d,c)
the backtracking algorithm is a complete search method, i.ewith its average value(»(r;d,c)).,, Wwhich equals
it can not only find a solution if one exists but can a|SO(g)P(C|C’,d) whereP(c|c’,d) is the probability an assign-

determine that a problem has no solutions. Nevertheless, it isent has conflicts when at distanc&from another withc’
interesting to note that, even without making use of this adconflicts. This conditional probability is P(c|c’,d)

ditional structure, the quantum heuristic, when combined_ P(c,c’|d)/P(c’) where P(Cr):((f;n/)szm(zk_l)m—c' is

with aonzghtu%%;mplmcatlon, has an exponential growth rate,[he probability an assignment has' conflicts, and
[e0100 _ g0

of \e , only a bit larger than this classical back- P(c,c’|d)=3gP(B,c—B,c’ —B|d) is the joint probability

tracking method. _In studies us_ing problems with hundreds o, assignments separated by distaddeave, respectively,
thousands of variables, techniques such as GSAT, based @,y ¢’ conflicts. Finally, P(B,b,b’|d) is the probability

hill climbing, significantly outperform backtrgcking algo- ihe assignments hav@ conflicts in common and, respec-
rithms 23] for soluble problems. Thus comparing the quan-tyely, b andb’ unique conflicts. The explicit form for this
tum heuristic to GSAT is a more important evaluation thanohapility distribution depends on the class of problems.

using a backtracking algorithm. _ For randomk-SAT, P(B,b,b’|d) is a multinomial distribu-
From this discussion, the quantum algorithm appears t¢qp.

improve on some classical heuristics for a well-studied class
of hard NP searches, but definitive statements cannot be
made based only on such small problems. Unfortunately,
classical simulations of quantum machines incur an exponen-
tial slowdown, preventing evaluation with larger problems. kyn—dh 1n k
This leaves the option of an approximate “mean-field” Where Puow=2""("")/(k), Punique=2 “~ Ppotn, and Prest
analysis using average properties of rande®AT, which =1~ 2Puniqus— Poon @re the probabilities a randomly se-
successfully helps understand and improve classical heuridected clause conflicts with both assignments, withut not
tics [25,17,26,27. Empirical observation of how the algo- S, or with neither assignment, respectively. For instamce,
rithm changes the amplitudes for assignments witbon-  —d variables have the same assigned value in bathds,
flicts, illustrated schematically in Fig. 3, indicates that for thehence {") choices for thek variables appearing in a clause
dominant values o at each step, as increases the ampli- Wwill involve only these commonly assigned variables. For
tudes are adequately characterized by average v@lﬁ@s such a choice, the clause conflicts with botland s, with
=(yM),, where( ), denotes the average over assignmentgrobability 27X, or with neither. Combining these factors

with ¢ conflicts. With this approximation, stepof Eq. (2)  9gives the value oPy,, since in randonk-SAT each clause is
becomes selected uniformly at random. Similarly, the expression for

Punique Makes use of the fact that a random clause has prob-
ability 27X to conflict with a given assignment. With these
¢§h)m2 (—ivp)%e ™D Vy(r:d,c), (4)  expressions, Eq4) relates the average amplitudes after step
dc h to those of the prior step.
Figure 4 compares this approximationdf” with actual
where v(r;d,c) is the number of assignments withcon-  values for a sample of random problems halfway through the
flicts at distanced from assignment. Equation(4) gives a  algorithm, i.e., after step=n/2. Since a constant shift in the

m

b+b’ —B—b-b’
B,b,b’,m—B—b— b’ | PorPunquPrest” ®)

uniquée rest d

052311-4



QUANTUM SEARCH HEURISTICS PHYSICAL REVIEW A61 052311

o000 _ .
2": ] _.'f‘o..... oy = TAe 2E (f)sin(7a),
<., ©)
0 o o,
e da Al i k
N\ —=R(\)— z[e "A(F(f)—2)coq wa) — 2+ 2],

-2 N dA 2
;“g with initial conditionsf(0)=a(0)=0, with
48
a AT ) e —2ef?cogma)+1 .
E - ( )2k_ ex e F(f) ( )
o
(o]
—

andR andT defined with Eq.(1).

