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Time-convolutionless reduced-density-operator theory of a noisy quantum channel:
Two-bit quantum gate for quantum-information processing
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An exact reduced-density-operator for the output quantum states in time-convolutionless form was derived
by solving the quantum Liouville equation which governs the dynamics of a noisy quantum channel by using
a projection operator method and both advanced and retarded propagators in time. The formalism developed in
this work is general enough to model a noisy quantum channel provided specific forms of the Hamiltonians for
the system, reservoir, and the mutual interaction between the system and the reservoir are given. Then we
apply the formulation to model a two-bit quantum gate composed of coupled spin systems in which the
Heisenberg coupling is controlled by the tunneling barrier between neighboring quantum dots. Gate charac-
teristics, including the entropy, fidelity, and the purity, are calculated numerically for both mixed and entangled
initial states.

PACS numbse(s): 03.67.Hk, 03.67.Lx, 05.36-.d, 75.10.Jm

I. INTRODUCTION equation[17] which is an integro-differential equation and,
in general, it is nontrivial to obtain the solution of the form
There has been considerable interest in the quantuiven by Eq.(1). Rather, one is expected to get the solution
theory of information and computation for the past severafor the density operator for the output states in a Volterra-
years[1-16]. Especially, quantum-mechanical properties oftype integral equation:
coding[3,4], noisy channels including error-correcting codes
[5-8] and channel fidelity]9], and computatiof10-15
have been studied in detail. It was shof#8,14 that any p(t)ZA('[,O)p(O)-i-f drB(t,7)p(7), @
guantum computation procedure can be decomposed into op-
erations on a single-bit gate and a two-bit gate which inwhereA is a propagator an8 is a memory kernel. In gen-
volves an entanglement operation on two quantum bits oeral, it is very difficult to solve for the memory kernels of the
qubits. The presence of decoherence and imperfectiorténe-convolution form equatiof2) self-consistently and al-
causes the operations of these quantum gates away from th&st always, one must be content with the narrowing limit or
ideal ones and as a result one can regard these gates as a plaet fast modulation limif20].
of noisy quantum channels. Detailed analysis of these chan- Some time ago, the time-convolutionless equations of mo-
nels are necessary for the complete understanding of the getien in the Heisenberg picture was suggested by Tokuyama
eral quantum information process. Mathematically, the dy-and Mori[18] to overcome the above-mentioned difficulties
namics of quantum channels or generalized quantum gatder problems in nonequilibrium statistical mechanics. These
involves the transformation of input quantum states repreformulations were then developed in the Schinger picture
sented by a density operatprinto an output state’ [16], by using the projection operator technigi®—21. One of
ie., the authors applied the time-convolutionless formulation to
the model of quantum devices for detailed numerical study
) [22-217. It was shown that the time-convolutionless formu-
p—p'=Elp], (1) Jation can also incorporate both non-Markovian relaxation
and renormalization of the memory effects.
where we assumé&is a linear mapping but is not necessarily  Recently, Loss and DiVincenZd 5] made a comprehen-
a unitary transformation if one considers an open systersive study of the two-bit quantum gate, taking into account
interacting with the reservoir such as noisy quantum chanthe effect of decoherence on the gate operation using the
nels. A model of noisy quantum channels would involve sevreduced density operator in the time-convolution formula-
eral Hamiltonians for the system representing qubits, the region. Their results indicate that the detailed analysis of the
ervoir, and the mutual interaction between the system andecoherence process is important for the reliable operation of
the reservoir that causes the decoherence or noise. The dequantum gates which utilize the controlled, nonequilibrium
sity operator is then governed by the quantum Liouvilletime evolution of solid-state spin systems.
In order to make the reduce-density operator for the out-
put quantum states of the form given by H4), several
*Also at Department of Electrical Engineering, University of approximations, including the Born approximation, were
Seoul, Seoul 130-743, Korea. made in their theory. In our opinion, it would be more con-
TElectronic address: dahn@uoscc.uos.ac.kr venient if there is a way to get the exact solution for the
*permanent address: Department of Electronics Engineering, Kosutput density-operator in time-convolutionless form given
rea University, 5-1 Anam, Sungbook-ku, Seoul 136-701, Korea. by Eq. (1).

