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Time-convolutionless reduced-density-operator theory of a noisy quantum channel:
Two-bit quantum gate for quantum-information processing

D. Ahn,* ,† J. H. Oh, K. Kimm, and S. W. Hwang‡

Institute of Quantum Information Processing and Systems, University of Seoul, 90 Jeonnong, Tongdaemoon-ku,
Seoul 130-743, Republic of Korea

~Received 22 July 1999; published 14 April 2000!

An exact reduced-density-operator for the output quantum states in time-convolutionless form was derived
by solving the quantum Liouville equation which governs the dynamics of a noisy quantum channel by using
a projection operator method and both advanced and retarded propagators in time. The formalism developed in
this work is general enough to model a noisy quantum channel provided specific forms of the Hamiltonians for
the system, reservoir, and the mutual interaction between the system and the reservoir are given. Then we
apply the formulation to model a two-bit quantum gate composed of coupled spin systems in which the
Heisenberg coupling is controlled by the tunneling barrier between neighboring quantum dots. Gate charac-
teristics, including the entropy, fidelity, and the purity, are calculated numerically for both mixed and entangled
initial states.

PACS number~s!: 03.67.Hk, 03.67.Lx, 05.30.2d, 75.10.Jm
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I. INTRODUCTION

There has been considerable interest in the quan
theory of information and computation for the past seve
years@1–16#. Especially, quantum-mechanical properties
coding@3,4#, noisy channels including error-correcting cod
@5–8# and channel fidelity@9#, and computation@10–15#
have been studied in detail. It was shown@13,14# that any
quantum computation procedure can be decomposed into
erations on a single-bit gate and a two-bit gate which
volves an entanglement operation on two quantum bits
qubits. The presence of decoherence and imperfect
causes the operations of these quantum gates away from
ideal ones and as a result one can regard these gates as
of noisy quantum channels. Detailed analysis of these ch
nels are necessary for the complete understanding of the
eral quantum information process. Mathematically, the
namics of quantum channels or generalized quantum g
involves the transformation of input quantum states rep
sented by a density operatorr into an output stater8 @16#,
i.e.,

r→
E

r85E @r#, ~1!

where we assumeE is a linear mapping but is not necessar
a unitary transformation if one considers an open sys
interacting with the reservoir such as noisy quantum ch
nels. A model of noisy quantum channels would involve s
eral Hamiltonians for the system representing qubits, the
ervoir, and the mutual interaction between the system
the reservoir that causes the decoherence or noise. The
sity operator is then governed by the quantum Liouv
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equation@17# which is an integro-differential equation and
in general, it is nontrivial to obtain the solution of the for
given by Eq.~1!. Rather, one is expected to get the soluti
for the density operator for the output states in a Volter
type integral equation:

r~ t !5A~ t,0!r~0!1E dtB~ t,t!r~t!, ~2!

whereA is a propagator andB is a memory kernel. In gen
eral, it is very difficult to solve for the memory kernels of th
time-convolution form equation~2! self-consistently and al-
most always, one must be content with the narrowing limit
the fast modulation limit@20#.

Some time ago, the time-convolutionless equations of m
tion in the Heisenberg picture was suggested by Tokuya
and Mori @18# to overcome the above-mentioned difficultie
for problems in nonequilibrium statistical mechanics. The
formulations were then developed in the Schro¨dinger picture
by using the projection operator technique@19–21#. One of
the authors applied the time-convolutionless formulation
the model of quantum devices for detailed numerical stu
@22–25#. It was shown that the time-convolutionless form
lation can also incorporate both non-Markovian relaxat
and renormalization of the memory effects.

Recently, Loss and DiVincenzo@15# made a comprehen
sive study of the two-bit quantum gate, taking into accou
the effect of decoherence on the gate operation using
reduced density operator in the time-convolution formu
tion. Their results indicate that the detailed analysis of
decoherence process is important for the reliable operatio
quantum gates which utilize the controlled, nonequilibriu
time evolution of solid-state spin systems.

In order to make the reduce-density operator for the o
put quantum states of the form given by Eq.~1!, several
approximations, including the Born approximation, we
made in their theory. In our opinion, it would be more co
venient if there is a way to get the exact solution for t
output density-operator in time-convolutionless form giv
by Eq. ~1!.

o-
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In this paper we first derive the exact solution for t
reduced-density-operator of the output quantum state
time-convolutionless form by solving the quantum Liouvil
equation for a quantum channel using the projection oper
method. The formalism we develop in this paper is gene
enough to model a realistic quantum channel or a quan
gate. Secondly, we apply the theory to model a two-bit qu
tum gate composed of coupled spin systems in which
Heisenberg coupling is controlled by the tunneling barr
between neighboring single electron quantum dots.