For most phase parameters, the solution is well behaved,
giving O(1) values foif over the full range ok asn—. In
such casesg,, remains proportional tan and amplitudes
are not significantly concentrated in solutions. However, Eq.
(6) can also develop logarithmic singularities, e.g., with the
limiting form f(A\)~—2In(1—\) anda(\)~1/2 asA—1.

5 5 =h i %0 e In general such solutions will not also satisfy the initial con-
conflicts ditionsf(0)=a(0)=0. Instead, requiring the solution to sat-

isfy both sets of conditions imposes two constraints on the

four phase parameters. That is, for given choices of, gy,

and T, such solutions exist only for specific choicesRy,

R; that can be found numerically. One such choice, given

above, is used in the figures. Small change3$gjn T4, with

Ry, R; adjusted to maintain the singularity in E@), give

imaginary values is an irrelevant overall phase, the approxisimilar behavior. This technique also applies to other classes

mation is fairly good. To indicate how wekb("| character- of randomk-SAT, e.g., with differentu.

izes amp”tude SiZGS,\If‘(:h)Z <|lr//r |2>c is also shown. Since the recursion fdranda remains finite for alh, the

Particularly for the dominant values, belowc=5 in  growth inf, deviates from the singular solution of E@)

Fig. 4, the difference in behavior is relatively small. For thefor the last few steps. This deviation is significant when the

behavior vs h, Fig. 1 shows the relative deviation next term in the Taylor series expansion of the recursion,

VT =d™2) /oM by the shading, ranging from f’(\)/j? is comparable tof’(\)/j, i.e., when X

white, when this ratio is 0, to black, when it is larger than 3.=O(1/j). For largen, this limits e'i to be of ordem?, more

The largest ratios occur only in the last few steps and fothan enough to give significant probability in solutions. Thus

values ofc for which p"(c) is quite small, limiting their ~ with suitable choices for the phase parameters, this analysis

effect. predicts the average number of search steps to find that a

As illustrated in Fig. 1, at each step amplitude concen-solution grows only linearly im. Based on small problem
trates in a narrow range of conflicts. This concentration besizes, Fig. 2 shows that the analysis correctly identifies phase
comes more pronounced asncreases, so the smooth varia- parameters giving good average performance for hard ran-
tion of In®{ in Fig. 4 allows a linear expansion to capture dom 3-SAT. In particular, the actual cost grows more slowly
the main behavior asn—~, ie. taking ®"  than classical heuristics using similar problem information.
wcel~fw/2Himan)e with f, anday, real-valued parameters. The However, the costs in Fig. 2 grow faster than linearly. If this
constant of proportionality provides normalization and an ir-continues for largen, identifying the correct scaling requires
relevant overall phase. The initial superposition, with equaimproving the analysis, e.g., accounting for the spread in
amplitudes, has,=0, a;=0. Thec values dominating the amplitudes among states with conflicts arising from the
amplitudes will be those near the average2"P(c)|®"|2,  variance inv(r:d,c) values in Eq(4). The remaining free-
which, with this expansion, i<, f,)=m/F(f,) where dom to selecly, T, and the number of steps, and introduce
F(f)=(2*—1)e’+1. For hard randonk-SAT problemsm  some nonlinearity irR(\) and T(\), could help minimize
«n so significant amplitude is in solutions wheneeéiis at  the spread.
least of ordem. A number of extensions are possible. First, the amplitude

Using this linear form fOI(D(Ch) and Eq.(5) in Eq.(4) and  shift of Fig. 1 also occurs in problems with no solutions:
expanding around,,f,-1) give a recursion foff, anda,  amplitude is enhanced in states with few conflicts. Thus, like
in terms off,,_, anda,_,. For largen, the changes at each local classical search methods such as GSAT but unlike am-
step are small so the recursion is approximated by a differplitude amplification, the algorithm applies directly to com-
ential equation by writind,,=f(\), a,=a(\) with A\=h/j,  binatorial optimization, i.e., finding a minimal conflict state
giving [28].