1050-2947/2000/6%5)/05231F9)/$15.00 61 052310-1 ©2000 The American Physical Society



D. AHN, J. H. OH, K. KIMM, AND S. W. HWANG PHYSICAL REVIEW A61 052310

In this paper we first derive the exact solution for theln order to derive a time-convolutionless equation, we first
reduced-density-operator of the output quantum states imultiply Eq. (4) by P andQ to obtain coupled equation for
time-convolutionless form by solving the quantum Liouville Pp+(t) and Qp(t): o
equation for a quantum channel using the projection operator -
method. The formalism we develop in this paper is general ) )
enough to model a realistic quantum channel or a quantum gi Ppr(U=—1PLtPpr()+iPLt(1)Qpr(1),  (7)
gate. Secondly, we apply the theory to model a two-bit quan-
tum gate composed of coupled spin systems in which the d
Helsenberg'coupll_ng is controlled by the tunneling barrier &QPT(t):_iQLTng(t)+igLT(t)EPT(t)- (8)
between neighboring single electron quantum dots.

We assume that the channel was turned ot=dd and the

IIl.- TIME-CONVOLUTIONLESS input state prepared at=0, p(t=0) was isolated with the
REDUCED-DENSITY-OPERATOR THEORY reservoir at=0, i.e.,Qp7(0)=0 [19].
OF A QUANTUM SYSTEM INTERACTING The formal solution of8) is given by[22]

WITH A RESERVOIR

. . . . . t
In this section we stqu the quantum Liouville equation Qp+(t)= _if drH(t,7)QL(7)Ppr(7), )
for a quantum system which corresponds to a quantum chan- - 0 -
nel or a generalized quantum gate to derive an equation and
to solve for a reduced-density-operator of a system coupledhere the projected propagatd(t,r) of the total system is
to a reservoir. An interaction between the system and thgiven by
reservoir leads to decoherence. The Hamiltonian of the total
system is assumed to be [t
ﬂ(t,f)=Iexp(—|J dsgLT(s)Q]. (10

Hr(t)=Hg(t) +Hg+ Hipn, ()]

HereT denotes the time-ordering operator. Because(8x.
whereHg(t) is the Hamiltonian of the system representing ajs in time-convolution form, we transform the memory ker-
quantum gatgor channel, Hg the reservoir andH;,, the  nel in Eq.(9) into time-convolutionless forr22] by substi-
Hamiltonian for the interaction of the system with its reser-tyting the formal solution of Eq4)
voir. The evolution of the system might include a coding,

transmission, and decoding process. The equation of motion pr(7)=G(t,7)p7(t) (11)
for the density operatgs(t) of the total system is given by B
a quantum Liouville equation into Eq. (9). The antitime evolution operatds(t,7) of the
total system is defined by
d : :
mpT(t)z_l[HTva]z_”—TpT! 4 t
g(t,r)zfexp{if dsLT(s)},
where
where T¢ is the antitime-ordering operator. From Ed$)
L(t)=Lg(t)+Lg+ Ly and(11), we obtain
is the Liouville superoperator in one-to-one correspondence Qpr(t)={6(t) = 1}Pp+(t) (12)

with the Hamiltonian. In this work we use a unit whefie

=1. In order to derive an equation and to solve for a systemvhere
alone, it is convenient to use the projection operaf@€s27]

that decompose the total system by eliminating the degrees e I

of freedom for the reservoir. We define time-independent ¢ (D=9()=1+i OdTﬂ(t'T)QLT(T)EQ(”)'
projection operator® andQ as[19] (13)

PX=pgtrg(X), Q=1-P, (5) By substituting Eq.(12) into Eq. (7), we obtain the time-
convolutionless equation of motion f&p(t) as
for any dynamical variableX. Here tg indicates a partial

trace over the quantum reservoir. Projection operators satisfyd , )

the operator identityP?=P, Q?=Q, and PQ=QP=0. &EPT(U: —iPLr(t)Ppr(t) —iPLr(t){6(t) — 1} Pp+(1).
The information of the system is then contained in the re- (14)
duced density operatgr(t) which is defined by