II. TIME-CONVOLUTIONLESS
REDUCED-DENSITY-OPERATOR THEORY
OF A QUANTUM SYSTEM INTERACTING

WITH A RESERVOIR

In this section we study the quantum Liouville equati
for a quantum system which corresponds to a quantum c
nel or a generalized quantum gate to derive an equation
to solve for a reduced-density-operator of a system coup
to a reservoir. An interaction between the system and
reservoir leads to decoherence. The Hamiltonian of the t
system is assumed to be

HT~ t !5HS~ t !1HB1H int , ~3!

whereHS(t) is the Hamiltonian of the system representing
quantum gate~or channel!, HB the reservoir andH int the
Hamiltonian for the interaction of the system with its res
voir. The evolution of the system might include a codin
transmission, and decoding process. The equation of mo
for the density operatorrT(t) of the total system is given by
a quantum Liouville equation

d

dt
rT~ t !52 i @HT ,rT#52 iL TrT , ~4!

where

LT~ t !5LS~ t !1LB1L int

is the Liouville superoperator in one-to-one corresponde
with the Hamiltonian. In this work we use a unit where\
51. In order to derive an equation and to solve for a syst
alone, it is convenient to use the projection operators@26,27#
that decompose the total system by eliminating the deg
of freedom for the reservoir. We define time-independ
projection operatorsP andQ as @19#

PX5rB trB~X!, Q512P, ~5!

for any dynamical variableX. Here trB indicates a partial
trace over the quantum reservoir. Projection operators sa
the operator identityP25P, Q25Q, and PQ5QP50.
The information of the system is then contained in the
duced density operatorr(t) which is defined by

r~ t !5trB rT~ t !5trB PrT~ t !. ~6!
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In order to derive a time-convolutionless equation, we fi
multiply Eq. ~4! by P andQ to obtain coupled equation fo
PrT(t) andQrT(t):

d

dt
PrT~ t !52 i PLTPrT~ t !1 i PLT~ t !QrT~ t !, ~7!

d

dt
QrT~ t !52 iQLTQrT~ t !1 iQLT~ t !PrT~ t !. ~8!

We assume that the channel was turned on att50 and the
input state prepared att50, r(t50) was isolated with the
reservoir att50, i.e.,QrT(0)50 @19#.

The formal solution of~8! is given by@22#

QrT~ t !52 i E
0

t

dtH~ t,t!QLT~t!PrT~t!, ~9!

where the projected propagatorH(t,t) of the total system is
given by

H~ t,t!5T expH 2 i E
t

t

dsQLT~s!QJ . ~10!

HereT denotes the time-ordering operator. Because Eq.~9!
is in time-convolution form, we transform the memory ke
nel in Eq.~9! into time-convolutionless form@22# by substi-
tuting the formal solution of Eq.~4!

rT~t!5G~ t,t!rT~ t ! ~11!

into Eq. ~9!. The antitime evolution operatorG(t,t) of the
total system is defined by

G~ t,t!5Tc expH i E
t

t

dsLT~s!J ,

where Tc is the antitime-ordering operator. From Eqs.~9!
and ~11!, we obtain

QrT~ t !5$u~ t !21%PrT~ t ! ~12!

where

u21~ t !5g~ t !511 i E
0

t

dtH~ t,t!QLT~t!P G~ tt!.

~13!

By substituting Eq.~12! into Eq. ~7!, we obtain the time-
convolutionless equation of motion forPrT(t) as

d

dt
PrT~ t !52 i PLT~ t !PrT~ t !2 i PLT~ t !$u~ t !21%PrT~ t !.

~14!

It can be shown that the formal solution of Eq.~14! is given
by
0-2
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PrT5U~ t,0!PrT~0!2 i E
0

t

dsU~ t,s!PLT~s!

3$u~s!21%PrT~s!, ~15!

where the projected propagatorU(t,t) of the system is de-
fined by
e

05231
U~ t,t!5T expH 2 i E
0

t

dsPLT~s!PJ . ~16!