FIG. 4. Behavior of amplitude average and spread. Reatk
and imaginary(gray) parts of Ind{!? vs c. The curves show em-
pirical values, averaged over 100 random 3-SAT problems with
=20, u=4.25. The points show the predictions from E4). The
dashed curve shows the empirical values o¥{if) .
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Second, the mean-field analysis also applies to othel 129
classes of search problems, provided, as with Ggy. the
probabilities relating problem properties can be determined.
This is possible for a variety of commonly studied random
search classes. More realistic classes lack analytically knowr 100
probability distributions, but sampling representative in-
stances allows estimating tic|c’,d). Such estimates may
even be useful for random ensembles, allowing some tuning
of phase parameters for a particular problem instance. 80

Third, in common with amplitude amplificatidr21] and
some classical method&9], the growth ofp(M(0), asseen
in Fig. 1, means stopping a bit before the largest probability
reduces the cost. Furthermore, the wide performance distri
bution makes this algorithm suitable for improvement via
portfolios [30,31. This is especially true due to the small
correlation between the costs of the quantum heuristic anc
GSAT among problems with the same number of solutions,
as shown in Fig. 5. More specifically, among random 3-SAT
problems, much of the variation in costs for both methods is
due to the differing numbers of solutions. For the remaining
cost variation among those with the same number of solu-
tions, the most difficult cases for the quantum method are no
also the most difficult for classical methods such as GSAT,
and vice versa. Hence applying both GSAT and this quantum FIG. 5. Comparison of quantum heuristic and GSAT costs for
heuristic to a set of problems, halting when either finds aome of the random 3-SAT problems with- 20, u=4.25 used in
solution, can further reduce the median cost, particularly™9- 2, whose median number of solutions is 8. The black and gray
when this portfolio is itself combined with amplitude ampli- pc).lnt.s correspond to problems Wlt.h 8 and 1.5. solutions, respectively.
fication. Within each group, the correlation coefficient between the two

This heuristic relies on the correlation between number of€thods is about 30%. Those points above the line are more costly
conflicts and distance to a solution. Other properties classicd? S°!V& With GSAT than the quantum heuristic, and vice versa.
heuristics exploit may also give useful phase adjustmentsnstances. Nevertheless, restricting consideration to algo-
Examples include how an assignment’s conflicts compare téithms whose behavior is analytically simple is likely to un-
those of its neighbors, conflicts in partial assignments used iderestimate the potential of quantum computers for typical
backtracking searches, how an assignment to one variabfearches. With ongoing developments in error correction
affects others, and identifying new constraints during searc33,34] and implementation35—-39, quantum machines
Conversely, for which searches are these correlations towith even a modest number of bits and limited coherence
weak for quantum methods to use effectively? This questiotime could help address these issues by evaluating heuristics
is particularly important for cryptography, which relies on beyond the range of classical simulation. This will be par-
easily finding hard searches that are readily solved with adticularly useful for more complicated heuristics, using addi-
ditional information(i.e., the key [32]. tional problem properties, whose theoretical analysis is even

These results indicate additional problem properties allownore difficult. Exploring their behavior will identify oppor-
quantum searches to perform better than previously thoughtUniti€s quantum computers have for using information avail-
but one must keep in mind their limitations: as with studies2P!® In combinatorial searches to significantly improve per-
of classical heuristics, they do not provide rigorous bound ormance.
on the average search cost and, even if the algorithm per- | have benefited from discussions with Matt Franklin,
forms well on average, they give no guarantee for specifitVolf Polak, Eleanor Rieffel, and Christof Zalka.
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