It can be shown that the formal solution of Ed4) is given
p(t)=trg pr(t) =trg Pp(1). (6) by
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t t
PpT=U(t,O)PpT(O)—iJ dsU(t,s)PLy(s) U(t,r)zTexpl—if dsPLT(s)P}. (16)
Por=2 LY o o=thS)E = 1 o o8 L
X{6(s)—1}Pp+(s), (15  To transform Eq.15) into time-convolutionless form once
again, we substitute
pr(s)=G(t,s)pr(t) 17

where the projected propagator(t, ) of the system is de-
fined by into (15) to obtain

t
Ppr(t)=U(t,0)Ppr(0)—i fodsga,s)ELT(s){a(s)—1}E§<t,s>pT(t>
~U(t.OPpr(0)~i f;dsga,s)ELT(s){a(s)—1}E§<t,s>EpT(t>—i
t
x fodsg(t,smLT(s){e(s)—1}5 G(t,9)Qpr(t)

=U(t,0Pp7(0) i f;dsg(t,S)ELT(S){G(S) —1}P G(t,5)6(t)Pp+(t). (18)

By the way, [t
p(t)=gs(t,0)p(0)—lfodsgs(t,S)trB[LT(S){é’(S)—1}pB]
Ppr(t)=pg trg(pr(t))=pep(t) (19
X trg[ G(1,9) (1) pglp(t) (23
and
or
PLr()P=P(Ls(t)+Lp+ Lint)E:ELs(t)E:Ls(t)E(-zo) p(H)=E&(t)p(0)=W1(t)U«t,0)p(0), (24)
Then with
t
9<t,0>EpT<0>=IeX”‘ - tdSELT<s>E] Ppr(0) Wt =4 st 09T
0
t Xtrg[ G(t,s) 6(t) pg]
:Iex4_|f dSLS(S)E}EpT(O) t
0 =1+iJodsgs(t,s)trB[LimE(s)
=Ug(1,0)Ppr(0)=Ug(t,0)pp(t). (21) .
X{1-3(8)} *pgltra[ Uo(S)R(t,8)Uq (1)
Here U4(t,0) denotes the propagator of the system. Like- X{1—3 (1)} pg]. (25)

wise,

Here, we define
U(t,s)PLy(s){6(s) —1}P G(t,s)6(t)Ppr(t)

= U(t,8)ps el L1(9){0(5)~ 1} pe 2(H=1-674), (29)
Xtrg{G(t,s) 6(t)pg}1p(t) Ug(t)=e tBU(t), (27)
=Ug(t,s)pgtrg[ L7(s){ (s) — 1} pg] and
Xtrg[ G(t,s) 8(t) pglp(t). (22

t
o _ , R(t,7)=TC¢ex if dsUy (s)LinUo !, (28)
Substituting Eqs(21) and (22) into Eq. (18), we obtain - - T —
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whereU(t) is the evolution operator of the system with the 2 [t " .
reservoir andR(t,7) is the evolution operatof21] of the &)= 1_|f0d598(tvs)tr8[|—int2 (s)pelUs(t,s)
total system in the interacting picture. In Eg5), we use the
identitiesPL+(s)Q=PL;Q andH(t,7)Q=QH(t,7). X Ug(t,0). (34)
Detailed expression fak (t) becomes
Here
t
_1_p-losy— (S _ _
3(0=1-0 40 =i [ 4 QL PG $0(5)= i | drU(91U5 " (91QLnP Uo(11U5 (5)
t
— i X S
- fodTﬂ(t'T)gL'nt( NPG(t,7) =—j fo drUq(s, 7)LinUg (S, 7). (395
t
=—i f d7Uo(1)S(t, 1)U *QLinP Ug(7) The time-convolutionless form of the output reduced-density
0 - operator
-1
*RIDYo (O, (29 p(1)=EP(1)p(0), (36
with together with Eqs(32)—(35), can be used in any time scale