To transform Eq.~15! into time-convolutionless form once
again, we substitute

rT~s!5G~ t,s!rT~ t ! ~17!

into ~15! to obtain
PrT~ t !5U~ t,0!PrT~0!2 i E
0

t

dsU~ t,s!PLT~s!$u~s!21%P G~ t,s!rT~ t !

5U~ t,0!PrT~0!2 i E
0

t

dsU~ t,s!PLT~s!$u~s!21%P G~ t,s!PrT~ t !2 i

3E
0

t

dsU~ t,s!PLT~s!$u~s!21%P G~ t,s!QrT~ t !

5U~ t,0!PrT~0!2 i E
0

t

dsU~ t,s!PLT~s!$u~s!21%P G~ t,s!u~ t !PrT~ t !. ~18!
By the way,

PrT~ t !5rB trB„rT~ t !…5rBr~ t ! ~19!

and

PLT~ t !P5P~LS~ t !1LB1L int!P5PLS~ t !P5LS~ t !P.

~20!

Then

U~ t,0!PrT~0!5T expH 2 i E
0

t

dsPLT~s!PJ PrT~0!

5T expH 2 i E
0

t

dsLS~s!PJ PrT~0!

5US~ t,0!PrT~0!5US~ t,0!rBr~ t !. ~21!

Here US(t,0) denotes the propagator of the system. Lik
wise,

U~ t,s!PLT~s!$u~s!21%P G~ t,s!u~ t !PrT~ t !

5US~ t,s!rB trB@LT~s!$u~s!21%rB

3trB$G~ t,s!u~ t !rB%#r~ t !

5US~ t,s!rBtrB@LT~s!$u~s!21%rB#

3trB@G~ t,s!u~ t !rB#r~ t !. ~22!

Substituting Eqs.~21! and ~22! into Eq. ~18!, we obtain
-

r~ t !5US~ t,0!r~0!2 i E
0

t

dsUS~ t,s!trB@LT~s!$u~s!21%rB#

3trB@G~ t,s!u~ t !rB#r~ t ! ~23!

or

r~ t !5E~ t !r~0!5W21~ t !US~ t,0!r~0!, ~24!

with

W~ t !511 i E
0

t

dsUS~ t,s!trB@LT~s!$u~s!21%rB#

3trB@G~ t,s!u~ t !rB#

511 i E
0

t

dsUS~ t,s!trB@L intS~s!

3$12S~s!%21rB#trB@U0~s!R~ t,s!U0
21~ t !

3$12S~ t !%21rB#. ~25!

Here, we define

S~ t !512u21~ t !, ~26!

U0~ t !5e2 i tL BUS~ t !, ~27!

and

R~ t,t!5Tc expH i E
t

t

dsU0
21~s!L intU0J , ~28!
0-3
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whereU0(t) is the evolution operator of the system with th
reservoir andR(t,t) is the evolution operator@21# of the
total system in the interacting picture. In Eq.~25!, we use the
identitiesPLT(s)Q5PLintQ andH(t,t)Q5QH(t,t).

Detailed expression forS(t) becomes

S~ t !512u21~ t !52 i E
0

t

dtH~ t,t!QLT~t!P G~ t,t!

52 i E
0

t

dtH~ t,t!QLint~t!P G~ t,t!

52 i E
0

t

dtU0~ t !S~ t,t!U0
21QLintP U0~t!

3R~ t,t!U0
21~ t !, ~29!

with

S~ t,t!5T expH 2 i E
t

t

dsQU0
21~s!L intU0~s!QJ , ~30!

where S(t,t) is the projected propagator@21# of the total
system in the interaction picture. It is now obvious from~24!
and~25!, the exact solutionr(t) for the output quantum stat
is in time-convolutionless form given by Eq.~1! which is
employed in the description of quantum information proce
ing and computation@16#.

We now consider the case when the system is interac
weakly with the reservoir and we expand Eq.~25! up to the
second order in powers of the interaction HamiltonianH int .
The renormalization of the unperturbed energy of the sys
and the first order of the interactionH int gives @19–21#

PLintP50. ~31!

Then in the lowest-order Born approximation, which is va
up to the order (H int)

2, we obtain

W(2)~ t !511 i E
0

t

dsUS~ t,s!trB@L intS
(1)~s!rB#

3trB@U0~s!U0
21~ t !rB#

511 i E
0

t

dsUS~ t,s!trB@L intS
(1)~s!rB#US

21~ t,s!,

~32!

or

@W(2)~ t !#21512 i E
0

t

dsUS~ t,s!