and is valid up to the second order in powers in the interac-
t tion between the system and the reservoir.
§(t,r):Iexp|’—ij dnggl(s)Lmtgo(s)Q , (30 In Sec. Ill the reduced-density operator for the output
T B quantum state is used to study the two-bit quantum gate uti-
lizing a coupled spin system in a nonequilibrium situation.
where S(t,7) is the projected propagat¢®l] of the total
system in the interaction piCtUre. It is now obvious fr&ﬂ-) IIl. DECOHERENCE OF TWO-BIT QUANTUM GATE
and(25), the exact solutiop(t) for the output quantum state
is in time-convolutionless form given by E@l) which is We consider a two-bit quantum gate based on nonequilib-
employed in the description of quantum information process¥ium dynamics of the spin of excess electrons in quantum
ing and computatiofi16]. dots[15]. In this system, the gate operation is controlled by
We now consider the case when the system is interactingn electrical tunneling between two quantum dots. Projecting
weakly with the reservoir and we expand Ef5) up to the  out the spatial parts of wave functions of electrons, we model
second order in powers of the interaction Hamiltoni4p,.  the system by the Hubbard Hamiltonig28],
The renormalization of the unperturbed energy of the system .
and the first order of the interactidt,, gives[19—21 Hs(t)=J(1)S;- S, (37

whereJ(t) is the time-dependent Heisenberg coupling which
involves the energy difference between the spin singlet and
] o o _ triplet states. If we turn od(t) for fdtJ(t)=Jy7s=, the
Then in the lowest-order Born _apprOX|mat|0n, which is valid unitary operator associated with the Hamiltoni@7) gives
up to the order ifl;,)?, we obtain the swap operation up to the overall phase differende;jif
labels the spin states of two electrons in thebasis with
i,j=T,l, then the swap operatiob,,, on two registers
li.i) givesUgyadivi)=1j.i).

In reality, the qguantum-dot system of our interest is not a

PLP=0. (31

t
WA(t)=1+i f dsUg(t,s)tra[ Lin= M(s) p]
0

Xtrg[Ug(s)Ug H(t) pg] closed system, so we have to take into account the decoher-
. ence effects due to the interaction with the environment
:1+if dsUg(t,s)trg[ Lin= (s)pglUs X(t,5), which is coupled with the system. For the action of the en-
o - vironment during the gate operation, we use a Caldeira-

Leggett-type mode]29] where a set of harmonic oscillators
(32 . :
are coupled linearly to the system spins by

o Hin= (81 B+, b,). (39)
Here,bl=3,9.(a),;+al,;") is a fluctuating quantum field

whose unperturbed motion is governed by the harmonic-
oscillator Hamiltonian,

(W] =11 dsugts
0

Xtrg[Lins M(s)pslUs (t,5), (33

He(H)=2, w,ala, (39)
and @
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where az (a,) is bosonic creation(annihilation operator given by Eq.(34) can be written down explicitly in terms of

andw, are the corresponding frequencies with spectral disspin operators. Substituting Eq&7)—(39) into definitions

tribution functionA(w) =72 ,0%6(0— ). for U, and L, the integrand of Eq.(34) can be
For a coupled spin system, the evolution opera&  written as

tre[Lin=M(5)pe]Us (t,9)Us(t,0)p(0) = i f:thfB[Linth(S, DLinUo '(5,7)ps]Us(5,0)p(0)

--in3, “dr(S] Sk(r=9)[Us(5.0)p(0) jre[blbl (7= S)pe]
+{[Us(5,00p(0)]S(7— ), Sl}trg[ by (7— )bl pg])

i3 f:dr({Sf',9.'<r—s)[gs<s,0>p<0>]}[r<f—s)—iA(r—s)]

+{[Us(5,0p(0)]8](7=8), SHT (r—3)+iA(r=9)]), (40
where the trace over the heat bath is done for the harmonic-oscillator eigenstates,
tra[ by ()bl pg] = Guc Sy EfDOA(w) ei“’t+20,k0—§:wt)] , (41
mJo e” sl -1
and we defind’(t) andA(t) as
T(t)+iA(t)=N2Trg[bl(t)blpg]. (42)

Then, Eq.(34) leads to

t S . . . ’
E2=Ug(t,0 1—f0dsf0dri2j {[S{(S),SJ(T)p(O)][F(T—S)—iA(T—S)]+[P(0)S{(T)’S{(S)][F(T_S)+iA(T_S)]}}
(43)
|
Now we evaluate the density operator in the multiplet (eaﬁius(t)eya):501[3%564?(5(53)' (45)

basis representationp(t) =2 ,zp.4(t)€.5, €45 Iis the
basis for the density operators, and in this work we Chos?\/hereElzngoM andE,= —3J,/4 are the triplet and sin-

Z“%:alsz :tahj |1n;uzlt||?lTe>t st?;v;s:, ( %’fﬁ“ﬁ? >()1/>\<//§3| V\g; glet energy eigenvalues. Hetehas its valug( ) if t is less
=111y, and |4>=(|Tl>—|lT>)/\/§- By defining the inner (Iargei trl?gmrs. Th;an,:gs(t) becomes the swap operator,
Ug(t)=e gswapI t=r15.

et _ ‘s ob- . .
pf_Odl:th as €up,8,0) =t €48,5]= Sapdys, Pap(t) is Ob In order to evaluate (?), we first calculate the following
tained as matrix elements:

— — (2) ) ) ) )
Pap=(€ap P(D)=(80p £70(0)) cap 3 1819 8(ne,5] | = 3 ((alslo18l(n1)(3l8)

=% (eaﬁ,emew)p(om:% £ ,5p(0) 5,

(44)

—(alSl(1)|v)(8]Sl(s)]B)}

_ iTw, ., +isw
- 5(5,82 Makk'ye s aK
K

where p(0),s expansion coefficients of the initial density P
operator. Without the interaction with the environment, i.e., —M,, 558 IS0 (46)
the absence of the second term in &), £, is reduced

to Ug(t) .5 45 @nd is evaluated on the multiplet basis as and
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e 2 (05,87 S(9)]| =3 {(AS|(nSl(s)|B)(aly)
—(aSl(s)|y)(8ISl(n)]|B)}
= By Mgl ™o 50ns
— M, 556 o8 500y, (47)

WhereMaB75:Eij<a|S{|B><’y|g’|5>v Wyp= Ea_ E,Bv and
___{ 7(S)

S .
m(s) 75 Otherwise.

if 7(s)<tg

Then, the matrix element of the evolution operafdf),. ; is
obtained by substituting Eq#$45)—(47) into Eq. (43),

PHYSICAL REVIEW A61 052310
55123)\75: e—itway[ 5a75,85_ 5352 M aKKypKK|ya(t)
K
- 5a7§ M 5KK,Bp§K|)/B(t) +M ay&ﬁ{paﬁ\yﬁ(t)

+PBaoy(D} (48)

with the time-dependent ter, g, s(t) defined by

t — S —
Paglys(t) = Jodse"s‘"ﬁﬁfo dre' [T (7—s)—iA(7—9s)].
(49

For numerical calculations, it is more convenient to split the
time integrals of the matrip,g,s(t) into three parts,

Tg . S i t . Tg .
Da,g\ya(t)Zf dse*'s‘“ﬁaf dre'“”av[l“(r—s)—iA(r—s)]+f dse*'fswﬁﬁf d7e'™ao[T(7—s)—iA(7—9)]
0 0 Ts 0

t ) s )
+ [ dsertmons [“dreroaf v (r-9) - a9

Ts . S ) ) t . s
=J dsés(‘“ﬁﬂ”av)f dre'mw[r(r)JriA(T)]+e'Tswaﬂf dséswayf
0 0 Ty

) t S—Ts
+ews<waﬁ+ww>J dsJ drT()+iA(7)].
s Jo

dre' ™ v[T(7)+iA(7)]

S—7g

(50

In order to investigate the dynamics of the density operatochanges to nearly a unity whereas the spin state of the second

in a nonequilibrium situation, we calculate Edd4)—(50)

electron becomes zer@ashed ling demonstrating the fea-

numerically, assuming an Ohmic damping for the spectrakibility of the swap operation. However, due to the decoher-

distribution functionA(w) = nw with a cutoff frequencyw,
[30].

IV. NUMERICAL RESULTS AND DISCUSSIONS

ence, we find that a perfect swap operation cannot be
achieved. In addition, the perturbing fields cause the mono-
tonic decreases of the spin polarization with the elapse of
time after the completion of the swap operation. This means
that spin states are becoming thermalized owing to the inter-

We now study the dynamics of the density operator foraction with the environment, which shows the decoherence
various initial states. First, we calculate the evolution of theof the states. The decoherence would be a fundamental prob-
spin states during the swap gate operation and compare olgm in making a reliable quantum logic gate, which puts

results with those obtained by Loss and DiVincerj18].