3trB@L intS
(1)~s!rB#US

21~ t,s!, ~33!

and
05231
-

g

m

E(2)5S 12 i E
0

t

dsUS~ t,s!trB@L intS
(1)~s!rB#US

21~ t,s! D
3US~ t,0!. ~34!

Here

S (1)~s!52 i E
0

s

dtU0~s!U0
21~t!QLintP U0~t!U0

21~s!

52 i E
0

s

dtU0~s,t!L intU0
21~s,t!. ~35!

The time-convolutionless form of the output reduced-dens
operator

r~ t !5E(2)~ t !r~0!, ~36!

together with Eqs.~32!–~35!, can be used in any time sca
and is valid up to the second order in powers in the inter
tion between the system and the reservoir.

In Sec. III the reduced-density operator for the outp
quantum state is used to study the two-bit quantum gate
lizing a coupled spin system in a nonequilibrium situation

III. DECOHERENCE OF TWO-BIT QUANTUM GATE

We consider a two-bit quantum gate based on nonequ
rium dynamics of the spin of excess electrons in quant
dots @15#. In this system, the gate operation is controlled
an electrical tunneling between two quantum dots. Projec
out the spatial parts of wave functions of electrons, we mo
the system by the Hubbard Hamiltonian@28#,

HS~ t !5J~ t !SW 1•SW 2 , ~37!

whereJ(t) is the time-dependent Heisenberg coupling wh
involves the energy difference between the spin singlet
triplet states. If we turn onJ(t) for *dtJ(t)5J0ts5p, the
unitary operator associated with the Hamiltonian~37! gives
the swap operation up to the overall phase difference; ifu i , j &
labels the spin states of two electrons in theSz basis with
i , j 5↑,↓, then the swap operationUswap on two registers
u i , j & givesUswapu i , j &5u j ,i &.

In reality, the quantum-dot system of our interest is no
closed system, so we have to take into account the deco
ence effects due to the interaction with the environm
which is coupled with the system. For the action of the e
vironment during the gate operation, we use a Calde
Leggett-type model@29# where a set of harmonic oscillator
are coupled linearly to the system spins by

H int5l~SW 1•bW 11SW 2•bW 2!. ~38!

Here, bi
j5(aga(aa,i

j 1aa,i
j †) is a fluctuating quantum field

whose unperturbed motion is governed by the harmon
oscillator Hamiltonian,

HB~ t !5(
a

vaaa
†aa ~39!
0-4
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where aa
† (aa) is bosonic creation~annihilation! operator

andva are the corresponding frequencies with spectral d
tribution functionA(v)5p(aga

2d(v2va).
For a coupled spin system, the evolution operatorE (2)
le

os

ty
e.

05231
-
given by Eq.~34! can be written down explicitly in terms o
spin operators. Substituting Eqs.~37!–~39! into definitions
for U0 and L int , the integrand of Eq.~34! can be
written as
trB@L intS
(1)~s!rB#US

21~ t,s!US~ t,0!r~0!52 i E
0

s

dt trB@L intU0~s,t!L intU0
21~s,t!rB#US~s,0!r~0!

52 il2(
i jkl

E
0

s

dt„$Si
j ,Sk

l ~t2s!@US~s,0!r~0!#%trB@bi
jbk

l ~t2s!rB#

1$@US~s,0!r~0!#Sk
l ~t2s!,Si

j%trB@bk
l ~t2s!bi

jrB#…

52 i(
i j

E
0

s

dt„$Si
j ,Si

j~t2s!@US~s,0!r~0!#%@G~t2s!2 iD~t2s!#

1$@US~s,0!r~0!#Si
j~t2s!,Si

j%@G~t2s!1 iD~t2s!#…, ~40!

where the trace over the heat bath is done for the harmonic-oscillator eigenstates,

trB@bk
l ~ t !bi

jrB#5d ikd j l

1

pE0

`

A~v!H e2 ivt1
2 cos~vt !

ev/kBT21
J dv, ~41!

and we defineG(t) andD(t) as

G~ t !1 iD~ t !5l2 TrB@bi
j~ t !bi

jrB#. ~42!