severe restriction on building the realistic quantum com-

The initial spin state is chosen to be the spin-up for theputer. However, there are several quantum error-correction

second electron while the first electron is unpolarize)
=TT TIFILTYTN/2. In the multiplet basis, the initial
state is expanded as

p(0)=3|1)(1]+212)(2| - 2[2)(4] - z[4)(2| + 2|4)(4].
(51)

techniques that can compensate for imperfections introduced
by the decoherence during and after the gate opergiof].
Comparing with the result obtained in the previous wdrk]
(dotted ling, we find that both calculations yield similar re-
sults fort> 75, except for the value dt=75. We think that

the discrepancy dt= 74 results from a somewhat simplified
evaluation of the evolution operator in Ré¢f.5] when the

Figure X&) shows the spin polarization calculated usingswap operation occurs.

parametera.?7=1.8x10"°, T=300 K, w,=400 K, and
Jo=1 K (solid lineg. For the interval, &t<rg the spin
polarization of the first electrors=2(S)=2 tf p(t)St]

In Figs. 1b) and Xc) we plot the gate fidelitf- and gate
purity P which characterize the intrinsic properties of the
gate, and they are defined [&l]
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FIG. 1. The calculated spin polarizatios)( fidelity (F), purity FIG. 2. For the initial density operatar,,, we show diagonal
(P), and entropy {) are plotted as a function of timsolid lines, components of the density operator as time elapsds)inn this
and compared with those obtained in Ref5] (dotted lines. We

figure p44 decreases monotonicallgolid line) whereas others of
assume that the first electron is unpolarized on the initial state witlliagonal components become largdotted lineg. In (b) and (c),

the second polarized upward. Fos®< 7¢, the swap operation is the fidelity and purity are shown witfsolid line) and without(dot-
made by turning ord(t) and, thenJ(t)=0. ted ling an average over the initial states. The evolution of the

entropy as plotted iiid) starts from zero because the initial state is

= pure.
F=(olUg(t)p(t)| o)
1 1 @) @) ite =15 is different and our results show more severe decoher-
- §+ 24 % Eaa\aa“LaEB Eaplap® P (52 ence of the spin state for the same parameters.

Another interesting property of the two-bit gates is the
von Neumann entropy\\ defined asA = —tr[ p(t)log, p(t)]
of a quantum state. In Fig(d), the calculated von Neumann
entropy of the spin system is plotted. For the initial density
operator of Eq(51), its entropy isA=1 (bit) because the
eigenvalues op(0) are{0,0,1/2,1/2. As time goes on, the
entropy becomes larger because the thermalization makes the
system reside equally in all states. Eventually, the entropy

(53) will reach the maximum value of =2 (bits) where all four
states are equally probable.

where the overbar means an average over all possible initial 10 €xamine the effect of the perturbing field on an en-
=~ : . tangled state, we now consider a different initial density op-
states|¢,) and Ug(t) is an ideal gate operation that was o o
turned on during the time interval=0t< ... The last equali- erator. We assume that the system is in a pure spin smg'let at
ties in Eqs(52) and(53) were derived under the condition of 1= 0 |‘/’0>:(|Tl>_|_“>)/ﬁ and its density operator is
both trace and Hermiticity of ) being preserved within our P(0)=|#0)(¢0|. In Fig. &), we plot the diagonal compo-
approximation scheme. For an ideal quantum gate, the gaféents of the density operators in the multiplet basis as a
fidelity F and the gate purit must be equal to one during function qf time. In t.hIS flgu.rep44 (solid line) loses its co-
the gate operation because in that case the evolution operatggrence linearly to time while other componepts, grows
is unitary. Our calculation shows that bdtrandP are found @S time elapses. This behavior gives rise to an increasing
to decrease almostly linearly as time elapses, which indicate4lue of the entropy as shown in Figd2 We also compare
clearly the presence of the decoherence effect. As is the casiae fidelity[<¢0|U§(t)p(t)|w())] of a given entangled pure
of the spin polarization, the decreasing ratesH@ndP are  state(dotted ling with the gate fidelity(solid line) in Fig.
close to those obtained in RéfL5]; however, its value at  2(c) and the purity tr p(t)?] of a given initial entangled state

— 1
P=tp(t)]’= -, £
24 'B.y | |

apBlyy

(2) (2)* (2) 2
+25 (5aﬁlwgaﬁ\55+|gaﬁ\y5| )}’
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(dotted ling with gate purity(solid line) in Fig. 2(d). In both 1.0 g emr— LU, T
guantities, there is a slight difference between the cases of "\\\\‘ """"""
entangled initial state and gate. This implies that although 08 Tl
the gate fidelityF and gate purityP define the global char-
acteristics of gate, the fidelity and purity of the gate for a 0.6 7
specific input state depends on the input itself. “
Now, we discuss the strength of the decoherence which 041 1
depends ord’(t) andA(t) of Eq. (43) 02
)\2 0.0 | 1 1 (a)
- N e @ 0.0 1.0 20 30 40
I'(t)+iA(t) - fo w COswt cotl‘{ZkBT dw i1,
)\27] e 12 T T /_/
—iT w sinwtdw. (54 P
0 1\_/-/‘/
For a sufficiently high temperaturkgT>w /2, I'(t) and 7

A(t) are further simplified to

2T, sinwgt A
F(t)+iA(t)=7T—7_0 <=2
S

wct2 t

t Ts

Sinw,t COSthl

(b)
(55) 08 ' - .
0.0 1.0 2.0 3.0(x10™)

with To=\27kgT7s and Ag=\29w.7s/7. Since a typical 22

value of 75 is 25 psec forJy=1 K and, thus w.7 n

>1, I'(t) and A(t) are rapidly oscillating functions. This  FIG. 3. For various values of the dimensionless coupling con-
implies that the dominant contribution to the decoherencetant,x2=0.5x10"° (dotted, 1.8x10° (solid), and 3.0<10 5
can be written ad’(t) +iA(t)=2I"g6(t)/ 75 in the limit of  (dashey we show the evolution of the spin polarization of the first
wc7s>1. In this approximation we find that, 4 ,5(t) of Eq.  electron in(a) for the initial density of Eq(51). In (b), the degra-
(50) is proportional tol'yt. This behavior is attributed to a dation of the spin polarizationsy, fidelity (F), purity (P), and
linear dependence of various quantitiesH,P) on time. In  entropy (\) are compared for different parametersy att=r,.
addition, we expect that the degradation of the spin polariza-

tion is also proportional td"gt. For this, we examine the

: i ot , interesting to investigate the implementation of a quantum
evolution of the spin polarization of the first electron for the

error correction technique for this model. Another interesting

|n|t|all_den5|ty ?peraztor of (;EQ('SD lfotr VaI’I|C:US_ vla:I_ue(sa)ofAthe study on the present model is to find an operator sum repre-
cgup_lng constant\* », and we plot results in Fig.(@. As <o aiion for the evolution operatér
\“7 increases, we find that more strong decoherence occurs

in spin states and its dependence is lineandn as shown
in Fig. 3(b). This linear dependence also appears in the fi-
delity and purity.
In summary, we first derive an exact reduced-density op- ﬂp]zz A pA" (56)
erator for the output quantum states in time-convolutionless v
form by solving the quantum Liouville equation for a noisy

guantum channel. The formalism developed in this paper . . .
would be general enough to model a noisy quantum channgYhereA” is an operator acting on the system alone. With the

if various Hamiltonians for a channel dynamics, environmentOpe_rator sum r_epresenta_tl_on, we can calculate various infor-
and an interaction are given. Secondly, we calculated variou@1ation theoretical quantities such as the coherent informa-
characteristics including the fidelity, purity, and the changei®n: entropy exchange, and the channel capgdi}. We

of entropy of a two-bit quantum gate which is based on thevould like to leave this subject for future work.

spin exchange interaction between two quantum dots. Our

calculation shows it is really important to control the deco-

herence in the quantum gate to protect quantum information ACKNOWLEDGMENTS

against corruption. The decoherence in the quantum logic

gate could be a major obstacle to build the realistic quantum We thank Dr. Ki Jeong Kong and Dr. Jinsoo Kim for
computer; however, it is expected that as long as the erroraluable discussions. This work was supported by the Ko-
rate is below some threshold value, a quantum computaean Ministry of Science and Technology through the Cre-
which can give arbitrary accurate answers can be built with ative Research Initiatives Program under Contract No. 98-
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