Then, Eq.~34! leads to

E(2)5US~ t,0!F12E
0

t

dsE
0

s

dt(
i j

$@Si
j~s!,Si

j~t!r~0!#@G~t2s!2 iD~t2s!#1@r~0!Si
j~t!,Si

j~s!#@G~t2s!1 iD~t2s!#%G .
~43!
r,
Now we evaluate the density operator in the multip
basis representation;r(t)5(abrab(t)eab , eab is the
basis for the density operators, and in this work we ch
eab as the multiplet states, i.e.,eab5ua&^bu with
a,b51,2,3,4; u1&5u↑↑&, u2&5(u↑↓&1u↓↑&)/A2, u3&
5u↓↓&, and u4&5(u↑↓&2u↓↑&)/A2. By defining the inner
product as (eab ,egd)5tr@eab

† egd#5dabdgd , rab(t) is ob-
tained as

rab5„eab ,r~ t !…5„eab ,E (2)r~0!…

5(
gd

~eab ,E (2)egd!r~0!gd5(
gd

E abugd
(2) r~0!gd ,

~44!

where r(0)gd expansion coefficients of the initial densi
operator. Without the interaction with the environment, i.
the absence of the second term in Eq.~43!, E abugd

(2) is reduced
to US(t)abugd and is evaluated on the multiplet basis as
t

e

,

„eab ,US~ t !egd…5dabdgde2 i t̄ (Ea2Eb), ~45!

whereE1,2,35J0/4 andE4523J0/4 are the triplet and sin-
glet energy eigenvalues. Here,t̄ has its valuet(ts) if t is less
~larger! than ts . Then, US(t) becomes the swap operato
US(t)5e2 ip/4Uswap if t5ts .

In order to evaluateE (2), we first calculate the following
matrix elements:

S eab ,(
i j

@Si
j~s!,Si

j~t!egd# D 5(
i j

$^auSi
j~s!Si

j~t!ug&^dub&

2^auSi
j~t!ug&^duSi

j~s!ub&%

5ddb(
k

Makkgei t̄vkg1 i s̄vak

2Magdbei t̄vag1 i s̄vdb ~46!

and
0-5
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S eab ,(
i j

@egdSi
j~t!,Si

j~s!# D 5(
i j

$^duSi
j~t!Si

j~s!ub&^aug&

2^auSi
j~s!ug&^duSi

j~t!ub&%

5dag(
k

M dkkbei t̄vdk1 i s̄vkb

2Magdbei t̄vdb1 i s̄vag, ~47!

whereMabgd5( i j ^auSi
j ub&^guSi

j ud&, vab5Ea2Eb , and

t̄~ s̄!5H t~s! if t~s!,ts

ts otherwise.

Then, the matrix element of the evolution operatorE abugd
(2) is

obtained by substituting Eqs.~45!–~47! into Eq. ~43!,
to

tra

fo
th

o

th

l

ng

05231
E abugd
(2) 5e2 i t̄ vagFdagdbd2dbd(

k
Makkgpkkuga~ t !

2dag(
k

M dkkbpdkugb* ~ t !1Magdb$pabugd~ t !

1pbaudg* ~ t !%G ~48!

with the time-dependent termpabugd(t) defined by

pabugd~ t !5E
0

t

dse2 i s̄vbdE
0

s

dtei t̄vag@G~t2s!2 iD~t2s!#.

~49!

For numerical calculations, it is more convenient to split t
time integrals of the matrixpabugd(t) into three parts,
pabugd~ t !5E
0

ts
dse2 isvbdE

0

s

dtei tvag@G~t2s!2 iD~t2s!#1E
ts

t

dse2 i tsvbdE
0

ts
dtei tvag@G~t2s!2 iD~t2s!#

1E
ts

t

dse2 i tsvbdE
ts

s

dtei tsvag@G~t2s!2 iD~t2s!#

5E
0

ts
dseis(vdb1vag)E

0

s

dtei tvga@G~t!1 iD~t!#1ei tsvdbE
ts

t

dseisvagE
s2ts

s

dtei tvga@G~t!1 iD~t!#

1ei ts(vdb1vag)E
ts

t

dsE
0

s2ts
dt@G~t!1 iD~t!#. ~50!
cond
-
er-
be

no-
of

ans
ter-
nce
rob-
ts
m-
tion
ced

-

d

e

In order to investigate the dynamics of the density opera
in a nonequilibrium situation, we calculate Eqs.~44!–~50!
numerically, assuming an Ohmic damping for the spec
distribution functionA(v)5hv with a cutoff frequencyvc
@30#.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We now study the dynamics of the density operator
various initial states. First, we calculate the evolution of
spin states during the swap gate operation and compare
results with those obtained by Loss and DiVincenzo@15#.
The initial spin state is chosen to be the spin-up for
second electron while the first electron is unpolarized;r(0)
5(u↑↑&^↑↑u1u↓↑&^↓↑u)/2. In the multiplet basis, the initia
state is expanded as

r~0!5 1
2 u1&^1u1 1

4 u2&^2u2 1
4 u2&^4u2 1

4 u4&^2u1 1
4 u4&^4u.

~51!

Figure 1~a! shows the spin polarization calculated usi
parametersl2h51.831025, T5300 K, vc5400 K, and
J051 K ~solid lines!. For the interval, 0<t<ts the spin
polarization of the first electrons52^Sz

1&52 tr@r(t)Sz
1#
r

l

r
e
ur

e

changes to nearly a unity whereas the spin state of the se
electron becomes zero~dashed line!, demonstrating the fea
sibility of the swap operation. However, due to the decoh
ence, we find that a perfect swap operation cannot
achieved. In addition, the perturbing fields cause the mo
tonic decreases of the spin polarization with the elapse
time after the completion of the swap operation. This me
that spin states are becoming thermalized owing to the in
action with the environment, which shows the decohere
of the states. The decoherence would be a fundamental p
lem in making a reliable quantum logic gate, which pu
severe restriction on building the realistic quantum co
puter. However, there are several quantum error-correc
techniques that can compensate for imperfections introdu
by the decoherence during and after the gate operation@5–8#.
Comparing with the result obtained in the previous work@15#
~dotted line!, we find that both calculations yield similar re
sults for t.ts , except for the value att5ts . We think that
the discrepancy att5ts results from a somewhat simplifie
evaluation of the evolution operator in Ref.@15# when the
swap operation occurs.

In Figs. 1~b! and 1~c! we plot the gate fidelityF and gate
purity P which characterize the intrinsic properties of th
gate, and they are defined as@31#
0-6
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F5^c0uUS
†~ t̄ !r~ t !uc0&

5
1

6
1

1

24F(
a

E aauaa
(2) 1(

a,b
E abuab

(2) ei t̄ vabG , ~52!

P5tr@r~ t !#25
1

24 (
a,b,g

F uE abugg
(2) u2

1(
d

~E abugg
(2) E abudd

(2)* 1uE abugd
(2) u2!G ,

~53!

where the overbar means an average over all possible in
statesuc0& and US( t̄ ) is an ideal gate operation that wa
turned on during the time interval, 0<t<ts . The last equali-
ties in Eqs.~52! and~53! were derived under the condition o
both trace and Hermiticity ofE (2) being preserved within ou
approximation scheme. For an ideal quantum gate, the
fidelity F and the gate purityP must be equal to one durin
the gate operation because in that case the evolution ope
is unitary. Our calculation shows that bothF andP are found
to decrease almostly linearly as time elapses, which indic
clearly the presence of the decoherence effect. As is the
of the spin polarization, the decreasing rates forF andP are
close to those obtained in Ref.@15#; however, its value att

FIG. 1. The calculated spin polarization (s), fidelity (F), purity
(P), and entropy (L) are plotted as a function of time~solid lines!,
and compared with those obtained in Ref.@15# ~dotted lines!. We
assume that the first electron is unpolarized on the initial state
the second polarized upward. For 0<t<ts , the swap operation is
made by turning onJ(t) and, then,J(t)50.
05231
ial

te

tor

es
se

5ts is different and our results show more severe decoh
ence of the spin state for the same parameters.

Another interesting property of the two-bit gates is t
von Neumann entropyL defined asL52tr@r(t)log2 r(t)#
of a quantum state. In Fig. 1~d!, the calculated von Neuman
entropy of the spin system is plotted. For the initial dens
operator of Eq.~51!, its entropy isL51 (bit) because the
eigenvalues ofr(0) are$0,0,1/2,1/2%. As time goes on, the
entropy becomes larger because the thermalization make
system reside equally in all states. Eventually, the entr
will reach the maximum value ofL52 (bits) where all four
states are equally probable.

To examine the effect of the perturbing field on an e
tangled state, we now consider a different initial density o
erator. We assume that the system is in a pure spin singl
t50; uc0&5(u↑↓&2u↓↑&)/A2 and its density operator i
r(0)5uc0&^c0u. In Fig. 2~a!, we plot the diagonal compo
nents of the density operators in the multiplet basis a
function of time. In this figure,r44 ~solid line! loses its co-
herence linearly to time while other componentsraa grows
as time elapses. This behavior gives rise to an increa
value of the entropy as shown in Fig. 2~d!. We also compare
the fidelity @^c0uUS

†( t̄ )r(t)uc0&# of a given entangled pure
state~dotted line! with the gate fidelity~solid line! in Fig.
2~c! and the purity@ tr r(t)2# of a given initial entangled state

th

FIG. 2. For the initial density operatorr44, we show diagonal
components of the density operator as time elapses in~a!. In this
figure r44 decreases monotonically~solid line! whereas others of
diagonal components become larger~dotted lines!. In ~b! and ~c!,
the fidelity and purity are shown with~solid line! and without~dot-
ted line! an average over the initial states. The evolution of t
entropy as plotted in~d! starts from zero because the initial state
pure.
0-7
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~dotted line! with gate purity~solid line! in Fig. 2~d!. In both
quantities, there is a slight difference between the case
entangled initial state and gate. This implies that althou
the gate fidelityF and gate purityP define the global char
acteristics of gate, the fidelity and purity of the gate for
specific input state depends on the input itself.

Now, we discuss the strength of the decoherence wh
depends onG(t) andD(t) of Eq. ~43!

G~ t !1 iD~ t !5
l2h

p E
0

vc
v cosvt cothF v

2kBTGdv

2 i
l2h

p E
0

vc
v sinvtdv. ~54!

For a sufficiently high temperaturekBT@vc/2, G(t) and
D(t) are further simplified to

G~ t !1 iD~ t !5
2G0

pts

sinvct

t
2 i

D0

ts
Fsinvct

vct
2

2
cosvct

t G
~55!

with G05l2hkBTts and D05l2hvcts /p. Since a typical
value of ts is 25 psec for J051 K and, thus vcts
@1, G(t) and D(t) are rapidly oscillating functions. This
implies that the dominant contribution to the decohere
can be written asG(t)1 iD(t)52G0d(t)/ts in the limit of
vcts@1. In this approximation we find thatpabugd(t) of Eq.
~50! is proportional toG0t. This behavior is attributed to a
linear dependence of various quantities (s,F,P) on time. In
addition, we expect that the degradation of the spin polar
tion is also proportional toG0t. For this, we examine the
evolution of the spin polarization of the first electron for t
initial density operator of Eq.~51! for various values of the
coupling constant,l2h, and we plot results in Fig. 3~a!. As
l2h increases, we find that more strong decoherence oc
in spin states and its dependence is linear onl2h as shown
in Fig. 3~b!. This linear dependence also appears in the
delity and purity.

In summary, we first derive an exact reduced-density
erator for the output quantum states in time-convolutionl
form by solving the quantum Liouville equation for a nois
quantum channel. The formalism developed in this pa
would be general enough to model a noisy quantum cha
if various Hamiltonians for a channel dynamics, environm
and an interaction are given. Secondly, we calculated var
characteristics including the fidelity, purity, and the chan
of entropy of a two-bit quantum gate which is based on
spin exchange interaction between two quantum dots.
calculation shows it is really important to control the dec
herence in the quantum gate to protect quantum informa
against corruption. The decoherence in the quantum lo
gate could be a major obstacle to build the realistic quan
computer; however, it is expected that as long as the e
rate is below some threshold value, a quantum comp
which can give arbitrary accurate answers can be built wi
reasonable model of decoherence. In this respect, it wil
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interesting to investigate the implementation of a quant
error correction technique for this model. Another interest
study on the present model is to find an operator sum re
sentation for the evolution operatorE:

E@r#5(
m

AmrAm
† , ~56!

whereAm is an operator acting on the system alone. With
operator sum representation, we can calculate various in
mation theoretical quantities such as the coherent infor
tion, entropy exchange, and the channel capacity@16#. We
would like to leave this subject for future work.
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FIG. 3. For various values of the dimensionless coupling c
stant,l2h50.531025 ~dotted!, 1.831025 ~solid!, and 3.031025

~dashed!, we show the evolution of the spin polarization of the fir
electron in~a! for the initial density of Eq.~51!. In ~b!, the degra-
dation of the spin polarization (s), fidelity (F), purity (P), and
entropy (L) are compared for different parametersl2h at t5ts .
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